JP4939325B2 - Aluminum alloy plate for lithographic printing plate and method for producing the same - Google Patents

Aluminum alloy plate for lithographic printing plate and method for producing the same Download PDF

Info

Publication number
JP4939325B2
JP4939325B2 JP2007180710A JP2007180710A JP4939325B2 JP 4939325 B2 JP4939325 B2 JP 4939325B2 JP 2007180710 A JP2007180710 A JP 2007180710A JP 2007180710 A JP2007180710 A JP 2007180710A JP 4939325 B2 JP4939325 B2 JP 4939325B2
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
hot
lithographic printing
printing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007180710A
Other languages
Japanese (ja)
Other versions
JP2009019219A (en
Inventor
彰男 上杉
睦 松浦
博史 扇
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Sumitomo Light Metal Industries Ltd filed Critical Fujifilm Corp
Priority to JP2007180710A priority Critical patent/JP4939325B2/en
Priority to US12/157,869 priority patent/US7938916B2/en
Priority to CN2008101293235A priority patent/CN101343707B/en
Publication of JP2009019219A publication Critical patent/JP2009019219A/en
Application granted granted Critical
Publication of JP4939325B2 publication Critical patent/JP4939325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Metal Rolling (AREA)

Description

本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理による粗面化に適し、製造時の生産性に優れた平版印刷版用アルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate for a lithographic printing plate, and more particularly to an aluminum alloy plate for a lithographic printing plate that is suitable for roughening by electrochemical etching and has excellent productivity during production, and a method for producing the same.

平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われるが、近年は、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。   In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. In recent years, the surface of the aluminum alloy plate for the support is roughened by electrochemical etching because of its excellent plate-making suitability and printing performance, and continuous processing with coil materials. The approach to surface is developing rapidly.

電気化学的エッチング処理により比較的均一な電解粗面化が得られるアルミニウム合金板としては、A1050(アルミニウム純度99.5%)相当材あるいはA1050相当材をベースとして少量の合金成分を添加した材料が適用されており、例えば少量のPbを含有させた材料(特許文献1参照)、また、少量のCuを含有させ、表層部のCu濃度を表層部よりも深い領域のCu濃度に比べて高くした材料(特許文献2参照)が提案されている。   As an aluminum alloy plate capable of obtaining a relatively uniform electrolytic surface roughening by electrochemical etching treatment, a material equivalent to A1050 (aluminum purity 99.5%) or a material added with a small amount of alloy components based on A1050 equivalent material is used. Applied, for example, a material containing a small amount of Pb (see Patent Document 1), and a small amount of Cu, so that the Cu concentration in the surface layer portion is higher than the Cu concentration in a region deeper than the surface layer portion. A material (see Patent Document 2) has been proposed.

従来、これらの平版印刷版用アルミニウム合金材は、鋳塊を均質化処理、熱間圧延した後、冷間圧延し、冷間圧延の途中で中間焼鈍処理を施して、圧延板表面を再結晶組織とした後、2次冷間圧延を行うことにより、電気化学的エッチング処理時のピットの発生を均一にし、印刷版としての処理を行った場合におけるストリークの発生を防止しているが、中間焼鈍を行うことによる生産性の低下と製造原価の増大は避けられず、改善が望まれている。   Conventionally, these aluminum alloy materials for lithographic printing plates are homogenized, hot-rolled ingots, cold-rolled, and subjected to intermediate annealing in the middle of cold-rolling to recrystallize the rolled plate surface. After forming the structure, by performing secondary cold rolling, the generation of pits during the electrochemical etching process is made uniform, and the occurrence of streaks when the process as a printing plate is performed is prevented. A decrease in productivity and an increase in manufacturing costs due to annealing are inevitable, and improvements are desired.

熱間圧延後、焼鈍処理を行うことなしに冷間圧延して平版印刷版用アルミニウム合金板を得る方法として、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延において、熱間粗圧延の開始温度を450℃以上とし、開始パスから50m/分以上の圧延速度、圧下量30mm以上または1パス圧下率30%のどちらかを満足する圧延を行い、熱間粗圧延の終了温度を300〜370℃とし、ついで行う熱間仕上げ圧延の終了温度を280℃以上とし、コイルとして巻き取ることにより、板表面の再結晶を制御する方法が提案されている(特許文献3参照)。
特開平8−337835号公報 特開2000−108534号公報 特開平11−335761号公報
As a method of obtaining an aluminum alloy plate for lithographic printing plates by performing cold rolling without performing annealing treatment after hot rolling, in hot rolling consisting of hot rough rolling and hot finish rolling, The starting temperature is set to 450 ° C. or more, rolling is performed at a rolling speed of 50 m / min or more from the starting pass, a reduction amount of 30 mm or more, or a one-pass reduction ratio of 30%, and the end temperature of hot rough rolling is set to 300 to A method for controlling recrystallization of the plate surface by setting the temperature to 370 ° C. and then setting the end temperature of hot finish rolling to be 280 ° C. or higher and winding the coil as a coil has been proposed (see Patent Document 3).
JP-A-8-337835 JP 2000-108534 A Japanese Patent Laid-Open No. 11-335761

