JP4021922B1 - Method for producing aluminum foil for electrolytic capacitor electrode - Google Patents

Method for producing aluminum foil for electrolytic capacitor electrode Download PDF

Info

Publication number
JP4021922B1
JP4021922B1 JP2006308814A JP2006308814A JP4021922B1 JP 4021922 B1 JP4021922 B1 JP 4021922B1 JP 2006308814 A JP2006308814 A JP 2006308814A JP 2006308814 A JP2006308814 A JP 2006308814A JP 4021922 B1 JP4021922 B1 JP 4021922B1
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
aluminum foil
etching
intermediate annealing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006308814A
Other languages
Japanese (ja)
Other versions
JP2008121089A (en
Inventor
昌也 遠藤
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2006308814A priority Critical patent/JP4021922B1/en
Application granted granted Critical
Publication of JP4021922B1 publication Critical patent/JP4021922B1/en
Publication of JP2008121089A publication Critical patent/JP2008121089A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

【課題】エッチング性および信頼性に優れ、無電解エッチングが可能な電解コンデンサ電極用アルミニウム箔を提供する。
【解決手段】質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%を含有し、さらに所望によりZn、Sn、In、Gaの内、少なくとも1種以上を合計で0.0030〜0.10%含有し、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施して電解コンデンサ電極用アルミニウム箔とする。無電解においてもエッチング時に均一なピットを高密度に形成することが可能になり、高静電容量及び高信頼性を兼ね備えた電解コンデンサ電極を低コストで製造することが可能になる。
【選択図】図1
Disclosed is an aluminum foil for an electrolytic capacitor electrode which is excellent in etching property and reliability and can be electrolessly etched.
SOLUTION: In mass%, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Ni: 0.0051 to 0.05%, and further Zn, Sn if desired In addition, at least one of In and Ga is contained in a total amount of 0.0030 to 0.10%, and the balance has a composition composed of Al and inevitable impurities, and the reduction ratio in cold rolling after hot rolling is An aluminum alloy rolled material having a plate thickness of 75% or more and less than 98% is subjected to intermediate annealing at 300 ° C. to 500 ° C. to obtain an aluminum foil for electrolytic capacitor electrodes. Even in the case of non-electrolysis, uniform pits can be formed at high density during etching, and an electrolytic capacitor electrode having both high capacitance and high reliability can be manufactured at low cost.
[Selection] Figure 1

Description

この発明は、電解コンデンサの電極として用いる際にエッチングが施される電解コンデンサ電極用アルミニウム箔の製造方法に関するものであり、特に陰極用のアルミニウム箔の製造方法に好適である。   The present invention relates to a method for producing an aluminum foil for an electrolytic capacitor electrode that is etched when used as an electrode for an electrolytic capacitor, and is particularly suitable for a method for producing an aluminum foil for a cathode.

電解コンデンサの陰極に用いられるアルミニウム箔としては、純Al系と合金系(主にAl−Cu系、Al−Mn系)が用いられている。このうち純Al系は、不純物が少なく、信頼性は高いが、溶解性が低いため、電解エッチングが採用されており、コストが高いという課題を有している。一方、合金系は不純物が多く信頼性が低いとされている。例えば、Al−Cu系(例えば、特許文献1参照)は、Cuの含有によりエッチング性を向上させるものの、コンデンサに組み込んだ際に、電解液中に溶出したCuが析出し、短絡などの安全上(信頼性)の問題が発生する。また、Al−Mn系(例えば、特許文献2)は、Mnの含有によりエッチング性を向上させるものの、エッチング時に溶出したMnを含有するエッチング液の廃液処理上の問題(環境問題)が発生する。ただし、これら合金系は、溶解性が高いため、無電解エッチングが可能であり、コストの低い製造方法の採用が可能である。
したがって、信頼性重視の観点からは純Al系が選定され、コスト重視の観点では合金系が選定されている。
特開2002−80927号公報 特開2004−076059号公報
As the aluminum foil used for the cathode of the electrolytic capacitor, pure Al type and alloy type (mainly Al-Cu type and Al-Mn type) are used. Among these, the pure Al system has few impurities and high reliability, but has low solubility, so that electrolytic etching is employed and has a problem of high cost. On the other hand, the alloy system has many impurities and is considered to have low reliability. For example, although Al-Cu system (for example, refer patent document 1) improves etching property by inclusion of Cu, when it is incorporated in a capacitor, Cu eluted in the electrolytic solution is precipitated, and safety such as a short circuit is caused. (Reliability) issues occur. Moreover, although Al-Mn type | system | group (for example, patent document 2) improves etching property by containing Mn, the problem (environmental problem) on the waste-liquid process of the etching liquid containing Mn eluted at the time of etching generate | occur | produces. However, since these alloy systems have high solubility, electroless etching is possible, and a low-cost manufacturing method can be employed.
Accordingly, a pure Al system is selected from the viewpoint of emphasizing reliability, and an alloy system is selected from the viewpoint of emphasizing cost.
JP 2002-80927 A JP 2004-076059 A

ところで最近では、コンデンサが使用される製品の全体的な品質レベルの向上に伴い、コンデンサに対しても信頼性が重視されるようになり、電極用に使用されるアルミニウム箔も信頼性の高い純Al系が主流になる傾向にある。しかし、上記したように従来の純Al系アルミニウム箔は電解エッチングが必要であるためコスト高になるという問題点を有している。このため低コスト化が可能な無電解エッチングが可能な純Al系アルミニウム箔の開発要求が強くなっている。
これに対し、本願発明者らは、純Al系ベースにNiなどを添加することにより無電解エッチングを可能にしたアルミニウム箔を提案している。しかし、当該アルミニウム箔は、エッチングが圧延目の凹凸に集中し易く、結果的に未エッチ領域がスジ状に残存し、均一性不良や外観不良の問題が発生している。
Recently, with the improvement of the overall quality level of products in which capacitors are used, reliability has become more important for capacitors, and aluminum foil used for electrodes is also highly reliable. Al type tends to become mainstream. However, as described above, the conventional pure Al-based aluminum foil has a problem of high cost because it requires electrolytic etching. For this reason, there is an increasing demand for development of pure Al-based aluminum foil that can be electrolessly etched at a lower cost.
On the other hand, the present inventors have proposed an aluminum foil that enables electroless etching by adding Ni or the like to a pure Al base. However, in the aluminum foil, the etching tends to concentrate on the unevenness of the rolling line, and as a result, the unetched region remains in a streak shape, causing problems such as poor uniformity and poor appearance.

本発明は、上記事情を背景としてなされたものであり、無電解エッチングにおいても均一性の高いエッチングが可能であり、したがってコストが安く、且つ信頼性の高いアルミニウム箔の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and provides a method for manufacturing an aluminum foil that is capable of highly uniform etching even in electroless etching, and thus is low in cost and high in reliability. Objective.

すなわち、本発明のうち、第1の発明の電解コンデンサ電極用アルミニウム箔の製造方法は、質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%を含有し、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施すことを特徴とする。   That is, the manufacturing method of the aluminum foil for electrolytic capacitor electrodes according to the first aspect of the present invention is mass%, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Ni : Aluminum containing 0.0051 to 0.05%, with the balance being Al and inevitable impurities, and having a plate thickness of 75% or more and less than 98% in the cold rolling after hot rolling The alloy rolled material is subjected to intermediate annealing at 300 ° C. to 500 ° C.

第2の発明の電解コンデンサ電極用アルミニウム箔の製造方法は、質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%と、Zn、Sn、In、Gaの内、少なくとも1種以上を合計で0.0030〜0.10%含有し、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施すことを特徴とする。   The manufacturing method of the aluminum foil for electrolytic capacitor electrodes of 2nd invention is the mass%, Si: 0.01-0.30%, Fe: 0.01-0.30%, Ni: 0.0051-0. 05%, containing at least one of Zn, Sn, In, and Ga in a total amount of 0.0030 to 0.10%, with the balance being composed of Al and inevitable impurities, after hot rolling An aluminum alloy rolled material having a sheet thickness of 75% or more and less than 98% in cold rolling is subjected to intermediate annealing at 300 ° C. to 500 ° C.

本発明によれば、適切な圧下率で圧延がなされた状態の冷間圧延材に中間焼鈍を行って、さらに冷間圧延を行うことで、エッチングに寄与する元素を表面に濃化させて表層でのエッチング性を向上させることができる。該アルミニウム箔を無電解エッチングする際にも、未エッチング光沢がなく、均一にエッチングピットを形成することができる。
以下に、本発明で規定するアルミニウム箔の成分限定理由および製造条件について説明する。
According to the present invention, intermediate annealing is performed on a cold-rolled material in a state of being rolled at an appropriate reduction rate, and further cold rolling is performed to concentrate the elements contributing to etching on the surface, thereby forming a surface layer. Etching property can be improved. Even when the aluminum foil is subjected to electroless etching, the etching pits can be uniformly formed without any unetched gloss.
The reasons for limiting the components of aluminum foil and the production conditions defined in the present invention will be described below.

Si:0.01〜0.30%
Siはエッチングの起点となる析出物を形成させる。ただし、0.01%未満では、Siの絶対量が少なく、その作用が十分発揮されない。一方、0.30%を越えると、析出が進行し、過溶解となり、エッテング形態が不均一になり、静電容量が低下する。このため、Si含有量を上記範囲に定める。なお、同様の理由で、Si含有量の下限を0.02%、上限を0.15%とするのが望ましい。
Si: 0.01-0.30%
Si forms precipitates that serve as starting points for etching. However, if it is less than 0.01%, the absolute amount of Si is small, and its action is not sufficiently exhibited. On the other hand, if it exceeds 0.30%, precipitation proceeds and overdissolution occurs, the etching form becomes non-uniform, and the capacitance decreases. For this reason, Si content is defined to the said range. For the same reason, it is desirable that the lower limit of the Si content is 0.02% and the upper limit is 0.15%.

Fe:0.01〜0.30%
Feはエッチングの起点となる析出物を形成させ、また強度を高める作用がある。ただし、0.01%未満ではFe絶対量が少なく、その作用が十分発揮されない。また、高純度化のためにコストアップとなる。一方、0.30%を越えると析出が進行し、過溶解となり、エッチング形態が不均一になり、静電容量が低下する。このため、Fe含有量を上記範囲に定める。なお、同様の理由で、Fe含有量の下限を0.02%、上限を0.15%とするのが望ましい。
Fe: 0.01 to 0.30%
Fe has the effect of forming precipitates as starting points for etching and increasing the strength. However, if it is less than 0.01%, the absolute amount of Fe is small, and its action is not sufficiently exhibited. In addition, the cost increases due to high purity. On the other hand, if it exceeds 0.30%, precipitation proceeds and overdissolution occurs, the etching form becomes uneven, and the capacitance decreases. For this reason, Fe content is defined to the said range. For the same reason, it is desirable that the lower limit of the Fe content is 0.02% and the upper limit is 0.15%.

Ni:0.0051〜0.05%
NiはAl−(Ni、Fe)系の析出物を形成する。これらは、電位的に貴であり、バルクとの間で局部電池反応を起こし、エッチング性を向上させる。ただし、0.0051%未満では十分な数のAl−(Ni、Fe)系の析出物が得られず、分散が不十分の為、不均一なエッチング形態となる。一方、0.05%超では、大きな析出物が形成され易くなり、エッチングにより粗大なピットが発生し、好ましくない。このため、Ni含有量を上記範囲に定める。なお、同様の理由で、Ni含有量の下限を0.0075%、上限を0.03%とするのが望ましい。
Ni: 0.0051 to 0.05%
Ni forms an Al- (Ni, Fe) -based precipitate. These are noble in potential, cause a local cell reaction with the bulk, and improve the etching property. However, if it is less than 0.0051%, a sufficient number of Al— (Ni, Fe) -based precipitates cannot be obtained and the dispersion is insufficient, resulting in a non-uniform etching pattern. On the other hand, if it exceeds 0.05%, large precipitates are easily formed, and coarse pits are generated by etching, which is not preferable. For this reason, Ni content is defined to the said range. For the same reason, it is desirable that the lower limit of the Ni content is 0.0075% and the upper limit is 0.03%.

Zn、Sn、Ga、Inの内、少なくとも1種以上:合計0.0030〜0.10%
これら元素はNi同様に中間焼鈍により表層へ濃化し、バルク表層の電位を卑にするので所望により含有させる。これにより、表層において貴であるAl−(Ni、Fe)系析出物と卑であるバルクとの電位差が増大し、特に表層において溶解性が増大し、表面の末エッチ光沢が改善され、均一なエッチングがなされる。上記含有量が0.0030%未満であると、上記効果が不十分となり、0.10%を超えると不純物量が多くなり過ぎ、過溶解となる。このため上記元素の合計含有量を上記範囲に定める。なお、同様の理由で下限を0.0050%、上限を0.05%とするのが望ましい。
At least one or more of Zn, Sn, Ga, and In: 0.0030 to 0.10% in total
Like Ni, these elements are concentrated in the surface layer by intermediate annealing, and the potential of the bulk surface layer is reduced, so that they are contained as desired. As a result, the potential difference between the Al- (Ni, Fe) -based precipitates that are noble on the surface layer and the bulk that is base is increased, in particular, the solubility is increased on the surface layer, the surface end etch gloss is improved, and uniform Etching is performed. When the content is less than 0.0030%, the above effect is insufficient, and when it exceeds 0.10%, the amount of impurities is excessively increased and excessive dissolution occurs. Therefore, the total content of the above elements is set within the above range. For the same reason, it is desirable that the lower limit is 0.0050% and the upper limit is 0.05%.

中間焼鈍:300〜500℃
Niは300℃以上の熱処理により表層へ濃化する。したがって、適温の中間焼鈍によりNiが表層に濃化し適度な析出が起こり、エッチング性を向上させる。この中間焼鈍の温度が300℃未満であると、温度が不十分なため、Niの濃化が起こらない。一方、500℃超えると、Niが表層に濃化し過ぎ、必要以上のNiの析出が起こり過溶解を引き起すので、中間焼鈍における加熱温度を300〜500℃で行う。なお、中間焼鈍は、通常はバッチ炉において行うことができ、その際に保持時間は例えば1〜9時間とすることができる。1時間以上の保持によってNiの表層への濃化を確実に行うことができる。一方、保持時間が9時間を超えるとNiの濃化と共に過度な析出が起こり、過溶解を引き起こすので、上記保持時間が望ましい。
Intermediate annealing: 300-500 ° C
Ni is concentrated in the surface layer by heat treatment at 300 ° C. or higher. Therefore, Ni is concentrated on the surface layer by intermediate annealing at an appropriate temperature, and appropriate precipitation occurs, thereby improving the etching property. If the temperature of this intermediate annealing is less than 300 ° C., the temperature is insufficient and Ni concentration does not occur. On the other hand, when the temperature exceeds 500 ° C., Ni is excessively concentrated on the surface layer, and Ni is excessively precipitated to cause over-dissolution. Therefore, the heating temperature in the intermediate annealing is performed at 300 to 500 ° C. In addition, intermediate annealing can be normally performed in a batch furnace, and the holding time can be 1 to 9 hours, for example. Concentration to the surface layer of Ni can be reliably performed by holding for 1 hour or more. On the other hand, if the holding time exceeds 9 hours, excessive precipitation occurs with concentration of Ni and causes overdissolution, so the above holding time is desirable.

圧下率:75〜98%未満
中間焼鈍までの冷間圧延は、Niを表面へ濃化させる為の駆動力となる。ただし、この圧下率が75%未満であると、圧下率が低く駆動力が不十分となり、Niの表層濃縮が十分になされない。一方、圧下率が98%以上になると、中間焼鈍後の圧下率が少なくなり、十分な強度が確保できない。したがって、上記中間焼鈍前の熱間圧延後の圧下率を上記範囲に定める。
Reduction ratio: less than 75 to 98% Cold rolling until intermediate annealing provides a driving force for concentrating Ni on the surface. However, when the rolling reduction is less than 75%, the rolling reduction is low and the driving force becomes insufficient, and the Ni surface layer is not sufficiently concentrated. On the other hand, when the rolling reduction is 98% or more, the rolling reduction after the intermediate annealing decreases, and sufficient strength cannot be ensured. Therefore, the reduction ratio after hot rolling before the intermediate annealing is set in the above range.

以上、説明したように本発明の電解コンデンサ電極用アルミニウム箔の製造方法によれば、質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%を含有し、さらに所望によりZn、Sn、In、Gaの内、少なくとも1種以上を0.0030〜0.10%含有し、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施すので、表面層に適度に濃化された元素によりエッチングが均一になされ、無電解エッチングにおいても未エッチング部が生じない良好なエッチングが可能になる。この結果、コストが低く、かつ信頼性の高い電解コンデンサ電極用アルミニウム箔を得ることができる。   As described above, according to the method for producing an aluminum foil for electrolytic capacitor electrodes of the present invention, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Ni: A composition containing 0.0051 to 0.05%, further containing 0.0030 to 0.10% of Zn, Sn, In, or Ga as desired, and the balance of Al and inevitable impurities. The aluminum alloy rolled material having a thickness of 75% or more and less than 98% in the cold rolling after hot rolling is subjected to an intermediate annealing of 300 ° C. to 500 ° C. Etching is made uniform by the concentrated elements, and good etching without unetched portions is possible even in electroless etching. As a result, an aluminum foil for electrolytic capacitor electrodes with low cost and high reliability can be obtained.

以下に、本発明の一実施形態を図1に基づいて説明する。
本発明の合金組成に調整したアルミニウム合金は、半連続鋳造などによる常法などにより溶製する(工程1)。本発明としては特にその溶製方法が特定されるものではない。得られた合金鋳塊は、550℃以上、1時間以上の均質化処理(工程2)を行うのが望ましい。該均質化処理は、適宜の加熱炉などを用いて行うことができ、加熱方法、加熱手段が特に限定されるものではない。均質化処理後のアルミニウム合金に対しては、常法により熱間圧延を行うことができる。熱間圧延前(工程4)には、アルミニウム合金に対し均熱する(工程3)こともでき、例えば530℃以上に加熱する。熱間圧延における条件は本発明としては特に限定をされるものではない。熱間圧延後に、箔圧延を含む冷間圧延を行う。
Below, one Embodiment of this invention is described based on FIG.
The aluminum alloy adjusted to the alloy composition of the present invention is melted by a conventional method such as semi-continuous casting (step 1). In the present invention, the melting method is not particularly specified. The obtained alloy ingot is desirably subjected to a homogenization treatment (step 2) at 550 ° C. or higher for 1 hour or longer. The homogenization treatment can be performed using an appropriate heating furnace or the like, and the heating method and heating means are not particularly limited. The aluminum alloy after the homogenization treatment can be hot-rolled by a conventional method. Before hot rolling (step 4), the aluminum alloy can be soaked (step 3), for example, heated to 530 ° C. or higher. The conditions in the hot rolling are not particularly limited as the present invention. After hot rolling, cold rolling including foil rolling is performed.

冷間圧延に際しては中間焼鈍を必須で行う。この中間焼鈍前に、75%以上、98%未満の圧下率で冷間圧延(工程5)を行っておく。中間焼鈍(工程6)は、300〜500℃の加熱温度を条件にして1〜9時間の保持時間により行うことができる。中間焼鈍は、既知の焼鈍炉などを用いて行うことができ、本発明としては中間焼鈍を行う装置の構成が特に限定されるものではない。中間焼鈍後は、最終厚さの箔にまで冷間圧延(工程7)を行う。中間焼鈍後の圧下率は本発明としては特に限定をしないが、例えば70〜99%の圧下率とすることができる。
上記冷間圧延によって、例えば数十μmから100μm程度のアルミニウム箔を得ることができるが、本発明としては最終品としてのアルミニウム箔の厚さが特に限定されるものではない。
In the case of cold rolling, intermediate annealing is essential. Before this intermediate annealing, cold rolling (step 5) is performed at a rolling reduction of 75% or more and less than 98%. The intermediate annealing (step 6) can be performed with a holding time of 1 to 9 hours on the condition of a heating temperature of 300 to 500 ° C. The intermediate annealing can be performed using a known annealing furnace, and the configuration of the apparatus for performing the intermediate annealing is not particularly limited as the present invention. After the intermediate annealing, cold rolling (step 7) is performed to a final thickness foil. Although the rolling reduction after intermediate annealing is not particularly limited as the present invention, it can be, for example, a rolling reduction of 70 to 99%.
An aluminum foil having a thickness of, for example, several tens to 100 μm can be obtained by the cold rolling, but the thickness of the aluminum foil as a final product is not particularly limited in the present invention.

上記各工程を経て得られたアルミニウム箔には、その後、熱処理を施すことなく、エッチング処理(工程8)がなされる。なお、冷間圧延終了後に熱処理を行うと、回復や再結晶が起こり、強度低下を引き起こすため、冷間圧延後に熱処理を施さないのが望ましい。
エッチング工程は塩酸を主体とする電解液や塩酸を含まない(1000ppm以下)電解液を用いた電解エッチングや無電解エッチングにより行うことができる。コスト面では無電解エッチングが有利である。
エッチング処理においては、ピットが高密度で均一に形成され、未エッチング部が生じることなく高い粗面化率が得られる。この箔を化成処理し、必要な耐電圧を得た後、常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。本発明としては化成処理の方法が特に限定されるものではない。
The aluminum foil obtained through the above steps is then subjected to an etching treatment (step 8) without being subjected to heat treatment. If heat treatment is performed after the end of cold rolling, recovery or recrystallization occurs and causes a decrease in strength. Therefore, it is desirable not to perform heat treatment after cold rolling.
The etching step can be performed by electrolytic etching or electroless etching using an electrolytic solution mainly composed of hydrochloric acid or an electrolytic solution not containing hydrochloric acid (1000 ppm or less). In terms of cost, electroless etching is advantageous.
In the etching process, the pits are uniformly formed with high density, and a high roughening rate can be obtained without generating an unetched portion. This foil is subjected to a chemical conversion treatment to obtain a necessary withstand voltage, and then a capacitor having a high capacitance is obtained by incorporating it as an electrode in an electrolytic capacitor by a conventional method. In the present invention, the chemical conversion treatment method is not particularly limited.

本発明は電解コンデンサの陰極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、例えば化成電圧の低い電解コンデンサの陽極としても使用することができる。   The present invention is preferably used as a cathode of an electrolytic capacitor. However, the present invention is not limited to this, and for example, it can also be used as an anode of an electrolytic capacitor having a low formation voltage.

次に、本発明の実施例を説明する。
表1に示す組成(残部Alおよびその他の不純物)において、常法によりアルミニウム合金鋳塊を溶製し、該アルミニウム合金鋳塊に対し、560℃×6時間で均質化処理を行った。該鋳塊を530℃×4時間で均熱処理した後、熱間圧延で板厚7mmに仕上げた後、表1に示す圧下率で冷間圧延を行い、その後、表1に示す条件で中間焼鈍を行った。その後、最終板厚50μmに冷間圧延をして供試材を得た。
Next, examples of the present invention will be described.
In the composition shown in Table 1 (the balance Al and other impurities), an aluminum alloy ingot was melted by a conventional method, and the aluminum alloy ingot was homogenized at 560 ° C. for 6 hours. The ingot is soaked at 530 ° C. for 4 hours, finished to a thickness of 7 mm by hot rolling, then cold-rolled at the reduction shown in Table 1, and then subjected to intermediate annealing under the conditions shown in Table 1. Went. Thereafter, cold rolling was performed to a final thickness of 50 μm to obtain a test material.

上記供試材を、
第1段階:6M−HCl+0.5M−HPO、50℃×60sec
第2段階:2M−HCl+1.5M−HPO、40℃×180sec
の条件でエッチング処理した後、85℃のアジピン酸アンモニウム溶液中で3V化成後、静電容量を測定した。静電容量は、供試材No.1の静電容量を100とした相対評価により行った。これらの結果を表1に示した。
表1から明らかなように、本発明の供試材では、高い静電容量と高い強度とが得られている。一方、比較例は、組成と、中間焼鈍前の圧下率、中間焼鈍の温度条件のいずれかが発明の範囲外であることにより、静電容量、強度ともに本発明材よりも劣っている。
The above test materials
First stage: 6M-HCl + 0.5M-H 3 PO 4 , 50 ° C. × 60 sec
Second stage: 2M-HCl + 1.5M-H 3 PO 4 , 40 ° C. × 180 sec
After performing the etching process under the conditions of 3V in the ammonium adipate solution at 85 ° C., the capacitance was measured. The electrostatic capacity is the test material No. The relative evaluation was performed with a capacitance of 1 as 100. These results are shown in Table 1.
As is clear from Table 1, the test material of the present invention has high capacitance and high strength. On the other hand, the comparative example is inferior to the material of the present invention in terms of both capacitance and strength because any one of the composition, the rolling reduction before intermediate annealing, and the temperature conditions of intermediate annealing are out of the scope of the invention.

Figure 0004021922
Figure 0004021922

本発明の一実施形態における工程順を示すフロー図である。It is a flowchart which shows the process order in one Embodiment of this invention.

Claims (2)

質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%を含有し、、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施すことを特徴とする電解コンデンサ電極用アルミニウム箔の製造方法。   A composition containing, by mass%, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Ni: 0.0051 to 0.05%, and the balance consisting of Al and inevitable impurities An electrolytic capacitor characterized by subjecting a rolled aluminum alloy material having a sheet thickness of 75% or more and less than 98% to a rolling reduction in cold rolling after hot rolling to 300 ° C to 500 ° C intermediate annealing. Manufacturing method of aluminum foil for electrodes. 質量%で、Si:0.01〜0.30%、Fe:0.01〜0.30%、Ni:0.0051〜0.05%と、Zn、Sn、In、Gaの内、少なくとも1種以上を合計で0.0030〜0.10%含有し、残部がAlと不可避不純物からなる組成を有し、熱間圧延後の冷間圧延における圧下率が75%以上98%未満の板厚を有するアルミニウム合金圧延材に、300℃から500℃の中間焼鈍を施すことを特徴とする電解コンデンサ電極用アルミニウム箔の製造方法。   In terms of mass%, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Ni: 0.0051 to 0.05%, and at least one of Zn, Sn, In, and Ga A thickness of 0.0030 to 0.10% in total including seeds, the balance having a composition consisting of Al and inevitable impurities, and a reduction ratio in cold rolling after hot rolling of 75% or more and less than 98% A method for producing an aluminum foil for electrolytic capacitor electrodes, comprising subjecting an aluminum alloy rolled material having an intermediate annealing temperature of 300 ° C. to 500 ° C.
JP2006308814A 2006-11-15 2006-11-15 Method for producing aluminum foil for electrolytic capacitor electrode Expired - Fee Related JP4021922B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308814A JP4021922B1 (en) 2006-11-15 2006-11-15 Method for producing aluminum foil for electrolytic capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308814A JP4021922B1 (en) 2006-11-15 2006-11-15 Method for producing aluminum foil for electrolytic capacitor electrode

Publications (2)

Publication Number Publication Date
JP4021922B1 true JP4021922B1 (en) 2007-12-12
JP2008121089A JP2008121089A (en) 2008-05-29

Family

ID=38857847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308814A Expired - Fee Related JP4021922B1 (en) 2006-11-15 2006-11-15 Method for producing aluminum foil for electrolytic capacitor electrode

Country Status (1)

Country Link
JP (1) JP4021922B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568667A (en) * 2024-01-15 2024-02-20 中铝材料应用研究院有限公司 Aluminum foil material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396156B2 (en) * 2009-05-28 2014-01-22 三菱アルミニウム株式会社 Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568667A (en) * 2024-01-15 2024-02-20 中铝材料应用研究院有限公司 Aluminum foil material and preparation method thereof
CN117568667B (en) * 2024-01-15 2024-04-19 中铝材料应用研究院有限公司 Aluminum foil material and preparation method thereof

Also Published As

Publication number Publication date
JP2008121089A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4021921B1 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4021923B1 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP4102408B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4021922B1 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2010222624A (en) Copper alloy, and method for manufacturing the same
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4060493B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP4650887B2 (en) Aluminum foil for electrolytic capacitors
JP5396156B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP2005206883A (en) Aluminum foil for electrolytic capacitor and manufacturing method therefor
JP2007138234A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP4890367B2 (en) Aluminum foil for electrolytic capacitor cathode
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
JP2007131922A (en) Aluminum foil for electrolytic capacitor
JP5523731B2 (en) Aluminum foil for electrolytic capacitor cathode and manufacturing method thereof
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2005298853A (en) TITANIUM PLATE FOR DRUM IN MANUFACTURING ELECTROLYTIC Cu FOIL, AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees