JP5210103B2 - Aluminum alloy plate for lithographic printing plate and method for producing the same - Google Patents
Aluminum alloy plate for lithographic printing plate and method for producing the same Download PDFInfo
- Publication number
- JP5210103B2 JP5210103B2 JP2008247437A JP2008247437A JP5210103B2 JP 5210103 B2 JP5210103 B2 JP 5210103B2 JP 2008247437 A JP2008247437 A JP 2008247437A JP 2008247437 A JP2008247437 A JP 2008247437A JP 5210103 B2 JP5210103 B2 JP 5210103B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- aluminum alloy
- hot
- lithographic printing
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007639 printing Methods 0.000 title claims description 37
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000005096 rolling process Methods 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 43
- 239000002344 surface layer Substances 0.000 claims description 30
- 238000005097 cold rolling Methods 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000000265 homogenisation Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 20
- 229910052745 lead Inorganic materials 0.000 description 16
- 238000005098 hot rolling Methods 0.000 description 15
- 238000000137 annealing Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000001953 recrystallisation Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 229910000765 intermetallic Inorganic materials 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 229910019064 Mg-Si Inorganic materials 0.000 description 7
- 229910019406 Mg—Si Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000007788 roughening Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- 206010016807 Fluid retention Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Printing Plates And Materials Therefor (AREA)
Description
本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理による粗面化に適し、製造時の生産性に優れた平版印刷版用アルミニウム合金板およびその製造方法に関する。 The present invention relates to an aluminum alloy plate for a lithographic printing plate, and more particularly to an aluminum alloy plate for a lithographic printing plate that is suitable for roughening by electrochemical etching and has excellent productivity during production, and a method for producing the same.
平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われるが、近年は、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。 In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. In recent years, the surface of the aluminum alloy plate for the support is roughened by electrochemical etching because of its excellent plate-making suitability and printing performance, and continuous processing with coil materials. The approach to surface is developing rapidly.
電気化学的エッチング処理により比較的均一な電解粗面化が得られるアルミニウム合金板としては、A1050(アルミニウム純度99.5%)相当材あるいはA1050相当材をベースとして少量の合金成分を添加した材料が適用されており、例えば少量のPbを含有させた材料(特許文献1参照)、また、少量のCuを含有させ、表層部のCu濃度を表層部よりも深い領域のCu濃度に比べて高くした材料(特許文献2参照)が提案されている。 As an aluminum alloy plate capable of obtaining a relatively uniform electrolytic surface roughening by electrochemical etching treatment, a material equivalent to A1050 (aluminum purity 99.5%) or a material added with a small amount of alloy components based on A1050 equivalent material is used. Applied, for example, a material containing a small amount of Pb (see Patent Document 1), and a small amount of Cu, so that the Cu concentration in the surface layer portion is higher than the Cu concentration in a region deeper than the surface layer portion. A material (see Patent Document 2) has been proposed.
従来、これらの平版印刷版用アルミニウム合金材は、鋳塊を均質化処理、熱間圧延した後、冷間圧延し、冷間圧延の途中で中間焼鈍処理を施して、圧延板表面を再結晶組織とした後、2次冷間圧延を行うことにより、電気化学的エッチング処理時のピットの発生を均一にし、印刷版としての処理を行った場合におけるストリークの発生を防止しているが、中間焼鈍を行うことによる生産性の低下と製造原価の増大は避けられず、改善が望まれている。 Conventionally, these aluminum alloy materials for lithographic printing plates are homogenized, hot-rolled ingots, cold-rolled, and subjected to intermediate annealing in the middle of cold-rolling to recrystallize the rolled plate surface. After forming the structure, by performing secondary cold rolling, the generation of pits during the electrochemical etching process is made uniform, and the occurrence of streaks when the process as a printing plate is performed is prevented. A decrease in productivity and an increase in manufacturing costs due to annealing are inevitable, and improvements are desired.
熱間圧延後、焼鈍処理を行うことなしに冷間圧延して平版印刷版用アルミニウム合金板を得る方法として、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延において、熱間粗圧延の開始温度を450℃以上とし、開始パスから50m/分以上の圧延速度、圧下量30mm以上または1パス圧下率30%のどちらかを満足する圧延を行い、熱間粗圧延の終了温度を300〜370℃とし、ついで行う熱間仕上げ圧延の終了温度を280℃以上とし、コイルとして巻き取ることにより、板表面の再結晶を制御する方法が提案されている(特許文献3参照)。
中間焼鈍を省略するためには、熱間仕上げ圧延終了後、コイルとして巻き取った段階で再結晶していることが必要となるが、均一な電解粗面化特性を得るためには、形成される再結晶粒径が粗大化することなく、中間焼鈍を施した材料と同様に微細、均一であり、また、板表層部の再結晶の度合いが均一であることが重要である。 In order to omit intermediate annealing, it is necessary to recrystallize at the stage of winding as a coil after completion of hot finish rolling. It is important that the recrystallized grain size does not become coarse and is fine and uniform as in the material subjected to the intermediate annealing, and that the degree of recrystallization of the plate surface layer part is uniform.
発明者らは、電解特性の向上により電解処理において均一、微細なピットの形成が達成できる平版印刷版用アルミニウム合金材を得ることを目的として、従来提案された材料をベースとして、成分組成についてあらためて検討を行うとともに、中間焼鈍を省略した製造方法について試験、検討を行った結果、Mg、Pbを含有させ、表層部のMg、Pb濃度を表層部よりも深い領域のMg、Pb濃度に比べて特定倍率高めた材料が有効であること、このような組織性状のアルミニウム合金板を中間焼鈍を省略して製造するためには、熱間粗圧延の開始温度、熱間粗圧延終了から熱間仕上げ圧延までの材料の保持、熱間仕上げ圧延の終了温度の制御が重要であることを見出した。 The inventors have renewed the component composition based on the conventionally proposed materials for the purpose of obtaining an aluminum alloy material for a lithographic printing plate capable of achieving uniform and fine pit formation in electrolytic treatment by improving electrolytic characteristics. As a result of examining and examining the manufacturing method omitting the intermediate annealing, Mg and Pb were included, and the Mg and Pb concentrations in the surface layer portion were compared with the Mg and Pb concentrations in the deeper region than the surface layer portion. In order to produce an aluminum alloy sheet having such a textured property without intermediate annealing, a material with an increased specific magnification is effective. It was found that holding the material until rolling and controlling the finishing temperature of hot finish rolling are important.
本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、表層部での適度なMgおよびPbの濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板、および生産性の向上と製造原価の低減を可能とする平版印刷版用アルミニウム合金板の製造方法を提供することにある。 The present invention has been made as a result of further tests and examinations based on the above knowledge, and the purpose of the present invention is to restore the surface layer portion of the plate at the stage of winding as a coil after the hot finish rolling. The degree of crystal is uniform, the recrystallized grains are fine and uniform, can be cold-rolled to the final thickness without intermediate annealing after hot rolling, and moderate Mg and Pb in the surface layer part Aluminum alloy plate for lithographic printing plates with high concentration, uniform pit generation during electrochemical etching, and no streak when processed as a printing plate, and improved productivity and manufacturing An object of the present invention is to provide a method for producing an aluminum alloy plate for a lithographic printing plate that can reduce the cost.
上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板は、Si:0.03〜0.15%、Fe:0.2〜0.7%、Mg:0.05〜0.15%、Ti:0.005〜0.05%、Pb:2〜30ppmを含有し、残部アルミニウムおよび不可避的不純物からなる組成を有し、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の10〜40倍、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍、マトリックス中に析出しているMg量が0.03%以下であることを特徴とする。
In order to achieve the above object, an aluminum alloy plate for a lithographic printing plate according to
請求項2による平版印刷版用アルミニウム合金板は、請求項1において、Cu:0.05%以下を含有することを特徴とする。
An aluminum alloy plate for a lithographic printing plate according to claim 2 is characterized in that, in
請求項3による平版印刷版用アルミニウム合金板は、請求項1または2において、180MPa以上の引張強さをそなえていることを特徴とする。
An aluminum alloy plate for a lithographic printing plate according to claim 3 is characterized in that in
請求項4による平版印刷版用アルミニウム合金板の製造方法は、請求項1または2に記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を400〜520℃とし、終了温度を400℃以上とする熱間粗圧延を行い、熱間粗圧延終了後、熱間仕上げ圧延の開始前に熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させ、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を330℃以上の温度で終了し、加工度80%以上の冷間圧延を行うことを特徴とする。 A method for producing an aluminum alloy plate for a lithographic printing plate according to claim 4 is the starting temperature after homogenizing the aluminum alloy ingot according to claim 1 or 2 in a temperature range of 500 to 610 ° C. for 1 hour or more. The hot rough rolling is performed at 400 to 520 ° C. and the end temperature is 400 ° C. or higher. After the hot rough rolling, the hot rough rolled material is held for 60 to 300 seconds before the start of hot finish rolling. The surface of the hot rough rolled material is recrystallized, then hot finish rolling is performed, the hot finish rolling is finished at a temperature of 330 ° C. or higher, and cold rolling with a workability of 80% or more is performed. To do.
本発明によれば、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、表層部での適度なMgおよびPbの濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板、および生産性の向上と製造原価の低減を可能とする平版印刷版用アルミニウム合金板の製造方法が提供される。 According to the present invention, after completion of hot finish rolling, at the stage of winding as a coil, the degree of recrystallization of the plate surface layer portion is uniform, the recrystallized grains are fine and uniform, and intermediate annealing after hot rolling is performed. Can be cold-rolled to the final thickness without carrying out the process, a moderate concentration of Mg and Pb in the surface layer can be obtained, and the generation of pits during the electrochemical etching process is uniform, as a printing plate There are provided an aluminum alloy plate for a lithographic printing plate in which streak is not generated when the treatment is performed, and a method for producing an aluminum alloy plate for a lithographic printing plate capable of improving productivity and reducing manufacturing costs.
本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。Feの好ましい含有量は0.2〜0.7%の範囲であり、0.2%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.7%を越えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。 The significance of the components contained in the aluminum alloy plate for a lithographic printing plate of the present invention and the reason for limitation will be explained. Fe forms an Al—Fe intermetallic compound and coexists with Si between Al—Fe—Si based metals. The compounds are formed and the recrystallization structure is refined by the dispersion of these compounds, and these compounds become the starting point of pit generation to make the formation of pits uniform during electrolytic treatment and to distribute the pits finely. The preferable content of Fe is in the range of 0.2 to 0.7%, and if it is less than 0.2%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.7%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.
Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.15%を越えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。 Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, and the dispersion of the compound refines the recrystallized structure, and these compounds serve as starting points for pit generation during the electrolytic treatment. Uniform formation of pits and fine distribution of pits. The preferable content of Si is in the range of 0.03 to 0.15%, and if it is less than 0.03%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.
Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.005〜0.05%の範囲であり、0.005%未満ではその効果が小さく、0.05%を越えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。 Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.005 to 0.05%. When the content is less than 0.005%, the effect is small. When the content exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be non-uniform. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.
Mgは、印刷板の強度を確保し、また、SiとMg−Si系金属間化合物を形成して、単体Siとしての析出を抑制する。Mgの好ましい含有量は0.05〜0.15%の範囲であり、0.05%未満では強度向上の効果が小さい。Mg−Si系金属間化合物は電解中にある特定方位(Cube方位)の結晶粒内でのピットの偏在化を助長(ピット粗大化と未エッチング領域が増加)するから、マトリックス中に析出しているMg量は0.03%以下が好ましく、0.03%を超えると、ピットが不均一な部分が多くなり面質ムラ等の外観不良がより際立つ。Mg含有量が0.15%を超えると、マトリックス中にMg−Si系金属間化合物として析出するMg量が0.03%を超え、電解処理時のピットが不均一になり易い。 Mg secures the strength of the printing plate and forms Si and a Mg—Si intermetallic compound to suppress precipitation as elemental Si. The preferable Mg content is in the range of 0.05 to 0.15%, and if it is less than 0.05%, the effect of improving the strength is small. The Mg-Si intermetallic compound promotes the uneven distribution of pits in the crystal grains of a specific orientation (Cube orientation) during electrolysis (pit coarsening and unetched area increase), so it precipitates in the matrix. The amount of Mg is preferably 0.03% or less, and if it exceeds 0.03%, the number of non-uniform pits increases and appearance defects such as uneven surface quality become more conspicuous. If the Mg content exceeds 0.15%, the amount of Mg deposited as an Mg—Si intermetallic compound in the matrix exceeds 0.03%, and the pits during the electrolytic treatment tend to be uneven.
Mgを含有するアルミニウム合金においては、とくに均質化処理時、熱間圧延時の加熱、中間焼鈍などの熱処理によりMgが表層部に濃縮するため、Mg酸化物(MgO系酸化物)を主体とする酸化皮膜が形成され易く、この酸化皮膜は、活性且つ多孔質(porous)であるため、電解粗面化処理において処理液との濡れ性が良くなり、粗大化が促進される反面、ピットが不均一になり易い。このため、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の10〜40倍であることが望ましく、10倍未満では粗面化促進効果が得られず、40倍を超えるとピット形態が不均一となる。 In an aluminum alloy containing Mg, Mg concentrates on the surface layer part by heat treatment such as heating during homogenization treatment, hot rolling, and intermediate annealing, so that Mg oxide (MgO-based oxide) is mainly used. An oxide film is easily formed. Since this oxide film is active and porous, the wettability with the treatment liquid is improved in the electrolytic surface-roughening treatment, and coarsening is promoted, but pits are not formed. It tends to be uniform. For this reason, it is desirable that the Mg concentration of the surface layer portion from the surface to a depth of 0.2 μm is 10 to 40 times the average Mg concentration, and if it is less than 10 times, the roughening promoting effect cannot be obtained, and if it exceeds 40 times The pit form is uneven.
Pbは、表層部に濃縮させることにより、電解処理時のピットを微細化し、ピット形成の均一性を高めるよう機能し、所望のピットパターンを得ることが可能となる。Pbの好ましい含有量は2〜30ppmの範囲であり、2ppm未満ではその効果が小さく、30ppmを超えて含有すると、粗面化構造が不均一となり易い。表層部に濃縮したPbは、粗面化構造の不均一性を改善し、Mg酸化物による活性化を抑制するよう機能する。Pbの濃縮度は、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍であることが望ましく、100倍未満ではMg酸化物による影響を抑制する効果が十分でなく、400倍を超えると面溶解が生じ易くなる。 By concentrating Pb in the surface layer portion, the pits at the time of electrolytic treatment are refined and function to improve the uniformity of pit formation, and a desired pit pattern can be obtained. The preferable content of Pb is in the range of 2 to 30 ppm. When the content is less than 2 ppm, the effect is small, and when the content exceeds 30 ppm, the roughened structure tends to be uneven. Pb concentrated in the surface layer functions to improve the non-uniformity of the roughened structure and suppress activation by Mg oxide. The concentration of Pb is preferably such that the Pb concentration in the surface layer portion from the surface to a depth of 0.2 μm is 100 to 400 times the average Pb concentration, and if it is less than 100 times, the effect of suppressing the influence of Mg oxide is sufficient. If it exceeds 400 times, surface dissolution tends to occur.
Cuは、アルミニウムに固溶し易く、0.05%以下の含有範囲でピットを微細化する効果を有する。0.05%を越えて含有すると、電解処理時のピットが粗大且つ不均一になり易い。 Cu is easily dissolved in aluminum and has an effect of refining pits in a content range of 0.05% or less. If the content exceeds 0.05%, the pits during the electrolytic treatment tend to be coarse and non-uniform.
本発明による平版印刷版用アルミニウム合金板の製造は、前記の成分組成を有するアルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより行われるが、最も特徴とするところは、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延工程において、圧延開始温度、圧延終了温度、粗圧延から仕上げ圧延に移行するまでの保持時間を特定し、仕上げ圧延後、コイルとして巻き取った時の再結晶粒を制御することにより、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とする点にある。 The production of an aluminum alloy plate for a lithographic printing plate according to the present invention involves ingot-making an ingot of an aluminum alloy having the above component composition by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling, Although it is performed by hot rolling, the most characteristic point is that in the hot rolling process consisting of hot rough rolling and hot finish rolling, the rolling start temperature, the rolling end temperature, until the transition from rough rolling to finish rolling. By specifying the holding time and controlling the recrystallized grains when wound as a coil after finish rolling, a plate material of a predetermined thickness only by cold rolling without performing intermediate annealing after hot finish rolling It is in the point to.
まず、前記の組成を有するアルミニウム合金の鋳塊の圧延面表層を面削して、ストリークスの原因となる不均一な組織を除去した後、500〜610℃の温度域で1時間以上の均質化処理を行う。この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させ、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。また、鋳造時に生成したMg−Si系金属間化合物が固溶し、ピットの偏在化が起こらなくなるので面質ムラの発生が抑制され外観を損なわない。均質化処理温度が500℃未満では、Fe、Siの析出が過度に進行し、さらにMg−Si系金属間化合物の固溶が不十分なため、ピットパターンが不均一になり易い。610℃を越える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピット発生の起点となる微細な析出物が減少する。均質化処理の保持時間が1hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となり易い。 First, the surface of the rolled surface of the ingot of the aluminum alloy having the above composition is chamfered to remove a non-uniform structure causing streaks, and then homogenized for 1 hour or more in a temperature range of 500 to 610 ° C. Process. By this homogenization treatment, Fe and Si dissolved in supersaturation are uniformly deposited, and the etching pits formed during the electrolytic treatment become fine circles, and the printing durability is improved. Moreover, since the Mg—Si intermetallic compound produced at the time of casting dissolves and uneven distribution of pits does not occur, the occurrence of uneven surface quality is suppressed and the appearance is not impaired. If the homogenization treatment temperature is less than 500 ° C., the precipitation of Fe and Si proceeds excessively, and the solid solution of the Mg—Si intermetallic compound is insufficient, so that the pit pattern tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 610 ° C., the amount of Fe dissolved increases, and as a result, fine precipitates that are the starting point of pit generation are reduced. If the holding time of the homogenization treatment is less than 1 hr, the precipitation of Fe and Si is insufficient and the pit pattern tends to be non-uniform.
熱間圧延は、通常、熱間圧延ラインにおいて、粗圧延スタンドで熱間粗圧延を行った後、圧延材を仕上げ圧延スタンドに移行して、仕上げ圧延スタンドで熱間仕上げ圧延を行い、熱間圧延材としてコイルに巻き取ることにより行われるが、この場合、本発明においては、熱間粗圧延を400〜520℃で開始し、400℃以上の温度で終了して、熱間粗圧延終了後、仕上げスタンドに移行して熱間仕上げ圧延を開始する前に、熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させる。また、当該熱間粗圧延終了後、熱間仕上げ圧延開始前の保持により、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の10〜40倍となるMgの濃縮度、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍となるPbの濃縮度を得ることができる。熱間粗圧延での圧下量は30mm以上の厚さで終了する圧下量とするのが望ましい。 Hot rolling is usually performed in a hot rolling line after hot rough rolling in a rough rolling stand, and then the rolled material is transferred to a finishing rolling stand and hot finishing rolling is performed in a finishing rolling stand. In this case, the hot rough rolling starts at 400 to 520 ° C., ends at a temperature of 400 ° C. or higher, and finishes the hot rough rolling. Before moving to the finishing stand and starting hot finish rolling, the hot rough rolled material is held for 60 to 300 seconds to recrystallize the surface of the hot rough rolled material. In addition, after completion of the hot rough rolling, the Mg concentration in the surface layer portion from the surface to the depth of 0.2 μm becomes 10 to 40 times the average Mg concentration by holding before the hot finish rolling, and the surface To 0.2 μm depth, the Pb concentration at which the Pb concentration in the surface layer part is 100 to 400 times the average Pb concentration can be obtained. The reduction amount in the hot rough rolling is desirably a reduction amount that ends with a thickness of 30 mm or more.
熱間粗圧延の開始温度が400℃未満では、材料の変形抵抗が大きく圧延パス回数が増加して生産性を低下させる。またMg−Si系金属間化合物の析出が進行しやすくなるのでピットの偏在化が生じ面質ムラが発生して外観を損なう。520℃を超える温度では、圧延中に粗大な再結晶粒が生成して筋状の不均一組織となり易い。熱間粗圧延の終了温度が400℃未満では、熱間粗圧延終了後の保持による再結晶が不十分となり、均一な表層組織が得難くなるとともに、前記MgおよびPbの濃縮度が得難くなる。また、熱間粗圧延終了後熱間仕上げ圧延開始前の保持時間が60秒未満では、再結晶が不十分となり、均一な表層組織が得難くなる。また、前記のMgおよびPbの濃縮度が得難くなる。300秒を超える時間保持すると、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得難くなるとともに、前記MgおよびPbの濃縮度が得難くなる。また長時間の保持により、Mg−Si系金属間化合物の析出が進行しやすくなるのでピットの偏在化が生じ面質ムラが発生して外観を損なう。 If the starting temperature of hot rough rolling is less than 400 ° C., the deformation resistance of the material is large, and the number of rolling passes is increased, thereby reducing productivity. Further, since precipitation of the Mg—Si intermetallic compound is likely to proceed, pits are unevenly distributed, resulting in uneven surface quality and a loss of appearance. When the temperature exceeds 520 ° C., coarse recrystallized grains are generated during rolling, and a streak-like non-uniform structure tends to be formed. If the end temperature of hot rough rolling is less than 400 ° C., recrystallization due to holding after the end of hot rough rolling becomes insufficient, and it becomes difficult to obtain a uniform surface layer structure, and it is difficult to obtain the concentration of Mg and Pb. . Further, if the holding time after the hot rough rolling is completed and before the hot finish rolling is started is less than 60 seconds, the recrystallization is insufficient and it is difficult to obtain a uniform surface structure. Moreover, it becomes difficult to obtain the enrichment of Mg and Pb. When the time exceeding 300 seconds is maintained, the recrystallized grains grow to form partially coarse recrystallized grains, and it becomes difficult to obtain fine recrystallized grains at the end of hot rolling, and the concentration of Mg and Pb The degree becomes difficult to obtain. Further, since the precipitation of the Mg—Si intermetallic compound is facilitated by holding for a long time, the pits are unevenly distributed to cause uneven surface quality and impair the appearance.
ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を330℃以上の温度で終了してコイルとして巻き取る。熱間仕上げ圧延の開始温度が400℃未満ではこの熱間仕上げ圧延の終了温度が低くなり、再結晶が不十分でストリークの原因となる。熱間仕上げ圧延の終了温度が330℃未満では、再結晶が部分的にしか生ぜず、ストリークの原因となる。熱間仕上げ圧延の終了温度は370℃以下とするのが好ましい。 Next, hot finish rolling is performed, and the hot finish rolling is finished at a temperature of 330 ° C. or higher and wound as a coil. If the start temperature of hot finish rolling is less than 400 ° C., the end temperature of this hot finish rolling will be low, resulting in insufficient recrystallization and streaks. When the finish temperature of hot finish rolling is less than 330 ° C., recrystallization occurs only partially, causing streaks. The end temperature of hot finish rolling is preferably 370 ° C. or lower.
上記の熱間圧延を行った後、コイルとして巻き取ることによって、熱間仕上げ圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径を50μm以下とすることができ、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とすることが可能となり、生産性の向上とそれに伴って製造コストの低減が達成でき、且つ冷間圧延後の最終圧延材において、表層部の圧延材の圧延方向と直交する方向における平均再結晶粒径を50μm以下として、印刷板の面質ムラを防止することができる。また、上記の条件で熱間圧延を行うことにより、マトリックス中へのMgの析出を0.03%以下に抑制し、電解処理時の粗面化構造を良好なものとし、ひいては面質ムラを防止することができる。 After performing the above hot rolling, the average recrystallized grain size in the direction orthogonal to the rolling direction of the surface layer portion of the hot finish rolled material can be reduced to 50 μm or less by winding up as a coil. After rolling, it becomes possible to make a plate material of a predetermined thickness only by cold rolling without performing intermediate annealing, and it is possible to achieve improvement in productivity and concomitant reduction in manufacturing cost, and the final after cold rolling In the rolled material, the average recrystallized grain size in the direction orthogonal to the rolling direction of the rolled material in the surface layer portion can be set to 50 μm or less to prevent unevenness in the surface quality of the printing plate. In addition, by performing hot rolling under the above conditions, Mg precipitation in the matrix is suppressed to 0.03% or less, and the roughened structure during the electrolytic treatment is improved, and as a result, surface quality unevenness is reduced. Can be prevented.
平版印刷版は、運搬時の変形、印刷機にセットするときの張力および印刷中における版切れなどに耐え得るように、適切な強度特性をそなえていることが必要であるが、その強度特性は、熱間圧延後の冷間圧延の圧下率と関係しており、冷間圧延時の加工度は80%以上とすることが望ましい。冷間圧延時の加工度が80%未満では、印刷版(印刷版用支持体)に十分な強度が与えられず、変形や版切れなどが生じ易くなる。印刷版に必要な強度特性を付与するためには、冷間圧延後の印刷板において、引張強さ180MPa以上であることが望ましい。 A lithographic printing plate must have appropriate strength characteristics so that it can withstand deformation during transportation, tension when set in a printing press, and plate breakage during printing. This is related to the reduction ratio of cold rolling after hot rolling, and the degree of work during cold rolling is preferably 80% or more. If the degree of processing during cold rolling is less than 80%, sufficient strength is not given to the printing plate (printing plate support), and deformation and plate breakage are likely to occur. In order to impart the necessary strength characteristics to the printing plate, the tensile strength of the printed plate after cold rolling is desirably 180 MPa or more.
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.
実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊の圧延面を5mm/片面ずつ面削して厚さ500mmとし、各鋳塊について、表2に示す条件で均質化処理、熱間圧延を行い、熱間仕上げ圧延で所定の板厚として、コイルに巻き取った。熱間圧延後、中間焼鈍を施すことなしに表2に示す条件で冷間圧延を行い、板厚を0.3mmの冷間圧延材とした。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 is melted and cast, and the rolled surface of the resulting ingot is chamfered by 5 mm / each side to a thickness of 500 mm, and each ingot is homogenized under the conditions shown in Table 2. It processed and hot-rolled, and it wound up by the coil as predetermined plate | board thickness by hot finish rolling. After hot rolling, cold rolling was performed under the conditions shown in Table 2 without performing intermediate annealing, and a cold rolled material having a sheet thickness of 0.3 mm was obtained. In Tables 1 and 2, those outside the conditions of the present invention are underlined.
冷間圧延材を試験材として、以下の方法で、圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径、マトリックス中に析出しているMg量を測定し、表層部におけるMg、Pbの濃縮度を評価した。結果を表3に示す。表3において、本発明の条件を外れたものには下線を付した。 Using the cold rolled material as the test material, the average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer portion of the rolled material and the amount of Mg precipitated in the matrix were measured by the following method, and Mg in the surface layer portion was measured. , Pb enrichment was evaluated. The results are shown in Table 3. In Table 3, those outside the conditions of the present invention are underlined.
平均再結晶粒径の測定:試験材の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向と直交する方向の結晶粒径を切片法により求めた。 Measurement of the average recrystallized grain size: After degreasing and cleaning the surface of the test material, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, and in the direction perpendicular to the rolling direction The crystal grain size was determined by the intercept method.
マトリックス中に析出しているMg量の測定:図1に示すようなフェノール残渣分析法によって総金属間化合物中のMg量を調べ、マトリックス中に析出しているMg量を求めた。 Measurement of the amount of Mg deposited in the matrix: The amount of Mg in the total intermetallic compound was examined by a phenol residue analysis method as shown in FIG. 1, and the amount of Mg deposited in the matrix was determined.
表層部におけるMg、Pbの濃縮度:表層部のMg、Pb濃度と内部のMg、Pb濃度の比較は、2次イオン質量分析(SIMS)によりMg、Pbの深さ分析(デプスプロファイル測定)を行い、表面の最も高いMg、Pb濃度のカウント数と、内部のアルミ素地中からのカウント数との比により求めた。 Concentration of Mg and Pb in the surface layer part: Comparison of Mg and Pb concentration in the surface layer part and internal Mg and Pb concentration is based on depth analysis (depth profile measurement) of Mg and Pb by secondary ion mass spectrometry (SIMS). It was determined by the ratio of the count number of the highest Mg and Pb concentration on the surface to the count number from the inner aluminum substrate.
また、試験材(冷間圧延板)について、以下の方法により、面質ムラ、ストリークスの有無を観察し、未エッチング部の発生についての評価、エッチピットの均一性の評価を行い、また、引張強さを測定した。結果を表4に示す。表4において、本発明の条件を外れたものには下線を付した。 In addition, for the test material (cold rolled plate), the following methods are used to observe the presence or absence of surface quality unevenness and streak, to evaluate the occurrence of unetched portions, to evaluate the uniformity of etch pits, Tensile strength was measured. The results are shown in Table 4. In Table 4, those outside the conditions of the present invention are underlined.
冷間圧延材を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm2、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験片とした。 Degrease the cold rolled material (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds) -AC electrolysis Roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) -desmut treatment (solution: 5% sodium hydroxide, temperature: 60 (° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size to obtain a test piece.
各試験片について、面質ムラ、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mm2となるよう写真を撮影し、得られた写真から未エッチング部の発生、エッチングピットの均一性を評価した。 Each test piece was observed for surface unevenness and streak. In addition, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, and a photograph was taken so that the area of the visual field was 0.04 mm 2. Pit uniformity was evaluated.
面質ムラの有無の観察:試験片の表面に面質ムラが目視で観察されるものを不良(×)、面質ムラが観察されないものを良好(○)として評価した。
ストリークの有無の観察:試験片の表面にストリークが目視で観察されるものを不良(×)、ストリークが観察されないものを良好(○)として評価した。
未エッチング(未エッチ)部の発生についての評価:未エッチング部が20%を超えるものは不良(×)、20%以下のものは良好(○)とした。
エッチピット(ピット)の均一性の評価:円相当直径が5μmを越える大きなピットが全ピットに対して面積率で10%を超えるものは不良(×)、10%以下のものは良好(○)とした。
Observation of presence / absence of surface quality unevenness: The surface of the test piece where surface unevenness was visually observed was evaluated as poor (x), and the surface where surface quality unevenness was not observed was evaluated as good (◯).
Observation of presence / absence of streak: Evaluation was made that a streak was visually observed on the surface of the test piece as defective (X), and a streak was not observed as good (O).
Evaluation of occurrence of unetched (unetched) part: An unetched part exceeding 20% was judged as defective (x), and a part not exceeding 20% was judged good (◯).
Evaluation of uniformity of etch pits (pits): Large pits with an equivalent circle diameter exceeding 5 μm are defective (×) when the area ratio exceeds 10% of all pits, and those with 10% or less are good (◯) It was.
引張強さの測定:試験材(冷間圧延板)よりJIS5号引張試験片を採取して、引張試験を行った。 Measurement of tensile strength: A JIS No. 5 tensile test piece was taken from a test material (cold rolled plate) and subjected to a tensile test.
表4にみられるように、本発明に従う試験材1〜4、試験材12および試験材13はいずれも、面質ムラ、ストリークを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。また、冷間圧延板の引張強さはいずれも180MPa以上であり、印刷版として必要な強度が付与されている。
As can be seen from Table 4, all of the
これに対して、試験材5はMg量が多いため、マトリックス中に析出しているMg量が多くなり、面質ムラが生じた。試験材6はPb量が少ないため、電解処理において十分な粗面化が得られず、また試験材7はPb量が多いため、粗面化処理におけるピットの均一性が低下した。 On the other hand, since the test material 5 had a large amount of Mg, the amount of Mg deposited in the matrix increased, resulting in uneven surface quality. Since the test material 6 has a small amount of Pb, sufficient surface roughening cannot be obtained in the electrolytic treatment, and the test material 7 has a large amount of Pb, so that the uniformity of pits in the surface roughening processing is lowered.
試験材8は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が長いため、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得られないとともに、所定のMgおよびPbの濃縮度が得られず、また、試験材9は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が短いため、再結晶が不十分となって、板材の表層部に均一な再結晶組織が得られないともに、所定のMgおよびPbの濃縮度が得られず、ともに面質ムラ、ストリークが生じ、エッチピットの均一性にも劣っていた。 Since the test material 8 has a long holding time from the end of hot rough rolling to the start of hot finish rolling, the recrystallized grains grow to generate partially coarse recrystallized grains. Fine recrystallized grains cannot be obtained, and a predetermined Mg and Pb enrichment cannot be obtained, and the test material 9 has a short holding time after the hot rough rolling to the start of hot finish rolling. Insufficient recrystallization prevents a uniform recrystallized structure from being obtained on the surface layer of the plate material, and a predetermined concentration of Mg and Pb cannot be obtained. The uniformity of was also inferior.
試験材10は熱間仕上げ圧延の終了温度が低く、再結晶が十分に行われず非再結晶部が生じたため、ムラ模様、ストリークが生じ、電解処理時のピットの均一性も劣るものとなった。試験材11は均質化処理温度が低いため、Fe、Siの析出が過度に進行し、電解処理時のピットパターンが不均一となり、未エッチング部も生じた。 The test material 10 had a low finish temperature of hot finish rolling, and since recrystallization was not sufficiently performed and non-recrystallized portions were generated, uneven patterns and streaks occurred, and the uniformity of pits during electrolytic treatment was poor. . Since the test material 11 had a low homogenization temperature, precipitation of Fe and Si proceeded excessively, the pit pattern during the electrolytic treatment became non-uniform, and an unetched part also occurred.
試験材14は、冷間加工度が低いため、引張強さは180MPa未満であり、印刷版として必要な強度が付与されず、変形や版切れが予想されるものである。 Since the test material 14 has a low degree of cold work, the tensile strength is less than 180 MPa, the strength necessary for a printing plate is not imparted, and deformation and plate breakage are expected.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008247437A JP5210103B2 (en) | 2007-09-28 | 2008-09-26 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007253520 | 2007-09-28 | ||
JP2007253520 | 2007-09-28 | ||
JP2008247437A JP5210103B2 (en) | 2007-09-28 | 2008-09-26 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009097092A JP2009097092A (en) | 2009-05-07 |
JP5210103B2 true JP5210103B2 (en) | 2013-06-12 |
Family
ID=40700368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008247437A Active JP5210103B2 (en) | 2007-09-28 | 2008-09-26 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5210103B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102500617B (en) * | 2011-11-14 | 2013-11-20 | 重庆捷和铝业有限公司 | Preparation method for high-strength PS (polystyrene) printing plate |
EP2653577B2 (en) * | 2012-04-20 | 2023-02-15 | UACJ Corporation | Method for producing an aluminum alloy sheet that exhibits excellent surface quality after anodizing |
US10415118B2 (en) * | 2012-06-15 | 2019-09-17 | Uacj Corporation | Aluminum alloy plate |
JP5944862B2 (en) * | 2012-08-08 | 2016-07-05 | 株式会社Uacj | Aluminum alloy plate excellent in surface quality after anodizing treatment and manufacturing method thereof |
CN103008342B (en) * | 2012-12-27 | 2015-06-17 | 亚洲铝业(中国)有限公司 | Production method of 5052-H32 aluminum alloy plate-strip |
JP2013174018A (en) * | 2013-04-11 | 2013-09-05 | Kobe Steel Ltd | Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making |
JP2013177685A (en) * | 2013-04-11 | 2013-09-09 | Kobe Steel Ltd | High strength aluminum alloy sheet for automatic plate-making printing plate |
KR102412968B1 (en) * | 2017-11-01 | 2022-06-24 | 닛폰세이테츠 가부시키가이샤 | Electro Sn plated steel sheet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1199763A (en) * | 1997-09-29 | 1999-04-13 | Mitsubishi Alum Co Ltd | Aluminum alloy carrier for pc plate |
JPH1199761A (en) * | 1997-09-29 | 1999-04-13 | Mitsubishi Alum Co Ltd | Aluminum alloy supporting body for ps plate, and its manufacture |
JP4105042B2 (en) * | 2003-06-12 | 2008-06-18 | 三菱アルミニウム株式会社 | Aluminum alloy material for lithographic printing plate and method for producing the same |
JP5116267B2 (en) * | 2005-08-30 | 2013-01-09 | 富士フイルム株式会社 | Method for producing aluminum alloy plate for lithographic printing plate |
JP4740896B2 (en) * | 2007-05-24 | 2011-08-03 | 富士フイルム株式会社 | Method for producing aluminum alloy plate for lithographic printing plate |
JP4939325B2 (en) * | 2007-07-10 | 2012-05-23 | 富士フイルム株式会社 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
JP5149582B2 (en) * | 2007-09-28 | 2013-02-20 | 富士フイルム株式会社 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
-
2008
- 2008-09-26 JP JP2008247437A patent/JP5210103B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009097092A (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4740896B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP5210103B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4939325B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP3693485B2 (en) | Manufacturing method of aluminum alloy base plate for lithographic printing plate | |
JP4925246B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP5149582B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4181596B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP2007070674A (en) | Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor | |
JP4925247B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
WO2007026574A1 (en) | Aluminum alloy plate for surface printing plate and method for production thereof | |
JP4181597B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP5314396B2 (en) | Aluminum alloy plate for lithographic printing plates | |
US20080289731A1 (en) | Method of producing aluminum alloy sheet for lithographic printing plate | |
US8118951B2 (en) | Aluminum alloy sheet for lithographic printing plate | |
JP2005002429A (en) | Aluminum alloy material for planographic printing plate, and its production method | |
JP4925248B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP5116267B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP4161134B2 (en) | Method for producing aluminum alloy base plate for printing plate | |
JP4110353B2 (en) | Aluminum alloy base plate for lithographic printing plate and method for producing the same | |
KR101104556B1 (en) | High-strength aluminum alloy plate for printing plate | |
JP4064259B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4064258B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP3788837B2 (en) | Aluminum alloy plate for printing plate and method for producing the same | |
JPH08311591A (en) | Aluminum alloy sheet for substrate for offset printing plate and its production | |
JP4162376B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5210103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |