JP3830301B2 - Aluminum alloy plate and manufacturing method thereof - Google Patents

Aluminum alloy plate and manufacturing method thereof Download PDF

Info

Publication number
JP3830301B2
JP3830301B2 JP09436899A JP9436899A JP3830301B2 JP 3830301 B2 JP3830301 B2 JP 3830301B2 JP 09436899 A JP09436899 A JP 09436899A JP 9436899 A JP9436899 A JP 9436899A JP 3830301 B2 JP3830301 B2 JP 3830301B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
weight
alloy plate
uniformity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09436899A
Other languages
Japanese (ja)
Other versions
JP2000282158A (en
Inventor
正樹 谷川
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP09436899A priority Critical patent/JP3830301B2/en
Publication of JP2000282158A publication Critical patent/JP2000282158A/en
Application granted granted Critical
Publication of JP3830301B2 publication Critical patent/JP3830301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、建材等のように、エッチング処理した後、陽極酸化処理によりアルマイト被膜を形成して使用されるアルミニウム合金板及びその製造方法に関し、特に、エッチング面の均一性及び陽極酸化被膜の色調の均一性を高めたアルミニウム合金板及びその製造方法に関する。
【0002】
【従来の技術】
建材等に用いられるアルミニウム板の中には、表面を粗面化し、更にその上にアルマイト皮膜を設け、必要に応じて、更にその表面に機能性皮膜(樹脂及び感光剤等)を設けたものがある。これらのアルミニウム板材は、表面の色調及び保水性、そして機能性皮膜の密着性等の特性が優れている必要がある。
【0003】
一方、この粗面化処理としては、ボール研磨法及びブラシ研磨法等の機械的処理法と、塩酸若しくは硝酸を主体とする水溶液を電解液としてアルミニウム板表面を電気化学的に粗面化する電解粗面化処理法と、機械的処理法と電解粗面化処理法を組み合わせた粗面化処理方法とがある。また、水酸化ナトリウムを主体とする電解液中にアルミニウム板を浸漬して化学的にエッチングする方法もある。
【0004】
ところで、建材等の用途においては、表面の色調を高めることと機能性皮膜とアルミニウム板材との密着性を向上させるために、粗面化処理によって均一で微細な凹凸(ピット)を形成できる材料が要求される。このような微細なピットを設けるためのアルミニウム板として、例えば、特開昭58−210144号公報及び特開平5−331581号公報に記載された組成からなるものが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来のアルミニウム合金においては、粗面化処理の条件によっては未エッチング部(アルミニウム合金板表面の粗面化処理されない部分)を完全になくすことは困難であり、特に、粗面化面のピットを微細化すると共に、粗面化処理のコストを低減するために、エッチング量(粗面化処理によるアルミニウム合金板の溶解量)を抑制した条件では、未エッチング部が発生し易いという問題点がある。
【0006】
本発明はかかる問題点に鑑みてなされたものであって、粗面化処理条件によらず粗面化面におけるピットを均一化し、未エッチング部の発生を防止して、その上に形成される膜の密着性及び保水性を向上できると共に、表面の色調を向上させることができるアルミニウム合金板及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係るアルミニウム合金板は、Fe:0.2乃至0.6重量%、Si:0.03乃至0.20重量%及びTi:0.005乃至0.05重量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板において、その表面に粒子径1乃至10μmの金属間化合物が2000乃至4000個/mm 2 存在すると共に、この粒子径1乃至10μmの金属間化合物の単位面積あたりの総個数を[M]、そのうちのAl 6 Feの個数を[Al 6 Fe]としたとき、[Al 6 Fe]/[M]が0.3以下であることを特徴とする。
【0008】
このアルミニウム合金板において、更に、Niを0.005乃至0.2重量%、Cuを0.005乃至0.05重量%、又はBを1乃至50重量ppm含有することができる。
【0009】
また、本発明に係るアルミニウム合金板の製造方法は、Fe:0.2乃至0.6重量%、Si:0.03乃至0.20重量%及びTi:0.005乃至0.05重量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊に540乃至610℃の温度で均質化処理を施す工程と、均質化処理後の鋳塊を熱間圧延する工程と、熱間圧延材を冷間圧延する工程と、を有し、表面に粒子径1乃至10μmの金属間化合物が2000乃至4000個/mm 存在すると共に、この粒子径1乃至10μmの金属間化合物の単位面積あたりの総個数を[M]、そのうちのAl Feの個数を[Al Fe]としたとき、[Al Fe]/[M]が0.3以下であるアルミニウム合金板を得ることを特徴とする。
【0010】
このアルミニウム合金板の製造方法において、前記アルミニウム合金鋳塊は、更に、Niを0.005乃至0.2重量%、Cuを0.005乃至0.05重量%、Bを1乃至50重量ppm含有することができる。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。建材等の分野において、アルミニウム合金がエッチング及び陽極酸化処理を施して使用される場合、処理後の外観が均一であることが要求され、このために、エッチングにより形成される粗面を均一化し、光沢を均一化することと、陽極酸化被膜の色調を均一化することが必要である。
【0012】
この場合に、アルミニウム合金中にはFe−Al系の金属間化合物が存在し、これらはエッチングピットの起点として作用する。このため、これらの量及び分布を制御することが粗面の均一性を向上させるために必要である。この金属間化合物には、安定相(Al 3 Fe)と準安定相(Al 6 Fe)とが存在し、各金属間化合物とアルミニウムマトリクス(母材)との間には電気化学的特性に差異があるため、これらが混在していた場合には、ピットの均一性が著しく低下する。また、安定相が存在する領域と準安定相が存在する領域とでは陽極酸化被膜の色調が異なるため、両者が混在した場合においては、色調ムラが生じやすい。
【0013】
そこで、本発明においては、材料の化学成分、金属間化合物個数及びこの金属間化合物中の順安定相の比率を制御することにより、エッチング面の均一性及び陽極酸化被膜色調の均一性を向上させる。
【0014】
以下、本発明におけるアルミニウム合金板の組成限定理由について説明する。
【0015】
Fe:0.2乃至0.6重量%
Feはアルミニウム合金板の主要構成成分である。また、Feはアルミニウム合金中において他の元素と結合し、Al−Fe系の金属間化合物を形成する。この金属間化合物は、再結晶粒を微細化し組織を均一化して機械的強度を維持する効果を有すると共に、粗面化処理時にピットの起点として作用するものである。Fe含有量が0.2重量%未満であると、金属間化合物が十分に形成されず粗面化ピットの反応起点数が不足するので、粗面化面の均一性が低下する。一方、Fe含有量が0.6重量%を超えると、粗大化合物が形成されることにより粗大なピットが形成されるので、粗面化面が不均一になる。従って、Fe含有量は0.2乃至0.6重量%とする。
【0016】
Si:0.03乃至0.20重量%
SiはFeと同様に、Al−Fe−Si系金属間化合物を形成し、粗面化処理時に粗面化ピットの反応起点として作用する。Si含有量が0.03重量%未満であると、金属間化合物が十分に形成されず、粗面化ピットの反応起点数が不足するので、粗面化面が不均一になる。一方、Si含有量が0.20重量%を超えると、粗大化合物が形成されることにより粗大なピットが形成されるので、粗面化面が不均一になると共に、陽極酸化被膜が黒色化して色調ムラの原因となる。従って、Si含有量は0.03乃至0.20重量%とする。
【0017】
Ti:0.005乃至0.05重量%
Tiは、鋳造組織を微細化することにより結晶粒を微細化する作用を有する。Ti含有量が0.005重量%未満であると、結晶粒の微細化効果を十分に得ることができない。一方、Ti含有量が0.05重量%を超えると、結晶粒の微細化効果が飽和するため経済的に効果がなくなる共に、粗面化面にピットが不均一に形成される。従って、Ti含有量は0.005乃至0.05重量%とする。
【0018】
アルミニウム合金板の表面に形成された金属間化合物のうち粒子径1乃至10μmのものの1mm 2 あたりの個数:2000乃至4000個/mm 2
前述の如く、金属間化合物は粗面化ピットの反応起点として作用し、粗面化面を均一化する作用を有する。特に、アルミニウム合金板の表面に存在する金属間化合物のうちその粒子径が1乃至10μmであるものは、その均一化作用が極めて大きい。なお、本発明におけるアルミニウム合金板の表面とは粗面化処理が施された所謂粗面化面を含むものとする。粒子径1乃至10μmの金属間化合物が2000個/mm 2 未満しか存在しないと、粗面化ピットの反応起点が十分に形成されず、未エッチング部(アルミニウム板表面の粗面化処理されない部分)の残存が顕著になる。一方、粒子径1乃至10μmの金属間化合物が4000個/mm 2 を超えて存在すると、粗大なピットが形成されやすいので、粗面化面が不均一になる。従って、アルミニウム合金板の表面に形成された元素の一部又は全部からなる金属間化合物のうち粒子径1乃至10μmのものが2000乃至4000個/mm 2 存在するものとする。
【0019】
粒子径1乃至10μmの金属間化合物の1mm 2 あたりの総個数を[M]個/mm 2 、Al 6 Feの1mm 2 あたりの個数を[Al 6 Fe]としたときの[Al 6 Fe]/[M]比:0.3以下
金属間化合物中のAl 6 Feの存在比率を規定することが、粗面化面の均一性及び陽極酸化被膜の色調の均一性を向上させるために必要である。Fe−Al系の金属間化合物には、安定相(Al 3 Fe)及び準安定相(Al 6 Fe)が存在し、夫々電気化学的に特性に差異があるため、両者が混在した場合において粗面化ピットの形成状態に差異が生じ、粗面の均一性が著しく低下する。更に、安定相が存在する領域と準安定相が存在する領域では陽極酸化被膜に色調差(色調ムラ)が生じる。金属間化合物中のAl 6 Feの存在比率、即ち、粒子径1乃至10μmの金属間化合物の1mm 2 あたりの個数を[M]個/mm 2 、Al 6 Feの1mm 2 あたりの個数を[Al 6 Fe]としたときの[Al 6 Fe]/[M]が0.3を超えると、粗面化ピットの形成状態の差異が顕著になり粗面化面の均一性が著しく劣化する共に、陽極酸化被膜の色調差が顕著になる。従って、[Al 6 Fe]/[M]は0.3以下とする。
【0020】
Ni:0.005乃至0.2重量%
Niは被処理材の化学溶解性を向上させ、より短時間で均一な粗面化面を得る作用を有する。Ni含有量が0.005重量%未満であると、化学溶解性の向上効果が不十分である。一方、Ni含有量が0.2重量%を超えると、化学溶解性が過剰になり粗面化面の均一性が損なわれる。従って、アルミニウム合金板中にNiを含有させる場合は、その含有量を0.005乃至0.2重量%とする。
【0021】
Cu:0.005乃至0.05重量%
Cuはアルミニウム合金中に固溶状態で存在し、アルミニウムマトリクスと金属間化合物との間の電位差を調整し、粗面化面の均一性を向上させる作用を有する。Cu含有量が0.005重量%未満であると、電位を調整する作用が不十分となり、粗面化面の均一性を向上する効果が得られなくなる。一方、Cu含有量が0.05重量%を超えると、アルミニウム合金板の表面に未エッチング部が発生し粗面化面が不均一になる。従って、アルミニウム合金板中にCuを含有させる場合は、その含有量を0.005乃至0.05重量%とする。
【0022】
B:1乃至50重量ppm
通常、BはTi−B母合金として結晶粒微細化剤として作用する。この結晶粒微細化作用は、固溶Tiの減少と共に、Ti−B粒子が増加することにより、微細な核が増加することによって得られる。本願発明者等は、更に、Ti−Bの粒子数が増加することによって、粗面化面の均一性を向上する効果を得ることができることを見い出した。B含有量が1重量ppm未満であると、電解不足によって粗面化ピットが不均一になることがある。一方、B含有量が50重量ppmを超えると、Ti−B粒子の凝集により粗大な化合物が形成され、粗面化面が不均一になることがある。従って、アルミニウム合金板中にBを含有させる場合は、その含有量を1乃至50重量ppmとする。
【0023】
なお、本発明におけるアルミニウム合金板は、不可避的不純物として、Mg、、Mn、Cr、Zr、In、Sn、Pb、Ga、Zn及びVがあり、Mg、Ga及びZnの各成分においてはその含有量が夫々0.05重量%以下、Mn、Cr及びZrの各成分においてはその含有量が夫々0.03重量%以下、並びにIn、Sn、Pb及びVの各成分においてはその含有量が夫々0.02重量%以下であれば、本発明の効果に悪影響を与えない。
【0024】
また、本発明に係るアルミニウム合金板の製造方法においては、上述の如く化学組成を規定されたアルミニウム合金鋳塊を均質化処理し、熱間圧延し、冷間圧延してアルミニウム合金板を得る場合に、均質化処理温度を以下のように規定する。
【0025】
均質化処理温度:540乃至610℃
アルミニウム合金鋳塊からアルミニウム合金板を圧延等により製造する場合、鋳塊を圧延する前に、所定温度で均質化処理することが必要である。均質化処理温度が540℃未満であると、Al−Fe系の金属間化合物において、準安定相(Al 6 Fe)から安定相(Al 3 Fe)に変態する場合に不安定であり、Al 6 Feの存在比率が過剰に高くなるため、粗面化ピットの分布が不均一になり陽極酸化被膜の色調差が顕著になると共に、粗面化面の均一性が低下する。一方、均質化処理温度が610℃を超えると、鋳塊中の固容量が大きくなり金属間化合物の個数が過剰に少なくなるので、粗面化ピットの反応起点が少なくなり均一な粗面化面を得ることができなくなる。従って、均一化処理温度は540乃至610℃とする。
【0026】
なお、本発明方法においては、その他の製造条件は通常のアルミニウム合金板の製造条件によればよいが、均質化処理時間は成分偏析の解消及び経済性の観点から2乃至30時間とするのが好ましい。また、熱間圧延の開始温度は、組織の均一化を図る観点から350乃至450℃とするのが好ましい。
【0027】
更に、本発明においては、強度の適正化のために熱間圧延工程後、又は冷間圧延途中に中間焼鈍処理工程を設けることができる。また、冷間圧延板の平面性を向上させるために、レベラーを使用してアルミニウム合金板を矯正することができる。
【0028】
【実施例】
以下、本発明に係るアルミニウム合金板の実施例について、その比較例と比較して具体的に説明する。
【0029】
先ず、下記表1乃至表4に示す種々の化学組成を有する各アルミニウム合金鋳塊を面削して厚さを470mmとし、590℃の温度で4時間の均質化処理を施した。次に、圧延開始温度を430℃に設定して熱間圧延し、更に冷間圧延、中間焼鈍及び冷間圧延を順次施すことにより、板厚が0.3mmのアルミニウム合金板を製造した。そして、走査型電子顕微鏡(SEM)を使用し各アルミニウム合金板の表面の反射電子線像を拡大率500倍で観察した。次に、1個の視野の面積を0.04mm2とになるようにして25個の視野に対し写真を撮影しこの写真を画像解析して金属間化合物の個数を測定した。また、この表面に存在する金属間化合物のうち粒子径が1乃至10μmのものを任意で100個選択して、更に、EDS(Energy Dispersive Spectroscopy:エネルギー分散型X線分析装置)を使用して金属間化合物の組成を測定した。この測定方法により金属間化合物のうちFeの含有率が25%以下であるものをAl6Feとして、この個数からAl6Feの存在比率を算出した。なお、圧延後表面処理を行なわない合金板の表面、及び圧延後40℃、10%の水酸化ナトリウム水溶液中で10秒間溶解した金属板の表面に対し、電子顕微鏡による表面観察を行なったが、両条件において金属間化合物の個数及び粒子径が同等であったため、圧延後表面処理を行なわない合金板を実施例における代表値とした。
【0030】
その後、得られたアルミニウム合金板に対して、下記表5に示す処理条件により、脱脂、中和洗浄を実施した後、交流電解粗面化処理を実施し、更に、電解により形成された酸化物等を除去するためにデスマット処理を施した。その後、デスマット処理を施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って電解粗面化処理試験片を作製した。
【0031】
また、得られたアルミニウム合金板に対して、下記表6に示す条件により化学粗面化処理を実施した。その後、粗面化処理を実施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って化学粗面化処理試験片を作製した。
【0032】
更に、得られたアルミニウム合金板に対して、下記表6に示す条件により化学粗面化処理を行った後、表7に示す条件により陽極酸化処理を実施した。その後、陽極酸化処理を実施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って陽極酸化処理試験片を作製した。
【0033】
【表1】

Figure 0003830301
【0034】
【表2】
Figure 0003830301
【0035】
【表3】
Figure 0003830301
【0036】
【表4】
Figure 0003830301
【0037】
【表5】
Figure 0003830301
【0038】
【表6】
Figure 0003830301
【0039】
【表7】
Figure 0003830301
【0040】
その後、電界粗面化処理試験片及び化学粗面化処理試験片の粗面化表面を、走査型電子顕微鏡(SEM)を使用して500倍の倍率で写真を撮影し、得られた写真上において、総計100cmの線を引き、この線の下に写っているピットの大きさを測定し粗面化面の均一性を評価した。均一性の評価は、最小のピットと最大のピットとの大きさの差が2μm以下である場合は均一性が優良(◎)とし、同じく差が2μmを超え3μm以下である場合は良好(○)とし、また、同じく差が3μmを超える場合は不良(×)とした。
【0041】
また、電解粗面化処理試験片及び化学粗面化処理試験片の粗面化表面を、走査電子顕微鏡(SEM)を使用して350倍の倍率で写真を撮影し、得られた写真を基に粗面化されていない部分(未エッチング部)の面積を測定し、下記数式1より未エッチング率を算出することにより、未エッチング部を評価した。
【0042】
【数1】
未エッチング率(%)=(粗面化されていない部分の面積/全体の面積)×100電解粗面化処理試験片の未エッチング部の評価は、上記数式1により算出された未エッチング率が5.0%以下の場合を優良(◎)とし、未エッチング率が5.0%を超え8.0%以下である場合は良好(○)とし、また、未エッチング率が8.0%を超える場合は不良(×)とした。
【0043】
化学粗面化処理試験片の未エッチング部の評価は、未エッチング率が5.0%以下の場合を優良(◎)とし、未エッチング率が5.0%を超え10.0%以下である場合は良好(○)とし、また、未エッチング率が10.0%を超える場合は不良(×)とした。
【0044】
陽極酸化処理試験片の評価は、1m×1mの陽極酸化処理板の陽極酸化被膜を色差計を使用して任意に50点測定したとき、L値の最大値と最小値との差が、1以下である場合は良好(○)とし、1以上である場合は不良(×)とした。
【0045】
得られた結果を上記表1乃至表4に示す。上記表1に示すように、実施例A1〜A7は、各元素の含有量、金属間化合物の単位面積あたりの個数及びが金属間化合物中のAl6Feの存在比率が本発明に規定した範囲内であるため、粗面の均一性評価、未エッチング部評価及び陽極酸化被膜評価のいずれも良好であった。
【0046】
一方、比較例A8は、Fe含有量が0.69重量%であり、本発明範囲の上限を超えていると共に、化合物個数が4070個/mm2であり、本発明範囲の上限を超えているので、粗大なピットが形成されてピットの均一性が不良であった。比較例A9は、Fe含有量が0.18重量%であり、本発明範囲の下限未満であると共に、化合物個数が1820個/mm2であり、本発明範囲の下限未満であるので、粗面化ピットの反応起点数が不足し均一性評価及び未エッチング部評価が不良であった。比較例A10は、Si含有量が0.02重量%であり、本発明範囲の下限未満であると共に、化合物個数が1990個/mm2であり、本発明範囲の下限未満であるので、粗面化ピットの反応起点数が不足し均一性評価及び未エッチング部評価が不良であった。
【0047】
比較例A12は、Ti含有量が0.004重量%であり、本発明範囲の下限未満であるので、結晶粒微粒化効果が十分に得られず粗面の均一性が不良であった。比較例A13は、Ti含有量が0.06重量%であり、本発明範囲の上限を超えているので、結晶粒微粒化効果が飽和するため均一性評価が不良であった。
【0048】
また、表2に示すように、実施例B1〜B3は、各元素の含有量、金属間化合物の単位面積あたりの個数及びが金属間化合物中のAl6Feの存在比率が本発明に規定した範囲内であることに加え、Niを所定量含有しているため、化学的溶解性が向上し一層短時間で均一な粗面化面を得ることができる。
【0049】
比較例B4は、Ni含有量が0.3重量%であり、本発明に規定した好ましい範囲の上限を超えているので、粗面化処理時の化学溶解性が過剰になり均一性評価が不良になった。比較例B5は、Ni含有量が0.004重量%であり、本発明に規定した好ましい範囲の下限未満であるので、粗面化処理時の化学溶解性の向上効果が不十分であり均一性評価及び未エッチング部評価は特に優れているものはなかった。
【0050】
更に、表3に示すように、実施例C1及びC2は、各元素の含有量、金属間化合物の単位面積あたりの個数及びが金属間化合物中のAl6Feの存在比率が本発明に規定した範囲内であることに加え、Cuを所定量含有しているため、アルミニウムマトリクスと金属間化合物との間の電位差が調整されるので、粗面化面の均一性が一層向上した。
【0051】
一方、比較例C3は、Cu含有量が0.35重量%であり、請求項3に規定した範囲の上限を超えているので、均一性評価及び未エッチング部評価が不良になった。比較例C4は、Cu含有量が0.004重量%であり、請求項3に規定した範囲の下限未満であるので、電解粗面化処理時における電位調整作用が不十分であり、均一性評価が特に優れたものではなかった。
【0052】
更にまた、表4に示すように、実施例D1〜D3は、B含有量が請求項4に規定した範囲内であるので、均一性及び未エッチング部評価が優れていた。比較例D4及びD5は請求項4の範囲から外れるので、ピット均一性及び未エッチング部の評価が実施例D1〜D3よりも低かった。
【0053】
次いで、本発明に係るアルミニウム合金板の製造方法の実施例について、その比較例と比較して具体的に説明する。
【0054】
先ず、上記表1に示す実施例A2と同一の化学組成を有するアルミニウム合金鋳塊を面削して厚さを470mmとし、下記表8に示す種々の温度で均質化処理を施した。更に、熱間圧延、冷間圧延、中間焼鈍及び冷間圧延を順次施すことにより、板厚が0.3mmのアルミニウム合金板を製造すると共に、得られた各アルミニウム合金板の表面に存在する金属間化合物のうち粒子径が1乃至10μmのものの個数及びAl6Feの存在比率を前述した方法で測定した。次に、表5に示す処理条件にて各アルミニウム合金板に脱脂、中和洗浄を実施した後、交流電解粗面化処理を実施し、更に、電解により形成された酸化物等を除去するためにデスマット処理を施した。その後、デスマット処理を施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って電解粗面化処理試験片を作製した。
【0055】
また、得られたアルミニウム合金板に対して、上記表6に示す処理条件で化学粗面化処理による粗面化処理を実施した。その後、粗面化処理を実施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って化学粗面化処理試験片を作製した。
【0056】
更に、得られたアルミニウム合金板に対して、上記表7に示す処理条件で陽極酸化処理を実施した。その後、陽極酸化処理を実施した各サンプルを水洗及び乾燥し、これを一定の大きさに切り取って陽極酸化処理試験片を作製した。そして、各試験片について、前述した評価方法により粗面均一性評価、未エッチング部評価及び陽極酸化被膜評価を実施した。
【0057】
【表8】
Figure 0003830301
【0058】
上記表8に示すように、実施例E1〜E3は、各元素の含有量及び均質化処理温度が本発明方法に規定した範囲内であるため、表面に形成された金属間化合物のうち粒子径1乃至10μmのものが2000乃至4000個/mm2存在すると共に、Al6Feの存在比率が0.3以下となるため、粗面化面が均一で未エッチング率が少なく、陽極酸化被膜の色調差が少ない優れたアルミニウム合金板が得られた。
【0059】
一方、比較例E4は、各元素の含有量は本発明方法に規定した範囲内であるが、均質化処理温度が620℃であり、本発明方法に規定した範囲上限を超えているので、得られた合金板において、金属間化合物の個数が2000個/mm2以下と少なく、均一な粗面化面が得られないと共に、未エッチング率が不良になった。また、比較例E5は、各元素の含有量は本発明方法に規定した範囲内であるが、均質化処理温度が本発明方法に規定した範囲下限未満であるので、金属間化合物の粒子径が過剰に小さくなるため、得られた合金板の表面におけるAl6Feの存在比率が0.3を超え、均一性評価が不良になった。更に、比較例E6においては、比較例E5と比べて更に均質化処理温度が低いため、得られた合金板の表面におけるAl6Feの存在比率が一層高くなり、ピットの均一性評価が不良となると共に、未エッチング部評価も良好評価しか得ることができなかった。
【0060】
【発明の効果】
以上詳述したように、本発明によれば、化学組成が適切に規定されていると共に、その表面に形成された金属間化合物中の粒子径1乃至10μmのものの単位面積あたりの個数を規定する共に、金属間化合物中のAl6Feの存在比率を規定しているので、準安定相が少なく、安定相が主体となる表面を粗面化処理するので、エッチング面の均一性を高めることができると共に、陽極酸化被膜の色調ムラの発生を防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate used by forming an alumite film by anodizing after etching, such as building materials, and a method for manufacturing the same, and in particular, uniformity of the etched surface and color tone of the anodized film. The present invention relates to an aluminum alloy plate having improved uniformity and a method for producing the same.
[0002]
[Prior art]
Among aluminum plates used for building materials, etc., the surface is roughened, and an alumite film is further provided on the surface, and a functional film (resin, photosensitive agent, etc.) is further provided on the surface as necessary. There is. These aluminum plates need to be excellent in characteristics such as surface color tone and water retention, and adhesion of functional films.
[0003]
On the other hand, the roughening treatment includes mechanical treatment methods such as a ball polishing method and a brush polishing method, and electrolytic surface roughening of the aluminum plate surface electrochemically using an aqueous solution mainly composed of hydrochloric acid or nitric acid. There are a roughening treatment method and a roughening treatment method combining a mechanical treatment method and an electrolytic roughening treatment method. There is also a method of chemically etching by immersing an aluminum plate in an electrolyte mainly composed of sodium hydroxide.
[0004]
By the way, in applications such as building materials, there is a material that can form uniform and fine irregularities (pits) by roughening treatment in order to improve the surface color tone and improve the adhesion between the functional coating and the aluminum plate. Required. As an aluminum plate for providing such fine pits, for example, one having a composition described in Japanese Patent Application Laid-Open No. 58-210144 and Japanese Patent Application Laid-Open No. 5-331581 has been proposed.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional aluminum alloy, it is difficult to completely eliminate an unetched portion (a portion not subjected to the roughening treatment on the surface of the aluminum alloy plate) depending on the roughening treatment conditions. In order to reduce the pits on the surface and reduce the cost of the surface roughening treatment, the condition that the etching amount (the amount of dissolution of the aluminum alloy plate by the surface roughening treatment) is suppressed is likely to cause an unetched portion. There is a problem.
[0006]
The present invention has been made in view of such problems, and uniformizes the pits on the roughened surface irrespective of the roughening treatment conditions, prevents the occurrence of unetched portions, and is formed thereon. An object of the present invention is to provide an aluminum alloy plate capable of improving the adhesion and water retention of the film and improving the surface color tone, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The aluminum alloy plate according to the present invention contains Fe: 0.2 to 0.6% by weight, Si: 0.03 to 0.20% by weight, and Ti: 0.005 to 0.05% by weight, with the balance being in the aluminum alloy plate made of Al and unavoidable impurities, with the intermetallic compounds having a particle diameter of 1 to 10μm on the surface there are two 2000 to 4000 / mm, per unit area of the intermetallic compound in the particle size of 1 to 10μm [M 6 ], and [Al 6 Fe] / [M] is 0.3 or less, where [M] is the total number of Al 6 Fe, and [Al 6 Fe].
[0008]
The aluminum alloy plate may further contain 0.005 to 0.2% by weight of Ni, 0.005 to 0.05% by weight of Cu, or 1 to 50 ppm by weight of B.
[0009]
Further, the method for producing an aluminum alloy plate according to the present invention comprises Fe: 0.2 to 0.6% by weight, Si: 0.03 to 0.20% by weight, and Ti: 0.005 to 0.05% by weight. A step of homogenizing the aluminum alloy ingot containing Al and inevitable impurities at a temperature of 540 to 610 ° C., a step of hot rolling the ingot after the homogenization treatment, and hot rolling material was closed and a step of cold rolling, and with intermetallic compound particle size of 1 to 10μm are present 2 2000 to 4000 / mm on the surface, per unit area of the intermetallic compound in the particle size of 1 to 10μm [M] the total number of, when the number of Al 6 Fe of which the [Al 6 Fe], and characterized by obtaining an aluminum alloy plate is not more than 0.3 [Al 6 Fe] / [M ] To do.
[0010]
In this method for producing an aluminum alloy plate, the aluminum alloy ingot further contains 0.005 to 0.2 wt% Ni, 0.005 to 0.05 wt% Cu, and 1 to 50 wt ppm B. can do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. In the field of building materials and the like, when an aluminum alloy is used after being subjected to etching and anodizing treatment, the appearance after the treatment is required to be uniform, and for this reason, the rough surface formed by etching is made uniform, It is necessary to make the gloss uniform and to make the color tone of the anodized film uniform.
[0012]
In this case, Fe—Al-based intermetallic compounds exist in the aluminum alloy, and these act as starting points for etching pits. For this reason, it is necessary to control the amount and distribution in order to improve the uniformity of the rough surface. This intermetallic compound has a stable phase (Al 3 Fe) and a metastable phase (Al 6 Fe), and there is a difference in electrochemical characteristics between each intermetallic compound and the aluminum matrix (base material). Therefore, when these are mixed, the uniformity of pits is remarkably lowered. In addition, since the color tone of the anodized film is different between the region where the stable phase is present and the region where the metastable phase is present, when both are mixed, color tone unevenness is likely to occur.
[0013]
Therefore, in the present invention, the uniformity of the etched surface and the uniformity of the anodized film color tone are improved by controlling the chemical composition of the material, the number of intermetallic compounds, and the ratio of the forward stable phase in the intermetallic compound. .
[0014]
Hereinafter, the reasons for limiting the composition of the aluminum alloy plate in the present invention will be described.
[0015]
Fe: 0.2 to 0.6% by weight
Fe is a main component of the aluminum alloy plate. In addition, Fe combines with other elements in the aluminum alloy to form an Al—Fe-based intermetallic compound. This intermetallic compound has the effect of maintaining the mechanical strength by refining the recrystallized grains and making the structure uniform, and also acts as a starting point of pits during the surface roughening treatment. When the Fe content is less than 0.2% by weight, the intermetallic compound is not sufficiently formed, and the number of reaction starting points of the roughened pits is insufficient, so that the uniformity of the roughened surface is lowered. On the other hand, when the Fe content exceeds 0.6% by weight, coarse pits are formed by the formation of a coarse compound, so that the roughened surface becomes non-uniform. Therefore, the Fe content is 0.2 to 0.6% by weight.
[0016]
Si: 0.03 to 0.20% by weight
Si, like Fe, forms an Al—Fe—Si intermetallic compound, and acts as a reaction starting point for the roughened pits during the roughening treatment. If the Si content is less than 0.03% by weight, the intermetallic compound is not sufficiently formed, and the number of reaction starting points of the roughened pits is insufficient, so that the roughened surface becomes non-uniform. On the other hand, when the Si content exceeds 0.20% by weight, coarse pits are formed by forming a coarse compound, so that the roughened surface becomes non-uniform and the anodized film becomes blackened. This may cause uneven color tone. Therefore, the Si content is 0.03 to 0.20% by weight.
[0017]
Ti: 0.005 to 0.05% by weight
Ti has the effect of refining crystal grains by refining the cast structure. If the Ti content is less than 0.005% by weight, the effect of crystal grain refinement cannot be sufficiently obtained. On the other hand, if the Ti content exceeds 0.05% by weight, the effect of refining the crystal grains is saturated, resulting in no economic effect, and pits are formed unevenly on the roughened surface. Accordingly, the Ti content is set to 0.005 to 0.05% by weight.
[0018]
Number of intermetallic compounds formed on the surface of an aluminum alloy plate having a particle diameter of 1 to 10 μm per 1 mm 2 : 2000 to 4000 / mm 2
As described above, the intermetallic compound acts as a reaction starting point of the roughened pits, and has an effect of making the roughened surface uniform. In particular, among the intermetallic compounds present on the surface of the aluminum alloy plate, those having a particle size of 1 to 10 μm have a very large homogenizing effect. In addition, the surface of the aluminum alloy plate in the present invention includes a so-called roughened surface subjected to a roughening treatment. If the intermetallic compound having a particle diameter of 1 to 10 μm is less than 2000 / mm 2 , the reaction starting point of the roughened pits is not sufficiently formed, and the unetched portion (the portion of the aluminum plate surface that is not roughened) Remaining remains. On the other hand, if the intermetallic compound having a particle diameter of 1 to 10 μm is present in excess of 4000 pieces / mm 2 , coarse pits are easily formed, and the roughened surface becomes non-uniform. Accordingly, it is assumed that 2000 to 4000 / mm 2 particles having a particle diameter of 1 to 10 μm are present among intermetallic compounds composed of part or all of the elements formed on the surface of the aluminum alloy plate.
[0019]
When the number per 1 mm 2 of the particle size of 1 to the total number per 1 mm 2 of the intermetallic compounds of 10 [mu] m [M] pieces / mm 2, Al 6 Fe and [Al 6 Fe] [Al 6 Fe] / [M] ratio: 0.3 or less In order to improve the uniformity of the roughened surface and the color tone of the anodized film by defining the abundance ratio of Al 6 Fe in the intermetallic compound Is necessary. Fe-Al-based intermetallic compounds include a stable phase (Al 3 Fe) and a metastable phase (Al 6 Fe), which have different electrochemical characteristics. Differences occur in the formation state of the chamfered pits, and the uniformity of the rough surface is significantly reduced. Furthermore, a color difference (color tone unevenness) occurs in the anodized film in the region where the stable phase exists and the region where the metastable phase exists. The existence ratio of Al 6 Fe in the intermetallic compound, that is, the number per 1 mm 2 of the intermetallic compound having a particle diameter of 1 to 10 μm is [M] pieces / mm 2 , and the number of Al 6 Fe per 1 mm 2 is [Al when the 6 Fe] and the time [Al 6 Fe] / [M ] is more than 0.3, both the difference in the state of formation of the roughened pit significantly deteriorated the uniformity of the roughened surface becomes significant, The difference in the color tone of the anodized film becomes remarkable. Therefore, [Al 6 Fe] / [M] is 0.3 or less.
[0020]
Ni: 0.005 to 0.2% by weight
Ni improves the chemical solubility of the material to be treated and has the effect of obtaining a uniform roughened surface in a shorter time. If the Ni content is less than 0.005% by weight, the effect of improving the chemical solubility is insufficient. On the other hand, if the Ni content exceeds 0.2% by weight, the chemical solubility becomes excessive and the uniformity of the roughened surface is impaired. Therefore, when Ni is contained in the aluminum alloy plate, the content is set to 0.005 to 0.2% by weight.
[0021]
Cu: 0.005 to 0.05% by weight
Cu exists in the aluminum alloy in a solid solution state, and has an effect of adjusting the potential difference between the aluminum matrix and the intermetallic compound and improving the uniformity of the roughened surface. When the Cu content is less than 0.005% by weight, the effect of adjusting the potential becomes insufficient, and the effect of improving the uniformity of the roughened surface cannot be obtained. On the other hand, if the Cu content exceeds 0.05% by weight, an unetched portion is generated on the surface of the aluminum alloy plate, and the roughened surface becomes non-uniform. Therefore, when Cu is contained in the aluminum alloy plate, the content is set to 0.005 to 0.05% by weight.
[0022]
B: 1 to 50 ppm by weight
Usually, B acts as a grain refiner as a Ti-B master alloy. This crystal grain refining action is obtained by increasing the number of fine nuclei as the Ti-B particles increase as the solid solution Ti decreases. The inventors of the present application have further found that the effect of improving the uniformity of the roughened surface can be obtained by increasing the number of Ti-B particles. If the B content is less than 1 ppm by weight, roughened pits may become uneven due to insufficient electrolysis. On the other hand, if the B content exceeds 50 ppm by weight, a coarse compound may be formed due to aggregation of Ti-B particles, and the roughened surface may become uneven. Therefore, when B is contained in the aluminum alloy plate, the content is set to 1 to 50 ppm by weight.
[0023]
In addition, the aluminum alloy plate in the present invention includes Mg, Mn, Cr, Zr, In, Sn, Pb, Ga, Zn, and V as unavoidable impurities, and each component of Mg, Ga, and Zn contains the same. The amount is 0.05% by weight or less, the content of each component of Mn, Cr, and Zr is 0.03% by weight or less, and the content of each component of In, Sn, Pb, and V is respectively If it is 0.02% by weight or less, the effect of the present invention will not be adversely affected.
[0024]
Further, in the method for producing an aluminum alloy plate according to the present invention, the aluminum alloy ingot of which the chemical composition is defined as described above is homogenized, hot-rolled, and cold-rolled to obtain an aluminum alloy plate. The homogenization temperature is defined as follows.
[0025]
Homogenization temperature: 540 to 610 ° C
When an aluminum alloy plate is produced from an aluminum alloy ingot by rolling or the like, it is necessary to homogenize at a predetermined temperature before rolling the ingot. When the homogenization temperature is less than 540 ° C., the Al—Fe-based intermetallic compound is unstable when transformed from a metastable phase (Al 6 Fe) to a stable phase (Al 3 Fe), and Al 6 Since the abundance ratio of Fe becomes excessively high, the distribution of the roughened pits becomes nonuniform, the color tone difference of the anodized film becomes remarkable, and the uniformity of the roughened surface decreases. On the other hand, when the homogenization temperature exceeds 610 ° C., the solid volume in the ingot increases and the number of intermetallic compounds decreases excessively, so that the reaction starting point of the roughened pits decreases and the uniform roughened surface. You will not be able to get. Therefore, the homogenization temperature is 540 to 610 ° C.
[0026]
In the method of the present invention, other production conditions may be the same as those for ordinary aluminum alloy sheets, but the homogenization time is 2 to 30 hours from the viewpoint of eliminating component segregation and economy. preferable. The starting temperature for hot rolling is preferably 350 to 450 ° C. from the viewpoint of making the structure uniform.
[0027]
Furthermore, in the present invention, an intermediate annealing treatment step can be provided after the hot rolling step or in the middle of cold rolling in order to optimize the strength. Moreover, in order to improve the flatness of the cold rolled sheet, the aluminum alloy sheet can be corrected using a leveler.
[0028]
【Example】
Examples of aluminum alloy sheets according to the present invention will be specifically described below in comparison with comparative examples.
[0029]
First, each aluminum alloy ingot having various chemical compositions shown in the following Tables 1 to 4 was chamfered to a thickness of 470 mm and subjected to a homogenization treatment at a temperature of 590 ° C. for 4 hours. Next, the rolling start temperature was set to 430 ° C., hot rolling was performed, and cold rolling, intermediate annealing, and cold rolling were sequentially performed to produce an aluminum alloy plate having a thickness of 0.3 mm. And the scanning electron microscope (SEM) was used and the reflected electron beam image of the surface of each aluminum alloy plate was observed by 500 times the magnification. Next, photographs were taken for 25 fields of view so that the area of one field of view was 0.04 mm 2, and the number of intermetallic compounds was measured by image analysis. In addition, 100 of the intermetallic compounds existing on the surface having a particle size of 1 to 10 μm are arbitrarily selected, and further metal is added using an EDS (Energy Dispersive Spectroscopy). The composition of the intermetallic compound was measured. What content of Fe of the intermetallic compound is less than 25% as Al 6 Fe by this measurement method to calculate the abundance ratio of Al 6 Fe from this number. The surface of the alloy plate not subjected to surface treatment after rolling and the surface of the metal plate dissolved for 10 seconds in a 10% sodium hydroxide aqueous solution at 40 ° C. after rolling were observed with an electron microscope. Since the number of intermetallic compounds and the particle diameter were the same under both conditions, an alloy plate that was not subjected to surface treatment after rolling was used as a representative value in the examples.
[0030]
Thereafter, the obtained aluminum alloy plate was degreased and neutralized and washed under the treatment conditions shown in Table 5 below, followed by AC electrolytic surface roughening treatment, and further an oxide formed by electrolysis. In order to remove etc., a desmut treatment was performed. Then, each sample which performed the desmut process was washed with water and dried, and this was cut out to a fixed magnitude | size, and the electrolytic-roughening process test piece was produced.
[0031]
The obtained aluminum alloy plate was subjected to chemical roughening treatment under the conditions shown in Table 6 below. Then, each sample which performed the roughening process was washed with water and dried, and this was cut out to a fixed magnitude | size, and the chemical roughening process test piece was produced.
[0032]
Further, the obtained aluminum alloy plate was subjected to chemical roughening treatment under the conditions shown in Table 6 below, and then anodized under the conditions shown in Table 7. Thereafter, each sample subjected to the anodizing treatment was washed with water and dried, and cut into a predetermined size to prepare an anodizing test piece.
[0033]
[Table 1]
Figure 0003830301
[0034]
[Table 2]
Figure 0003830301
[0035]
[Table 3]
Figure 0003830301
[0036]
[Table 4]
Figure 0003830301
[0037]
[Table 5]
Figure 0003830301
[0038]
[Table 6]
Figure 0003830301
[0039]
[Table 7]
Figure 0003830301
[0040]
Thereafter, the roughened surfaces of the electric field roughened test specimen and the chemical roughened test specimen were photographed at a magnification of 500 times using a scanning electron microscope (SEM). The line of 100 cm in total was drawn, the size of the pits reflected under this line was measured, and the uniformity of the roughened surface was evaluated. The uniformity is evaluated to be excellent when the difference in size between the smallest pit and the largest pit is 2 μm or less (◎), and also when the difference is more than 2 μm and 3 μm or less (○ In the same manner, when the difference exceeded 3 μm, it was judged as defective (×).
[0041]
Further, the roughened surfaces of the electrolytic roughening test specimen and the chemical roughening test specimen were photographed at a magnification of 350 times using a scanning electron microscope (SEM), and the obtained photographs were used as a basis. The unetched portion was evaluated by measuring the area of the unroughened portion (unetched portion) and calculating the unetched rate from the following formula 1.
[0042]
[Expression 1]
Unetched rate (%) = (area of unroughened portion / total area) × 100 Evaluation of the unetched portion of the electrolytic surface-roughened test piece is based on the unetched rate calculated by Equation 1 above. The case where it is 5.0% or less is judged as excellent (◎), the case where the unetched rate is over 5.0% and 8.0% or less is judged as good (○), and the unetched rate is 8.0%. When it exceeded, it was set as the defect (x).
[0043]
The evaluation of the unetched portion of the chemical roughening test specimen is excellent (() when the unetched rate is 5.0% or less, and the unetched rate exceeds 5.0% and is 10.0% or less. In this case, it was judged as good (◯), and when the unetched rate exceeded 10.0%, it was judged as defective (x).
[0044]
The evaluation of the anodized test piece was carried out by measuring the anodized film of a 1 m × 1 m anodized plate arbitrarily at 50 points using a color difference meter, and the difference between the maximum value and the minimum value of the L value was 1 When it was below, it was judged as good (◯) and when it was 1 or more, it was judged as bad (x).
[0045]
The obtained results are shown in Tables 1 to 4 above. As shown in Table 1 above, in Examples A1 to A7, the content of each element, the number per unit area of the intermetallic compound, and the abundance ratio of Al 6 Fe in the intermetallic compound are defined in the present invention. Therefore, the evaluation of the uniformity of the rough surface, the evaluation of the unetched portion, and the evaluation of the anodic oxide film were all good.
[0046]
On the other hand, Comparative Example A8 has an Fe content of 0.69% by weight and exceeds the upper limit of the range of the present invention, and the number of compounds is 4070 / mm 2 , which exceeds the upper limit of the range of the present invention. As a result, coarse pits were formed and the pit uniformity was poor. Comparative Example A9 has a Fe content of 0.18% by weight, which is less than the lower limit of the present invention range, and the number of compounds is 1820 / mm 2, which is less than the lower limit of the present invention range. The number of reaction starting points of the chemical pits was insufficient, and the uniformity evaluation and the unetched part evaluation were poor. Comparative Example A10 has a Si content of 0.02% by weight, which is less than the lower limit of the present invention range, and the number of compounds is 1990 / mm 2, which is less than the lower limit of the present invention range. The number of reaction starting points of the chemical pits was insufficient, and the uniformity evaluation and the unetched part evaluation were poor.
[0047]
In Comparative Example A12, since the Ti content was 0.004% by weight and less than the lower limit of the range of the present invention, the effect of crystal grain atomization was not sufficiently obtained, and the uniformity of the rough surface was poor. In Comparative Example A13, since the Ti content was 0.06% by weight and exceeded the upper limit of the range of the present invention, the crystal grain atomization effect was saturated and thus the uniformity evaluation was poor.
[0048]
In addition, as shown in Table 2, in Examples B1 to B3, the content of each element, the number of intermetallic compounds per unit area, and the abundance ratio of Al 6 Fe in the intermetallic compounds were defined in the present invention. In addition to being within the range, since a predetermined amount of Ni is contained, chemical solubility is improved and a uniform roughened surface can be obtained in a shorter time.
[0049]
In Comparative Example B4, the Ni content is 0.3% by weight and exceeds the upper limit of the preferable range defined in the present invention, so that the chemical solubility during the roughening treatment becomes excessive and the uniformity evaluation is poor. Became. In Comparative Example B5, the Ni content is 0.004% by weight and is less than the lower limit of the preferred range defined in the present invention, so that the effect of improving the chemical solubility during the surface roughening treatment is insufficient and the uniformity. None of the evaluation and evaluation of the unetched part was particularly excellent.
[0050]
Furthermore, as shown in Table 3, in Examples C1 and C2, the content of each element, the number of intermetallic compounds per unit area, and the abundance ratio of Al 6 Fe in the intermetallic compounds were defined in the present invention. In addition to being within the range, since a predetermined amount of Cu is contained, the potential difference between the aluminum matrix and the intermetallic compound is adjusted, so that the uniformity of the roughened surface is further improved.
[0051]
On the other hand, Comparative Example C3 had a Cu content of 0.35% by weight and exceeded the upper limit of the range defined in claim 3, so that the uniformity evaluation and the unetched part evaluation were poor. Comparative Example C4 has a Cu content of 0.004% by weight and is less than the lower limit of the range defined in claim 3. Therefore, the potential adjustment action during the electrolytic surface roughening treatment is insufficient, and the uniformity evaluation Was not particularly good.
[0052]
Furthermore, as shown in Table 4, in Examples D1 to D3, since the B content was within the range defined in claim 4, the uniformity and the unetched portion evaluation were excellent. Since Comparative Examples D4 and D5 deviated from the scope of Claim 4, the pit uniformity and the evaluation of the unetched part were lower than Examples D1 to D3.
[0053]
Next, examples of the method for producing an aluminum alloy plate according to the present invention will be specifically described in comparison with comparative examples.
[0054]
First, an aluminum alloy ingot having the same chemical composition as Example A2 shown in Table 1 was chamfered to a thickness of 470 mm, and homogenized at various temperatures shown in Table 8 below. Further, by sequentially performing hot rolling, cold rolling, intermediate annealing and cold rolling, an aluminum alloy plate having a thickness of 0.3 mm is manufactured, and the metal present on the surface of each obtained aluminum alloy plate The number of intermetallic compounds having a particle size of 1 to 10 μm and the abundance ratio of Al 6 Fe were measured by the method described above. Next, each aluminum alloy plate is degreased and neutralized and cleaned under the processing conditions shown in Table 5, and then AC electrolytic surface roughening is performed, and further, oxides and the like formed by electrolysis are removed. Was subjected to a desmut treatment. Then, each sample which performed the desmut process was washed with water and dried, and this was cut out to a fixed magnitude | size, and the electrolytic-roughening process test piece was produced.
[0055]
Further, the obtained aluminum alloy plate was subjected to a roughening treatment by a chemical roughening treatment under the treatment conditions shown in Table 6 above. Then, each sample which performed the roughening process was washed with water and dried, and this was cut out to a fixed magnitude | size, and the chemical roughening process test piece was produced.
[0056]
Furthermore, the obtained aluminum alloy plate was anodized under the processing conditions shown in Table 7 above. Thereafter, each sample subjected to the anodizing treatment was washed with water and dried, and cut into a predetermined size to prepare an anodizing test piece. And about each test piece, rough surface uniformity evaluation, unetched part evaluation, and anodic oxide film evaluation were implemented by the evaluation method mentioned above.
[0057]
[Table 8]
Figure 0003830301
[0058]
As shown in Table 8 above, Examples E1 to E3 have a particle diameter of the intermetallic compounds formed on the surface because the content of each element and the homogenization temperature are within the range specified in the method of the present invention. Since 1 to 10 μm is 2000 to 4000 pieces / mm 2 and the Al 6 Fe abundance ratio is 0.3 or less, the roughened surface is uniform, the unetched rate is low, and the color tone of the anodized film An excellent aluminum alloy sheet with little difference was obtained.
[0059]
On the other hand, in Comparative Example E4, the content of each element is within the range specified in the method of the present invention, but the homogenization temperature is 620 ° C., which exceeds the upper limit of the range specified in the method of the present invention. In the obtained alloy plate, the number of intermetallic compounds was as small as 2000 pieces / mm 2 or less, and a uniform roughened surface could not be obtained, and the unetched rate was poor. In Comparative Example E5, the content of each element is within the range specified in the method of the present invention, but the homogenization temperature is less than the lower limit of the range specified in the method of the present invention, so the particle size of the intermetallic compound is Since it became excessively small, the abundance ratio of Al 6 Fe on the surface of the obtained alloy plate exceeded 0.3, and the uniformity evaluation was poor. Further, in Comparative Example E6, since the homogenization temperature is lower than that in Comparative Example E5, the Al 6 Fe existing ratio on the surface of the obtained alloy plate is further increased, and the pit uniformity evaluation is poor. At the same time, only good evaluation was obtained for the unetched portion.
[0060]
【The invention's effect】
As described above in detail, according to the present invention, the chemical composition is appropriately defined, and the number per unit area of the intermetallic compound having a particle diameter of 1 to 10 μm formed on the surface is defined. In both cases, since the abundance ratio of Al 6 Fe in the intermetallic compound is regulated, the surface that is mainly composed of the stable phase is roughened with less metastable phase, so that the uniformity of the etched surface can be improved. In addition, the occurrence of uneven color tone of the anodized film can be prevented.

Claims (8)

Fe:0.2乃至0.6重量%、Si:0.03乃至0.20重量%及びTi:0.005乃至0.05重量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金板において、その表面に粒子径1乃至10μmの金属間化合物が2000乃至4000個/mm存在すると共に、この粒子径1乃至10μmの金属間化合物の単位面積あたりの総個数を[M]、そのうちのAlFeの個数を[AlFe]としたとき、[AlFe]/[M]が0.3以下であることを特徴とするアルミニウム合金板。Aluminum alloy containing Fe: 0.2 to 0.6% by weight, Si: 0.03 to 0.20% by weight and Ti: 0.005 to 0.05% by weight with the balance being Al and inevitable impurities in the plate, the intermetallic compound having a particle diameter of 1 to 10 [mu] m on the surface thereof is present 2 2000 to 4000 / mm, the total number per unit area of the intermetallic compound in the particle size of 1 to 10 [mu] m [M], of which when the number of Al 6 Fe and [Al 6 Fe], [Al 6 Fe] / [M] is an aluminum alloy plate, characterized in that less than 0.3. 更に、Niを0.005乃至0.2重量%含有することを特徴とする請求項1に記載のアルミニウム合金板。  The aluminum alloy plate according to claim 1, further comprising 0.005 to 0.2% by weight of Ni. 更に、Cuを0.005乃至0.05重量%含有することを特徴とする請求項1に記載のアルミニウム合金板。  The aluminum alloy plate according to claim 1, further comprising 0.005 to 0.05% by weight of Cu. 更に、Bを1乃至50重量ppm含有することを特徴とする請求項1乃至3のいずれか1項に記載のアルミニウム合金板。  The aluminum alloy plate according to any one of claims 1 to 3, further comprising 1 to 50 ppm by weight of B. Fe:0.2乃至0.6重量%、Si:0.03乃至0.20重量%及びTi:0.005乃至0.05重量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊に540乃至610℃の温度で均質化処理を施す工程と、均質化処理後の鋳塊を熱間圧延する工程と、熱間圧延材を冷間圧延する工程と、を有し、表面に粒子径1乃至10μmの金属間化合物が2000乃至4000個/mm 存在すると共に、この粒子径1乃至10μmの金属間化合物の単位面積あたりの総個数を[M]、そのうちのAl Feの個数を[Al Fe]としたとき、[Al Fe]/[M]が0.3以下であるアルミニウム合金板を得ることを特徴とするアルミニウム合金板の製造方法。Aluminum alloy containing Fe: 0.2 to 0.6% by weight, Si: 0.03 to 0.20% by weight and Ti: 0.005 to 0.05% by weight with the balance being Al and inevitable impurities a step of performing homogenizing treatment at a temperature of the ingot to 540 to 610 ° C., a step of hot rolling the ingot after the homogenization treatment, a step of cold rolling the hot-rolled and possess surface 2000 to 4000 / mm 2 of intermetallic compounds having a particle diameter of 1 to 10 μm, and the total number per unit area of the intermetallic compounds having a particle diameter of 1 to 10 μm is [M], of which Al 6 Fe A method for producing an aluminum alloy plate, wherein an aluminum alloy plate having [Al 6 Fe] / [M] of 0.3 or less when the number is [Al 6 Fe] is obtained . 前記アルミニウム合金鋳塊は、更に、Niを0.005乃至0.2重量%含有することを特徴とする請求項5に記載のアルミニウム合金板の製造方法。  The method for producing an aluminum alloy plate according to claim 5, wherein the aluminum alloy ingot further contains 0.005 to 0.2 wt% of Ni. 前記アルミニウム合金鋳塊は、更に、Cuを0.005乃至0.05重量%含有することを特徴とする請求項5に記載のアルミニウム合金板の製造方法。  The method for producing an aluminum alloy plate according to claim 5, wherein the aluminum alloy ingot further contains 0.005 to 0.05 wt% of Cu. 前記アルミニウム合金鋳塊は、更に、Bを1乃至50重量ppm含有することを特徴とする請求項5乃至7のいずれか1項に記載のアルミニウム合金板の製造方法。  The method for producing an aluminum alloy plate according to any one of claims 5 to 7, wherein the aluminum alloy ingot further contains 1 to 50 ppm by weight of B.
JP09436899A 1999-03-31 1999-03-31 Aluminum alloy plate and manufacturing method thereof Expired - Fee Related JP3830301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09436899A JP3830301B2 (en) 1999-03-31 1999-03-31 Aluminum alloy plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09436899A JP3830301B2 (en) 1999-03-31 1999-03-31 Aluminum alloy plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000282158A JP2000282158A (en) 2000-10-10
JP3830301B2 true JP3830301B2 (en) 2006-10-04

Family

ID=14108385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09436899A Expired - Fee Related JP3830301B2 (en) 1999-03-31 1999-03-31 Aluminum alloy plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3830301B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882987B2 (en) 2000-07-11 2007-02-21 三菱アルミニウム株式会社 Aluminum alloy plate for lithographic printing plates
JP5457794B2 (en) * 2009-10-30 2014-04-02 株式会社神戸製鋼所 Al-based alloy sputtering target
TWI413696B (en) * 2011-06-09 2013-11-01 China Steel Corp Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process
KR101626605B1 (en) * 2012-12-26 2016-06-02 주식회사 포스코 Al-mg coated steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2000282158A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP4913816B2 (en) Aluminum strip for lithographic printing plate support
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4278150B2 (en) Aluminum alloy for lithographic sheet
JP3830301B2 (en) Aluminum alloy plate and manufacturing method thereof
JPH11115333A (en) Aluminum alloy plate for printing plate and manufacture thereof
JP2778664B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP3830300B2 (en) Aluminum alloy plate and manufacturing method thereof
JP3256106B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP3788837B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2778665B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2777355B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP3256105B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2000282159A (en) Aluminum alloy sheet and its manufacture
JP2778661B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2778663B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP2778662B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2778666B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2777350B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2778667B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2777349B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JPH1030143A (en) Aluminum alloy sheet for printing plate, and its production
JP2865270B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JPH1030142A (en) Aluminum alloy sheet for printing plate, and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees