JP5149582B2 - Aluminum alloy plate for lithographic printing plate and method for producing the same - Google Patents

Aluminum alloy plate for lithographic printing plate and method for producing the same Download PDF

Info

Publication number
JP5149582B2
JP5149582B2 JP2007253521A JP2007253521A JP5149582B2 JP 5149582 B2 JP5149582 B2 JP 5149582B2 JP 2007253521 A JP2007253521 A JP 2007253521A JP 2007253521 A JP2007253521 A JP 2007253521A JP 5149582 B2 JP5149582 B2 JP 5149582B2
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
temperature
printing plate
lithographic printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007253521A
Other languages
Japanese (ja)
Other versions
JP2009083190A (en
Inventor
彰男 上杉
睦 松浦
博史 扇
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Sumitomo Light Metal Industries Ltd filed Critical Fujifilm Corp
Priority to JP2007253521A priority Critical patent/JP5149582B2/en
Publication of JP2009083190A publication Critical patent/JP2009083190A/en
Application granted granted Critical
Publication of JP5149582B2 publication Critical patent/JP5149582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Description

本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理による粗面化に適した平版印刷版用アルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate for a lithographic printing plate, particularly to an aluminum alloy plate for a lithographic printing plate suitable for roughening by an electrochemical etching treatment and a method for producing the same.

平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われるが、近年は、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。   In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. In recent years, the surface of the aluminum alloy plate for the support is roughened by electrochemical etching because of its excellent plate-making suitability and printing performance, and continuous processing with coil materials. The approach to surface is developing rapidly.

電気化学的エッチング処理により比較的均一な電解粗面化が得られるアルミニウム合金板としては、A1050(アルミニウム純度99.5%)相当材あるいはA1050相当材をベースとして少量の合金成分を添加した材料が適用されており(例えば、特許文献1、特許文献2参照)、これらの平版印刷版用アルミニウム合金材は、鋳塊を均質化処理、熱間圧延した後、中間焼鈍を施して再結晶組織とした後冷間圧延し、または、冷間圧延し、冷間圧延の途中で中間焼鈍処理を施して、圧延板表面を再結晶組織とした後、2次冷間圧延を行うことにより、電気化学的エッチング処理時のピットの発生を均一にし、印刷版としての処理を行った場合におけるストリークの発生を防止している。
特開平8−337835号公報 特開2000−108534号公報
As an aluminum alloy plate capable of obtaining a relatively uniform electrolytic surface roughening by electrochemical etching treatment, a material equivalent to A1050 (aluminum purity 99.5%) or a material added with a small amount of alloy components based on A1050 equivalent material is used. These aluminum alloys for lithographic printing plates are applied with homogenization treatment and hot rolling, and then subjected to intermediate annealing and recrystallized structure And then cold rolling, or cold rolling, and performing an intermediate annealing process in the middle of cold rolling to form a recrystallized structure on the surface of the rolled plate, and then performing secondary cold rolling to perform electrochemical The generation of pits during the general etching process is made uniform, and the occurrence of streaks when processing as a printing plate is prevented.
JP-A-8-337835 JP 2000-108534 A

発明者らは、電解特性の向上により電解処理において均一、微細なピットの形成が達成できる平版印刷板版用アルミニウム合金材を得ることを目的として、従来提案された材料をベースとして、成分組成についてあらためて検討を行った結果、Mg、Pbを含有させ、表層部のMg、Pb濃度を表層部よりも深い領域のMg、Pb濃度に比べて特定倍率高めるとともに、マトリックス中のMgの析出を抑制した材料が有効であること、このような組織性状のアルミニウム合金板を製造するためには、熱間粗圧延の開始温度、熱間仕上げ圧延の終了温度の制御が重要であることを見出した。   For the purpose of obtaining an aluminum alloy material for a lithographic printing plate capable of achieving uniform and fine pit formation in electrolytic treatment by improving electrolytic characteristics, the inventors have used a conventionally proposed material as a base for component composition. As a result of re-examination, Mg and Pb were included, and the Mg and Pb concentrations in the surface layer portion were increased by a specific magnification as compared with the Mg and Pb concentrations in the deeper region than the surface layer portion, and the precipitation of Mg in the matrix was suppressed. It has been found that the material is effective and that the control of the hot rough rolling start temperature and the hot finish rolling end temperature is important in order to produce an aluminum alloy sheet having such a texture.

本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、表層部での適度なMg濃縮度、Pb濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板とその製造方法を提供することにある。   The present invention has been made as a result of further tests and studies based on the above knowledge, and the purpose thereof is to obtain an appropriate Mg concentration and Pb concentration in the surface layer portion, and to achieve electrochemical properties. An object of the present invention is to provide an aluminum alloy plate for a lithographic printing plate that has uniform pit generation during etching and does not cause streak when processing as a printing plate and a method for producing the same.

上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板は、Mg:0.1〜0.5%、Si:0.03〜0.15%、Fe:0.2〜0.6%、Ti:0.005〜0.05%、Pb:2〜30ppmを含有し、残部アルミニウムおよび不可避的不純物からなる組成を有し、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の1.2〜10倍、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の3〜25倍、マトリックス中に析出しているMg量が0.03%以下であることを特徴とする。   In order to achieve the above object, an aluminum alloy plate for a lithographic printing plate according to claim 1 has Mg: 0.1 to 0.5%, Si: 0.03 to 0.15%, Fe: 0.2 to 0 .6%, Ti: 0.005 to 0.05%, Pb: 2 to 30 ppm, having a composition composed of the balance aluminum and inevitable impurities, and average recrystallization in the direction perpendicular to the rolling direction of the surface layer portion The particle diameter is 50 μm or less, the Mg concentration in the surface layer portion from the surface to a depth of 0.2 μm is 1.2 to 10 times the average Mg concentration, and the Pb concentration in the surface layer portion from the surface to a depth of 0.2 μm is 3 It is characterized in that the amount of Mg deposited in the matrix is 0.03% or less by ˜25 times.

請求項2による平版印刷版用アルミニウム合金板は、請求項1において、Cu:0.05%以下を含有することを特徴とする。   An aluminum alloy plate for a lithographic printing plate according to claim 2 is characterized in that, in claim 1, Cu: 0.05% or less is contained.

請求項3による平版印刷版用アルミニウム合金板の製造方法は、請求項1または2記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を350〜450℃とする熱間粗圧延を行い、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下の温度で終了し、その後、400℃以上の温度で中間焼鈍を施し、加工度80%以上の冷間圧延を行うことを特徴とする。   The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 3 comprises homogenizing the aluminum alloy ingot according to claim 1 or 2 in a temperature range of 500 to 610 ° C. for 1 hour or more, and then setting a starting temperature. Hot rough rolling is performed at 350 to 450 ° C., then hot finish rolling is performed, the hot finish rolling is finished at a temperature of 300 ° C. or lower, and then subjected to intermediate annealing at a temperature of 400 ° C. or higher, and processed. Cold rolling at a degree of 80% or more is performed.

請求項4による平版印刷版用アルミニウム合金板の製造方法は、請求項1または2記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を350〜450℃とする熱間粗圧延を行い、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下の温度で終了し、その後、冷間圧延を行い、冷間圧延の途中で400℃以上の温度で中間焼鈍を施し、冷間圧延の合計加工度を80%以上とすることを特徴とする。   The method for producing an aluminum alloy plate for a lithographic printing plate according to claim 4 comprises homogenizing the aluminum alloy ingot according to claim 1 or 2 in a temperature range of 500 to 610 ° C. for 1 hour or more, and then setting a starting temperature. Hot rough rolling is performed at 350 to 450 ° C., then hot finish rolling is performed, the hot finish rolling is finished at a temperature of 300 ° C. or less, and then cold rolling is performed. The intermediate annealing is performed at a temperature of 400 ° C. or higher, and the total degree of cold rolling is 80% or more.

本発明によれば、表層部での適度なMgおよびPbの濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板とその製造方法が提供される。   According to the present invention, moderate Mg and Pb enrichment in the surface layer portion can be obtained, the generation of pits during the electrochemical etching process is uniform, and the occurrence of streaks when processing as a printing plate is performed. An aluminum alloy plate for lithographic printing plates and a method for producing the same are provided.

本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Mgは、印刷板の強度を確保し、また、SiとMg−Si系金属間化合物を形成して、単体Siとしての析出を抑制する。Mg含有量が0.1%未満では強度向上の効果が小さい。Mg−Si系金属間化合物は電解中にある特定方位(Cube方位)の結晶粒内でのピットの偏在化を助長(ピット粗大化と未エッチング領域が増加)するから、マトリックス中に析出しているMg量は0.03%以下が好ましく、0.03%を超えると、ピットが不均一な部分が多くなり面質ムラ等の外観不良がより際立つ。Mg含有量が0.5%を超えると、マトリックス中にMg−Si系金属間化合物として析出するMg量が0.03%を超え、電解処理時のピットが不均一になり易い。Mgのさらに好ましい含有範囲は0.2〜0.5%である。   Explaining the significance and reason for limitation of the components contained in the aluminum alloy plate for lithographic printing plates of the present invention, Mg secures the strength of the printing plate and forms a simple intermetallic compound with Si. Suppression of precipitation as Si is suppressed. If the Mg content is less than 0.1%, the effect of improving the strength is small. The Mg-Si intermetallic compound promotes the uneven distribution of pits in the crystal grains of a specific orientation (Cube orientation) during electrolysis (pit coarsening and unetched area increase), so it precipitates in the matrix. The amount of Mg is preferably 0.03% or less, and if it exceeds 0.03%, the number of non-uniform pits increases and appearance defects such as uneven surface quality become more conspicuous. If the Mg content exceeds 0.5%, the amount of Mg deposited as an Mg—Si intermetallic compound in the matrix exceeds 0.03%, and the pits during the electrolytic treatment tend to be uneven. A more preferable content range of Mg is 0.2 to 0.5%.

Mgを含有するアルミニウム合金においては、とくに均質化処理時、熱間圧延時の加熱、中間焼鈍などの熱処理によりMgが表層部に濃縮するため、Mg酸化物(MgO系酸化物)を主体とする酸化皮膜が形成され易く、この酸化皮膜は、活性且つ多孔質(porous)であるため、電解粗面化処理において処理液との濡れ性が良くなり、粗大化が促進される反面、ピットが不均一になり易い。このため、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の1.2〜10倍であることが望ましく、1.2倍未満では粗面化促進効果が得られず、10倍を超えるとピット形態が不均一となる。   In an aluminum alloy containing Mg, Mg concentrates on the surface layer part by heat treatment such as heating during homogenization treatment, hot rolling, and intermediate annealing, so that Mg oxide (MgO-based oxide) is mainly used. An oxide film is easily formed. Since this oxide film is active and porous, the wettability with the treatment liquid is improved in the electrolytic surface-roughening treatment, and coarsening is promoted, but pits are not formed. It tends to be uniform. For this reason, it is desirable that the Mg concentration in the surface layer portion from the surface to a depth of 0.2 μm is 1.2 to 10 times the average Mg concentration. If it exceeds twice, the pit form becomes non-uniform.

Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の均一分散により、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。Feの好ましい含有量は0.2〜0.6%の範囲であり、0.2%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.6%を越えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。   Fe produces an Al—Fe-based intermetallic compound, and coexists with Si to produce an Al—Fe—Si-based intermetallic compound. By uniform dispersion of these compounds, these compounds are Thus, the formation of pits is made uniform and the pits are finely distributed during the electrolytic treatment. The preferable content of Fe is in the range of 0.2 to 0.6%, and if it is less than 0.2%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.6%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.

Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.15%を越えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。   Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, and the dispersion of the compound makes these compounds the starting point of pit generation and uniform pit formation during electrolytic treatment. Is finely distributed. The preferable content of Si is in the range of 0.03 to 0.15%, and if it is less than 0.03%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.

Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.005〜0.05%の範囲であり、0.005%未満ではその効果が小さく、0.05%を越えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。   Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.005 to 0.05%. When the content is less than 0.005%, the effect is small. When the content exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be non-uniform. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.

Pbは、表層部に濃縮させることにより、電解処理時のピットを微細化し、ピット形成の均一性を高めるよう機能し、所望のピットパターンを得ることが可能となる。Pbの好ましい含有量は2〜30ppmの範囲であり、2ppm未満ではその効果が小さく、30ppmを超えて含有すると、粗面化構造が不均一となり易い。表層部に濃縮したPbは、粗面化構造の不均一性を改善し、Mg酸化物による活性化を抑制するよう機能する。Pbの濃縮度は、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の3〜25倍であることが望ましく、3倍未満ではMg酸化物による影響を抑制する効果が十分でなく、25倍を超えると面溶解が生じ易くなる。   By concentrating Pb in the surface layer portion, the pits at the time of electrolytic treatment are refined and function to improve the uniformity of pit formation, and a desired pit pattern can be obtained. The preferable content of Pb is in the range of 2 to 30 ppm. When the content is less than 2 ppm, the effect is small, and when the content exceeds 30 ppm, the roughened structure tends to be uneven. Pb concentrated in the surface layer functions to improve the non-uniformity of the roughened structure and suppress activation by Mg oxide. The concentration of Pb is preferably such that the Pb concentration in the surface layer from the surface to a depth of 0.2 μm is 3 to 25 times the average Pb concentration, and if less than 3 times, the effect of suppressing the influence of Mg oxide is sufficient. If it exceeds 25 times, surface dissolution tends to occur.

Cuは、アルミニウムに固溶し易く、0.05%以下の含有範囲でピットを微細化する効果を有する。0.05%を越えて含有すると、電解処理時のピットが粗大且つ不均一になり易い。   Cu is easily dissolved in aluminum and has an effect of refining pits in a content range of 0.05% or less. If the content exceeds 0.05%, the pits during the electrolytic treatment tend to be coarse and non-uniform.

本発明による平版印刷版用アルミニウム合金板の製造は、前記の成分組成を有するアルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、中間焼鈍、冷間圧延、または、熱間圧延後、冷間圧延し、冷間圧延の途中で中間焼鈍し、二次冷間圧延することにより行われる。   The production of an aluminum alloy plate for a lithographic printing plate according to the present invention is performed by ingot-making an ingot of an aluminum alloy having the above component composition by continuous casting or the like, and after homogenizing the obtained ingot, hot rolling, intermediate Annealing, cold rolling, or hot rolling is followed by cold rolling, intermediate annealing in the middle of cold rolling, and secondary cold rolling.

まず、前記の組成を有するアルミニウム合金の鋳塊の圧延面表層を面削して、ストリークスの原因となる不均一な組織を除去した後、500〜610℃の温度域で1時間以上の均質化処理を行う。この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させ、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。また、鋳造時に生成したMg−Si系金属間化合物が固溶し、ピットの偏在化が起こらなくなるので面質ムラの発生が抑制され外観を損なわない。均質化処理温度が500℃未満では、Fe、Siの析出が過度に進行し、ピットパターンが不均一になり易い。610℃を越える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピット発生の起点となる微細な析出物が減少する。均質化処理の保持時間が1hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となり易い。   First, the surface of the rolled surface of the ingot of the aluminum alloy having the above composition is chamfered to remove a non-uniform structure causing streaks, and then homogenized for 1 hour or more in a temperature range of 500 to 610 ° C. Process. By this homogenization treatment, Fe and Si dissolved in supersaturation are uniformly deposited, and the etching pits formed during the electrolytic treatment become fine circles, and the printing durability is improved. Moreover, since the Mg—Si intermetallic compound produced at the time of casting dissolves and uneven distribution of pits does not occur, the occurrence of uneven surface quality is suppressed and the appearance is not impaired. If the homogenization temperature is less than 500 ° C., the precipitation of Fe and Si proceeds excessively and the pit pattern tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 610 ° C., the amount of Fe dissolved increases, and as a result, fine precipitates that are the starting point of pit generation are reduced. If the holding time of the homogenization treatment is less than 1 hr, the precipitation of Fe and Si is insufficient and the pit pattern tends to be non-uniform.

熱間圧延は、通常、熱間圧延ラインにおいて、粗圧延スタンドで熱間粗圧延を行った後、圧延材を仕上げ圧延スタンドに移行して、仕上げ圧延スタンドで熱間仕上げ圧延を行い、熱間圧延材としてコイルに巻き取ることにより行われるが、この場合、本発明においては、熱間粗圧延を350〜450℃で開始し、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下で終了する。この熱間圧延において、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の1.2〜10倍、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の3〜25倍となるMgとPbの濃縮度を得ることができる。また、マトリックス中へのMgの析出を抑制して、析出しているMg量を0.03%以下とし、電解処理において好ましい粗面化構造を得ることができる。   Hot rolling is usually performed in a hot rolling line after hot rough rolling in a rough rolling stand, and then the rolled material is transferred to a finishing rolling stand and hot finishing rolling is performed in a finishing rolling stand. In this case, in this invention, hot rough rolling is started at 350 to 450 ° C., then hot finish rolling is performed, and hot finish rolling is performed at 300 ° C. End with: In this hot rolling, the Mg concentration in the surface layer portion from the surface to a depth of 0.2 μm is 1.2 to 10 times the average Mg concentration, and the Pb concentration in the surface layer portion from the surface to a depth of 0.2 μm is 3 times the average Pb concentration. A concentration of Mg and Pb that is up to 25 times can be obtained. In addition, it is possible to suppress the precipitation of Mg in the matrix and to reduce the amount of precipitated Mg to 0.03% or less, thereby obtaining a roughened structure preferable in the electrolytic treatment.

熱間粗圧延の開始温度が350℃未満では、材料の変形抵抗が大きく圧延パス回数が増加して生産性を低下させる。450℃を超える温度では、Mgの析出を抑制し難くなる。熱間粗圧延に続いて熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下の温度で終了し、コイルに巻き取る。熱間仕上げ圧延の終了温度が300℃を超えると、Mgの析出を抑制し難くなる。   If the starting temperature of hot rough rolling is less than 350 ° C., the deformation resistance of the material is large and the number of rolling passes is increased, thereby reducing productivity. If the temperature exceeds 450 ° C., it becomes difficult to suppress the precipitation of Mg. Following hot rough rolling, hot finish rolling is performed, the hot finish rolling is finished at a temperature of 300 ° C. or lower, and wound on a coil. When the finishing temperature of hot finish rolling exceeds 300 ° C., it becomes difficult to suppress the precipitation of Mg.

上記の条件で熱間圧延を行った後、400℃以上の温度で中間焼鈍を施し、その後、加工度80%以上の冷間圧延を行い、または、上記の条件で熱間圧延を行った後、一次冷間圧延を行い、400℃以上の温度で中間焼鈍を施し、その後、二次冷間圧延を行い、冷間圧延による合計加工度を80%以上とすることにより、冷間圧延後の最終圧延材において、表層部の圧延材の圧延方向と直交する方向における平均再結晶粒径を50μm以下とし、さらにマトリックス中に析出しているMg−Si系金属間化合物を固溶させ、印刷板の面質ムラを防止することができる。   After hot rolling under the above conditions, after intermediate annealing at a temperature of 400 ° C. or higher, and then cold rolling with a workability of 80% or higher, or after hot rolling under the above conditions The primary cold rolling is performed, the intermediate annealing is performed at a temperature of 400 ° C. or higher, and then the secondary cold rolling is performed. In the final rolled material, the average recrystallized grain size in the direction perpendicular to the rolling direction of the rolled material of the surface layer portion is 50 μm or less, and further the Mg—Si intermetallic compound precipitated in the matrix is solid-solved, and the printing plate It is possible to prevent uneven surface quality.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、各鋳塊について、表2に示す条件で均質化処理、熱間圧延を行い、熱間仕上げ圧延で板厚3mmとして、コイルに巻き取った。熱間圧延後、450℃の温度で中間焼鈍を施し、その後、冷間圧延を行って、板厚0.3mmの冷間圧延材とした。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
Aluminum alloy having the composition shown in Table 1 is melted and cast, and the rolled surface of the obtained ingot is chamfered by 5 mm / one side to a thickness of 500 mm, and each ingot is homogenized under the conditions shown in Table 2. Processing and hot rolling were performed, and the sheet thickness was 3 mm by hot finish rolling, and the product was wound on a coil. After hot rolling, intermediate annealing was performed at a temperature of 450 ° C., and then cold rolling was performed to obtain a cold rolled material having a plate thickness of 0.3 mm. In Tables 1 and 2, those outside the conditions of the present invention are underlined.

Figure 0005149582
Figure 0005149582

Figure 0005149582
Figure 0005149582

冷間圧延材を試験材として、以下の方法で、圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径、マトリックス中の析出しているMg量を測定し、表層部におけるMgとPbの濃縮度を評価した。結果を表3に示す。   Using the cold rolled material as the test material, the average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer portion of the rolled material and the amount of Mg precipitated in the matrix were measured by the following method, and Mg in the surface layer portion was measured. And the concentration of Pb were evaluated. The results are shown in Table 3.

平均再結晶粒径の測定:試験材の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向と直交する方向の結晶粒径を切片法により求めた。   Measurement of the average recrystallized grain size: After degreasing and cleaning the surface of the test material, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, and in the direction perpendicular to the rolling direction The crystal grain size was determined by the intercept method.

マトリックス中の析出しているMg量の測定:図1に示すようなフェノール残渣分析法によって総金属間化合物中のMg量を調べ、マトリックス中に析出しているMg量を求めた。   Measurement of the amount of Mg deposited in the matrix: The amount of Mg deposited in the matrix was determined by examining the amount of Mg in the total intermetallic compound by the phenol residue analysis method as shown in FIG.

表層部におけるMg、Pbの濃縮度:表層部のMg、Pb濃度と内部のMg、Pb濃度の比較は、2次イオン質量分析(SIMS)によりMg、Pbの深さ分析(デプスプロファイル測定)を行い、表面の最も高いMg、Pb濃度のカウント数と、内部のアルミ素地中からのカウント数との比により求めた。   Concentration of Mg and Pb in the surface layer part: Comparison of Mg and Pb concentration in the surface layer part and internal Mg and Pb concentration is based on depth analysis (depth profile measurement) of Mg and Pb by secondary ion mass spectrometry (SIMS). It was determined by the ratio of the count number of the highest Mg and Pb concentration on the surface to the count number from the inner aluminum substrate.

Figure 0005149582
Figure 0005149582

また、試験材(冷間圧延材)について、以下の方法により、面質ムラ、ストリークスの有無を観察し、未エッチング部の発生についての評価、エッチピットの均一性の評価を行った。結果を表4に示す。   Moreover, about the test material (cold-rolled material), the presence or absence of surface quality unevenness and streaks was observed by the following methods, and the evaluation of the occurrence of unetched portions and the evaluation of etch pit uniformity were performed. The results are shown in Table 4.

冷間圧延材を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験片とした。 Degrease the cold rolled material (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds) -AC electrolysis Roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) -desmut treatment (solution: 5% sodium hydroxide, temperature: 60 (° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size to obtain a test piece.

各試験片について、面質ムラ、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mmとなるよう写真を撮影し、得られた写真から未エッチング部の発生、エッチングピットの均一性を評価した。 Each test piece was observed for surface unevenness and streak. In addition, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, and a photograph was taken so that the area of the visual field was 0.04 mm 2. Pit uniformity was evaluated.

面質ムラの有無の観察:試験片の表面に面質ムラが目視で観察されるものを不良(×)、面質ムラが観察されないものを良好(○)として評価した。
ストリークの有無の観察:試験片の表面にストリークが目視で観察されるものを不良(×)、ストリークが観察されないものを良好(○)として評価した。
未エッチング(未エッチ)部の発生についての評価:未エッチング部が20%を超えるものは不良(×)、20%以下のものは良好(○)とした。
エッチピット(ピット)の均一性の評価:円相当直径が5μmを越える大きなピットが全ピットに対して面積率で10%を超えるものは不良(×)、10%以下のものは良好(○)とした。
Observation of presence / absence of surface quality unevenness: The surface of the test piece where surface unevenness was visually observed was evaluated as poor (x), and the surface where surface quality unevenness was not observed was evaluated as good (◯).
Observation of presence / absence of streak: Evaluation was made that a streak was visually observed on the surface of the test piece as defective (X), and a streak was not observed as good (O).
Evaluation of occurrence of unetched (unetched) part: An unetched part exceeding 20% was judged as defective (x), and a part not exceeding 20% was judged good (◯).
Evaluation of uniformity of etch pits (pits): Large pits with an equivalent circle diameter exceeding 5 μm are defective (×) when the area ratio exceeds 10% of all pits, and those with 10% or less are good (◯) It was.

Figure 0005149582
Figure 0005149582

表4にみられるように、本発明に従う試験材1〜4はいずれも、ムラ模様、ストリークを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。   As can be seen from Table 4, all of the test materials 1 to 4 according to the present invention do not cause uneven patterns and streaks, have excellent etching properties after electrolytic treatment, and have uniform etching pits formed on the entire surface. .

これに対して、試験材5はPb量が少ないため、電解処理において十分な粗面化が得られず、また試験材6はPb量が多いため、いずれも粗面化処理におけるピットの均一性が低下した。試験材7はMg量が多いため、マトリックス中に析出しているMg量が多くなり、面質ムラが生じた。   On the other hand, since the test material 5 has a small amount of Pb, sufficient surface roughening cannot be obtained in the electrolytic treatment, and the test material 6 has a large amount of Pb. Decreased. Since the test material 7 had a large amount of Mg, the amount of Mg precipitated in the matrix increased, resulting in uneven surface quality.

試験材8は熱間粗圧延の開始温度が高く、試験材9は熱間仕上げ圧延の終了温度が高いため、いずれも、所定のMgとPbの濃縮度が得られず、また、Mgの析出が多くなり、電解処理時のピットパターンが不均一となった。   Since the test material 8 has a high start temperature for hot rough rolling and the test material 9 has a high end temperature for hot finish rolling, neither of the predetermined Mg and Pb concentrations can be obtained, and the precipitation of Mg As a result, the pit pattern during the electrolytic treatment became non-uniform.

マトリックス中の析出しているMg量の測定方法を示すフローチャートである。It is a flowchart which shows the measuring method of the amount of Mg which has precipitated in a matrix.

Claims (4)

Mg:0.1〜0.5%(質量%、以下同じ)、Si:0.03〜0.15%、Fe:0.2〜0.6%、Ti:0.005〜0.05%、Pb:2〜30ppmを含有し、残部アルミニウムおよび不可避的不純物からなる組成を有し、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の1.2〜10倍、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の3〜25倍、マトリックス中に析出しているMg量が0.03%以下であることを特徴とする平版印刷版用アルミニウム合金板。 Mg: 0.1-0.5% (mass%, the same applies hereinafter), Si: 0.03-0.15%, Fe: 0.2-0.6%, Ti: 0.005-0.05% , Pb: 2 to 30 ppm, having a composition composed of the balance aluminum and inevitable impurities, and having an average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer part of 50 μm or less, from the surface to a depth of 0.2 μm The Mg concentration in the surface layer portion is 1.2 to 10 times the average Mg concentration, the Pb concentration in the surface layer portion from the surface to a depth of 0.2 μm is 3 to 25 times the average Pb concentration, and the amount of Mg deposited in the matrix is An aluminum alloy plate for a lithographic printing plate, characterized by being 0.03% or less. Cu:0.05%以下(0%を含まず、以下同じ)を含有することを特徴とする請求項1記載の平版印刷版用アルミニウム合金板。 2. The aluminum alloy plate for a lithographic printing plate according to claim 1, comprising Cu: 0.05% or less (excluding 0%, the same shall apply hereinafter). 請求項1または2記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を350〜450℃とする熱間粗圧延を行い、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下の温度で終了し、その後、400℃以上の温度で中間焼鈍を施し、加工度80%以上の冷間圧延を行うことを特徴とする平版印刷版用アルミニウム合金板の製造方法。 The ingot of the aluminum alloy according to claim 1 or 2 is homogenized for 1 hour or more in a temperature range of 500 to 610 ° C, followed by hot rough rolling at a start temperature of 350 to 450 ° C, followed by heat The lithographic printing plate is characterized by performing hot finish rolling, finishing hot finish rolling at a temperature of 300 ° C. or lower, then performing intermediate annealing at a temperature of 400 ° C. or higher, and performing cold rolling with a workability of 80% or higher. Manufacturing method of aluminum alloy plate for printing plate. 請求項1または2記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を350〜450℃とする熱間粗圧延を行い、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を300℃以下の温度で終了し、その後、冷間圧延を行い、冷間圧延の途中で400℃以上の温度で中間焼鈍を施し、冷間圧延の合計加工度を80%以上とすることを特徴とする平版印刷版用アルミニウム合金板の製造方法。 The ingot of the aluminum alloy according to claim 1 or 2 is homogenized for 1 hour or more in a temperature range of 500 to 610 ° C, followed by hot rough rolling at a start temperature of 350 to 450 ° C, followed by heat Perform hot finish rolling, finish hot finish rolling at a temperature of 300 ° C. or lower, then perform cold rolling, perform intermediate annealing at a temperature of 400 ° C. or higher during the cold rolling, and total of cold rolling A method for producing an aluminum alloy plate for a lithographic printing plate, wherein the processing degree is 80% or more.
JP2007253521A 2007-09-28 2007-09-28 Aluminum alloy plate for lithographic printing plate and method for producing the same Active JP5149582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253521A JP5149582B2 (en) 2007-09-28 2007-09-28 Aluminum alloy plate for lithographic printing plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253521A JP5149582B2 (en) 2007-09-28 2007-09-28 Aluminum alloy plate for lithographic printing plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009083190A JP2009083190A (en) 2009-04-23
JP5149582B2 true JP5149582B2 (en) 2013-02-20

Family

ID=40657300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253521A Active JP5149582B2 (en) 2007-09-28 2007-09-28 Aluminum alloy plate for lithographic printing plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5149582B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210103B2 (en) * 2007-09-28 2013-06-12 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
CA2901307C (en) * 2013-03-15 2017-08-29 Novelis Inc. Rolled surfaces having a dulled gloss finish
JP2013174018A (en) * 2013-04-11 2013-09-05 Kobe Steel Ltd Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making
JP2013177685A (en) * 2013-04-11 2013-09-09 Kobe Steel Ltd High strength aluminum alloy sheet for automatic plate-making printing plate
CA3166074A1 (en) * 2017-12-21 2019-06-27 Novelis Inc. Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064258B2 (en) * 2002-10-07 2008-03-19 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4105042B2 (en) * 2003-06-12 2008-06-18 三菱アルミニウム株式会社 Aluminum alloy material for lithographic printing plate and method for producing the same
JP2007070674A (en) * 2005-09-06 2007-03-22 Fujifilm Holdings Corp Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2009083190A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925246B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2007070674A (en) Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925247B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
WO2007026574A1 (en) Aluminum alloy plate for surface printing plate and method for production thereof
JP4181597B2 (en) High-strength aluminum alloy plate for printing plates
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JP5314396B2 (en) Aluminum alloy plate for lithographic printing plates
JP2005002429A (en) Aluminum alloy material for planographic printing plate, and its production method
US8118951B2 (en) Aluminum alloy sheet for lithographic printing plate
JP4925248B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5116267B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4161134B2 (en) Method for producing aluminum alloy base plate for printing plate
JP4110353B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
JP3677213B2 (en) Aluminum alloy support for PS plate and method for producing the same
JP4064259B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4064258B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3788837B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4162376B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JPH08311591A (en) Aluminum alloy sheet for substrate for offset printing plate and its production
JP2005231159A (en) Aluminum alloy plate for lithographic printing plate
JP2008272941A (en) Manufacturing method of aluminum alloy plate for lithographic printing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250