中間焼鈍を省略するためには、熱間仕上げ圧延終了後、コイルとして巻き取った段階で再結晶していることが必要となるが、均一な電解粗面化特性を得るためには、形成される再結晶粒径が粗大化することなく、中間焼鈍を施した材料と同様に微細、均一であり、また、板表層部の再結晶の度合いが均一であることが重要である。   In order to omit intermediate annealing, it is necessary to recrystallize at the stage of winding as a coil after completion of hot finish rolling. It is important that the recrystallized grain size does not become coarse and is fine and uniform as in the material subjected to the intermediate annealing, and that the degree of recrystallization of the plate surface layer part is uniform.

発明者らは、電解特性の向上により電解処理において均一、微細なピットの形成が達成できる平版印刷板版用アルミニウム合金材を得ることを目的として、従来提案された材料をベースとして、成分組成についてあらためて検討を行うとともに、中間焼鈍を省略した製造方法について試験、検討を行った結果、Pbを含有させ、表層部のPb濃度を表層部よりも深い領域のPb濃度に比べて高めた材料が有効であること、このような組織性状のアルミニウム合金板を中間焼鈍を省略して製造するためには、熱間粗圧延の開始温度、熱間粗圧延終了から熱間仕上げ圧延までの材料の保持、熱間仕上げ圧延の終了温度の制御が重要であることを見出した。   For the purpose of obtaining an aluminum alloy material for a lithographic printing plate capable of achieving uniform and fine pit formation in electrolytic treatment by improving electrolytic characteristics, the inventors have used a conventionally proposed material as a base for component composition. As a result of re-examination and testing and examination of a manufacturing method that omits the intermediate annealing, a material containing Pb and having a Pb concentration in the surface layer portion higher than that in a region deeper than the surface layer portion is effective. In order to produce such a textured aluminum alloy sheet without intermediate annealing, hot rough rolling start temperature, material retention from hot rough rolling end to hot finish rolling, It was found that controlling the finishing temperature of hot finish rolling is important.

本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、表層部での適度なPb濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板、および生産性の向上と製造原価の低減を可能とする平版印刷版用アルミニウム合金板の製造方法を提供することにある。   The present invention has been made as a result of further tests and examinations based on the above knowledge, and the purpose of the present invention is to restore the surface layer portion of the plate at the stage of winding as a coil after the hot finish rolling. The degree of crystal is uniform, the recrystallized grains are fine and uniform, can be cold-rolled to the final thickness without intermediate annealing after hot rolling, and the moderate Pb enrichment at the surface layer part The resulting aluminum alloy plate for lithographic printing plates has uniform pit generation during electrochemical etching and no streak when processed as a printing plate, and improves productivity and reduces manufacturing costs An object of the present invention is to provide a method for producing an aluminum alloy plate for a lithographic printing plate that makes it possible.

上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板は、Si:0.03〜0.15%、Fe:0.2〜0.6%、Ti:0.005〜0.05%、Pb:2〜30ppmを含有し、残部アルミニウムおよび不可避的不純物からなる組成を有し、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍であることを特徴とする。   In order to achieve the above object, an aluminum alloy plate for a lithographic printing plate according to claim 1 is composed of Si: 0.03 to 0.15%, Fe: 0.2 to 0.6%, Ti: 0.005 to 0. 0.05%, Pb: 2 to 30 ppm, having a composition composed of the balance aluminum and inevitable impurities, an average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer portion being 50 μm or less, and 0.2 μm from the surface The Pb concentration in the surface layer portion to the depth is 100 to 400 times the average Pb concentration.

請求項2による平版印刷版用アルミニウム合金板は、請求項1において、Cu:0.05%以下を含有することを特徴とする。   An aluminum alloy plate for a lithographic printing plate according to claim 2 is characterized in that, in claim 1, Cu: 0.05% or less is contained.

請求項3による平版印刷版用アルミニウム合金板は、請求項1または2において、Mg:0.05%未満を含有することを特徴とする。   An aluminum alloy plate for a lithographic printing plate according to claim 3 is characterized in that, in claim 1 or 2, Mg: less than 0.05% is contained.

請求項4による平版印刷版用アルミニウム合金板は、請求項1〜3のいずれかにおいて、マトリックス中に、粒径1〜10μmの析出物が4000〜10000個/mm、粒径10μmを超える析出物が100個/mm以下分布していることを特徴とする。 The aluminum alloy plate for a lithographic printing plate according to claim 4 is the deposit according to any one of claims 1 to 3, wherein a precipitate having a particle size of 1 to 10 µm exceeds 4000 to 10,000 particles / mm 2 and a particle size of more than 10 µm in the matrix. The number of objects is distributed at 100 pieces / mm 2 or less.

請求項5による平版印刷版用アルミニウム合金板の製造方法は、請求項1〜3のいずれかに記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を430〜500℃とし、終了温度を400℃以上とする熱間粗圧延を行い、熱間粗圧延終了後、熱間仕上げ圧延の開始前に熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させ、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を330℃以上の温度で終了し、加工度80%以上の冷間圧延を行うことを特徴とする。   A method for producing an aluminum alloy plate for a lithographic printing plate according to claim 5 comprises homogenizing the aluminum alloy ingot according to any one of claims 1 to 3 in a temperature range of 500 to 610 ° C for 1 hour or more. The hot rough rolling is performed at a start temperature of 430 to 500 ° C. and an end temperature of 400 ° C. or more. After the hot rough rolling, the hot rough rolled material is placed for 60 to 300 seconds before the start of hot finish rolling. Hold and recrystallize the surface of the hot rough rolled material, then perform hot finish rolling, finish hot finish rolling at a temperature of 330 ° C. or higher, and perform cold rolling with a workability of 80% or higher. It is characterized by.

本発明によれば、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、表層部での適度なPb濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一で、印刷版としての処理を行った場合におけるストリークの発生がない平版印刷版用アルミニウム合金板、および生産性の向上と製造原価の低減を可能とする平版印刷版用アルミニウム合金板の製造方法が提供される。   According to the present invention, after completion of hot finish rolling, at the stage of winding as a coil, the degree of recrystallization of the plate surface layer portion is uniform, the recrystallized grains are fine and uniform, and intermediate annealing after hot rolling is performed. Can be cold-rolled to the final thickness without carrying out the process, and an appropriate Pb enrichment in the surface layer can be obtained, and the generation of pits during the electrochemical etching process is uniform, and the process as a printing plate is performed. An aluminum alloy plate for a lithographic printing plate that does not cause streak in the case of a lithographic printing plate, and a method for producing an aluminum alloy plate for a lithographic printing plate that can improve productivity and reduce manufacturing costs.

本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。Feの好ましい含有量は0.2〜0.6%の範囲であり、0.2%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.6%を越えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。   The significance of the components contained in the aluminum alloy plate for a lithographic printing plate of the present invention and the reason for limitation will be explained. Fe forms an Al—Fe intermetallic compound and coexists with Si between Al—Fe—Si based metals. The compounds are formed and the recrystallization structure is refined by the dispersion of these compounds, and these compounds become the starting point of pit generation to make the formation of pits uniform during electrolytic treatment and to distribute the pits finely. The preferable content of Fe is in the range of 0.2 to 0.6%, and if it is less than 0.2%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.6%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.

Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.15%を越えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。   Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, and the dispersion of the compound refines the recrystallized structure, and these compounds serve as starting points for pit generation during the electrolytic treatment. Uniform formation of pits and fine distribution of pits. The preferable content of Si is in the range of 0.03 to 0.15%, and if it is less than 0.03%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.

Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.005〜0.05%の範囲であり、0.005%未満ではその効果が小さく、0.05%を越えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。   Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.005 to 0.05%. When the content is less than 0.005%, the effect is small. When the content exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be non-uniform. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.

Pbは、表層部に濃縮させることにより、電解処理時のピットを微細化し、ピット形成の均一性を高めるよう機能し、所望のピットパターンを得ることが可能となる。Pbの好ましい含有量は2〜30ppmの範囲であり、2ppm未満ではその効果が小さく、30ppmを超えて含有すると、粗面化構造が不均一となり易い。濃縮度は、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍であることが望ましい。   By concentrating Pb in the surface layer portion, the pits at the time of electrolytic treatment are refined and function to improve the uniformity of pit formation, and a desired pit pattern can be obtained. The preferable content of Pb is in the range of 2 to 30 ppm. When the content is less than 2 ppm, the effect is small, and when the content exceeds 30 ppm, the roughened structure tends to be uneven. As for the degree of concentration, it is desirable that the Pb concentration in the surface layer portion from the surface to a depth of 0.2 μm is 100 to 400 times the average Pb concentration.

Cuは、アルミニウムに固溶し易く、0.05%以下の含有範囲でピットを微細化する効果を有する。0.05%を越えて含有すると、電解処理時のピットが粗大且つ不均一になり易い。   Cu is easily dissolved in aluminum and has an effect of refining pits in a content range of 0.05% or less. If the content exceeds 0.05%, the pits during the electrolytic treatment tend to be coarse and non-uniform.

MgはSiと化合物を形成し、単体Siとしての析出を抑制する。0.05%以上含有すると、電解処理時のピットが不均一になり易い。Mgのさらに好ましい含有量は0.01〜0.03%の範囲である。   Mg forms a compound with Si and suppresses precipitation as simple Si. If the content is 0.05% or more, the pits at the time of electrolytic treatment tend to be non-uniform. A more preferable content of Mg is in the range of 0.01 to 0.03%.

本発明による平版印刷版用アルミニウム合金板の製造は、前記の成分組成を有するアルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより行われるが、最も特徴とするところは、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延工程において、圧延開始温度、圧延終了温度、粗圧延から仕上げ圧延に移行するまでの保持時間を特定し、仕上げ圧延後、コイルとして巻き取った時の再結晶粒を制御することにより、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とする点にある。   The production of an aluminum alloy plate for a lithographic printing plate according to the present invention involves ingot-making an ingot of an aluminum alloy having the above component composition by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling, Although it is performed by hot rolling, the most characteristic point is that in the hot rolling process consisting of hot rough rolling and hot finish rolling, the rolling start temperature, the rolling end temperature, until the transition from rough rolling to finish rolling. By specifying the holding time and controlling the recrystallized grains when wound as a coil after finish rolling, a plate material of a predetermined thickness only by cold rolling without performing intermediate annealing after hot finish rolling It is in the point to.

まず、前記の組成を有するアルミニウム合金の鋳塊の圧延面表層を面削して、ストリークスの原因となる不均一な組織を除去した後、500〜610℃の温度域で1時間以上の均質化処理を行う。この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させ、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が500℃未満では、Fe、Siの析出が十分でなく、ピットパターンが不均一になり易い。610℃を越える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピット発生の起点となる微細な析出物が減少する。均質化処理の保持時間が1hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となり易い。   First, the surface of the rolled surface of the ingot of the aluminum alloy having the above composition is chamfered to remove a non-uniform structure causing streaks, and then homogenized for 1 hour or more in a temperature range of 500 to 610 ° C. Process. By this homogenization treatment, Fe and Si dissolved in supersaturation are uniformly deposited, and the etching pits formed during the electrolytic treatment become fine circles, and the printing durability is improved. When the homogenization temperature is less than 500 ° C., the precipitation of Fe and Si is not sufficient, and the pit pattern tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 610 ° C., the amount of Fe dissolved increases, and as a result, fine precipitates that are the starting point of pit generation are reduced. If the holding time of the homogenization treatment is less than 1 hr, the precipitation of Fe and Si is insufficient and the pit pattern tends to be non-uniform.

熱間圧延は、通常、熱間圧延ラインにおいて、粗圧延スタンドで熱間粗圧延を行った後、圧延材を仕上げ圧延スタンドに移行して、仕上げ圧延スタンドで熱間仕上げ圧延を行い、熱間圧延材としてコイルに巻き取ることにより行われるが、この場合、本発明においては、熱間粗圧延を430〜500℃で開始し、400℃以上の温度で終了して、熱間粗圧延終了後、仕上げスタンドに移行して熱間仕上げ圧延を開始する前に、熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させる。また、当該熱間粗圧延終了後、熱間仕上げ圧延開始前の保持により、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍となる前記Pbの濃縮度を得ることができる。   Hot rolling is usually performed in a hot rolling line after hot rough rolling in a rough rolling stand, and then the rolled material is transferred to a finishing rolling stand and hot finishing rolling is performed in a finishing rolling stand. In this case, the hot rough rolling starts at 430 to 500 ° C., ends at a temperature of 400 ° C. or higher, and finishes the hot rough rolling. Before moving to the finishing stand and starting hot finish rolling, the hot rough rolled material is held for 60 to 300 seconds to recrystallize the surface of the hot rough rolled material. In addition, after the hot rough rolling is completed, the Pb concentration at which the Pb concentration in the surface layer portion from the surface to the depth of 0.2 μm becomes 100 to 400 times the average Pb concentration by holding before the hot finish rolling is started. Obtainable.

熱間粗圧延の開始温度が430℃未満では、材料の変形抵抗が大きく圧延パス回数が増加して生産性を低下させる。500℃を超える温度では、圧延中に粗大な再結晶粒が生成して筋状の不均一組織となり易い。熱間粗圧延の終了温度が400℃未満では、熱間粗圧延終了後の保持による再結晶が不十分となり、均一な表層組織が得難くなるとともに、前記Pbの濃縮度が得難くなる。また、熱間粗圧延終了後熱間仕上げ圧延開始前の保持時間が60秒未満では、再結晶が不十分となり、均一な表層組織が得難くなる。また、表層部のPb濃度と平均Pb濃度との差が小さく、前記Pbの濃縮度が得難くなる。300秒を超える時間保持すると、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得難くなるとともに、前記Pbの濃縮度が得難くなる。   When the starting temperature of hot rough rolling is less than 430 ° C., the deformation resistance of the material is large, and the number of rolling passes is increased, thereby reducing productivity. When the temperature exceeds 500 ° C., coarse recrystallized grains are generated during rolling, and a streak-like uneven structure tends to be formed. When the end temperature of the hot rough rolling is less than 400 ° C., recrystallization due to the holding after the end of the hot rough rolling becomes insufficient, and it becomes difficult to obtain a uniform surface layer structure and it is difficult to obtain the enrichment of the Pb. Further, if the holding time after the hot rough rolling is completed and before the hot finish rolling is started is less than 60 seconds, the recrystallization is insufficient and it is difficult to obtain a uniform surface structure. Further, the difference between the Pb concentration in the surface layer portion and the average Pb concentration is small, and it becomes difficult to obtain the Pb concentration. If the time exceeding 300 seconds is maintained, recrystallized grains grow and partially coarse recrystallized grains are generated, and it is difficult to obtain fine recrystallized grains at the end of hot rolling, and the concentration of Pb is increased. It becomes difficult to obtain.

ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を320〜370℃の温度で終了してコイルとして巻き取る。熱間仕上げ圧延の開始温度が400℃未満ではこの熱間仕上げ圧延の終了温度が低くなり、再結晶が不十分でストリークの原因となる。熱間仕上げ圧延の終了温度が320℃未満では、再結晶が部分的にしか生ぜず、ストリークの原因となる。熱間仕上げ圧延の終了温度が370℃を超えると、再結晶粒が粗大となり、ストリークの原因となる。   Next, hot finish rolling is performed, and the hot finish rolling is finished at a temperature of 320 to 370 ° C. and wound as a coil. If the start temperature of hot finish rolling is less than 400 ° C., the end temperature of this hot finish rolling will be low, resulting in insufficient recrystallization and streaks. When the finish temperature of hot finish rolling is less than 320 ° C., recrystallization occurs only partially, causing streaks. When the finish temperature of hot finish rolling exceeds 370 ° C., the recrystallized grains become coarse, causing streaks.

上記の熱間圧延を行った後、コイルとして巻き取ることによって、熱間仕上げ圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径を50μm以下とすることができ、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とすることが可能となり、生産性の向上とそれに伴って製造コストの低減が達成でき、且つ冷間圧延後の最終圧延材において、表層部の圧延材の圧延方向と直交する方向における平均再結晶粒径を50μm以下として、印刷板の面質ムラを防止することができる。   After performing the above hot rolling, the average recrystallized grain size in the direction orthogonal to the rolling direction of the surface layer portion of the hot finish rolled material can be reduced to 50 μm or less by winding up as a coil. After rolling, it becomes possible to make a plate material of a predetermined thickness only by cold rolling without performing intermediate annealing, and it is possible to achieve improvement in productivity and concomitant reduction in manufacturing cost, and the final after cold rolling In the rolled material, the average recrystallized grain size in the direction orthogonal to the rolling direction of the rolled material in the surface layer portion can be set to 50 μm or less to prevent unevenness in the surface quality of the printing plate.

本発明においてはまた、マトリックス中に、粒径1〜10μmの析出物が4000〜10000個/mm、粒径10μmを超える析出物が100個/mm以下分布していることが望ましく、この析出物分布により、電解処理時に形成されるピットの均一分散性を高めることができる。 In the present invention, it is also desirable that precipitates having a particle size of 1 to 10 μm are distributed in the matrix at 4000 to 10,000 particles / mm 2 and precipitates having a particle size of more than 10 μm are distributed to 100 particles / mm 2 or less. Due to the precipitate distribution, the uniform dispersibility of pits formed during the electrolytic treatment can be enhanced.

上記の析出物分布は、前記500〜610℃の温度域で1時間以上の均質化処理条件、開始温度を430〜500℃とし、終了温度を400℃以上とする熱間粗圧延条件、熱間粗圧延終了後、熱間仕上げ圧延の開始前に60〜300秒間保持する熱間粗圧延材の保持条件の組み合わせにより得ることができる。   The precipitate distribution described above is a homogenization treatment condition of 1 hour or more in the temperature range of 500 to 610 ° C, a hot rough rolling condition in which a start temperature is set to 430 to 500 ° C and an end temperature is set to 400 ° C or more. It can obtain by the combination of the holding conditions of the hot rough rolling material hold | maintained for 60 to 300 seconds after the completion of rough rolling and before the start of hot finish rolling.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、各鋳塊について、表2に示す条件で均質化処理、熱間圧延を行い、熱間仕上げ圧延で板厚3mmとして、コイルに巻き取った。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行い、板厚を0.3mmの冷間圧延材とした。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
Aluminum alloy having the composition shown in Table 1 is melted and cast, and the rolled surface of the obtained ingot is chamfered by 5 mm / one side to a thickness of 500 mm, and each ingot is homogenized under the conditions shown in Table 2. Processing and hot rolling were performed, and the sheet thickness was 3 mm by hot finish rolling, and the product was wound on a coil. After the hot rolling, cold rolling was performed without performing intermediate annealing to obtain a cold rolled material having a plate thickness of 0.3 mm. In Tables 1 and 2, those outside the conditions of the present invention are underlined.

Figure 0004939325
Figure 0004939325

Figure 0004939325
Figure 0004939325

冷間圧延材を試験材として、以下の方法で、圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径を測定し、表層部におけるPbの濃縮度、析出物分布を評価した。結果を表3に示す。   Using the cold rolled material as a test material, the average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer portion of the rolled material was measured by the following method, and the concentration of Pb and the precipitate distribution in the surface layer portion were evaluated. . The results are shown in Table 3.

平均再結晶粒径の測定:試験材の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向と直交する方向の結晶粒径を切断法により求めた。   Measurement of the average recrystallized grain size: After degreasing and cleaning the surface of the test material, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, and in the direction perpendicular to the rolling direction The crystal grain size was determined by a cutting method.

表層部におけるPbの濃縮度:表層部のPb濃度と内部のPb濃度の比較は、2次イオン質量分析(SIMS)によりPbの深さ分析(デプスプロファイル測定)を行い、表面の最も高いPb濃度のカウント数と、内部のアルミ素地中からのカウント数との比により求めた。
析出物分布:走査型電子顕微鏡(SEM)を使用し、各アルミニウム合金板の表面の反射電子線像を拡大率500倍で観察した。1個の視野の面積が0.04mmになるようにして、25個の視野を写真撮影し、この写真を画像解析して金属間化合物の個数及び粒子径を測定した。
Concentration of Pb in the surface layer part: Comparison between the Pb concentration in the surface layer part and the internal Pb concentration is carried out by performing depth analysis (depth profile measurement) of Pb by secondary ion mass spectrometry (SIMS), and the highest Pb concentration on the surface. It was calculated by the ratio of the number of counts and the number of counts from the inside aluminum substrate.
Precipitate distribution: A scanning electron microscope (SEM) was used to observe the reflected electron beam image on the surface of each aluminum alloy plate at a magnification of 500 times. 25 fields of view were photographed so that the area of one field of view was 0.04 mm 2 , and the number of the intermetallic compounds and the particle diameter were measured by image analysis.

Figure 0004939325
Figure 0004939325

また、試験材(冷間圧延材)について、以下の方法により、ムラ模様、ストリークスの有無を観察し、未エッチング部の発生についての評価、エッチピットの均一性の評価を行った。結果を表4に示す。   Moreover, about the test material (cold rolling material), the presence or absence of a nonuniformity pattern and streak was observed by the following method, and the evaluation about generation | occurrence | production of an unetched part and the evaluation of the uniformity of an etch pit were performed. The results are shown in Table 4.

冷間圧延材を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験片とした。 Degrease the cold rolled material (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds) -AC electrolysis Roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) -desmut treatment (solution: 5% sodium hydroxide, temperature: 60 (° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size to obtain a test piece.

各試験片について、ムラ模様、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mmとなるよう写真を撮影し、得られた写真から未エッチング部の発生、エッチングピットの均一性を評価した。 About each test piece, the presence or absence of a nonuniform pattern and streak was observed. In addition, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, and a photograph was taken so that the area of the visual field was 0.04 mm 2. Pit uniformity was evaluated.

ムラ模様の有無の観察:試験片の表面にムラ模様が目視で観察されるものを不良(×)、ムラ模様が観察されないものを良好(○)として評価した。
ストリークの有無の観察:試験片の表面にストリークが目視で観察されるものを不良(×)、ストリークが観察されないものを良好(○)として評価した。
未エッチング(未エッチ)部の発生についての評価:未エッチング部が20%を超えるものは不良(×)、20%以下のものは良好(○)とした。
エッチピット(ピット)の均一性の評価:円相当直径が10μmを越える大きなピットが全ピットに対して面積率で10%を超えるものは不良(×)、10%以下のものは良好(○)とした。
Observation of presence / absence of uneven pattern: A case where the uneven pattern was visually observed on the surface of the test piece was evaluated as bad (×), and a case where the uneven pattern was not observed was evaluated as good (◯).
Observation of presence / absence of streak: Evaluation was made that a streak was visually observed on the surface of the test piece as defective (X), and a streak was not observed as good (O).
Evaluation of occurrence of unetched (unetched) part: An unetched part exceeding 20% was judged as defective (x), and a part not exceeding 20% was judged good (◯).
Evaluation of uniformity of etch pits (pits): Large pits with an equivalent circle diameter exceeding 10 μm are defective (×) when the area ratio exceeds 10% with respect to all pits, and those with 10% or less are good (◯) It was.

Figure 0004939325
Figure 0004939325

表4にみられるように、本発明に従う試験材1〜4はいずれも、ムラ模様、ストリークを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。   As can be seen from Table 4, all of the test materials 1 to 4 according to the present invention do not cause uneven patterns and streaks, have excellent etching properties after electrolytic treatment, and have uniform etching pits formed on the entire surface. .

これに対して、試験材5はPb量が少ないため、電解処理において十分な粗面化が得られず、また試験材6はPb量が多いため、粗面化処理におけるピットの均一性が低下した。   On the other hand, since the test material 5 has a small amount of Pb, sufficient surface roughening cannot be obtained in the electrolytic treatment, and since the test material 6 has a large amount of Pb, the uniformity of pits in the surface roughening processing is lowered. did.

試験材7は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が長いため、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得られないとともに、所定のPbの濃縮度が得られず、また、試験材8は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が短いため、再結晶が不十分となって、板材の表層部に均一な再結晶組織が得られないともに、所定のPbの濃縮度が得られず、ともにムラ模様、ストリークが生じ、エッチピットの均一性にも劣っていた。   Since the test material 7 has a long holding time from the end of hot rough rolling to the start of hot finish rolling, the recrystallized grains grow to form partially coarse recrystallized grains. Fine recrystallized grains cannot be obtained, and a predetermined Pb enrichment cannot be obtained, and the test material 8 has a short holding time after the hot rough rolling to the start of hot finish rolling. Due to insufficient crystal, a uniform recrystallized structure cannot be obtained in the surface layer portion of the plate, and a predetermined Pb concentration cannot be obtained. It was inferior.

試験材9は熱間仕上げ圧延の終了温度が低く、再結晶が十分に行われず非再結晶部が生じたため、ムラ模様、ストリークが生じ、電解処理時のピットの均一性も劣るものとなった。試験材10は均質化処理温度が低いため、Fe、Siの析出が十分でなく、電解処理時のピットパターンが不均一となり、未エッチング部も生じた。   The test material 9 had a low finish temperature of hot finish rolling, and recrystallization was not sufficiently performed, resulting in non-recrystallized portions, resulting in uneven patterns and streaks, and poor pit uniformity during electrolytic treatment. . Since the test material 10 had a low homogenization temperature, the precipitation of Fe and Si was not sufficient, the pit pattern during the electrolytic treatment became non-uniform, and an unetched part also occurred.

Claims (5)

Si:0.03〜0.15%(質量%、以下同じ)、Fe:0.2〜0.6%、Ti:0.005〜0.05%、Pb:2〜30ppmを含有し、残部アルミニウムおよび不可避的不純物からなる組成を有し、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のPb濃度が平均Pb濃度の100〜400倍であることを特徴とする平版印刷版用アルミニウム合金板。 Si: 0.03 to 0.15% (mass%, the same applies hereinafter), Fe: 0.2 to 0.6%, Ti: 0.005 to 0.05%, Pb: 2 to 30 ppm, the balance It has a composition consisting of aluminum and inevitable impurities, the average recrystallized grain size in the direction orthogonal to the rolling direction of the surface layer part is 50 μm or less, and the Pb concentration in the surface layer part from the surface to a depth of 0.2 μm is 100 of the average Pb concentration. An aluminum alloy plate for a lithographic printing plate, characterized in that it is -400 times. Cu:0.05%以下を含有することを特徴とする請求項1記載の平版印刷版用アルミニウム合金板。 2. The aluminum alloy plate for a lithographic printing plate according to claim 1, comprising Cu: 0.05% or less. Mg:0.05%未満を含有することを特徴とする請求項1または2記載の平版印刷版用アルミニウム合金板。 3. The aluminum alloy plate for a lithographic printing plate according to claim 1, wherein Mg: less than 0.05% is contained. マトリックス中に、粒径(円相当直径、以下同じ)1〜10μmの析出物が4000〜10000個/mm、粒径10μmを超える析出物が100個/mm以下分布していることを特徴とする請求項1〜3のいずれかに記載の平版印刷版用アルミニウム合金板。 In the matrix, precipitates having a particle size (equivalent circle diameter, the same shall apply hereinafter) of 1 to 10 μm are distributed in a range of 4000 to 10000 / mm 2 , and precipitates having a particle size of more than 10 μm are distributed in 100 / mm 2 or less An aluminum alloy plate for a lithographic printing plate according to any one of claims 1 to 3. 請求項1〜3のいずれかに記載のアルミニウム合金の鋳塊を、500〜610℃の温度域で1時間以上均質化処理した後、開始温度を430〜500℃とし、終了温度を400℃以上とする熱間粗圧延を行い、熱間粗圧延終了後、熱間仕上げ圧延の開始前に熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させ、ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を330℃以上の温度で終了し、加工度80%以上の冷間圧延を行うことを特徴とする平版印刷版用アルミニウム合金板の製造方法。 The ingot of the aluminum alloy according to any one of claims 1 to 3, after homogenizing for 1 hour or more in a temperature range of 500 to 610 ° C, a start temperature is set to 430 to 500 ° C, and an end temperature is set to 400 ° C or more. After the hot rough rolling is completed, the hot rough rolled material is held for 60 to 300 seconds before the hot finish rolling is started, and then the surface of the hot rough rolled material is recrystallized. A method for producing an aluminum alloy plate for a lithographic printing plate, comprising performing hot finish rolling, finishing hot finish rolling at a temperature of 330 ° C. or more, and performing cold rolling with a workability of 80% or more.
JP2007180710A 2007-07-10 2007-07-10 Aluminum alloy plate for lithographic printing plate and method for producing the same Active JP4939325B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007180710A JP4939325B2 (en) 2007-07-10 2007-07-10 Aluminum alloy plate for lithographic printing plate and method for producing the same
US12/157,869 US7938916B2 (en) 2007-07-10 2008-06-13 Aluminum alloy sheet for lithographic printing plate and method of producing the same
CN2008101293235A CN101343707B (en) 2007-07-10 2008-06-26 Aluminum alloy sheet for lithographic printing plate and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180710A JP4939325B2 (en) 2007-07-10 2007-07-10 Aluminum alloy plate for lithographic printing plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009019219A JP2009019219A (en) 2009-01-29
JP4939325B2 true JP4939325B2 (en) 2012-05-23

Family

ID=40245819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180710A Active JP4939325B2 (en) 2007-07-10 2007-07-10 Aluminum alloy plate for lithographic printing plate and method for producing the same

Country Status (3)

Country Link
US (1) US7938916B2 (en)
JP (1) JP4939325B2 (en)
CN (1) CN101343707B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026574A1 (en) * 2005-08-30 2007-03-08 Fuji Photo Film Co., Ltd. Aluminum alloy plate for surface printing plate and method for production thereof
JP5210103B2 (en) * 2007-09-28 2013-06-12 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
CN105177327A (en) * 2015-09-11 2015-12-23 广西南南铝加工有限公司 Preparation method for high-magnesium aluminum alloy O-state plate of 5XXX series
CN106637002B (en) * 2016-12-22 2018-10-30 新疆众和股份有限公司 A kind of granule surface contral technique of the soft state aluminium alloy of anodic oxidation
CN106756666B (en) * 2016-12-22 2018-10-30 新疆众和股份有限公司 A kind of granule surface contral technique of the hard state aluminium alloy of anodic oxidation
CN109136682B (en) * 2018-09-21 2019-08-06 广亚铝业有限公司 A kind of production technology for casting improving aluminium alloy extrusions oxidation striped
CN109468556B (en) * 2018-12-17 2021-06-15 新疆众和股份有限公司 Hot processing technology of 5505 aluminum alloy for mirror surface oxidation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256106B2 (en) * 1995-06-12 2002-02-12 株式会社神戸製鋼所 Aluminum alloy plate for printing plate and method for producing the same
JPH1199761A (en) * 1997-09-29 1999-04-13 Mitsubishi Alum Co Ltd Aluminum alloy supporting body for ps plate, and its manufacture
JP4059707B2 (en) * 2002-03-12 2008-03-12 古河スカイ株式会社 Aluminum alloy plate for lithographic printing plate support and method for producing the same
JP2004035936A (en) * 2002-07-02 2004-02-05 Furukawa Sky Kk Method of producing aluminum alloy rolled plate for lithographic printing plate support
JP4318587B2 (en) * 2003-05-30 2009-08-26 住友軽金属工業株式会社 Aluminum alloy plate for lithographic printing plates
WO2007026574A1 (en) * 2005-08-30 2007-03-08 Fuji Photo Film Co., Ltd. Aluminum alloy plate for surface printing plate and method for production thereof
JP4740896B2 (en) * 2007-05-24 2011-08-03 富士フイルム株式会社 Method for producing aluminum alloy plate for lithographic printing plate

Also Published As

Publication number Publication date
US7938916B2 (en) 2011-05-10
CN101343707A (en) 2009-01-14
JP2009019219A (en) 2009-01-29
US20090014103A1 (en) 2009-01-15
CN101343707B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925246B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3693485B2 (en) Manufacturing method of aluminum alloy base plate for lithographic printing plate
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2007070674A (en) Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925247B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
US20090252642A1 (en) Aluminum alloy sheet for lithographic printing plate and method of producing the same
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JP3662959B2 (en) Method for producing aluminum alloy base plate for electrolytic roughened lithographic printing plate
JPH11115333A (en) Aluminum alloy plate for printing plate and manufacture thereof
JP5314396B2 (en) Aluminum alloy plate for lithographic printing plates
JP4925248B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5116267B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
US8118951B2 (en) Aluminum alloy sheet for lithographic printing plate
JP4110353B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
JP3830301B2 (en) Aluminum alloy plate and manufacturing method thereof
JP4064259B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JPH08311591A (en) Aluminum alloy sheet for substrate for offset printing plate and its production
JP4064258B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3788837B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2778663B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4162376B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP5753389B2 (en) Aluminum alloy plate for printing plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4939325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250