JP3893031B2 - Aluminum alloy plate for printing plate and method for producing the same - Google Patents

Aluminum alloy plate for printing plate and method for producing the same Download PDF

Info

Publication number
JP3893031B2
JP3893031B2 JP2001128268A JP2001128268A JP3893031B2 JP 3893031 B2 JP3893031 B2 JP 3893031B2 JP 2001128268 A JP2001128268 A JP 2001128268A JP 2001128268 A JP2001128268 A JP 2001128268A JP 3893031 B2 JP3893031 B2 JP 3893031B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
less
intermetallic compound
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128268A
Other languages
Japanese (ja)
Other versions
JP2002322529A (en
Inventor
充司 林田
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001128268A priority Critical patent/JP3893031B2/en
Publication of JP2002322529A publication Critical patent/JP2002322529A/en
Application granted granted Critical
Publication of JP3893031B2 publication Critical patent/JP3893031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は平版印刷版用アルミニウム合金板及びその製造方法に関し、より少ない電気量で均一な電解粗面化面を形成することができる印刷版用アルミニウム合金板及びその製造方法に関するものである。
【0002】
【従来の技術】
印刷用アルミニウム合金板は、一般的に塩酸又は硝酸の希釈液中で通電を行うことにより、表面を粗面化して使用される。このとき、少ない電気量でかつ均一な粗面を形成するアルミニウム合金が求められる。
【0003】
電解粗面化時に、反応性が高く且つ均一な粗面が得られるアルミニウム合金板の製造技術として、2種類の技術が提案されている。先ず、添加元素を調整することにより電解粗面の均一化を図った方法として、例えば、特開平11−99760号公報に記載されたものが挙げられる。また、アルミニウム合金中の添加元素の金属間化合物を調整することにより電解粗面の均一化を図った方法として、例えば、特開平11−115333号公報に記載されたものが挙げられる。
【0004】
【発明が解決しようとする課題】
しかしながら、近時、高生産性の要求のもとに、特開平11−188973号公報に記載されているように、電解処理条件が120A/dmにて3秒間、85A/dmにて6秒間のように、高電流密度及び短時間での電解粗面化が提案されるようになった。
【0005】
また、感光膜の技術の向上により、より細かいピットを形成すること、換言すれば、均一に分散したピットを形成することができるアルミニウム合金板が求められている。
【0006】
しかし、前述の従来の電解粗面の均一化技術では、高電流密度及び短時間での電解処理において、反応性、ピットの細かさ、及び粗面の均一性がいずれも不十分なものであり、近時の印刷版及びその製造方法に要求される特性を満足するアルミニウム合金板の開発が要望されている。
【0007】
本発明はかかる問題点に鑑みてなされたものであって、高電流密度及び短時間での電解粗面化処理において、電解効率が高く、反応性、ピットの細かさ及び粗面の均一性を向上させることができる印刷版用アルミニウム合金板及びその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る印刷版用アルミニウム合金板は、Fe:0.25乃至0.45質量%、Si:0.02乃至0.08質量%、Cu:0.04質量%以下を含有し、残部がAl及び不可避的不純物からなり、不可避的不純物におけるNiを0.005質量%以下に規制した組成を有し、粒径が1μm以下のFe金属間化合物が0.02質量%以上であることを特徴とする。
【0009】
本発明に係る印刷版用アルミニウム合金板の製造方法は、Fe:0.25乃至0.45質量%、Si:0.02乃至0.08質量%、Cu:0.04質量%以下を含有し、残部がAl及び不可避的不純物からなり、不可避的不純物におけるNiを0.005質量%以下に規制した組成を有するアルミニウム合金鋳塊を、550℃以上の温度で均質化処理する工程と、開始温度を400乃至450℃として熱間圧延する工程と、その後、少なくとも1回、平均昇温速度10乃至60℃/時で昇温させて450乃至500℃に1乃至20時間保持する焼鈍処理を行う工程とを有し、粒径が1μm以下のFe金属間化合物が0.02質量%以上であるアルミニウム合金板を製造することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。本願発明者等は、アルミニウム合金板中のFe金属間化合物の影響について鋭意研究した。即ち、従来技術では、Fe含有量の殆どが、主に鋳造工程で発生する粒径1μm超の晶出物となり、僅かの残部Feがアルミニウム合金中に固溶しており、粒径1μm以下の析出物(Fe金属間化合物)の存在量は極めて少ない状態であった。上述した粒径1μm超の晶出物である金属間化合物だけでは適度の存在密度(面密度)とならない。そこで、本発明では粒径1μm以下のFe金属間化合物に注目し、均質化処理及び焼鈍処理で粒径1μm以下の金属間化合物を析出させることにより、その分布を調整して、反応性と粗面の均一性について試験を行った。
【0011】
その結果、粒径1μm以下のFe金属間化合物がピット形成核となり、ピットが多数発生することによって、少ない電気量でかつ均一な粗面を形成できることを見出した。本発明はこの知見に基づき完成されたものである。
【0012】
即ち、アルミニウム合金板中の粒径が1μm以下の微細なFe金属間化合物のアルミニウム合金中の含有量を0.02質量%以上に調整することにより、ピット発生のための起点が多数となり、少ない電気量で均一に分散した細かいピットを形成することができる。
【0013】
この場合に、このような微細なFe金属間化合物を所定量以上生成するためには、Feの固溶度が可能な限り高い値を示す条件で鋳造を行うことが望ましい。また、鋳造工程で生成した粒径が1μmを超えるFe金属間化合物は、均質化処理により、アルミニウム合金中に一旦固溶させた後、中間焼鈍で粒径が1μm以下のFe金属間化合物として析出させることが可能である。即ち、均質化処理では、アルミニウム合金板をFe金属間化合物が固溶する550℃以上の温度に加熱して、Fe系晶出物を微細化させ、アルミニウム合金中のFe固溶量を増加させる。そして、熱間圧延終了後に、焼鈍を行うことにより、固溶しているFeを析出させ、粒径が1μm以下のFe金属間化合物に変化させる。
【0014】
熱間圧延を行い、その後、少なくとも1回、焼鈍処理する。この焼鈍処理条件は、平均昇温速度が10乃至60℃/時で昇温させ、450乃至500℃に1乃至20時間保持して加熱するものである。これにより、粒径が1μm以下のFe金属間化合物のアルミニウム合金中の含有量を0.02質量%以上とすることができる。
【0015】
次に、本発明の製造方法における数値限定理由について説明する。
【0016】
[均質化処理温度:550℃以上]
均質化処理温度が550℃未満であると、鋳造工程で発生した晶出物を充分に微細化することができず、Fe固溶量を増加させることができない。従って、粒径が1μm未満のFe金属間化合物が少なくなる。
【0017】
[熱間圧延開始温度:400乃至550℃]
熱間圧延の開始温度が550℃を超えると、結晶粒が過剰に成長する。これにより、粗面が不均一となるので、熱間圧延の開始温度は550℃以下とする。また、熱間圧延の開始温度が400℃未満では、圧延中の動的再結晶が不十分であり、同様に粗面の均一性が損なわれる。このため、熱間圧延開始温度は400乃至550℃とする。
【0018】
平均昇温速度:10乃至60℃/時]
平均昇温速度が10℃/時未満であると、スループットが長くなりすぎ、製造コストが上昇する。一方、昇温速度が60℃/時を超えると、昇温速度が速すぎて充分に析出が進行せず、所望の微細なFe金属間化合物を生成できない。
【0019】
[加熱保持温度:450乃至500℃]
加熱保持温度が450℃未満であると、析出の進行速度が遅く、析出が不十分である。また、加熱保持温度が500℃を超えると、逆に固溶が進行して析出物が減少する。
【0020】
次に、本発明の印刷版用アルミニウム合金板の成分添加理由及び組成限定理由について説明する。
【0021】
[Fe:0.25乃至0.45質量%]
FeはAl−Fe系金属間化合物を形成し、再結晶粒の微細化及び組織の均一化による機械的強度維持に効果を有する。このFe系金属間化合物は、電解粗面化時のイニシャルピットの開始点として作用する。しかし、Fe含有量が0.25質量%未満では、アルミニウム合金中に含有される全てのFeを金属間化合物として析出させても、電解処理における反応性が不十分であり、均一なピットを形成することができず、また、強度が低いため、印刷版としての用途に適さない。一方、Fe含有量が0.45質量%を超えると、均質化処理の条件に拘わらず、粒径が1μmを超える金属間化合物、即ち晶出物が十分に減少しない。このため、このような粗大晶出物が、粗大なピットを発生させる起点となる。従って、Fe含有量は、0.25乃至0.45質量%とする。
【0022】
[Si:0.02乃至0.08質量%]
SiはAl−Fe−Si系金属間化合物を形成し、熱間圧延時における各パス間での再結晶の核として作用するので、熱間圧延時の再結晶を微細化する効果を有する。更に、イニシャルピットの形成を促進し、ピットの均一性を向上させる効果を奏する。しかし、Si含有量が0.02質量%未満では電解処理における反応性が低く、逆にSi含有量が0.08質量%を超えると電解処理における反応性が過剰となり、不均一なピットが形成される。
【0023】
[Cu:0.04質量%以下]
Cuは電解粗面化の均一性に影響するが、Cu含有量が0.04質量%を超えると、均一に分散したピットを形成できない。このため、Cu含有量は0.04質量%以下とする。
【0024】
積極添加元素については上述のとおりであるが、不可避的不純物であるNiの含有量を規制する理由は、以下のとおりである。
【0025】
[Ni:0.005質量%以下]
Niは電解粗面化のエッチング性を向上させるものの、Ni含有量が0.005質量%を超えると、電解粗面化時のエッチング性が過剰となり、腐食されやすくなって印刷汚れを生じる。このため、Ni含有量は0.005質量%以下に規制する。
【0026】
なお、不可避的不純物であるMnはアルミニウム合金のエッチング性を低下させて印刷汚れの原因となりうるので、その含有量は0.05質量%以下に規制することが好ましい。
【0027】
【実施例】
以下、本発明の実施例について、本発明の範囲から外れる比較例と比較して本発明の効果について説明する。下記表1は使用したアルミニウム合金板の組成と、その製造条件を示す。先ず、この表1に示す組成のアルミニウム合金の溶湯を400mm厚さの鋳塊に鋳造した。次に、表1に記載の温度で6時間加熱することによりこのアルミニウム合金板を均質化処理し、開始温度を450℃として熱間圧延を開始した。また、アルミニウム合金板の厚さが3mmになったときに熱間圧延を終了した。その後、厚さが1.5mmになるまで冷間圧延し、その後、表1に記載の条件で中間焼鈍した。中間焼鈍後に、アルミニウム合金板を厚さが0.24mmになるまで冷間圧延した。なお、表1におけるFe金属間化合物の量は粒径1μm以下のFe系金属間化合物がアルミニウム合金全体に占める質量割合である。
【0028】
【表1】

Figure 0003893031
【0029】
次に、上述の条件で製造されたアルミニウム合金板の試験方法について説明する。
【0030】
[Fe金属間化合物の析出量の測定方法]
約2gのアルミニウム合金板を180℃に加熱したフェノールに溶解させた。そして、残渣を1μm孔のミクロフィルターで濾過した。この濾液をさらに0.1μm孔のミクロフィルターで濾過した。得られた残渣はAl−Fe系化合物と単体金属Siである。更に、この残渣を塩酸で溶解し、浴中のFe量をICP−MS(原子吸光分析法)により測定し、この測定値から1μm以下のFe金属間化合物量を算出した。
【0031】
[電解効率の測定方法]
アルミニウム合金板を2質量%−HCl水溶液中に浸漬し、このHCl水溶液の温度を25℃に調整し、電流密度が80A/dm、通電時間が11秒間の条件で通電し、電解粗面化を行った。アルミニウム合金板の通電前後の質量を測定し、これらの差を溶解減量とした。この場合に、通電された電気量は880C/dmであるから、ファラデーの法則から理論溶解量は0.0821g/dmと算出される。従って、電解効率は下記数式1により算出できる。
【0032】
【数1】
電解効率[%]=溶解減量[g/dm]/0.0821[g/dm]×100[%]
【0033】
[粗面の観察]
上述の電解効率の測定で電解粗面化を行ったアルミニウム合金板の表面を走査型電子顕微鏡で観察した。そして、粗面を走査型電子顕微鏡で1000倍にて観察し、約7乃至10μmのピットがほぼ全面に均一に分散して存在する場合を○、3μm以下の小さなピット又は15μm以上の粗大なピットが混在する場合を×とした。
【0034】
表1に、粒径1μm未満のFe金属間化合物の割合、電解効率及び粗面の均一性を記載した。その結果、実施例1乃至7は組成及びFe金属間化合物の割合が本発明の請求項1を満足するものであり、電解効率及び粗面の均一性のいずれも優れたものであった。また、実施例1乃至7は本発明の請求項2に記載の製造条件を満足するものであり、Fe金属間化合物の量が充分に多いものであった。
【0035】
一方、比較例1は、平均昇温速度が速すぎ、また中間焼鈍の保持時間が短すぎて、微細なFe金属間化合物の生成が不十分であった。比較例2は、中間焼鈍の保持温度が高すぎて、微細なFe金属間化合物の量が少なかった。比較例3は、中間焼鈍の保持温度が低すぎて、微細なFe金属間化合物の量が少なかった。比較例4は、中間焼鈍の保持温度が高すぎ、保持時間が長すぎたため、微細なFe金属間化合物の量が不十分であった。比較例8は均質化温度が低すぎたため、鋳造時に発生した粒径1μm以上のFe金属間化合物が充分に固溶せず、このため、後工程で微細なFe金属間化合物が充分に析出しなかった。更に、比較例5はFe含有量が少ないと共に、平均昇温速度が速すぎ、また中間焼鈍時間が短すぎたため、Fe金属間化合物の割合が少なかった。このため、比較例1乃至5、8はいずれも電解効率が低く、粗面の均一性も劣るものであった。
【0036】
比較例6はFe含有量が少ないため、電解効率が低く、反応性が不十分で、粗面の均一性が悪いものであった。比較例7はFe含有量が過剰であるため、反応性が過大であり、粗面が不均一であった。比較例9はCu含有量が多すぎたため、均一なピットが形成されず、粗面の均一性が劣るものであった。比較例10は不可避的不純物のNi含有量が多すぎるため、反応性が過剰となり、粗面の均一性が劣るものであった。
【0037】
【発明の効果】
以上説明したように、本発明によれば、高電流密度及び短時間での電解粗面化処理において、電解効率が高く、反応性が優れており、ピットが細かく均一に分散されており、粗面の均一性が優れた印刷版用アルミニウム合金板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate for a lithographic printing plate and a method for producing the same, and relates to an aluminum alloy plate for a printing plate capable of forming a uniform electrolytic roughened surface with a smaller amount of electricity and a method for producing the same.
[0002]
[Prior art]
The aluminum alloy plate for printing is generally used by roughening the surface by energizing in a dilute solution of hydrochloric acid or nitric acid. At this time, an aluminum alloy that forms a uniform rough surface with a small amount of electricity is required.
[0003]
Two types of techniques have been proposed as a technique for producing an aluminum alloy plate that has a high reactivity and a uniform rough surface during electrolytic roughening. First, as a method for making the electrolytic rough surface uniform by adjusting the additive element, for example, the method described in JP-A-11-99760 can be mentioned. Moreover, as a method of making the electrolytic rough surface uniform by adjusting the intermetallic compound of the additive element in the aluminum alloy, for example, the method described in JP-A-11-115333 can be mentioned.
[0004]
[Problems to be solved by the invention]
However, recently, under the demand for high productivity, as described in Japanese Patent Application Laid-Open No. 11-1881973, the electrolytic treatment conditions are 6 seconds at 120 A / dm 2 for 3 seconds and 85 A / dm 2 . As in seconds, high current density and short-time electrolytic surface roughening have been proposed.
[0005]
Further, there is a demand for an aluminum alloy plate capable of forming finer pits, in other words, forming uniformly distributed pits, by improving the technology of the photosensitive film.
[0006]
However, the conventional electrolytic roughened surface homogenization technique described above has insufficient reactivity, pit fineness, and rough surface uniformity in high current density and short time electrolytic treatment. There has been a demand for the development of an aluminum alloy plate that satisfies the properties required for recent printing plates and methods for producing the same.
[0007]
The present invention has been made in view of such problems, and in high-current density and short-time electrolytic surface roughening treatment, the electrolytic efficiency is high, and the reactivity, fineness of pits and uniformity of the rough surface are improved. An object of the present invention is to provide an aluminum alloy plate for a printing plate that can be improved and a method for producing the same.
[0008]
[Means for Solving the Problems]
The aluminum alloy plate for a printing plate according to the present invention contains Fe: 0.25 to 0.45% by mass, Si: 0.02 to 0.08% by mass, Cu: 0.04% by mass or less, and the balance being It is composed of Al and inevitable impurities, has a composition in which Ni in the inevitable impurities is regulated to 0.005 mass% or less, and Fe intermetallic compound having a particle diameter of 1 μm or less is 0.02 mass% or more. And
[0009]
The method for producing an aluminum alloy plate for a printing plate according to the present invention contains Fe: 0.25 to 0.45% by mass, Si: 0.02 to 0.08% by mass, and Cu: 0.04% by mass or less. A step of homogenizing an aluminum alloy ingot having a composition in which the balance is made of Al and unavoidable impurities and Ni in the unavoidable impurities is regulated to 0.005 mass% or less at a temperature of 550 ° C. or more, and a start temperature Hot-rolling at a temperature of 400 to 450 ° C., and then performing an annealing process of raising the temperature at an average temperature increase rate of 10 to 60 ° C./hour and holding at 450 to 500 ° C. for 1 to 20 hours at least once. And an aluminum alloy plate having a particle diameter of 1 μm or less and an Fe intermetallic compound of 0.02% by mass or more is manufactured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. The inventors of the present application conducted extensive research on the influence of Fe intermetallic compounds in the aluminum alloy sheet. That is, in the prior art, most of the Fe content is a crystallized product having a particle size exceeding 1 μm mainly generated in the casting process, and a small amount of remaining Fe is dissolved in the aluminum alloy, and the particle size is 1 μm or less. The amount of precipitates (Fe intermetallic compound) was extremely small. Only an intermetallic compound that is a crystallized substance having a particle diameter of more than 1 μm described above does not provide an appropriate density (area density). Therefore, in the present invention, attention is paid to Fe intermetallic compounds having a particle size of 1 μm or less, and the distribution is adjusted by precipitating intermetallic compounds having a particle size of 1 μm or less by homogenization treatment and annealing treatment, thereby reacting and roughening. The surface was tested for uniformity.
[0011]
As a result, it has been found that an Fe intermetallic compound having a particle size of 1 μm or less serves as pit formation nuclei and a large number of pits can form a uniform rough surface with a small amount of electricity. The present invention has been completed based on this finding.
[0012]
That is, by adjusting the content in the aluminum alloy of fine Fe intermetallic compound having a particle size of 1 μm or less in the aluminum alloy plate to 0.02 mass% or more, the number of starting points for pit generation becomes large and small. It is possible to form fine pits that are uniformly dispersed by the amount of electricity.
[0013]
In this case, in order to produce a predetermined amount or more of such a fine Fe intermetallic compound, it is desirable to perform casting under conditions where the solid solubility of Fe is as high as possible. In addition, the Fe intermetallic compound having a particle size exceeding 1 μm generated in the casting process is once dissolved in an aluminum alloy by homogenization, and then precipitated as an Fe intermetallic compound having a particle size of 1 μm or less by intermediate annealing. It is possible to make it. That is, in the homogenization treatment, the aluminum alloy plate is heated to a temperature of 550 ° C. or higher at which the Fe intermetallic compound is dissolved, thereby making the Fe-based crystallized finer and increasing the amount of Fe solid solution in the aluminum alloy. . Then, after the hot rolling is finished, annealing is performed to precipitate Fe that is in solid solution, and the Fe particle is changed to an Fe intermetallic compound having a particle size of 1 μm or less.
[0014]
Hot rolling is performed, and then annealing is performed at least once. In this annealing treatment condition, the temperature is raised at an average temperature rise rate of 10 to 60 ° C./hour, and heated at 450 to 500 ° C. for 1 to 20 hours for heating. Thereby, content in the aluminum alloy of the Fe intermetallic compound whose particle size is 1 micrometer or less can be 0.02 mass% or more.
[0015]
Next, the reason for the numerical limitation in the manufacturing method of the present invention will be described.
[0016]
[Homogenization temperature: 550 ° C or higher]
If the homogenization temperature is less than 550 ° C., the crystallization product generated in the casting process cannot be sufficiently refined, and the amount of Fe solid solution cannot be increased. Therefore, Fe intermetallic compounds having a particle size of less than 1 μm are reduced.
[0017]
[Hot rolling start temperature: 400 to 550 ° C.]
When the hot rolling start temperature exceeds 550 ° C., crystal grains grow excessively. Thereby, since a rough surface becomes non-uniform | heterogenous, the start temperature of hot rolling shall be 550 degrees C or less. Moreover, if the starting temperature of hot rolling is less than 400 degreeC, the dynamic recrystallization in rolling will be inadequate and the uniformity of a rough surface will be impaired similarly. For this reason, the hot rolling start temperature is set to 400 to 550 ° C.
[0018]
[ Average heating rate: 10 to 60 ° C./hour]
If the average rate of temperature rise is less than 10 ° C./hour, the throughput becomes too long and the production cost increases. On the other hand, if the rate of temperature rise exceeds 60 ° C./hour, the rate of temperature rise is too fast and the precipitation does not proceed sufficiently, and the desired fine Fe intermetallic compound cannot be produced.
[0019]
[Heat holding temperature: 450 to 500 ° C.]
When the heating and holding temperature is less than 450 ° C., the progress of precipitation is slow and the precipitation is insufficient. On the other hand, when the heating and holding temperature exceeds 500 ° C., solid solution progresses conversely and precipitates decrease.
[0020]
Next, the reason for adding components and the reason for limiting the composition of the aluminum alloy plate for printing plates of the present invention will be described.
[0021]
[Fe: 0.25 to 0.45 mass%]
Fe forms an Al—Fe-based intermetallic compound, and is effective in maintaining mechanical strength by recrystallizing grains and making the structure uniform. This Fe-based intermetallic compound acts as a starting point of initial pits during electrolytic surface roughening. However, if the Fe content is less than 0.25% by mass, even if all the Fe contained in the aluminum alloy is precipitated as an intermetallic compound, the reactivity in the electrolytic treatment is insufficient and uniform pits are formed. In addition, since the strength is low, it is not suitable for use as a printing plate. On the other hand, when the Fe content exceeds 0.45% by mass, intermetallic compounds having a particle diameter exceeding 1 μm, that is, crystallized substances, are not sufficiently reduced regardless of the conditions of the homogenization treatment. For this reason, such a coarse crystallized product becomes a starting point for generating coarse pits. Therefore, the Fe content is 0.25 to 0.45 mass%.
[0022]
[Si: 0.02 to 0.08 mass%]
Since Si forms an Al—Fe—Si intermetallic compound and acts as a recrystallization nucleus between passes during hot rolling, it has the effect of refining recrystallization during hot rolling. Furthermore, the formation of initial pits is promoted, and the effect of improving pit uniformity is achieved. However, if the Si content is less than 0.02% by mass, the reactivity in the electrolytic treatment is low. Conversely, if the Si content exceeds 0.08% by mass, the reactivity in the electrolytic treatment becomes excessive and non-uniform pits are formed. Is done.
[0023]
[Cu: 0.04 mass% or less]
Cu affects the uniformity of electrolytic surface roughening, but when the Cu content exceeds 0.04 mass%, uniformly distributed pits cannot be formed. For this reason, Cu content shall be 0.04 mass% or less.
[0024]
Although the positively added elements are as described above, the reason for restricting the content of Ni, which is an unavoidable impurity, is as follows.
[0025]
[Ni: 0.005% by mass or less]
Although Ni improves the etching property of the electrolytic surface roughening, if the Ni content exceeds 0.005 mass%, the etching property at the time of electrolytic roughening becomes excessive and is easily corroded, resulting in printing stains. For this reason, Ni content is controlled to 0.005 mass% or less.
[0026]
In addition, Mn, which is an unavoidable impurity, can reduce the etching property of the aluminum alloy and cause printing stains. Therefore, the content is preferably regulated to 0.05% by mass or less.
[0027]
【Example】
Hereinafter, the effects of the present invention will be described with respect to examples of the present invention compared with comparative examples that are out of the scope of the present invention. Table 1 below shows the composition of the aluminum alloy plate used and the production conditions. First, a molten aluminum alloy having the composition shown in Table 1 was cast into an ingot having a thickness of 400 mm. Next, the aluminum alloy sheet was homogenized by heating at the temperature shown in Table 1 for 6 hours, and hot rolling was started at a start temperature of 450 ° C. Further, the hot rolling was finished when the thickness of the aluminum alloy plate became 3 mm. Then, it cold-rolled until thickness became 1.5 mm, and intermediate-annealed on the conditions of Table 1 after that. After the intermediate annealing, the aluminum alloy plate was cold-rolled until the thickness became 0.24 mm. In addition, the quantity of the Fe intermetallic compound in Table 1 is the mass ratio which the Fe type intermetallic compound with a particle size of 1 micrometer or less occupies for the whole aluminum alloy.
[0028]
[Table 1]
Figure 0003893031
[0029]
Next, a test method for an aluminum alloy plate manufactured under the above conditions will be described.
[0030]
[Measurement method of precipitation amount of Fe intermetallic compound]
About 2 g of aluminum alloy plate was dissolved in phenol heated to 180 ° C. The residue was filtered through a 1 μm pore microfilter. The filtrate was further filtered through a micro filter having a pore size of 0.1 μm. The obtained residue is an Al—Fe-based compound and elemental metal Si. Furthermore, this residue was dissolved with hydrochloric acid, the amount of Fe in the bath was measured by ICP-MS (atomic absorption analysis), and the amount of Fe intermetallic compound of 1 μm or less was calculated from this measured value.
[0031]
[Method of measuring electrolytic efficiency]
An aluminum alloy plate is immersed in a 2% by mass-HCl aqueous solution, the temperature of this HCl aqueous solution is adjusted to 25 ° C., and the current density is 80 A / dm 2 , and the energization time is 11 seconds. Went. The mass of the aluminum alloy plate before and after energization was measured, and the difference between them was taken as dissolution loss. In this case, since the amount of electricity supplied is 880 C / dm 2 , the theoretical dissolution amount is calculated as 0.0821 g / dm 2 from Faraday's law. Therefore, the electrolytic efficiency can be calculated by the following formula 1.
[0032]
[Expression 1]
Electrolytic efficiency [%] = Dissolution weight loss [g / dm 2 ] /0.0821 [g / dm 2 ] × 100 [%]
[0033]
[Observation of rough surface]
The surface of the aluminum alloy plate subjected to electrolytic surface roughening by the above-described measurement of electrolytic efficiency was observed with a scanning electron microscope. When the rough surface is observed with a scanning electron microscope at a magnification of 1000 times, when pits of about 7 to 10 μm are uniformly distributed over the entire surface, a small pit of 3 μm or less or a rough pit of 15 μm or more A case where x is mixed is indicated as x.
[0034]
Table 1 shows the proportion of Fe intermetallic compounds having a particle size of less than 1 μm, electrolysis efficiency and roughness of the rough surface. As a result, in Examples 1 to 7, the composition and the ratio of the Fe intermetallic compound satisfied Claim 1 of the present invention, and both the electrolytic efficiency and the uniformity of the rough surface were excellent. Examples 1 to 7 satisfied the production conditions described in claim 2 of the present invention, and the amount of Fe intermetallic compound was sufficiently large.
[0035]
On the other hand, in Comparative Example 1, the average temperature rising rate was too fast, and the holding time of the intermediate annealing was too short, and the production of fine Fe intermetallic compounds was insufficient. In Comparative Example 2, the holding temperature of the intermediate annealing was too high, and the amount of fine Fe intermetallic compound was small. In Comparative Example 3, the holding temperature of the intermediate annealing was too low, and the amount of fine Fe intermetallic compound was small. In Comparative Example 4, since the holding temperature of the intermediate annealing was too high and the holding time was too long, the amount of fine Fe intermetallic compound was insufficient. In Comparative Example 8, since the homogenization temperature was too low, the Fe intermetallic compound having a particle size of 1 μm or more generated during casting did not sufficiently dissolve, so that fine Fe intermetallic compound was sufficiently precipitated in the subsequent process. There wasn't. Furthermore, in Comparative Example 5, the Fe content was low, the average heating rate was too fast, and the intermediate annealing time was too short, so the proportion of Fe intermetallic compounds was small. For this reason, all of Comparative Examples 1 to 5 and 8 have low electrolysis efficiency and poor uniformity of the rough surface.
[0036]
Since Comparative Example 6 had a low Fe content, the electrolysis efficiency was low, the reactivity was insufficient, and the uniformity of the rough surface was poor. In Comparative Example 7, since the Fe content was excessive, the reactivity was excessive and the rough surface was non-uniform. Since the comparative example 9 had too much Cu content, uniform pits were not formed, and the uniformity of the rough surface was inferior. In Comparative Example 10, since the Ni content of the inevitable impurities was too large, the reactivity was excessive and the uniformity of the rough surface was poor.
[0037]
【The invention's effect】
As described above, according to the present invention, in the electrolytic surface roughening treatment at a high current density and in a short time, the electrolytic efficiency is high, the reactivity is excellent, the pits are finely and uniformly dispersed, An aluminum alloy plate for a printing plate having excellent surface uniformity can be obtained.

Claims (2)

Fe:0.25乃至0.45質量%、Si:0.02乃至0.08質量%、Cu:0.04質量%以下を含有し、残部がAl及び不可避的不純物からなり、不可避的不純物におけるNiを0.005質量%以下に規制した組成を有し、粒径が1μm以下のFe金属間化合物が0.02質量%以上であることを特徴とする印刷版用アルミニウム合金板。  Fe: 0.25 to 0.45% by mass, Si: 0.02 to 0.08% by mass, Cu: 0.04% by mass or less, with the balance being made of Al and inevitable impurities. An aluminum alloy plate for a printing plate having a composition in which Ni is regulated to 0.005 mass% or less and an Fe intermetallic compound having a particle size of 1 µm or less is 0.02 mass% or more. Fe:0.25乃至0.45質量%、Si:0.02乃至0.08質量%、Cu:0.04質量%以下を含有し、残部がAl及び不可避的不純物からなり、不可避的不純物におけるNiを0.005質量%以下に規制した組成を有するアルミニウム合金鋳塊を、550℃以上の温度で均質化処理する工程と、開始温度を400乃至450℃として熱間圧延する工程と、その後、少なくとも1回、平均昇温速度10乃至60℃/時で昇温させて450乃至500℃に1乃至20時間保持する焼鈍処理を行う工程とを有し、粒径が1μm以下のFe金属間化合物が0.02質量%以上であるアルミニウム合金板を製造することを特徴とする印刷版用アルミニウム合金板の製造方法。  Fe: 0.25 to 0.45% by mass, Si: 0.02 to 0.08% by mass, Cu: 0.04% by mass or less, with the balance being made of Al and inevitable impurities. A step of homogenizing an aluminum alloy ingot having a composition in which Ni is controlled to 0.005% by mass or less at a temperature of 550 ° C. or higher, a step of hot rolling at a start temperature of 400 to 450 ° C., and And an annealing process in which the temperature is increased at least once at an average temperature increase rate of 10 to 60 ° C./hour and held at 450 to 500 ° C. for 1 to 20 hours, and the Fe intermetallic compound has a particle size of 1 μm or less. The manufacturing method of the aluminum alloy plate for printing plates characterized by manufacturing the aluminum alloy plate which is 0.02 mass% or more.
JP2001128268A 2001-04-25 2001-04-25 Aluminum alloy plate for printing plate and method for producing the same Expired - Fee Related JP3893031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128268A JP3893031B2 (en) 2001-04-25 2001-04-25 Aluminum alloy plate for printing plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128268A JP3893031B2 (en) 2001-04-25 2001-04-25 Aluminum alloy plate for printing plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002322529A JP2002322529A (en) 2002-11-08
JP3893031B2 true JP3893031B2 (en) 2007-03-14

Family

ID=18976994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128268A Expired - Fee Related JP3893031B2 (en) 2001-04-25 2001-04-25 Aluminum alloy plate for printing plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3893031B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116267B2 (en) * 2005-08-30 2013-01-09 富士フイルム株式会社 Method for producing aluminum alloy plate for lithographic printing plate
US20090252642A1 (en) * 2005-08-30 2009-10-08 Akio Uesugi Aluminum alloy sheet for lithographic printing plate and method of producing the same
JP2007070674A (en) * 2005-09-06 2007-03-22 Fujifilm Holdings Corp Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925246B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925248B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925247B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
US20090260531A1 (en) * 2008-04-18 2009-10-22 Fujifilm Corporation Aluminum alloy plate for lithographic printing plate, lithographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
JP5265955B2 (en) * 2008-04-18 2013-08-14 富士フイルム株式会社 Plane printing plate aluminum alloy plate, planographic printing plate support, planographic printing plate precursor, and method for producing planographic printing plate aluminum alloy plate

Also Published As

Publication number Publication date
JP2002322529A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP3454578B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
KR20080007403A (en) Copper alloy, copper alloy plate, and process for producing the same
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3893031B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4105042B2 (en) Aluminum alloy material for lithographic printing plate and method for producing the same
JPH11115333A (en) Aluminum alloy plate for printing plate and manufacture thereof
JPS58221265A (en) Manufacture of aluminum foil material for anode of electrolytic capacitor
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP3662418B2 (en) Support for lithographic printing plate
JP3256106B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JPH09272937A (en) Aluminum alloy plate for printing plate and its production
JP4162376B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP3295276B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2000038632A (en) Aluminum foil base and its production
JP2007131917A (en) Aluminum alloy sheet for printing plate and its production method
JP4781114B2 (en) Manufacturing method of materials for medium and low pressure anode electrolytic capacitors
JP4105043B2 (en) Aluminum alloy material for lithographic printing plate and method for producing the same
JP2778666B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JPH06346176A (en) Aluminum sheet for printing plate and its production
JPH08311592A (en) Aluminum alloy sheet for printing plate and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees