JP4110353B2 - Aluminum alloy base plate for lithographic printing plate and method for producing the same - Google Patents

Aluminum alloy base plate for lithographic printing plate and method for producing the same Download PDF

Info

Publication number
JP4110353B2
JP4110353B2 JP2000333239A JP2000333239A JP4110353B2 JP 4110353 B2 JP4110353 B2 JP 4110353B2 JP 2000333239 A JP2000333239 A JP 2000333239A JP 2000333239 A JP2000333239 A JP 2000333239A JP 4110353 B2 JP4110353 B2 JP 4110353B2
Authority
JP
Japan
Prior art keywords
plate
rolling
temperature
aluminum alloy
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000333239A
Other languages
Japanese (ja)
Other versions
JP2002129270A (en
Inventor
秀紀 鈴木
一郎 岡本
一光 水嶋
格 朝日
宏和 澤田
彰男 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Fujifilm Corp
Original Assignee
Nippon Light Metal Co Ltd
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Fujifilm Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP2000333239A priority Critical patent/JP4110353B2/en
Publication of JP2002129270A publication Critical patent/JP2002129270A/en
Application granted granted Critical
Publication of JP4110353B2 publication Critical patent/JP4110353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、均一な(化学的または電気化学的)粗面化面が得られ、必要な強度および粗面化後にストリークスや面質ムラなどのない均一な外観をもち、印刷中のインキ汚れ性が良く、更に耐熱性が良好な平版印刷版用アルミニウム合金素板に関するものであり、更に冷間圧延途中の中間焼鈍を省略し、冷間圧延のパス回数を減じて、製造工程を簡略化され製造コストが削減されているが、上記特性を満足する平版印刷版用アルミニウム合金素板の製造方法に関するものである。
【0002】
【従来の技術】
従来一般に平版印刷版用アルミニウム合金素板としては、JIS 1050等のアルミニウム合金の厚さ0.1〜0.5mmの薄板が用いられており、このようなアルミニウム合金薄板は、通常一般に半連続鋳造により得られた鋳塊の表面を面削により除去し、均質化処理し、熱間圧延および冷間圧延、中間焼鈍、最終冷間圧延を経て製造されている。
【0003】
このように製造された平版印刷版用アルミニウム合金素板は、下記に説明するように、「素板」→粗面化等→「支持体」→感光層形成→「印刷版」→画像部形成→「印刷原版」という段階を経た後に、印刷に供される。
すなわち、先ず素板は表面を機械的方法、化学的方法または電気化学的方法の何れか1つまたは2つ以上を組み合わせた工程によって粗面化処理され、更に陽極酸化処理、必要に応じて親水化処理されて平版印刷版用支持体となる。
次に、支持体の表面に感光性物質を塗布して感光層を形成することにより、感光性の平版印刷版が得られる。
【0004】
次に、平版印刷版に対し、画像露光、現像、水洗、ラッカー盛りなどを順次行う製版処理を施して印刷原版が得られる。その際、現像処理により、感光層が溶解せずに残存した部分は疎水性の画像部すなわちインキ受容部となり、一方、感光層が溶解して消失した部分はアルミニウム合金支持体の粗面化面が露出して、親水性の非画像部すなわち水受容部となる。また、耐刷力向上の一手段として、現像処理後に高温での加熱処理(バーニングと称される処理)が一般によく行われる。バーニング処理は、画像を形成している組成物にもよるが、通常は200〜280℃程度の温度に3〜7分程度の時間保持することにより行われる。
【0005】
上記印刷原版の両端部を曲げ加工し、印刷機版胴の取り付け部にくわえ込ませ、円筒状の版胴に固定する。そのため、平版印刷版用素板には、曲げ加工性および版胴巻き付け性が要求される。
【0006】
印刷に際しては、印刷原版の版面に湿し水を供給することによって親水性の非画像部に水を保持させ、疎水性の画像部にはインキを供給して付着させる。そして、画像部に付着したインキを先ずブランケット胴に転写し、ブランケット胴から更に紙面等の最終印刷面に転写することにより印刷が行われる。
印刷部数は例えば10万部にも及ぶ場合があり,印刷原版はこのような多数回の印刷に耐え得ること、すなわち耐刷性が必要になる。耐刷性を確保するには種々の特性が必要である。すなわち、非画像部でのインキ付着が生じないように、保水性が維持される必要がある。また、印刷中に、湿し水に接触している支持体表面(粗面化面)に孔食が生じると、孔食部にインキが付着してしまい、非画像部の汚れ、すなわちインキ汚れが発生することがある。インキ汚れを防止するためには、十分な保水性と耐食性を確保することが重要であり、そのためには電気化学的等の粗面化処理によって優れた粗面の均一性と支持体の耐食性および健全な陽極酸化皮膜を得る必要がある。
【0007】
特公平5−28197号公報に開示された平版印刷版用アルミニウム素板の製造方法においては、通常の均質化温度として450〜600℃、望ましくは520〜600℃の温度で1時間以上保持し、熱間圧延において数回以上の圧延パスによって、再結晶・析出を繰り返し行わせ、熱間圧延を300℃以上で完了する。また、冷間圧延途中の中間焼鈍は、400〜600℃の所定温度に達した後500℃/sec以上の急速冷却を行う。
【0008】
特開平8−179496号公報に開示された平版印刷版用アルミニウム素板の製造方法においては、500〜600℃で均質化処理を行い、430〜480℃で熱間粗圧延を開始し、熱間粗圧延を繰り返し行うことにより動的再結晶を繰り返し行わせ、熱間粗圧延を終了温度は380〜430℃、板厚10〜35mmで終了する。仕上げ熱間圧延終了温度は260〜350℃以上で完了し、部分的に再結晶を生じる領域をつくらない。
【0009】
特開昭62−148295号公報に開示された平版印刷版用アルミニウム素板の製造方法においては、500〜600℃で3時間以上の均質化処理を行うことによりFeの一部を固溶させ、430℃以下になるまで50℃/h以下で冷却するか、または350〜450℃で30分以上保持することにより、鋳塊中に存在するSi原子をAl−Fe−Si系の金属間化合物として析出させて固定し、続く工程での単体Si析出量を減じる。熱間圧延は450〜200℃で行い、熱延パス間での再結晶粒が100μm以上の粗大になることを防止する。熱間圧延後の中間焼鈍は、350〜500℃で2〜5時間あるいは連続焼鈍炉で400〜550℃で120秒以下で行う。この方法によれば、電解粗面化処理により均一な粗面が得られ、印刷中の非画像部の耐インキ汚れ性の向上するとされている。実施例として、熱間圧延に続く冷間圧延工程で中間焼鈍を行うことが例示されている。
【0010】
特開昭61−201747号公報には、引張強さが適当で、耐バーニング処理後の強度に優れた平版印刷版用アルミニウム素板を得る製造方法が開示されている。この方法では、480〜550℃の温度で熱間圧延を開始し、熱間圧延は320℃以上、板厚2.5〜3.5mmで完了することにより、ストライプ状圧延組織の芯領域および再結晶した両表面を有した組織を得て、中間焼鈍を行わずに冷間圧延を行う。
【0011】
特開平6−192779号公報には、Mgを含有させることにより、鋳造、均質化処理、熱間圧延、冷間圧延、中間焼鈍処理、最終冷間圧延を含む製造工程で単体Siの析出を制御して印刷中の耐インキ汚れ性に優れた平版印刷版を製造する方法が提案されている。
特開平10−306355号公報には、鋳塊を均質化処理後所定温度から熱間圧延を開始し、所定温度で熱間圧延を終了し、その後所定温度まで冷却してその間に微細結晶粒組織としてストリークが発生しないようにし、また以後熱処理を施すことなく60%以上の圧化率で最終板厚まで圧延することにより支持体に強度を付与する支持体の製造方法が提案されている。
特願平11−205251号公報には、単体Si量30ppm 以下、陽極酸化皮膜中の0.5μm以上の単体Si粒子が200個/mm2 以下であり、引張強さが145〜180MPa の平版印刷版用支持体および、冷間圧延で少なくとも最終パス後の板温度を回復温度以上とそれに続く急速冷却を制御された平版印刷版用支持体の製造方法が示されている。
【0012】
特開平11−229101号公報には、均質化処理、熱間圧延、冷間圧延の工程で、熱間圧延板厚を3.0mm以下、冷間圧延の少なくとも終了温度を100〜200℃にする表面品質とハンドリング性に優れ、かつ安価な平版印刷版を製造する方法が提案されている。
特開平11−256293号公報には、均質化処理温度350〜480℃で行い、熱間圧延を複数パスにより行い、最終パス後の未再結晶させ平均粒径50μm未満の結晶粒を得る平版印刷版用素板の製造方法が提案されている。
【0013】
特公昭63−15978号公報には、Zr0.02〜0.20重量%含み、温度320℃まで再結晶を生じない耐熱性の良好な平版印刷版用支持体が提案されている。
【0014】
【発明が解決しようとする課題】
平版印刷版用アルミニウム素板には以下のような特性が必要である。
(1)良好な耐刷性を得るために保水性および感光膜の密着性を高める必要がある。そのため、素板には粗面化処理により、均一かつ緻密な粗面が容易に得られることが必要である。
(2)支持体を製造したときに、ストリークスや画質ムラと呼ばれる処理ムラが現出しないこと。
(3)搬送や取り扱い時の衝撃により凹み等の傷が付かないよう十分な強度が必要である。更に、印刷機版胴に固定するときの曲げ加工性が必要である。また、印刷時の繰り返し応力に対する耐久性を確保するために疲労強度が必要である。このためには、素板の引張強さを145〜190MPa 程度に高くしておく必要がある。
(4)耐刷力向上の一手段として、現像処理後高温で加熱処理(バーニングと称される処理)する方法が一般によく行われる。通常のバーニング処理は、画像を形成している組成物にもよるが、200〜280℃の温度、3〜7分程度加熱される。この処理で素板の強度は低下するが、270℃、7分間のバーニング処理後の耐力が100MPa 以上あることが必要となる。
(5)印刷中に、非画像部にインキが付着しにくいことが必要である。この様な性質を耐インキ汚れ性と称する。
しかし、前述のような従来の一般的な印刷版素板ならびにその製造方法において、それぞれ長所はあるものの、上記の特性全てを同時に満たすことは非常に困難であった。
そこで、本発明は、全ての特性を満足させるために、そのアルミニウム合金の組成、合金成分の固溶量、その固溶量の複合成分量、表面の結晶粒サイズ、表層以外の芯領域の結晶粒サイズならびにその結晶粒の伸び率、単体Si量およびあるサイズ以上の単体Siの個数を制御することにより、平版印刷版用素板に必要な特性を全て満足する素板を提供することを目的とする。
【0015】
更に、近年における平版印刷版用アルミニウム合金支持体にはコストダウンが希求されている。その対策として、製造工程の簡素化が検討されている。本発明では、特に中間焼鈍の省略および冷間圧延工程を簡素化し、その簡素化におけるいくつかの弊害となる品質低下を制御するため、熱間圧延方法および冷間圧延方法を制御した平版印刷版用アルミニウム合金素板の製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
前記目的を達成するため、本発明においては、素板のアルミニウム合金組成、、特定の合金成分の各固溶量および複合固溶量、素板表層領域の結晶粒サイズと伸び率(長さ/幅の比)、素板芯領域の結晶粒サイズ、単体Si量および特定サイズ以上の単体Siの個数を制御する。
【0017】
すなわち、本発明による平版印刷版用アルミニウム合金素板は、
(1)下記の成分:
Fe:0.10〜0.40wt%、
Si:0.03〜0.15wt%、
Cu:0.004〜0.020wt%、
Ti:0.01〜0.05wt%、
Mg:0.002〜0.02wt%、
Zr:0.001〜0.030wt%、
B:0.0001〜0.02wt%、および
残部:アルミニウムおよび不可避的不純物元素
から成り、ただし、
Fe固溶量が30ppm 未満、
Cu固溶量が100ppm 未満、
Zr固溶量が200ppm 未満、
Fe固溶量+(1/2)Zr固溶量≧25ppmであって、
(2)板表面から少なくとも深さ20μmまでの表層領域が下記条件(A)、(B):
(A)圧延方向に対して直角方向の結晶粒幅sDが、平均値で50μm未満かつ最大値で100μm未満であり、かつ、
(B)上記結晶粒幅sDに対して圧延方向の結晶粒長さsLが10倍以上、
を満たす冷間圧延加工組織であり、
(3)板厚中央部にある板厚の2/3以上の厚さの芯領域における圧延方向に直角方向の結晶粒幅cDが、平均値で100μm以上であり、
(4)板厚が0.1〜0.5mm、引張強さが145〜190MPa、270℃×7分間のバーニング処理後の耐力が100MPa 以上であり、
(5)単体Si量が30ppm 以下で、素板の0.5μm深さ当りにおいて円相当径にして粒径が0.5μm以上の単体Siが200個/mm2 以下である、
ことを特徴とする。
【0018】
本発明の平版印刷版用アルミニウム合金素板の製造方法は、
Fe:0.10〜0.40wt%、
Si:0.03〜0.15wt%、
Cu:0.004〜0.020wt%、
Ti:0.01〜0.05wt%、
Mg:0.002〜0.02wt%、
Zr:0.001〜0.030wt%、
B:0.0001〜0.02wt%、および
残部:アルミニウムおよび不可避的不純物元素
から成るアルミニウム合金スラブを、均質化処理を行わず、または550℃未満で均質化処理を行った後に、熱間圧延し、その後冷間圧延し、必要に応じて矯正を行う方法であって、
上記熱間圧延を下記条件:
熱間圧延の開始温度:300〜480℃、
最終パスの開始温度:300〜380℃、
最終パスの終了温度:320〜380℃、
最終パスの歪み速度:15/sec 以上、および
熱間圧延後の板厚:4.5〜10mm、
にて行い、その後、
上記冷間圧延を中間焼鈍なしに行う、
ことを特徴とする。
【0019】
本発明の望ましい態様においては、前記冷間圧延の少なくとも最終パス後の板温度が回復温度以上、190℃未満であり、該最終パス後10分以内に5℃/分以上の冷却速度で急速冷却を行う。
【0020】
本発明の更に望ましい態様においては、前記冷間圧延後の回復温度が100℃以上である
【0021】
本発明は、0.1〜0.5mm厚さの平版印刷版用アルミニウム合金素板において、全ての特性を満足するための基本条件として化学組成を制御する。
Fe、Cu、Zrの各固溶量を特定値以下に制限することによって、平版印刷版用アルミニウム合金支持体用素板の引張強さを145〜190MPa に制御する。
一方、FeとZrの複合固溶量、すなわちFe固溶量+(1/2)Zr固溶量を特定値以上に確保することにより、耐熱性を270℃、7分間処理後の耐力を100MPa 以上に制御する。
更に、素板の表層領域において、結晶粒幅sD(圧延方向に直角方向の結晶粒サイズ)を特定値以下に小さくすると同時に、上記結晶粒幅sDに対する結晶粒長さsL(の圧延方向の結晶粒サイズ)の比すなわち伸び率を特定値以上に大きくすることにより、素板の粗面化処理して支持体とする際のストリークスや画質ムラの発生を抑制する。また、素板の芯領域において、結晶粒幅cD(圧延方向に直角方向の結晶粒サイズ)を特定値以上に大きくすることによって、引張強さを145〜190MPa に制御する。
そして、単体Si量を特定値以下に制限すると共に、特に表層領域において円相当径にして粒径0.5μm以上の大きいサイズの単体Siの個数を特定値以下に制限することにより、良好な耐インキ汚れ性を確保する。ここで、「単体Si」とは、合金に含有されているSiのうち、合金中に固溶せずにSi粒子として析出しているものを指す。
【0022】
また、本発明の平版印刷版用アルミニウム合金支持体用素板の製造方法においては、化学組成を全ての上記特性を満足するための基本条件として制御する。
均質化処理をしないか、または行う場合は均質化処理温度を特定値未満に制限し、熱間圧延の開始温度を制御することによって、Fe、Cu、Zrの各固溶量を特定値以下に低減できると共に、FeとZrの複合固溶量すなわちFe固溶量+(1/2)Zr固溶量を特定値以上に確保できる。
熱間圧延の開始温度、熱間圧延の最終パス開始温度、熱間圧延の終了温度、熱間圧延の最終パスの歪み速度、熱間圧延の終了板厚を制御することによって、表面部における結晶粒を微細かつ細長く、すなわち幅を小さくかつ長さを大きくすることができると同時に、芯領域における結晶粒を粗大にすることができる。
【0023】
更に、少なくとも冷間圧延の最終パス後の板温度を板の回復温度以上にすることによって、冷間圧延途中の中間焼鈍を行わなくても、加工硬化した板を軟化させて、所望の強度と板厚を確保できる。同時に、冷間圧延後に回復温度以上の温度から急速冷却とすることによって単体Siの析出を抑制する。これにより、適切な強度を有し、印刷中に非画像部のインキ汚れが抑制された平版印刷版用アルミニウム合金素板を製造することができる。
【0024】
【発明の実施の形態】
先ず、本発明におけるアルミニウム合金の成分限定理由を説明する。
<Fe:0.10〜0.40wt%>
Feは、Al−Fe系およびAl−Fe−Si系の金属間化合物を生成し、鋳造時の結晶粒を微細化するために必要な元素である。それと共に、強度を確保する効果がある。Fe含有量が0.10wt%未満では、鋳造組織の結晶粒の微細化効果が得られず、粗大な結晶粒が存在するため、化学的または電気化学的な粗面化処理により得られる粗面化面の外観均一性が損なわれる。一方、Fe含有量が0.40wt%を超えると、Al−Fe系およびAl−Fe−Si系の粗大な化合物が形成され化学的性質の局在的不均一が顕著になり、化学的粗面化面または電気化学的粗面化面のピット形状が不均一となり保水性が低下する。
なお、Feは通常Al合金中に不純物元素として含有される元素でもあるため、Fe含有量を0.10wt%未満に低減するには純度の高いAl合金を原料とする必要があるためコスト上昇にもなる。
<Si:0.03〜0.15wt%>
SiはFeと共にAl−Fe−Si系の微細な金属間化合物の形成のために必要な元素であり、Si含有量が0.03wt%未満ではその効果が不足する。Si含有量が0.15wt%を超えると、Al−Fe−Si系の粗大な化合物が形成され化学的性質の局在的不均一が顕著になり、化学的粗面化面または電気化学的粗面化面のピット形状が不均一となり保水性が低下する。更に、Si含有量が過剰になると単体Siが生成して非画像部のインキ汚れ性を助長するので、好ましくない。
また、SiはFeと同様にアルミニウム合金に不純物として含まれている元素でもあり、Si量を0.03wt%以下に低減することは、Feの低減と同様にコスト上昇にもなる。
<Cu:0.004〜0.020wt%>
Cuは電気化学的粗面化に大きく影響する元素である。Cu含有量を0.004wt%以上とすると、電気化学的粗面化面のピット密度を適切にできるので好ましい。一方、Cu含有量が0.020wt%を超えると、電気化学的粗面化面のピット密度が低くなり、ピットサイズが大き過ぎたり、未エッチング領域(粗面化未了部)が生じたりする。これは、非画像部の保水性を損なう。更に、印刷中のインキ汚れ性を助長するので好ましくない。更にまた、Cu含有量が多くなるとと共にCu固溶量が多くなり、その結果,引張強さが適正範囲を超えて高くなってしまう。
<Ti:0.01〜0.05wt%、B:0.0001〜0.02wt%>
TiおよびBは鋳造組織の結晶粒微細化に有効である。そのため鋳造に際して割れ発生の防止に有効であり、また鋳造組織の結晶粒粗大化に起因する粗面化面のストリークス発生防止に有効である。またBはTiと共に添加され、鋳造組織の結晶粒微細化に有効である。その効果はTiのみを添加した場合よりも大きい。Tiは0.01〜0.05wt%、Bは0.0001〜0.02wt%とすることが好ましい。
【0025】
<Mg:0.002〜0.02wt%>
Mgは、単体Siの析出を遅延させ、回復温度以上での冷間圧延完了後から急速冷却開始までの許容時間を延ばすことができる。これにより、急速冷却の作業を容易にすることができる。また、Mgの存在により単体Siの析出を遅延させることができるので、その遅延分に対応して冷間圧延時の板の温度を高くすることができる。したがって、高い温度での冷間圧延で容易に引張強さを低下させることができる。Mg含有量が0.002wt%未満では上述の効果が少ない。一方、Mg含有量が0.02wt%を超えると、冷間圧延板の回復が困難になり、引張強さが高くなり過ぎ所望の強度を付与し難くなる。
【0026】
<Zr:0.005〜0.030wt%>
Zrは耐熱性(耐バーニング性)を向上する効果がある。Zr含有量が0.005wt%未満ではその効果が不足する。一方、Zr含有量が0.030wt%以上では耐熱性は良いが、引張強さが高くなり過ぎてしまう。更に、アルミニウム合金素板の再結晶粒が大きくなっていまい、粗大な結晶粒の存在により化学的粗面化面または電気化学的粗面化面の外観均一性が損なわれる。
【0027】
<Fe固溶量:30ppm 未満、Cu固溶量:100ppm 未満>
Fe固溶量およびCu固溶量は冷間圧延板の回復に影響し、Feの固溶量が30ppm 以上、Cuの固溶量が100ppm 以上であると冷間圧延板の回復が困難になり、引張強さが高くなり過ぎ所望の強度を付与し難くなる。
【0028】
<Zr固溶量が200ppm 未満>
固溶Zrは耐熱性(耐バーニング性)の向上に効果がある。しかし、Zr固溶量が200ppm 以上であると、耐熱性は良いが、冷間圧延板の回復がし難くなり、引張強さが高くなり過ぎてしまう。更に、アルミニウム板の再結晶粒が大きくなってしまい、粗大な結晶粒の存在により化学的粗面化面または電気化学的粗面化面の外観均一性が損なわれる。
【0029】
<Fe+(1/2)Zr固溶量≧25ppm >
それぞれFe固溶量もZr固溶量も微量において耐熱性(耐バーニング性)に効果がある。しかし、上述のようにFeおよびZrの固溶量の増加につれて、冷間圧延板の回復がし難くなり、引張強さ(引張強さ)が高くなり過ぎてしまう。そこで、その効果の程度を検討した結果、Fe固溶量+(1/2)Zr固溶量≧25ppmとすれば、耐熱性を損なうことがないことが解った。
【0030】
<不純物元素>
不純物元素としてはMn、Cr、V、Zn、Ni、Ga、Li、Be等が含有されることがあるが、これらの不純物は0.05wt%以下程度の微量であれば大きな悪影響は与えない。
【0031】
<表層領域の結晶粒幅sDおよび長さsL>
板表面から少なくとも深さ20μmまでの表層領域を、下記条件(A)、(B):
(A)圧延方向に対して直角方向の結晶粒幅sDが、平均値で50μm未満かつ最大値で100μm未満であり、かつ、
(B)上記結晶粒幅sDに対して圧延方向の結晶粒長さsLが10倍以上、
を満たす冷間圧延加工組織とする。
これにより、素板の表層領域を上記規定範囲の結晶粒サイズの冷間圧延加工組織とすることにより、粗面化処理の際に外観の顕著な画質ムラの発生が防止される。ここで素板の表層領域は、素板の粗面化処理により除去される領域に相当する。
【0032】
<芯領域の結晶粒幅cD>
板厚中央部にある板厚の2/3以上の厚さの芯領域における圧延方向に直角方向の結晶粒幅cDを、平均値で100μm以上とする。
このように芯領域の結晶粒サイズを限定したことにより、冷間圧延板が回復して所定の引張強さを有する状態が確保される。芯領域が熱間圧延時未再結晶組織であったり粒径100μm未満であると、冷間圧延板の回復が困難になり、引張強さが高くなり過ぎてしまう。また、未再結晶状態では、熱間圧延終了後の空冷却等の冷却中に、単体Siが析出し易くなり単体Si量が増加するばかりか、更には冷間加工中にも、単体Siの析出が促進されてしまい、結果的には単体Si量が30ppm を超えてしまい適当ではない。
【0033】
<単体Si量および大きい単体Siの個数>
単体Si量は30ppm 以下とし、円相当径にして粒径が0.5μm以上の単体Siの個数は200個/mm2以下とする。
Alマトリックス中に固溶しているSiから単体Siへの析出は転位密度の高い部分に集中的に生じ易く、圧延により転位発生の繰り返される素板の製造過程では析出の機会は常に存在する。特に圧延過程で再結晶温度以下の回復温度域で析出が促進される。
単体Si量が30ppm を超えると、析出し集合しクラスター化した粗大な単体Siが多数生じ易くなって好ましくない。析出した単体Siは陽極酸化され難く、また素板の陽極酸化皮膜処理において電流を通し難いため、析出箇所に形成される皮膜が薄くなり、均一な厚さの皮膜が得難くなる。薄い皮膜箇所は印刷中に繰り返される湿し水等で腐食され易く、腐食箇所はインキが付着しやすいため、インキ汚れ発生の原因になる。素板の粗面化面に形成される陽極酸化皮膜の厚さは通常0.1〜1.0μmであるので、単体Siのサイズが大きくなると皮膜の厚さが極端に乱されるばかりでなく、更に、皮膜厚さを超える粗大な単体Siが存在するようになる。素板に皮膜処理して得られた支持体の表面に平均粒径0.5μm以上の単体Siが200個/mm2を超えて多数存在すると、インキ汚れ欠陥が顕在化する。好ましくは平均粒径0.5μm以上の単体Siが100個/mm2以下である。ここで、単体Siの平均粒径は測定面積を円相当直径で表したものである。
【0034】
次に、上記の要件を満足する本発明の平版印刷版用アルミニウム合金素板の製造方法について説明する。
本発明のアルミニウム合金素板の製造は、基本的には鋳造−面削−熱間圧延用加熱−熱間圧延−冷間圧延工程によって行われるが、必要に応じて熱間圧延用加熱より以前に均質化処理を施してもよいし、最終冷間圧延後にレベラー矯正を行ってもよい。
【0035】
<鋳造−面削>
除滓処理等を施して溶製した前記組成のアルミニウム合金鋳塊を、常法により鋳造する。この鋳造法としては、半連続鋳造が適当である。半連続鋳造された鋳塊の厚さは、500〜600mmが適当である。鋳塊表面は熱間圧延より前に面削する。
<均質化処理>
熱間圧延用加熱の前に、熱間圧延用加熱よりも高温に加熱する均質化処理を行っても良い。均質化処理は面削前に行ってもよいし、面削後に行ってもよい。均質化処理の温度は、550℃未満とする。均質化処理の保持時間は、鋳塊全体の温度の均一化するために、30分〜24時間程度の範囲から適宜選択する。550℃以上の温度また24時間以上の保持では、鋳塊中のFe固溶量、Cu固溶量、Zr固溶量等が過剰になり、本発明の規定範囲内に制御する上で適当ではないばかりか、コストアップとなり好ましくない。均質化処理の温度から、冷却を待たず直ちに熱間圧延用加熱温度での保持を開始してもよい。具体的には,均質化処理炉から抽出した鋳塊を、冷却させず直接、熱間圧延用加熱炉に装入してもよい。
【0036】
<熱間圧延>
面削された鋳塊を熱間圧延する。熱間圧延用加熱は温度300〜480℃で行う。熱間圧延用加熱の保持時間は、鋳塊全体の温度の均一化するために、鋳塊の厚さ等に応じて30分〜5時間程度の範囲で適宜選択する。
【0037】
熱間圧延の開始温度は、300〜480℃とする。300℃より低いと、安定した熱間圧延が行えず、480℃より高いと熱間圧延パスの途中で粗大な再結晶粒が生成するばかりでなく、Fe固溶量、Cu固溶量、Zr固溶量が過剰になって本発明の規定範囲を超えてしまう。熱間圧延は数回以上の圧延パスで行うのが通常である。
【0038】
本発明においては、上記のように熱間圧延開始温度を制御した上で、下記のように熱間圧延の最終パスおよび終了板厚を制御することによって、Fe、Cu、Zrの各固溶量および複合固溶量、表層領域の結晶粒サイズ、芯領域の結晶粒サイズを本発明の規定範囲内に制御することができる。
〔熱間圧延の最終パスおよび終了板厚〕
最終パスの開始温度:300〜380℃
最終パスの終了温度:320〜380℃
最終パスの歪み速度:15/sec以上
最終圧延の終了板厚:4.5〜10mm
熱間圧延において、上記のように最終パスの各条件および熱間圧延終了後の板厚を制御することによって、結晶粒サイズを本発明の平版印刷版用アルミニウム合金素板に必要な前述の範囲内に制御することができる。
従来技術では、熱間圧延の終了温度や終了板厚のみを制御していたため結晶粒サイズの制御が不十分であったが、本発明では、最終パスの開始温度や最終パスの歪み速度をも制御することによって、結晶粒サイズの制御に成功した。
熱間加工時の結晶粒組織もしくはサブグレイン組織の大きさは、熱間加工時の温度および歪み速度によって決まるが、素材の金属組織の影響もある。本発明では、素材の金属組織はその化学組成、熱間圧延用加熱温度、および場合によっては550℃未満の均質化処理によって制御する。更に、熱間圧延後通常コイリングされることから、熱間圧延後の結晶粒の大きさは、熱間加工時の結晶粒組織もしくはサブグレイン組織の大きさおよび、熱間圧延の終了温度によって決まる。ここで、歪み速度vとは、歪みをε、圧延時間をtとしたときv=ε/t(sec -1)で表したものである。ここで、歪みεは、最終パス前および最終パス後の板厚をそれぞれh1、h2とした時、ε=1n(h1/h2)で表した対数歪みである。
【0039】
表層領域の結晶粒サイズおよび芯領域の結晶粒サイズを本発明の平版印刷版用アルミニウム合金素板に必要な規定範囲内に制御するためには、熱間圧延時の最終パス開始温度、最終パス終了温度、最終パスの歪み速度、熱間圧延終了板厚を上記のように制御する必要がある。これらの条件は、それぞれ結晶粒組織に影響しており、全ての条件を同時に満たす必要がある。各条件の限定理由は以下のとおりである。
◇最終パス開始温度
熱間圧延の最終パス開始温度は300〜380℃とする必要がある。最終パス開始温度が300℃未満では、熱間圧延板の芯領域が未再結晶となり、平均粒径100μm以上の結晶粒が得られない。また、最終パス開始温度が380℃を超えると、十分な歪みが導入されないことから、熱間圧延板表面部の結晶粒が粗大となってしまい、冷間圧延後の素板表層領域において平均粒径50μm以下、最大粒径100μm以下の微細な結晶粒が得られない。
◇熱間圧延の終了温度
熱間圧延の終了温度は320〜380℃とする必要がある。熱間圧延終了後の熱間圧延板は、通常は巻き取られてコイルになるので、ある程度の時間、熱間圧延終了温度とほぼ同等の温度で保持されることになる。熱間圧延終了温度が300℃未満では、コイルの状態でこの温度で保持されたとしても、熱間圧延板の芯領域は未再結晶のままであり、平均粒径100μm以上の結晶粒が得られない。一方、熱間圧延終了温度が380℃を超えると、コイルの状態でこの温度に保持されると再結晶が起きて、熱間圧延板表面部の結晶粒が粗大となってしまい、冷間圧延後の素板表層領域において平均粒径50μm以下、最大粒径100μm以下の微細な結晶粒が得られない。
◇最終パスの歪み速度
熱間圧延の最終パスの歪み速度は15/sec 以上とする必要がある。前述の通り、歪み速度は、歪み、圧延時間をパラメーターとしており、圧延速度、圧延ロール径、圧下量等の関数である。歪み速度が15/sec未満では、(1)十分な加工歪みが得られず、熱間圧延板表面部の結晶粒が粗大となってしまい、冷間圧延後の素板表層領域において平均粒径50μm以下、最大粒径100μm以下の微細な結晶粒が得られないし、(2)芯領域にまで加工歪みが導入されず、熱間圧延板の芯領域が未再結晶となり、平均粒径100μm以上の結晶粒が得られない。
◇熱間圧延終了板厚
熱間圧延の終了板厚は4.5〜10mmとする必要がある。終了板厚が4.5mmよりも薄いと、熱間圧延中の温度低下が大きいため、本発明に必要な熱間圧延終了温度を確保できない。一方、熱間圧延の終了板厚が10mmより厚くては、(1)芯領域にまで歪みが導入されず、必要な再結晶粒サイズを得られないし、(2)後の冷間圧延において必要なパス数が多くなってしまい、コストアップとなると同時に中間焼鈍の省略に対して制約となる。
【0040】
<冷間圧延>
熱間圧延の後に、冷間圧延を行う。冷間圧延中の中間焼鈍を省略して製造工程を簡略化、コストダウンする。中間焼鈍を省略した冷間圧延板は、圧延加工による硬化を解消するために、少なくとも最終冷間圧延パス後の板の温度が板の回復温度以上となるように冷間圧延を行う。板の回復温度は、鋳塊の合金組成およびFe固溶量、Cu固溶量、Zr固溶量および加工の蓄積歪み量で異なる。合金組成およびFe、Cu、Zrの各固溶量が本発明のの規定範囲内であれば、圧下量50%の加工で約100℃程度の温度で回復が開始する。Fe、Cu、Zrの各固溶量が低い程、また加工度が高い程、回復はより低温で開始し、回復の程度も高くなる。一方、Fe、Cu、Zrの各固溶量が高い場合、または加工度が低い場合は、回復はより高温で開始し、回復の程度も低い。
冷間圧延において板の温度を回復温度以上とするには、以下の方法が考えられる。例えば、冷間圧延するコイルの初期温度を回復温度以上に加熱して、冷間圧延を開始する。しかし、この方法では大きな省エネルギー効果が得られない。また、冷間圧延するコイルの初期温度を室温近傍から開始する場合は、冷間加工の圧下率を大きく設定して板に加工熱を発生させる。この方法は省エネになるし、圧延回数を減らせる効果がある。そのためには圧下率を40%以上とすることが好ましく、45%以上とすることが更に好ましい。
【0041】
少なくとも最終パス後に回復温度以上を確保するために最も好ましい方法は、後者の如く板を塑性変形させながら、その変形による加工熱で急速に板を回復温度以上にすることである。
その方法は、例えば、圧延速度500〜2000m/分で冷間圧延し、室温(40℃)の6mm厚さの板を3mm厚さ(圧下率50%)に冷間圧延した場合、板温度は100℃程度に上昇する。続いて、この100℃の板を1mm厚さ(圧下率67%)まで圧延すると、板温度は150℃程度に上昇する。この回復温度以上に上昇した板を0.5mm厚さ(圧下率50%)に圧延すると、板温度は170℃程度に上昇する。この板を、更に最終圧延として0.25mm厚さ(圧下率50%)に圧延すると、板からの単位体積当たりの放熱量が大きくなり、板温度は130℃程度となる。この板温度でも回復の発現には十分である。この場合、冷間圧延中に蓄積される加工歪み量も非常に高くなっている。
【0042】
この温度で巻き取られた最終冷延板は、回復は進行するものの、残留歪み量が大きいことから、空冷程度の長時間の冷却中には、固溶しているSiが単体Siとして析出し易くなっている。そこで、冷間圧延終了後直ちに、または10分以内に、急速冷却を施して80℃以下とすることが望ましい。急速冷却の冷却速度は、5℃/分以上が目安となる。急速冷却の方法としては、最終冷間圧延後直ちに冷却室を通す方法、巻き取られたコイルを冷媒中に浸漬する方法、コイルに冷媒を塗布する方法等の冷媒を用いる方法が好ましい。このようにして、少なくとも冷間圧延最終パス後、好ましくは10分以内に、更に好ましくは最終冷間圧延直後に、急速冷却して、固溶Siの単体Siへの析出を抑制する。
【0043】
一方、上記の板温度で冷間圧延工程を行っても、Fe、Cu、Zrの各固溶量の少なくとも一つが本発明の制限範囲より多い場合には、固溶原子が歪みの回復を抑えてしまうため回復が十分に行われない。この場合、十分な回復を確保しようとして回復温度を190℃以上の高温にすることは、単体Siの析出を促すだけでなく、通常の冷間圧延条件を逸脱することになって不適当である。
上記のような諸条件を考慮して冷間圧延する場合は、中間焼鈍工程を省略しても、冷間圧延板の引張強さ(引張強さ)を145〜190MPa 、単体Si量を30ppm 以下の素板が得られ、しかも粗面化処理面に陽極酸化皮膜が0.1〜1.0μm形成したときに、該陽極酸化皮膜中に円相当径にして粒径が0.5μm以上の単体Siが200個/mm2 以下である平版印刷版用アルミニウム合金支持体を得ることができる。
【0044】
【実施例】
〔実施例1〕
<鋳塊の準備>
表1に示した種々の化学組成のアルミニウム合金溶湯を溶製した。各々のアルミニウム合金溶湯は半連続鋳造法によって厚さ560mmのアルミニウム合金鋳塊とし、両面の面削によって厚さ540mmとした。
【0045】
【表1】

Figure 0004110353
【0046】
<熱間圧延>
次に、上記の鋳塊に、温度500℃で2時間保持の均質化処理を行った後、同じ炉内で熱間圧延開始温度390℃に下げ1時間保持した。ワークロール径900mmφの可逆式熱間圧延機を用い、圧延パス数15回、各パス間時間10秒〜1.5分の条件で熱間圧延を行い、厚さ6mmの熱間圧延板を得た。ここで、熱間圧延の最終パスは、18mm厚さから6mm厚さへの圧下(圧下率67%)、最終パス開始温度360℃で行い、350℃で熱間圧延を終了した。最終パスの圧延速度を100m/分とした。圧延時間は0.044秒であり、歪み(対数歪み)は1.10、歪み速度vは25.0 sec-1であった。
【0047】
<冷間圧延>
次に、室温(40℃)の熱間圧延板を冷間圧延した。冷間圧延速度を500〜2000m/分とした。ただし、板厚さが薄くなるに従い圧延速度を速くした。冷間圧延の方式は、各パス後に冷間圧延板を巻き取ってコイルとし、次パスに供する方式とした。
冷間圧延第一パスは、板厚さ6mm→3mmで行った。圧延終了温度は、90℃であった。直ちに、冷間圧延第二パスを板厚さ3mm→1mmで行った。圧延終了温度は150℃であった。引続き、110℃まで冷却速度10℃/分で急速冷却を行った。急速冷却は、コイルを槽内に置き油性の冷媒液を噴霧して冷却した。そして、冷間圧延第三パスを板厚さ1mm→0.5mmで行った。圧延終了温度は、150℃であった。直ちに、冷間圧延第四パスを0.5mm→0.24mmで行った。圧延終了温度は120℃であった。冷間圧延の終了したコイルを、室温まで10℃/分の冷却速度で急速冷却した。冷却方法は、冷間圧延第二パス後の急速冷却方法と同様に行った。その後、テンションレベラーによって矯正を行い、平版印刷版用アルミニウム合金素板を得た。
【0048】
<特性の評価>
上記により得られた合金符号A〜Jの本発明例および比較例の各アルミニウム合金素板について、下記(1)〜(10)で説明する評価・測定法によって、(A)熱間圧延板について、表面部の結晶粒幅(圧延方向に直角方向の結晶粒サイズ)および芯領域の結晶粒幅、(B)冷間圧延により得られたアルミニウム合金素板について、Fe、Cu、Zrの各固溶量、単体Si量および平均粒径0.5μm以上の単体Siの個数、表層領域の結晶粒幅および伸び率、芯領域の結晶粒幅、電解粗面化処理後の電解粗面化面の均一性、粗面化外観の均一性、引張強さ、バーニング処理後の耐力、インキ汚れ性を評価・測定した。結果を表2に示す。
【0049】
(1)熱間圧延板の結晶粒サイズの測定
それぞれのアルミニウム合金の熱間圧延板を電解研磨等により、表面部および芯領域を露呈させ、バーカー氏液(11ml/1ホウフッ酸溶液)による陽極酸化処理後、偏光顕微鏡によって、結晶粒観察を行った。直線法を用い結晶粒幅(圧延方向に対して直角方向のサイズ)を測定した。なお、偏光顕微鏡観察は400倍で行い、写真上で長さ60mm(実際の長さ150μm)の線分についての測定を10箇所で行い、その平均値を用いた。結晶粒の大きなものは低倍率で観察を行った。
【0050】
(2)Fe、Cu、Zrの各固溶量の測定
アルミニウム合金素板を熱フェノールによって溶解し、溶解されたマトリックスと溶解残さとしての金属間化合物をろ過および、ろ過をくぐり抜けた微細な金属間化合物を10%クエン酸溶液との抽出によって分離し、ろ液中の固溶された元素としてのFe、Cu、Zrの各量をICP発光分析装置によって測定した。
【0051】
(3)単体Si量の測定
アルミニウム合金素板をHCl:H22=1:1の溶液で溶解し、濾過残渣をNaOH溶液で分解し、中和し、モリブデン酸アンモニウムを加え、ケイモリブデン黄を生成させた。濃度が濃い場合には、スルホン酸還元液で還元し、モリブデン青を生成させ、その吸光度を測定し、検量線より換算し単体Si量を求めた。
【0052】
(4)粒径0.5μm以上の単体Si個数の測定
アルミニウム合金支持体用素板を1%NaOHで非常にゆっくりと0.5μm深さエッチングし、次いでX線マイクロアナライザーでFe、Siのマッピング分析を行った。この内Feと共存していないSiのみを画像解析装置(ニレコ(株)製LUZEX F)を用い、該当粒子の占める面積を円換算しその直径を平均粒径とした。この円相当直径が0.5μm以上のものをカウントした。
なお、1%NaOHでエッチングした表面には、金属間化合物、単体Siが存在しており、Fe、Siマッピング分析で検出された粒子と、SEM観察像が一致しており、エッチングによってこれらは残存していること、およびX線マイクロアナライザーでのFe、Siのマッピング分析結果は、エッチングされた0.5μm深さ相当に存在するものであると考えられた。
【0053】
(5)アルミニウム合金素板の結晶粒サイズの測定
アルミニウム合金素板を電解研磨等により、表面から10μm深さの表層領域および表面から120μmの芯領域を露呈させ、バーカー氏液(11ml/1ホウフッ酸溶液)による陽極酸化処理後、偏光顕微鏡によって、結晶粒観察を行った。直線法を用い結晶粒幅(圧延方向に直角方向の結晶粒サイズ)、表層領域の結晶粒の伸び率(結晶粒幅に対する長さの比。長さ=圧延方向の結晶粒サイズ)を測定した。なお、結晶粒幅については、偏光顕微鏡観察は400倍で行い、写真上で長さ60mm(実際の長さ150μm)の線分についての測定を10箇所で行い、その平均値を用いた。結晶粒の大きなものは低倍率で観察を行った。結晶の伸び率については、偏光顕微鏡観察は100倍で行い、任意の結晶粒50個について幅と長さを測定し、その平均値を用いた。
基本的に、冷間圧延により得られた素板の結晶粒は、冷間圧延により伸されているのみであり、結晶粒幅は熱間圧延板の結晶粒幅と同等であった。更に、結晶粒の伸び率も熱間圧延板から冷間圧延された板の伸び率と同等であった。
【0054】
(6)電解粗面化面の均一性の評価
アルミニウム合金素板をバミストン/水の懸濁液中でブラシグレイニングした後、アルカリエッチングおよびデスマット処理を施した。
次に、極性が交互に交換する電解波形をもつ電源を用いて、1%硝酸中で陽極時電気量が150クーロン/dm2 となる電解エッチングにより、電解粗面化を行った。
硫酸中で洗浄した後、走査型電子顕微鏡(SEM)により表面を観察した。評価は、砂目均一なものは「良好(○)」、未エッチ部の多いものや砂目が不均一なものは「不良(×)」とした。
【0055】
(7)電解粗面化面の外観の評価
アルミニウム合金素板をバミストン/水の懸濁液中でブラシグレイニングした後、アルカリエッチングおよびデスマット処理を施した。
次に、極性が交互に交換する電解波形をもつ電源を用いて、1%硝酸中で陽極時電気量が150クーロン/dm2 となる電解エッチングにより、電解粗面化を行った。
硫酸中で洗浄した後、硫酸中で陽極酸化皮膜を形成させてから、表面の目視観察により外観の均一性を評価した。評価は、外観が均一なものは「良好(○)」、外観が許容できる程均一でなく軽度なストリークス等が観察されたものは「やや不良(Δ)」、外観が均一でなくストリークス等が観察されたものは「不良(×)」とした。
【0056】
(8)引張強さ測定
アルミニウム合金素板からJIS13号B引張試験片を作製し、引張試験を行い、引張強さσBを測定した。
【0057】
(9)バーニング後の耐力の測定
アルミニウム合金素板を、270℃で7分間のバーニング処理をした後に、JIS13号B引張試験片を作製し、引張試験を行い、バーニング処理後の素板の耐力σ0.2を測定した。
【0058】
(10)耐インキ汚れ性の評価
アルミニウム合金素板から印刷原版を作製し、オフセット印刷機KORにセットし、10万部印刷して非画像部のインキ汚れの有無を目視評価した。これによりインキ汚れの観察されなかったものを「良好(○)」、やや多く観察されたものを「やや不良(Δ)」、非常に多く観察されたものを「不良(×)」とした。
【0059】
【表2】
Figure 0004110353
【0060】
表1および表2に示したように、本発明例である試料番号I−1〜I−6は、アルミニウム合金の化学成分が本発明の規定範囲内であること、本発明の規定範囲内の熱間圧延用加熱温度、熱間圧延条件、冷間圧延条件であることによって、アルミニウム合金素板のFe、Cu、Zrの固溶量が許容範囲内、単体Si量および0.5μm径以上の大きな粒子も少なく、結晶粒サイズが許容範囲内にあることにより、均一な電解粗面化面が得られ、粗面化面がストリークスなどなく外観が均一で、必要な強度を持ち、耐熱性に優れ、耐インキ汚れ性の良好な素板が得られた。
【0061】
これに対して、比較例である試料番号I−7〜I−10は、アルミニウム合金の化学成分が本発明の規定範囲外であるため、熱間圧延および冷間圧延を本発明の規定範囲内の条件で行ったにもかかわらず、アルミニウム合金素板のFe、Cu、Zrの固溶量、または単体Si量および0.5μm径以上の大きな粒子の粒子数や結晶粒サイズが許容範囲外となってしまい、その結果、本発明に必要な特性の内、均一な電解粗面化面、または粗面化面がストリークスであり外観が不均一となったり、必要な強度範囲外や、耐熱性が劣ったり、必要な耐インキ汚れ性が得られなかった。個々の比較例については下記のとおりである。
【0062】
比較例の試料番号I−7は、アルミニウム合金の化学成分のうちMg量が本発明の規定範囲よりも多いため、本発明の規定範囲内の条件で冷間圧延をおこなったにもかかわらず、引張強さが許容範囲外となってしまった。
比較例の試料番号I−8は、アルミニウム合金の化学成分のうちMg量が本発明の規定範囲よりも少ないため、本発明の規定範囲内の条件で冷間圧延および急速冷却を実施したにもかかわらず、冷間圧延中の析出により単体Si量および0.5μm以上の粗大な単体Siの個数が本発明の規定範囲を超えてしまい、必要な耐インキ汚れ性が得られなかった。
比較例の試料番号I−9は、アルミニウム合金の化学成分のうちZr量が本発明の規定範囲よりも多いため、Zr固溶量も多くなってしまい、引張強さが本発明の許容範囲外となってしまった。
比較例の試料番号I−10は、アルミニウム合金の化学成分のうちZr量が本発明の規定範囲よりも少ないため、Zr固溶量も少なく、必要な耐バーニング後の耐力が得られない。
【0063】
〔実施例2〕
<鋳塊の準備>
本発明の規定範囲内の化学組成であるFe:0.32wt%、Si:0.07wt%、Cu:0.012wt%、Ti:0.02wt%、Mg:0.008wt%、Zr:0.013wt%、B:0.0004wt%、残部:実質的にアルミニウムおよび不可避不純物から成るアルミニウム合金の溶湯を溶製した。この溶湯を半連続鋳造法によって厚さ560mmのアルミニウム合金鋳塊とし、両面の面削によって厚さ540mmとした。
<熱間圧延>
次に、アルミニウム合金鋳塊を、均質化処理せずに、表3に示した種々の温度で2時間保持する均質化処理を行ってから、表3に示した種々の熱間圧延開始温度に1時間保持した。ワークロール径900mmφの可逆式熱間圧延機を用い、圧延パス数15回、各パス間時間10秒〜1.5分の条件で熱間圧延を行い、表3に示した種々の厚さの熱間圧延板を得た。表3に、均質化処理温度、熱間圧延開始温度、熱間圧延最終パス開始温度、最終パス前板厚、最終板厚、最終パス歪み速度、熱間圧延終了温度をまとめて示す。
【0064】
【表3】
Figure 0004110353
【0065】
<冷間圧延>
次に、室温(40℃)の熱間圧延板を冷間圧延した。冷間圧延速度を500〜2000m/分とした。ただし、板厚さが薄くなるに従い圧延速度を速くした。冷間圧延の方式は、各パス後に冷間圧延板を巻き取ってコイルとし、次パスに供する方式とした。
冷間圧延第一パスは、板厚さ6mm→3mmで行った。圧延終了温度は、90℃であった。直ちに、冷間圧延第二パスを板厚さ3mm→1mmで行った。圧延終了温度は150℃であった。引続き、110℃まで冷却速度10℃/分で急速冷却を行った。急速冷却は、油性の冷媒液の噴霧槽にコイルを置いて行った。そして、冷間圧延第三パスを板厚さ1mm→0.5mmで行った。圧延終了温度は、150℃であった。直ちに、冷間圧延第四パスを0.5mm→0.24mmまで行った。圧延終了温度は120℃であった。冷間圧延の終了したコイルを、室温まで10℃/分の冷却速度で急速冷却した。冷却方法は、冷間圧延第二パス後の急速冷却方法と同様に行った。その後、テンションレベラーによって矯正を行い、平版印刷版用アルミニウム合金素板を得た。
【0066】
<特性の評価>
上記により得られた試料番号II−1〜II−6の本発明例およびII−7〜II−15比較例の各アルミニウム合金素板について、実施例1において説明した評価・測定法によって、(A)熱間圧延板の表面部の結晶粒幅および芯領域の結晶粒幅、(B)冷間圧延により得られたアルミニウム合金素板について、Fe、Cu、Zrの各固溶量、単体Si量および平均粒径0.5μm以上の単体Siの個数、表層領域の結晶粒幅、伸び率、芯領域の結晶粒幅、電解粗面化処理後の電解粗面化面の均一性、粗面化外観の均一性、引張強さ、バーニング処理後の耐力、インキ汚れ性の評価・測定を行った。結果を表4に示す。
【0067】
【表4】
Figure 0004110353
【0068】
表3および表4において、本発明例である試料番号II−1〜II−6は、アルミニウム合金の化学成分が本発明の規定範囲内であり、かつ、熱間圧延条件・冷間圧延条件が本発明の規定範囲内であることによって、アルミニウム合金素板のFe、Cu、Zrの各固溶量が許容範囲内であり、単体Si量および0.5μm径以上の大きな粒子も少なく、結晶粒サイズが許容範囲内にあり、その結果、均一な電解粗面化面が得られ、粗面化面がストリークスなどなく外観が均一で、必要な強度を持ち、耐熱性に優れ、耐インキ汚れ性の良好な素板が得られた。
【0069】
これに対して、比較例である試料番号II−7〜II−15は、熱間圧延用加熱温度、または熱間圧延条件が本発明の規定範囲外であるため、アルミニウム合金の化学成分および冷間圧延条件が本発明の規定範囲内であるにもかかわらず、アルミニウム合金素板のFe、Cu、Zrの各固溶量、または単体Si量および0.5μm径以上の大きな粒子や結晶粒サイズが許容範囲外となってしまい、その結果、本発明に必要な特性のうち、均一な電解粗面化面、または粗面化面がストリークスであり外観が不均一となったり、必要な強度範囲外や、耐熱性が劣ったり、必要な耐インキ汚れ性が得られなかったりした。個々の比較例については下記のとおりである。
【0070】
比較例の試料番号II−7は、熱間圧延開始温度が本発明の規定範囲よりも高いことによって、熱間圧延板表面部の結晶粒サイズが粗大となったため、冷間圧延された素板も表層領域の結晶粒が粗大となってしまい、その結果、粗面化面にストリークスがみられ外観が不均一となってしまう。更に、Fe、Cuの固溶量が発明の規定範囲よりも高くなってしまって、本発明の規定範囲の条件で冷間圧延をしても、引張強さが許容範囲外となってしまった。
比較例の試料番号II−8は、本発明の制限範囲を超える温度で均質化処理を行ったため、Fe、Cuの固溶量が本発明の規定範囲よりも高くなったばかりでなく微細な析出物がないため、本発明の規定範囲内の条件で熱間圧延を行っても、中芯部の結晶粒が本発明の規定範囲より小さくなってしまった。そのため、本発明の規定範囲内の条件で冷間圧延を行っても、加工硬化が促進され、引張強さが本発明の許容範囲よりも高くなってしまった。
比較例の試料番号II−9は、熱間圧延の最終パス開始温度が本発明の規定範囲よりも高いため、熱間圧延板表面部の結晶粒が粗大となってしまい、その結果、冷間圧延後の素板は粗面化面にストリークスがみられ外観が不均一となってしまった。
比較例の試料番号II−10は、熱間圧延の最終パス開始温度および終了温度が本発明の規定範囲よりも低いため、熱間圧延板表面部の結晶粒サイズは非常に小さいが、芯領域が未再結晶となるため、素板の芯領域で加工歪みが非常に大きくなり、その結果、引張強さが高くなってしまった。また、この加工歪みが大きいことにより、冷間圧延中に単体Siの析出が促進され、耐インキ汚れ性がやや低下した。
比較例の試料番号II−11は、熱間圧延の最終パス開始温度と終了温度が本発明の規定範囲よりも高いため、熱間圧延板表面部の結晶粒が粗大となる。その結果,冷間圧延により得られた素板の表層領域の結晶粒が粗大となってしまい、粗面化面にストリークスがみられ外観が不均一となってしまった。
比較例の試料番号II−12は、熱間圧延最終パスの圧延速度が遅いことにより歪み速度が小さかったため、終了温度が本発明の規定範囲よりも低い。このため、熱間圧延板表面部の結晶粒が粗大になり、更に、芯領域が未再結晶となってしまう。これにより素板の表層領域の結晶粒が粗大となったため、粗面化面にストリークスがみられ外観が不均一になってしまうばかりか、素板の芯領域で加工歪みが非常に大きくなって、引張強さが本発明の規定範囲を超えてしまった。また、この加工歪みが大きいことにより、圧延中に単体Si量が多くなってしまい、耐インキ汚れ性がやや劣ってしまう。
比較例の試料番号II−13は、熱間圧延最終パス前の板厚が薄いため歪み速度が小さくなっており、熱間圧延板表面の結晶粒が粗大になり、更に、芯領域が未再結晶となってしまう。これにより支持体表層領域の結晶粒が粗大となってしまうことによって、粗面化面にストリークスがみられ外観が不均一になってしまうばかりか、支持体の芯領域で加工歪みが非常に大きなものとなって、引張強さが高くなってしまう。また、この加工歪みが大きいことにより、圧延中に単体Si量が多くなってしまい、耐インキ汚れ性がやや劣ってしまう。
比較例の試料番号II−14は、熱間圧延最終パスの圧延速度が遅いためことから歪み速度が小さくなっており、熱間圧延板表面の結晶粒サイズが粗大になってしまう。これにより支持体表層領域の結晶粒が粗大となってしまうことによって、粗面化面にストリークスがみられ外観が不均一になってしまう。
比較例の試料番号II−15は、熱間圧延最終板厚が発明の規定範囲よりも薄いため、熱間圧延板表面の結晶粒サイズは発明の規定範囲内と小さかったが、中芯部にまで加工歪みが強く導入されたため、支持体の芯領域で加工歪みが非常に大きなものとなって、引張強さが高くなってしまう。
【0071】
〔実施例3〕
<鋳塊の準備>
本発明の規定範囲内である表5に示した化学組成のアルミニウム合金の溶湯を溶製した。この溶湯を半連続鋳造法によって厚さ560mmのアルミニウム合金鋳塊とし、両面の面削によって厚さ540mmとした。
【0072】
【表5】
Figure 0004110353
【0073】
<熱間圧延>
次に、アルミニウム合金鋳塊を、温度500℃で2時間保持する均質化処理を行ってから、同じ炉内で熱間圧延開始温度390℃に下げて1時間保持した。ワークロール径900mmφの可逆式熱間圧延機を用い、圧延パス数15回、パス間時間10秒〜1.5分の条件で熱間圧延を行い、厚さ6mmの熱間圧延板を得た。ここで、熱間圧延の最終パスは、18mm厚さから6mm厚さへの圧下(圧下率67%)、最終パス開始温度360℃で行い、350℃で熱間圧延を終了した。最終パスの圧延速度は100m/分とした。圧延時間は0.044 secであり、歪み(対数歪み)は1.10、歪み速度εは25.0 sec-1であった。
【0074】
<冷間圧延>
次に、室温(40℃)の熱間圧延板を冷間圧延した。冷間圧延速度を500〜2000m/分とした。ただし、板厚さが薄くなるに従い圧延速度を速くした。冷間圧延の方式は、各パス後に冷間圧延板を巻き取ってコイルとし、次パスに供する方式とした。
表6に、冷間圧延の各パスにおける条件を示す。比較例の試料番号 III−1は6パスの冷間圧延を、板厚さ6mm→3.5mm→2mm→1.2mm→0.7mm→0.42mm→0.25mmで、表6に示した各圧延温度で行った。冷間圧延2パス後と冷間圧延4パス後の冷却はコイルをファンにより強制空冷した。これによる冷却速度は、0.2℃/分であった。
比較例の試料番号III−2、 III−3および実施例の試料番号 III−4、 III−5は4パスの冷間圧延を、板厚さ6mm→3mm→1mm→0.5mm→0.24mmで行った。表6に示した各冷間圧延温度で行った。冷間圧延2パス後に冷却を行う場合は、コイルを冷間圧延3パス目の圧延開始まで10℃/分の冷却速度で急速冷却した。最終の冷間圧延4パス後の冷却方法は、室温まで冷却速度10℃/分で急速冷却を行う、油性の冷媒液の噴霧槽にコイルを置き行う方法と、室温まで冷却速度は、0.2℃/分で強制冷却を行う、ファンにより空冷する方法とした。比較例および実施例の冷間圧延温度および冷却を行った場合の冷却速度について、表6にまとめて示した。
その後、テンションレベラーによって矯正を行い、平版印刷版用アルミニウム合金支持体用素板を得た。
【0075】
【表6】
Figure 0004110353
【0076】
<特性の評価>
上記により得られた試料番号 III−1〜 III−5の本発明例および比較例の各アルミニウム合金素板について、実施例1において説明した評価・測定法によって、(A)熱間圧延板の表面部の結晶粒幅および芯領域の結晶粒幅、(B)冷間圧延により得られたアルミニウム合金素板について、Fe、Cu、Zrの各固溶量、単体Si量および平均粒径0.5μm以上の単体Siの個数、表層領域の結晶粒幅、伸び率、芯領域の結晶粒幅、電解粗面化処理後の電解粗面化面の均一性、粗面化外観の均一性、引張強さ、バーニング処理後の耐力、インキ汚れ性の評価・測定を行った。結果を表7に示す。
【0077】
【表7】
Figure 0004110353
【0078】
表5、6、7において、本発明例である試料番号 III−4〜 III−5は、アルミニウム合金の化学成分が本発明の規定範囲内であること、本発明の規定範囲内の熱間圧延用加熱温度、熱間圧延条件、冷間圧延条件であることによって、支持体用素板のFe、Cu、Zrの固溶量が許容範囲内、単体Si量および0.5μm径以上の大きな単体Si粒子個数も本発明の規定範囲内であり、結晶粒サイズが許容範囲内にあることにより、均一な電解粗面化面が得られ、粗面化面がストリークスなどなく外観が均一で、必要な強度を持ち、耐熱性に優れ、耐インキ汚れ性の良好な素板が得られた。
【0079】
これに対して、比較例である試料番号 III−1〜 III−3は、冷間圧延条件、または冷間圧延途中または圧延後の冷却条件が本発明の規定範囲外であることから、本発明規定範囲内のアルミニウム合金の化学成分、熱間圧延用加熱温度、熱間圧延条件であるにもかかわらず、支持体用素板の単体Si量および0.5μm径以外の大きな単体Si粒子個数が本発明の許容範囲外となってしまい、その結果、本発明に必要な特性のうち、必要な耐インキ汚れ性が得られなかったり、必要な引張強さ範囲外であったりした。個々の比較例については下記のとおりである。
【0080】
比較例の試料番号 III−1は、前記冷間圧延において回復温度以上に達していないことによって、本発明の規定範囲よりも引張強さが高くなってしまう。
比較例の試料番号 III−2、 III−3は、前記冷間圧延において、全冷間圧延4パスを連続して行い、回復温度以上の冷間圧延温度を得られたにもかかわらず、最終冷間圧延後に急速冷却を行わず、ファンによる強制冷却により、十分な冷却がなされていなかったために、単体Si量および0.5μm径以上の大きな単体Si粒子個数が本発明許容範囲外となってしまうことによって、本発明に必要な特性のうち、必要な耐インキ汚れ性が得られなかった。
【0081】
【発明の効果】
本発明によれば、粗面化面の均一性および外観の均一性が高く、粗面化処理によりストリークスや画質ムラ等の処理ムラが発生せず、必要な強度と曲げ加工性を兼備するための適切な範囲の引張強さとバーニング処理後の十分な耐力とを有し、耐インキ汚れ性の優れた平版印刷版用アルミニウム合金素板が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a uniform (chemical or electrochemical) roughened surface, has a required strength and a uniform appearance with no streak or uneven surface quality after roughening, and causes ink stains during printing. It relates to an aluminum alloy base plate for lithographic printing plates with good heat resistance and good heat resistance, and further omits intermediate annealing during cold rolling, reduces the number of cold rolling passes, and simplifies the manufacturing process. Although the manufacturing cost is reduced, the present invention relates to a method for manufacturing an aluminum alloy base plate for a lithographic printing plate that satisfies the above characteristics.
[0002]
[Prior art]
Conventionally, as an aluminum alloy base plate for a lithographic printing plate, a thin plate of an aluminum alloy such as JIS 1050 having a thickness of 0.1 to 0.5 mm is generally used, and such an aluminum alloy thin plate is generally generally semi-continuous cast. The surface of the ingot obtained by the above is removed by chamfering, homogenized, and manufactured through hot rolling and cold rolling, intermediate annealing, and final cold rolling.
[0003]
The aluminum alloy base plate for a lithographic printing plate manufactured in this way is, as will be described below, “base plate” → roughening, etc. → “support” → photosensitive layer formation → “printing plate” → image portion formation → After going through the “printing master” stage, it is used for printing.
That is, first, the surface of the base plate is roughened by a process combining one or more of a mechanical method, a chemical method, or an electrochemical method, and further anodized, and optionally hydrophilic. To be a lithographic printing plate support.
Next, a photosensitive lithographic printing plate is obtained by applying a photosensitive material to the surface of the support to form a photosensitive layer.
[0004]
Next, the lithographic printing plate is subjected to a plate making process for sequentially performing image exposure, development, washing with water, lacquering and the like to obtain a printing original plate. At that time, the portion where the photosensitive layer remains undissolved by the development processing becomes a hydrophobic image portion, that is, an ink receiving portion, while the portion where the photosensitive layer dissolves and disappears is the roughened surface of the aluminum alloy support. Is exposed to become a hydrophilic non-image portion, that is, a water receiving portion. Further, as a means for improving the printing durability, a heat treatment at a high temperature (processing called burning) is generally performed after the development processing. The burning treatment is usually performed by holding at a temperature of about 200 to 280 ° C. for about 3 to 7 minutes, although it depends on the composition forming the image.
[0005]
Both ends of the printing original plate are bent, and are inserted into an attachment portion of a printing press plate cylinder, and fixed to a cylindrical plate cylinder. Therefore, the lithographic printing plate base plate is required to have bending workability and plate cylinder winding performance.
[0006]
During printing, dampening water is supplied to the plate surface of the printing original plate so that water is retained in the hydrophilic non-image area, and ink is supplied to adhere to the hydrophobic image area. Printing is performed by first transferring the ink adhering to the image portion to a blanket cylinder and then transferring the ink from the blanket cylinder to a final printing surface such as a paper surface.
The number of printed copies may be as large as 100,000 copies, for example, and the printing original plate must be able to withstand such a large number of times of printing, that is, printing durability is required. Various characteristics are required to ensure printing durability. That is, it is necessary to maintain water retention so that ink adhesion does not occur in non-image areas. In addition, if pitting occurs on the surface of the support (roughened surface) that is in contact with the fountain solution during printing, ink adheres to the pitting portion and stains in the non-image area, that is, ink stains. May occur. In order to prevent ink stains, it is important to ensure sufficient water retention and corrosion resistance. To that end, excellent rough surface uniformity and corrosion resistance of the support by electrochemical roughening treatment and It is necessary to obtain a healthy anodic oxide film.
[0007]
In the method for producing an aluminum base plate for a lithographic printing plate disclosed in Japanese Examined Patent Publication No. 5-28197, the normal homogenization temperature is 450 to 600 ° C., preferably at a temperature of 520 to 600 ° C. for 1 hour or more, In hot rolling, recrystallization and precipitation are repeatedly performed by several rolling passes, and hot rolling is completed at 300 ° C. or higher. Moreover, the intermediate annealing in the middle of cold rolling performs rapid cooling of 500 ° C./sec or more after reaching a predetermined temperature of 400 to 600 ° C.
[0008]
In the method for producing an aluminum base plate for a lithographic printing plate disclosed in JP-A-8-17996, homogenization treatment is performed at 500 to 600 ° C, hot rough rolling is started at 430 to 480 ° C, The dynamic recrystallization is repeatedly performed by repeatedly performing rough rolling, and the hot rough rolling is completed at a temperature of 380 to 430 ° C. and a plate thickness of 10 to 35 mm. The finish hot rolling finish temperature is completed at 260 to 350 ° C. or more, and a region that partially causes recrystallization is not formed.
[0009]
In the method for producing an aluminum base plate for a lithographic printing plate disclosed in JP-A-62-148295, a part of Fe is dissolved in a solid solution by performing a homogenization treatment at 500 to 600 ° C. for 3 hours or more. By cooling at 50 ° C./h or lower until 430 ° C. or lower, or holding at 350 to 450 ° C. for 30 minutes or longer, Si atoms present in the ingot are converted into Al—Fe—Si intermetallic compounds. Precipitate and fix, and reduce the amount of single Si precipitate in the subsequent process. Hot rolling is performed at 450 to 200 ° C. to prevent recrystallized grains between hot rolling passes from becoming coarser than 100 μm. The intermediate annealing after the hot rolling is performed at 350 to 500 ° C. for 2 to 5 hours or at 400 to 550 ° C. for 120 seconds or less in a continuous annealing furnace. According to this method, a uniform rough surface is obtained by the electrolytic roughing treatment, and the ink stain resistance of the non-image area during printing is improved. As an example, performing intermediate annealing in a cold rolling process following hot rolling is exemplified.
[0010]
Japanese Patent Application Laid-Open No. 61-201747 discloses a manufacturing method for obtaining an aluminum base plate for a lithographic printing plate having an appropriate tensile strength and excellent strength after burning treatment. In this method, hot rolling is started at a temperature of 480 to 550 ° C., and the hot rolling is completed at 320 ° C. or more and a plate thickness of 2.5 to 3.5 mm. A structure having both crystallized surfaces is obtained, and cold rolling is performed without intermediate annealing.
[0011]
Japanese Patent Laid-Open No. Hei 6-192579 discloses the inclusion of Mg to control the precipitation of elemental Si in the manufacturing process including casting, homogenization, hot rolling, cold rolling, intermediate annealing, and final cold rolling. Thus, a method for producing a lithographic printing plate excellent in ink stain resistance during printing has been proposed.
In JP-A-10-306355, the ingot is homogenized and then hot rolling is started from a predetermined temperature, the hot rolling is finished at a predetermined temperature, and then cooled to a predetermined temperature. In order to prevent streaks from occurring, a method for manufacturing a support is proposed in which strength is imparted to the support by rolling to a final thickness at a compression ratio of 60% or more without performing heat treatment.
In Japanese Patent Application No. 11-205251, the amount of elemental Si is 30 ppm or less, and the number of elemental Si particles of 0.5 μm or more in the anodized film is 200 / mm. 2 A lithographic printing plate support having a tensile strength of 145 to 180 MPa, and a lithographic printing plate support having controlled the plate temperature at least after the final pass by cold rolling above the recovery temperature and the subsequent rapid cooling. The manufacturing method is shown.
[0012]
In JP-A-11-229101, in the steps of homogenization treatment, hot rolling and cold rolling, the hot rolled sheet thickness is 3.0 mm or less, and at least the end temperature of cold rolling is 100 to 200 ° C. A method of producing a lithographic printing plate that is excellent in surface quality and handling properties and is inexpensive has been proposed.
In JP-A-11-256293, lithographic printing is performed at a homogenization temperature of 350 to 480 ° C., hot rolling is performed in multiple passes, and non-recrystallized after the final pass to obtain crystal grains having an average grain size of less than 50 μm. A method of manufacturing a plate base plate has been proposed.
[0013]
Japanese Examined Patent Publication No. 63-15978 proposes a lithographic printing plate support having good heat resistance, which contains Zr 0.02 to 0.20% by weight and does not cause recrystallization up to a temperature of 320 ° C.
[0014]
[Problems to be solved by the invention]
The following characteristics are required for an aluminum base plate for planographic printing plates.
(1) In order to obtain good printing durability, it is necessary to improve water retention and adhesion of the photosensitive film. Therefore, it is necessary for the base plate to easily obtain a uniform and dense rough surface by roughening treatment.
(2) When the support is manufactured, processing unevenness called streaks or image quality unevenness does not appear.
(3) Sufficient strength is required to prevent scratches such as dents due to impact during transportation and handling. Furthermore, bending workability when fixing to a printing press plate cylinder is required. Also, fatigue strength is required to ensure durability against repeated stress during printing. For this purpose, it is necessary to increase the tensile strength of the base plate to about 145 to 190 MPa.
(4) As a means for improving the printing durability, a method of performing heat treatment (processing called burning) at a high temperature after development is generally performed. The normal burning treatment is heated at a temperature of 200 to 280 ° C. for about 3 to 7 minutes, although it depends on the composition forming the image. Although the strength of the base plate is reduced by this treatment, it is necessary that the proof stress after the burning treatment at 270 ° C. for 7 minutes is 100 MPa or more.
(5) It is necessary that ink does not easily adhere to the non-image area during printing. Such a property is called ink stain resistance.
However, in the conventional general printing plate and the manufacturing method thereof as described above, it is very difficult to satisfy all the above characteristics at the same time, though each has advantages.
Therefore, in order to satisfy all the characteristics of the present invention, the composition of the aluminum alloy, the solid solution amount of the alloy component, the composite component amount of the solid solution amount, the crystal grain size of the surface, the crystal of the core region other than the surface layer The purpose is to provide a base plate that satisfies all the characteristics necessary for a base plate for a lithographic printing plate by controlling the grain size, the elongation rate of the crystal grains, the amount of single Si and the number of single Si exceeding a certain size. And
[0015]
Further, in recent years, cost reduction is desired for an aluminum alloy support for a lithographic printing plate. As a countermeasure, simplification of the manufacturing process is being studied. In the present invention, in particular, the lithographic printing plate in which the hot rolling method and the cold rolling method are controlled in order to simplify the omission of intermediate annealing and to simplify the cold rolling process and to control the deterioration of quality which is a detrimental effect of the simplification. An object of the present invention is to provide a method for producing an aluminum alloy base plate.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the aluminum alloy composition of the base plate, the solid solution amount and the composite solid solution amount of a specific alloy component, the crystal grain size and elongation (length / Width ratio), crystal grain size in the core region, single Si amount, and the number of single Si exceeding a specific size.
[0017]
That is, the aluminum alloy base plate for a lithographic printing plate according to the present invention is
(1) The following ingredients:
Fe: 0.10 to 0.40 wt%,
Si: 0.03-0.15 wt%,
Cu: 0.004 to 0.020 wt%,
Ti: 0.01 to 0.05 wt%,
Mg: 0.002-0.02 wt%,
Zr: 0.001 to 0.030 wt%,
B: 0.0001 to 0.02 wt%, and
The rest: aluminum and inevitable impurity elements
Consisting of
Fe solid solution amount is less than 30ppm,
Cu solid solution amount is less than 100ppm,
Zr solid solution amount is less than 200ppm,
Fe solid solution amount + (1/2) Zr solid solution amount ≧ 25 ppm,
(2) The surface layer region from the plate surface to a depth of at least 20 μm has the following conditions (A) and (B)
(A) The crystal grain width sD in the direction perpendicular to the rolling direction is less than 50 μm on average and less than 100 μm on the maximum, and
(B) The grain length sL in the rolling direction is 10 times or more than the grain width sD,
A cold-rolled processed structure satisfying
(3) The crystal grain width cD in the direction perpendicular to the rolling direction in the core region having a thickness of 2/3 or more of the plate thickness at the center of the plate thickness is 100 μm or more on average.
(4) The plate thickness is 0.1 to 0.5 mm, the tensile strength is 145 to 190 MPa, the proof stress after burning at 270 ° C. for 7 minutes is 100 MPa or more,
(5) The number of elemental Si is 30 ppm or less, and the number of elemental Si is 200 / mm with an equivalent circle diameter and a particle diameter of 0.5 μm or more per 0.5 μm depth of the base plate. 2 Is
It is characterized by that.
[0018]
The method for producing an aluminum alloy base plate for a lithographic printing plate of the present invention,
Fe: 0.10 to 0.40 wt%,
Si: 0.03-0.15 wt%,
Cu: 0.004 to 0.020 wt%,
Ti: 0.01 to 0.05 wt%,
Mg: 0.002-0.02 wt%,
Zr: 0.001 to 0.030 wt%,
B: 0.0001 to 0.02 wt%, and
The rest: aluminum and inevitable impurity elements
An aluminum alloy slab comprising: a method of performing hot rolling after performing homogenization treatment at less than 550 ° C. without performing homogenization treatment, and then cold rolling, and correcting as necessary,
The above hot rolling is performed under the following conditions:
Hot rolling start temperature: 300-480 ° C.
Starting temperature of the final pass: 300-380 ° C
End temperature of the final pass: 320-380 ° C
Final path distortion rate: 15 / sec or more, and
Thickness after hot rolling: 4.5 to 10 mm,
And then
The cold rolling is performed without intermediate annealing.
It is characterized by that.
[0019]
In a desirable mode of the present invention, the plate temperature after at least the final pass of the cold rolling is not less than the recovery temperature Less than 190 ° C And the final path Within 10 minutes, with a cooling rate of 5 ° C / minute or more Perform rapid cooling.
[0020]
In a more desirable embodiment of the present invention, the recovery temperature after cold rolling is 100 ° C. or higher. is there .
[0021]
In the present invention, a chemical composition is controlled as a basic condition for satisfying all the characteristics in an aluminum alloy base plate for a lithographic printing plate having a thickness of 0.1 to 0.5 mm.
The tensile strength of the base plate for an aluminum alloy support for a lithographic printing plate is controlled to 145 to 190 MPa by limiting the amount of each solid solution of Fe, Cu, and Zr to a specific value or less.
On the other hand, by ensuring the combined solid solution amount of Fe and Zr, that is, the Fe solid solution amount + (1/2) Zr solid solution amount above a specific value, the heat resistance is 270 ° C. and the proof stress after treatment for 7 minutes is 100 MPa. Control above.
Further, in the surface layer region of the base plate, the crystal grain width sD (crystal grain size perpendicular to the rolling direction) is reduced to a specific value or less, and at the same time, the crystal grain length sL with respect to the crystal grain width sD (the crystal in the rolling direction) The ratio of grain size), that is, the elongation rate, is increased to a specific value or more, thereby suppressing the occurrence of streak and image quality unevenness when the base plate is roughened to form a support. Further, in the core region of the base plate, the tensile strength is controlled to 145 to 190 MPa by increasing the crystal grain width cD (crystal grain size perpendicular to the rolling direction) to a specific value or more.
In addition to restricting the amount of simple Si to a specific value or less, and by limiting the number of single Si having a large equivalent particle diameter of 0.5 μm or more in the surface layer region to a specific value or less, it has good resistance to resistance. Ensure ink smearing. Here, “single Si” refers to Si contained in the alloy that is not dissolved in the alloy but is precipitated as Si particles.
[0022]
Moreover, in the manufacturing method of the base plate for aluminum alloy support bodies for lithographic printing plates of this invention, a chemical composition is controlled as a basic condition for satisfying all the said characteristics.
When the homogenization treatment is not performed or is performed, the homogenization treatment temperature is limited to less than a specific value, and by controlling the hot rolling start temperature, the respective solid solution amounts of Fe, Cu, and Zr are reduced to a specific value or less. While being able to reduce, the composite solid solution amount of Fe and Zr, that is, the Fe solid solution amount + (1/2) Zr solid solution amount, can be ensured to a specific value or more.
By controlling the hot rolling start temperature, the hot rolling final pass starting temperature, the hot rolling finishing temperature, the hot rolling final pass strain rate, the hot rolling finish plate thickness, The grains can be fine and elongated, that is, the width can be reduced and the length can be increased, and at the same time, the crystal grains in the core region can be coarsened.
[0023]
Furthermore, by making the plate temperature after at least the final pass of the cold rolling equal to or higher than the recovery temperature of the plate, the work-hardened plate is softened without performing intermediate annealing in the middle of cold rolling, and the desired strength and The plate thickness can be secured. At the same time, precipitation of elemental Si is suppressed by rapid cooling from a temperature equal to or higher than the recovery temperature after cold rolling. As a result, it is possible to produce an aluminum alloy base plate for a lithographic printing plate that has an appropriate strength and that suppresses ink stains in non-image areas during printing.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the components of the aluminum alloy in the present invention will be described.
<Fe: 0.10 to 0.40 wt%>
Fe is an element necessary for producing Al-Fe-based and Al-Fe-Si-based intermetallic compounds and refining crystal grains during casting. At the same time, there is an effect of securing strength. If the Fe content is less than 0.10 wt%, the grain refinement effect of the cast structure cannot be obtained, and coarse crystal grains are present, so that a rough surface obtained by chemical or electrochemical roughening treatment is present. The uniformity of the appearance of the chemical surface is impaired. On the other hand, when the Fe content exceeds 0.40 wt%, coarse compounds of Al—Fe and Al—Fe—Si are formed, and the local unevenness of chemical properties becomes remarkable, and the chemical rough surface The pit shape on the roughened surface or the electrochemically roughened surface becomes non-uniform and the water retention is reduced.
Since Fe is also an element usually contained as an impurity element in an Al alloy, it is necessary to use a high-purity Al alloy as a raw material in order to reduce the Fe content to less than 0.10 wt%. Also become.
<Si: 0.03-0.15 wt%>
Si is an element necessary for forming an Al—Fe—Si type fine intermetallic compound together with Fe, and its effect is insufficient when the Si content is less than 0.03 wt%. When the Si content exceeds 0.15 wt%, a coarse compound of Al—Fe—Si system is formed, and the local nonuniformity of chemical properties becomes remarkable, and the chemical roughened surface or the electrochemical roughened surface. The pit shape on the surface is non-uniform and water retention is reduced. Furthermore, if the Si content is excessive, simple Si is generated and the ink smearing property of the non-image area is promoted, which is not preferable.
Si is also an element contained as an impurity in the aluminum alloy, like Fe, and reducing the Si content to 0.03 wt% or less increases the cost as well as reducing Fe.
<Cu: 0.004 to 0.020 wt%>
Cu is an element that greatly affects electrochemical roughening. If the Cu content is 0.004 wt% or more, it is preferable because the pit density on the electrochemical roughened surface can be made appropriate. On the other hand, if the Cu content exceeds 0.020 wt%, the pit density on the electrochemically roughened surface becomes low, the pit size is too large, or an unetched region (roughened unfinished portion) occurs. . This impairs the water retention of the non-image area. Furthermore, it is not preferred because it promotes ink smearing during printing. Furthermore, as the Cu content increases, the Cu solid solution amount increases, and as a result, the tensile strength increases beyond the appropriate range.
<Ti: 0.01-0.05 wt%, B: 0.0001-0.02 wt%>
Ti and B are effective for refinement of crystal grains in the cast structure. Therefore, it is effective in preventing cracks during casting, and is effective in preventing the occurrence of streaks on the roughened surface due to the coarsening of crystal grains in the cast structure. B is added together with Ti and is effective for refining the crystal grain of the cast structure. The effect is greater than when only Ti is added. Ti is preferably 0.01 to 0.05 wt%, and B is preferably 0.0001 to 0.02 wt%.
[0025]
<Mg: 0.002 to 0.02 wt%>
Mg delays the precipitation of elemental Si and can extend the allowable time from the completion of cold rolling above the recovery temperature to the start of rapid cooling. Thereby, the operation | work of rapid cooling can be made easy. In addition, since the precipitation of elemental Si can be delayed by the presence of Mg, the temperature of the plate during cold rolling can be increased corresponding to the delay. Therefore, the tensile strength can be easily reduced by cold rolling at a high temperature. When the Mg content is less than 0.002 wt%, the above-described effects are small. On the other hand, if the Mg content exceeds 0.02 wt%, it becomes difficult to recover the cold-rolled sheet, and the tensile strength becomes too high to give desired strength.
[0026]
<Zr: 0.005-0.030 wt%>
Zr has the effect of improving heat resistance (burning resistance). If the Zr content is less than 0.005 wt%, the effect is insufficient. On the other hand, if the Zr content is 0.030 wt% or more, the heat resistance is good, but the tensile strength becomes too high. Further, the recrystallized grains of the aluminum alloy base plate are enlarged, and the presence of coarse crystal grains impairs the appearance uniformity of the chemically roughened surface or the electrochemically roughened surface.
[0027]
<Fe solid solution amount: less than 30 ppm, Cu solid solution amount: less than 100 ppm>
The amount of solid solution of Fe and the amount of solid solution of Cu affects the recovery of the cold rolled sheet. When the solid solution amount of Fe is 30 ppm or more and the solid solution amount of Cu is 100 ppm or more, it becomes difficult to recover the cold rolled sheet. The tensile strength becomes too high, and it becomes difficult to give a desired strength.
[0028]
<Zr solid solution amount is less than 200 ppm>
Solid solution Zr is effective in improving heat resistance (burning resistance). However, when the Zr solid solution amount is 200 ppm or more, the heat resistance is good, but it becomes difficult to recover the cold rolled sheet, and the tensile strength becomes too high. Furthermore, the recrystallized grains of the aluminum plate become large, and the presence of coarse crystal grains impairs the appearance uniformity of the chemically roughened surface or the electrochemically roughened surface.
[0029]
<Fe + (1/2) Zr solid solution amount ≧ 25 ppm>
Each of the Fe solid solution amount and the Zr solid solution amount is very small and is effective in heat resistance (burning resistance). However, as described above, as the solid solution amount of Fe and Zr increases, it becomes difficult to recover the cold-rolled sheet, and the tensile strength (tensile strength) becomes too high. Thus, as a result of examining the degree of the effect, it was found that heat resistance would not be impaired if the Fe solid solution amount + (1/2) Zr solid solution amount ≧ 25 ppm.
[0030]
<Impurity element>
As the impurity element, Mn, Cr, V, Zn, Ni, Ga, Li, Be, or the like may be contained. However, these impurities do not have a significant adverse effect as long as they are a trace amount of about 0.05 wt% or less.
[0031]
<Crystal width sD and length sL of surface layer region>
The surface layer region from the plate surface to at least 20 μm in depth is subjected to the following conditions (A) and (B)
(A) The crystal grain width sD in the direction perpendicular to the rolling direction is less than 50 μm on average and less than 100 μm on the maximum, and
(B) The grain length sL in the rolling direction is 10 times or more than the grain width sD,
A cold-rolled texture satisfying
As a result, the surface layer region of the base plate has a cold-rolled texture with a crystal grain size in the above specified range, thereby preventing the occurrence of image quality unevenness with a remarkable appearance during the surface roughening treatment. Here, the surface layer region of the base plate corresponds to a region removed by the roughening process of the base plate.
[0032]
<Grain width cD of core region>
The average value of the crystal grain width cD in the direction perpendicular to the rolling direction in the core region having a thickness of 2/3 or more of the plate thickness at the center of the plate thickness is set to 100 μm or more.
Thus, by limiting the crystal grain size of the core region, the cold rolled sheet recovers and a state having a predetermined tensile strength is ensured. When the core region has a non-recrystallized structure during hot rolling or has a particle size of less than 100 μm, it becomes difficult to recover the cold rolled sheet, and the tensile strength becomes too high. Moreover, in the non-recrystallized state, during cooling such as air cooling after the end of hot rolling, simple Si is likely to precipitate and the amount of simple Si increases, and also during the cold working, Precipitation is promoted, and as a result, the amount of elemental Si exceeds 30 ppm, which is not appropriate.
[0033]
<Amount of simple Si and the number of large simple Si>
The amount of simple Si is 30 ppm or less, and the number of simple Si having an equivalent circle diameter and a particle size of 0.5 μm or more is 200 / mm. 2 The following.
Precipitation from Si dissolved in the Al matrix to elemental Si tends to occur intensively in a portion where the dislocation density is high, and there is always an opportunity for precipitation in the manufacturing process of the base plate where dislocations are repeatedly generated by rolling. In particular, precipitation is promoted in the recovery temperature range below the recrystallization temperature during the rolling process.
If the amount of single Si exceeds 30 ppm, a large number of coarse single Si precipitated, aggregated and clustered is likely to be generated, which is not preferable. The deposited single Si is not easily anodized, and it is difficult to pass an electric current in the anodic oxide film treatment of the base plate, so that the film formed at the deposited portion becomes thin and it is difficult to obtain a film having a uniform thickness. Thin film portions are easily corroded by dampening water or the like repeated during printing, and the ink is liable to adhere to the corroded portions, which causes ink stains. Since the thickness of the anodized film formed on the roughened surface of the base plate is usually 0.1 to 1.0 μm, when the size of the single Si is increased, the thickness of the film is not only extremely disturbed. Furthermore, coarse single Si exceeding the film thickness comes to exist. 200 pieces / mm of simple Si having an average particle size of 0.5 μm or more are formed on the surface of the support obtained by coating the base plate. 2 If there are a large number exceeding, the ink smear defect becomes obvious. Preferably, 100 pieces / mm of single Si having an average particle size of 0.5 μm or more 2 It is as follows. Here, the average particle diameter of the simple substance Si is the measurement area represented by the equivalent circle diameter.
[0034]
Next, a method for producing an aluminum alloy base plate for a lithographic printing plate according to the present invention that satisfies the above requirements will be described.
The production of the aluminum alloy base plate of the present invention is basically performed by casting, chamfering, heating for hot rolling, hot rolling, and cold rolling processes, but if necessary, prior to heating for hot rolling. May be subjected to a homogenization treatment, or leveler correction may be performed after the final cold rolling.
[0035]
<Casting-facing>
An aluminum alloy ingot having the above composition, which has been melted by removing the surface, is cast by a conventional method. As this casting method, semi-continuous casting is suitable. The thickness of the semi-continuously cast ingot is suitably 500 to 600 mm. The ingot surface is chamfered before hot rolling.
<Homogenization treatment>
You may perform the homogenization process heated to high temperature rather than the heating for hot rolling before the heating for hot rolling. The homogenization treatment may be performed before or after the chamfering. The temperature of the homogenization treatment is less than 550 ° C. The holding time of the homogenization treatment is appropriately selected from the range of about 30 minutes to 24 hours in order to make the temperature of the entire ingot uniform. At a temperature of 550 ° C. or higher and holding for 24 hours or longer, the amount of Fe solid solution, the amount of Cu solid solution, the amount of Zr solid solution, etc. in the ingot becomes excessive, which is suitable for controlling within the specified range of the present invention. Not only that, but the cost increases, which is not preferable. From the homogenization temperature, holding at the heating temperature for hot rolling may be started immediately without waiting for cooling. Specifically, the ingot extracted from the homogenization furnace may be directly charged into a hot rolling heating furnace without being cooled.
[0036]
<Hot rolling>
Hot-rolling the chamfered ingot. Heating for hot rolling is performed at a temperature of 300 to 480 ° C. The holding time for heating for hot rolling is appropriately selected in the range of about 30 minutes to 5 hours according to the thickness of the ingot in order to make the temperature of the entire ingot uniform.
[0037]
The starting temperature of hot rolling is 300 to 480 ° C. If it is lower than 300 ° C., stable hot rolling cannot be performed, and if it is higher than 480 ° C., not only coarse recrystallized grains are generated during the hot rolling pass, but also Fe solid solution amount, Cu solid solution amount, Zr The amount of solid solution becomes excessive and exceeds the specified range of the present invention. Hot rolling is usually performed in several or more rolling passes.
[0038]
In the present invention, after controlling the hot rolling start temperature as described above, by controlling the final pass and end plate thickness of hot rolling as described below, the respective solid solution amounts of Fe, Cu, and Zr The composite solid solution amount, the crystal grain size in the surface region, and the crystal grain size in the core region can be controlled within the specified range of the present invention.
[The final pass and end thickness of hot rolling]
Starting temperature of final pass: 300-380 ° C
End temperature of final pass: 320-380 ° C
Final path distortion speed: 15 / sec or more
Final thickness of final rolling: 4.5-10mm
In the hot rolling, by controlling each condition of the final pass and the plate thickness after completion of the hot rolling as described above, the crystal grain size is within the above-described range necessary for the aluminum alloy base plate for a lithographic printing plate of the present invention. Can be controlled within.
In the prior art, since only the end temperature and end plate thickness of hot rolling were controlled, the control of the crystal grain size was insufficient, but in the present invention, the start temperature of the final pass and the strain rate of the final pass are also controlled. By controlling it, we succeeded in controlling the grain size.
The size of the crystal grain structure or subgrain structure during hot working is determined by the temperature and strain rate during hot working, but is also influenced by the metal structure of the material. In the present invention, the metal structure of the material is controlled by its chemical composition, the heating temperature for hot rolling, and in some cases, a homogenization treatment of less than 550 ° C. Furthermore, since normal coiling is performed after hot rolling, the size of the crystal grains after hot rolling is determined by the size of the grain structure or subgrain structure during hot working and the end temperature of hot rolling. . Here, the strain rate v is v = ε / t (sec when the strain is ε and the rolling time is t. -1 ). Here, the strain ε is a logarithmic strain expressed by ε = 1n (h1 / h2) when the plate thicknesses before and after the final pass are h1 and h2, respectively.
[0039]
In order to control the crystal grain size of the surface layer region and the crystal grain size of the core region within the specified range required for the aluminum alloy base plate for a lithographic printing plate of the present invention, the final pass start temperature and the final pass during hot rolling It is necessary to control the end temperature, the final pass strain rate, and the hot rolling end plate thickness as described above. Each of these conditions affects the grain structure, and all conditions must be satisfied at the same time. The reasons for limiting each condition are as follows.
◇ Final pass start temperature
The final pass start temperature of hot rolling needs to be 300 to 380 ° C. When the final pass start temperature is less than 300 ° C., the core region of the hot-rolled sheet is not recrystallized, and crystal grains having an average grain size of 100 μm or more cannot be obtained. Further, when the final pass start temperature exceeds 380 ° C., sufficient strain is not introduced, so the crystal grains on the surface portion of the hot rolled sheet become coarse, and the average grain size in the surface layer region of the base sheet after cold rolling Fine crystal grains having a diameter of 50 μm or less and a maximum particle diameter of 100 μm or less cannot be obtained.
◇ End temperature of hot rolling
The end temperature of hot rolling needs to be 320 to 380 ° C. Since the hot-rolled sheet after hot rolling is usually wound into a coil, the hot-rolled sheet is held at a temperature substantially equal to the hot-rolling end temperature for a certain period of time. When the hot rolling finish temperature is less than 300 ° C., even if the coil is held at this temperature, the core region of the hot rolled plate remains unrecrystallized, and crystal grains having an average grain size of 100 μm or more are obtained. I can't. On the other hand, when the hot rolling finish temperature exceeds 380 ° C., recrystallization occurs when the temperature is maintained at this temperature in the coil state, and the crystal grains on the surface of the hot rolled sheet become coarse, and cold rolling is performed. Fine crystal grains having an average grain size of 50 μm or less and a maximum grain size of 100 μm or less cannot be obtained in the subsequent surface layer region of the base plate.
◇ Final path distortion speed
The strain rate of the final pass of hot rolling needs to be 15 / sec or more. As described above, the strain rate has parameters such as strain and rolling time, and is a function of the rolling speed, the roll diameter, the amount of reduction, and the like. When the strain rate is less than 15 / sec, (1) sufficient processing strain cannot be obtained, the crystal grains on the surface of the hot-rolled plate become coarse, and the average grain size in the surface layer region of the cold-rolled plate Fine crystal grains having a maximum grain size of 100 μm or less cannot be obtained. (2) No processing strain is introduced into the core region, the core region of the hot-rolled sheet is not recrystallized, and the average grain size is 100 μm or more. Crystal grains cannot be obtained.
◇ Hot rolled finished plate thickness
The finished thickness of the hot rolling needs to be 4.5 to 10 mm. If the finished plate thickness is less than 4.5 mm, the temperature drop during hot rolling is large, so the hot rolling finish temperature necessary for the present invention cannot be ensured. On the other hand, if the finished plate thickness of hot rolling is thicker than 10 mm, (1) no strain is introduced into the core region and the necessary recrystallized grain size cannot be obtained, and (2) necessary in the subsequent cold rolling. As a result, the number of passes increases, resulting in an increase in cost and at the same time limiting the omission of intermediate annealing.
[0040]
<Cold rolling>
After hot rolling, cold rolling is performed. Simplify the manufacturing process and reduce costs by omitting intermediate annealing during cold rolling. In order to eliminate the hardening due to the rolling process, the cold rolled sheet omitting the intermediate annealing is cold rolled so that at least the temperature of the sheet after the final cold rolling pass becomes equal to or higher than the recovery temperature of the sheet. The recovery temperature of the plate varies depending on the alloy composition of the ingot, the Fe solid solution amount, the Cu solid solution amount, the Zr solid solution amount, and the accumulated strain amount during processing. If the alloy composition and the respective solid solution amounts of Fe, Cu, and Zr are within the specified ranges of the present invention, recovery starts at a temperature of about 100 ° C. with a reduction of 50%. The lower the solid solution amount of Fe, Cu, and Zr, and the higher the degree of processing, the lower the recovery, and the higher the degree of recovery. On the other hand, when the amount of each solid solution of Fe, Cu, and Zr is high, or when the degree of processing is low, the recovery starts at a higher temperature and the degree of recovery is low.
In order to bring the temperature of the plate above the recovery temperature in cold rolling, the following methods are conceivable. For example, the initial temperature of the coil to be cold-rolled is heated to the recovery temperature or higher, and cold rolling is started. However, this method does not provide a significant energy saving effect. In addition, when the initial temperature of the coil to be cold rolled is started from around room temperature, the reduction rate of the cold working is set to be large so that the processing heat is generated on the plate. This method saves energy and reduces the number of rolling operations. For this purpose, the rolling reduction is preferably 40% or more, and more preferably 45% or more.
[0041]
The most preferable method for ensuring the recovery temperature or higher after at least the final pass is to rapidly bring the plate to the recovery temperature or higher with the processing heat due to the deformation while plastically deforming the plate as in the latter case.
For example, when cold rolling is performed at a rolling speed of 500 to 2000 m / min and a 6 mm thick plate at room temperature (40 ° C.) is cold rolled to 3 mm thickness (50% reduction), the plate temperature is The temperature rises to about 100 ° C. Subsequently, when this 100 ° C. plate is rolled to a thickness of 1 mm (rolling rate 67%), the plate temperature rises to about 150 ° C. When the plate that has risen above the recovery temperature is rolled to a thickness of 0.5 mm (rolling ratio 50%), the plate temperature rises to about 170 ° C. When this plate is further rolled as a final roll to a thickness of 0.25 mm (50% reduction), the heat dissipation per unit volume from the plate increases, and the plate temperature becomes about 130 ° C. This plate temperature is sufficient for the recovery. In this case, the amount of processing strain accumulated during cold rolling is also very high.
[0042]
Although the final cold-rolled sheet wound at this temperature is recovered, the amount of residual strain is large. Therefore, during cooling for a long time, such as air cooling, solid solution Si precipitates as simple substance Si. It is easy. Therefore, it is desirable that rapid cooling be performed to 80 ° C. or less immediately after the end of cold rolling or within 10 minutes. As a guideline, the cooling rate for rapid cooling is 5 ° C./min or more. As a method of rapid cooling, a method using a refrigerant such as a method of passing a cooling chamber immediately after the final cold rolling, a method of immersing a wound coil in a refrigerant, a method of applying a refrigerant to the coil, or the like is preferable. In this way, at least after the final cold rolling pass, preferably within 10 minutes, more preferably immediately after the final cold rolling, rapid cooling is performed to suppress precipitation of solute Si into elemental Si.
[0043]
On the other hand, even if the cold rolling process is performed at the above plate temperature, if at least one of the solid solution amounts of Fe, Cu, and Zr is larger than the limit range of the present invention, the solid solution atoms suppress recovery of strain. Therefore, recovery is not performed sufficiently. In this case, it is not appropriate to set the recovery temperature to a high temperature of 190 ° C. or more so as to ensure sufficient recovery, which not only promotes precipitation of simple Si but also deviates from normal cold rolling conditions. .
In the case of cold rolling in consideration of the above conditions, even if the intermediate annealing step is omitted, the tensile strength (tensile strength) of the cold rolled sheet is 145 to 190 MPa, and the amount of simple substance Si is 30 ppm or less. When an anodized film of 0.1 to 1.0 μm is formed on the roughened surface, a simple substance having a circle equivalent diameter and a particle size of 0.5 μm or more is obtained. 200 Si / mm 2 The following aluminum alloy support for a lithographic printing plate can be obtained.
[0044]
【Example】
[Example 1]
<Preparation of ingot>
Aluminum alloy melts having various chemical compositions shown in Table 1 were melted. Each molten aluminum alloy was made into an aluminum alloy ingot having a thickness of 560 mm by a semi-continuous casting method, and was made to have a thickness of 540 mm by chamfering on both sides.
[0045]
[Table 1]
Figure 0004110353
[0046]
<Hot rolling>
Next, the above ingot was subjected to a homogenization treatment that was held at a temperature of 500 ° C. for 2 hours, and then the hot rolling start temperature was lowered to 390 ° C. in the same furnace and held for 1 hour. Using a reversible hot rolling mill with a work roll diameter of 900 mmφ, hot rolling is performed under the conditions of 15 rolling passes and a time between passes of 10 seconds to 1.5 minutes to obtain a hot rolled plate having a thickness of 6 mm. It was. Here, the final pass of the hot rolling was reduced from 18 mm thickness to 6 mm thickness (rolling rate 67%), the final pass starting temperature was 360 ° C., and the hot rolling was finished at 350 ° C. The rolling speed of the final pass was 100 m / min. The rolling time is 0.044 seconds, the strain (logarithmic strain) is 1.10, and the strain rate v is 25.0 sec. -1 Met.
[0047]
<Cold rolling>
Next, the hot rolled sheet at room temperature (40 ° C.) was cold-rolled. The cold rolling speed was 500 to 2000 m / min. However, the rolling speed was increased as the plate thickness decreased. The cold rolling method was a method in which a cold rolled plate was wound up after each pass to form a coil and used for the next pass.
The first cold rolling pass was performed with a plate thickness of 6 mm → 3 mm. The rolling end temperature was 90 ° C. Immediately, a second cold rolling pass was performed with a plate thickness of 3 mm → 1 mm. The rolling end temperature was 150 ° C. Subsequently, rapid cooling was performed to 110 ° C. at a cooling rate of 10 ° C./min. In the rapid cooling, the coil was placed in the tank and cooled by spraying an oily refrigerant liquid. And the cold rolling 3rd pass was performed by plate | board thickness 1mm-> 0.5mm. The rolling end temperature was 150 ° C. Immediately, the fourth cold rolling pass was performed from 0.5 mm to 0.24 mm. The rolling end temperature was 120 ° C. The coil after the cold rolling was rapidly cooled to room temperature at a cooling rate of 10 ° C./min. The cooling method was the same as the rapid cooling method after the second cold rolling pass. Thereafter, correction was performed by a tension leveler to obtain an aluminum alloy base plate for a lithographic printing plate.
[0048]
<Evaluation of characteristics>
With respect to each of the aluminum alloy base plates of the present invention examples and comparative examples of alloy codes A to J obtained as described above, (A) hot-rolled plate according to the evaluation and measurement methods described in (1) to (10) below , Crystal grain width of the surface portion (crystal grain size perpendicular to the rolling direction) and crystal grain width of the core region, and (B) aluminum alloy base plate obtained by cold rolling, each of Fe, Cu, Zr solid Amount of dissolved Si, the amount of simple Si and the number of simple Si having an average grain size of 0.5 μm or more, the crystal grain width and elongation of the surface layer region, the crystal grain width of the core region, the electrolytic roughened surface after the electrolytic roughing treatment The uniformity, roughness of the roughened appearance, tensile strength, proof stress after burning treatment, and ink stain resistance were evaluated and measured. The results are shown in Table 2.
[0049]
(1) Measurement of crystal grain size of hot rolled sheet
Each aluminum alloy hot-rolled plate is exposed to the surface and core region by electrolytic polishing, etc., anodized with Barker's solution (11 ml / 1 borofluoric acid solution), and then observed with a polarizing microscope It was. The crystal grain width (size in the direction perpendicular to the rolling direction) was measured using a linear method. The observation with a polarizing microscope was performed at a magnification of 400 times, and a line segment having a length of 60 mm (actual length: 150 μm) was measured at 10 positions on the photograph, and the average value was used. Large crystal grains were observed at a low magnification.
[0050]
(2) Measurement of each solid solution amount of Fe, Cu, Zr
The aluminum alloy base plate is dissolved with hot phenol, the dissolved matrix and the intermetallic compound as the dissolution residue are filtered, and the fine intermetallic compound that has passed through the filtration is separated by extraction with a 10% citric acid solution. Each amount of Fe, Cu, and Zr as solid-dissolved elements in the liquid was measured with an ICP emission analyzer.
[0051]
(3) Measurement of the amount of simple Si
Aluminum alloy base plate with HCl: H 2 O 2 = Dissolved with a 1: 1 solution, the filter residue was decomposed with NaOH solution, neutralized, and ammonium molybdate was added to produce silicomolybdenum yellow. When the concentration was high, it was reduced with a sulfonic acid reducing solution to produce molybdenum blue, the absorbance was measured, and converted from a calibration curve to obtain the amount of simple Si.
[0052]
(4) Measurement of the number of elemental Si with a particle size of 0.5 μm or more
The base plate for an aluminum alloy support was etched very slowly with 1% NaOH to a depth of 0.5 μm, and then mapping analysis of Fe and Si was performed with an X-ray microanalyzer. Of these, only Si that does not coexist with Fe was used as an average particle diameter by converting the area occupied by the corresponding particles into a circle by using an image analyzer (LUZEX F manufactured by Nireco Co., Ltd.). Those having an equivalent circle diameter of 0.5 μm or more were counted.
The surface etched with 1% NaOH contains intermetallic compounds and simple substance Si, and the particles detected by Fe and Si mapping analysis coincide with the SEM observation images. These remain after etching. And the results of mapping analysis of Fe and Si using an X-ray microanalyzer were considered to exist at an etching depth of 0.5 μm.
[0053]
(5) Measurement of crystal grain size of aluminum alloy base plate
An aluminum alloy base plate is exposed by electrolytic polishing or the like to expose a surface layer region having a depth of 10 μm from the surface and a core region of 120 μm from the surface. After anodizing with Barker's solution (11 ml / 1 borofluoric acid solution), using a polarizing microscope, Crystal grain observation was performed. Using the linear method, the crystal grain width (crystal grain size perpendicular to the rolling direction) and the elongation ratio of the crystal grains in the surface region (the ratio of the length to the crystal grain width. Length = the crystal grain size in the rolling direction) were measured. . In addition, about the crystal grain width, the polarizing microscope observation was performed by 400 time, the measurement about the line segment of length 60mm (actual length of 150 micrometers) on the photograph was performed at ten places, and the average value was used. Large crystal grains were observed at a low magnification. With respect to the elongation rate of the crystal, observation with a polarizing microscope was performed at a magnification of 100, the width and length of 50 arbitrary crystal grains were measured, and the average value was used.
Basically, the crystal grains of the base plate obtained by cold rolling were only stretched by cold rolling, and the crystal grain width was equivalent to the crystal grain width of the hot rolled plate. Furthermore, the elongation of the crystal grains was equivalent to the elongation of the cold-rolled plate from the hot-rolled plate.
[0054]
(6) Evaluation of uniformity of electrolytic roughened surface
The aluminum alloy base plate was subjected to brush graining in a Bamiston / water suspension, and then subjected to alkali etching and desmutting treatment.
Next, electrolytic surface roughening was performed by electrolytic etching using a power source having an electrolytic waveform with alternating polarities in 1% nitric acid so that the amount of electricity during anode becomes 150 coulomb / dm2.
After washing in sulfuric acid, the surface was observed with a scanning electron microscope (SEM). The evaluation was “good (◯)” for those with uniform grain, and “bad (×)” for those with many unetched parts or uneven grain.
[0055]
(7) Evaluation of appearance of electrolytic roughened surface
The aluminum alloy base plate was subjected to brush graining in a Bamiston / water suspension, and then subjected to alkali etching and desmutting treatment.
Next, electrolytic surface roughening was performed by electrolytic etching using a power source having an electrolytic waveform with alternating polarities in 1% nitric acid so that the amount of electricity during anode becomes 150 coulomb / dm2.
After washing in sulfuric acid, an anodized film was formed in sulfuric acid, and the appearance uniformity was evaluated by visual observation of the surface. The evaluation is “good (◯)” when the appearance is uniform, “slightly poor (Δ)” when the streaks are not uniform enough and the appearance is acceptable, and streaks are not uniform. Those in which, for example, were observed were defined as “defective (×)”.
[0056]
(8) Tensile strength measurement
A JIS No. 13 B tensile test piece was prepared from the aluminum alloy base plate, a tensile test was performed, and the tensile strength σ B Was measured.
[0057]
(9) Measurement of yield strength after burning
After subjecting the aluminum alloy base plate to a burning treatment at 270 ° C. for 7 minutes, a JIS No. 13 B tensile test piece was prepared and subjected to a tensile test. 0.2 Was measured.
[0058]
(10) Evaluation of ink stain resistance
A printing original plate was produced from an aluminum alloy base plate, set on an offset printing machine KOR, printed 100,000 copies, and visually evaluated for the presence of ink stains in non-image areas. As a result, “good (◯)” indicates that no ink smear was observed, “slightly defective (Δ)” indicates that a large amount was observed, and “defective (×)” indicates that a very large amount was observed.
[0059]
[Table 2]
Figure 0004110353
[0060]
As shown in Tables 1 and 2, Sample Nos. I-1 to I-6, which are examples of the present invention, indicate that the chemical composition of the aluminum alloy is within the specified range of the present invention, and within the specified range of the present invention. Due to the hot rolling heating temperature, hot rolling conditions, and cold rolling conditions, the solid solution amount of Fe, Cu, and Zr of the aluminum alloy base plate is within an allowable range, the amount of single Si and 0.5 μm diameter or more Fewer large particles and a crystal grain size within an acceptable range, a uniform electrolytic roughened surface is obtained, the roughened surface has a uniform appearance without streak, has the required strength, and is heat resistant. A base plate excellent in ink stain resistance was obtained.
[0061]
On the other hand, sample numbers I-7 to I-10, which are comparative examples, are hot and cold rolled within the specified range of the present invention because the chemical composition of the aluminum alloy is outside the specified range of the present invention. In spite of the above conditions, the solid solution amount of Fe, Cu, Zr of the aluminum alloy base plate, or the amount of single Si and the number of large particles having a diameter of 0.5 μm or more and the crystal grain size are outside the allowable range. As a result, among the characteristics required for the present invention, the uniform electrolytic roughened surface, or the roughened surface is streaks and the appearance is non-uniform, out of the required strength range, The ink was inferior and the necessary ink stain resistance was not obtained. The individual comparative examples are as follows.
[0062]
Sample number I-7 of the comparative example, because the amount of Mg is more than the specified range of the present invention among the chemical components of the aluminum alloy, even though cold rolling was performed under conditions within the specified range of the present invention, The tensile strength is outside the allowable range.
Sample No. I-8 in Comparative Example has a lower Mg content than the prescribed range of the present invention among the chemical components of the aluminum alloy, so cold rolling and rapid cooling were performed under conditions within the defined range of the present invention. Regardless of this, precipitation during cold rolling caused the amount of simple Si and the number of coarse single Si of 0.5 μm or more to exceed the specified range of the present invention, and the necessary ink stain resistance was not obtained.
Sample No. I-9 in Comparative Example has a larger amount of Zr in the chemical composition of the aluminum alloy than the specified range of the present invention, so the amount of Zr solid solution also increases, and the tensile strength is outside the allowable range of the present invention. It has become.
Sample No. I-10 of the comparative example has a Zr amount of the chemical components of the aluminum alloy that is less than the specified range of the present invention, so that the Zr solid solution amount is also small and the required proof strength after burning cannot be obtained.
[0063]
[Example 2]
<Preparation of ingot>
The chemical composition within the specified range of the present invention is Fe: 0.32 wt%, Si: 0.07 wt%, Cu: 0.012 wt%, Ti: 0.02 wt%, Mg: 0.008 wt%, Zr: 0.0. 013 wt%, B: 0.0004 wt%, balance: A molten aluminum alloy substantially consisting of aluminum and inevitable impurities was melted. This molten metal was made into an aluminum alloy ingot having a thickness of 560 mm by a semi-continuous casting method, and was made to have a thickness of 540 mm by chamfering on both sides.
<Hot rolling>
Next, the aluminum alloy ingot was subjected to a homogenization treatment for 2 hours at various temperatures shown in Table 3 without being homogenized, and then to various hot rolling start temperatures shown in Table 3. Hold for 1 hour. Using a reversible hot rolling mill with a work roll diameter of 900 mmφ, hot rolling was performed under the conditions of 15 rolling passes and a time between passes of 10 seconds to 1.5 minutes, and various thicknesses shown in Table 3 were obtained. A hot rolled sheet was obtained. Table 3 summarizes the homogenization temperature, the hot rolling start temperature, the hot rolling final pass start temperature, the plate thickness before the final pass, the final plate thickness, the final pass strain rate, and the hot rolling end temperature.
[0064]
[Table 3]
Figure 0004110353
[0065]
<Cold rolling>
Next, the hot rolled sheet at room temperature (40 ° C.) was cold-rolled. The cold rolling speed was 500 to 2000 m / min. However, the rolling speed was increased as the plate thickness decreased. The cold rolling method was a method in which a cold rolled plate was wound up after each pass to form a coil and used for the next pass.
The first cold rolling pass was performed with a plate thickness of 6 mm → 3 mm. The rolling end temperature was 90 ° C. Immediately, a second cold rolling pass was performed with a plate thickness of 3 mm → 1 mm. The rolling end temperature was 150 ° C. Subsequently, rapid cooling was performed to 110 ° C. at a cooling rate of 10 ° C./min. The rapid cooling was performed by placing a coil in an oil-based refrigerant liquid spray tank. And the cold rolling 3rd pass was performed by plate | board thickness 1mm-> 0.5mm. The rolling end temperature was 150 ° C. Immediately, a fourth cold rolling pass was performed from 0.5 mm to 0.24 mm. The rolling end temperature was 120 ° C. The coil after the cold rolling was rapidly cooled to room temperature at a cooling rate of 10 ° C./min. The cooling method was the same as the rapid cooling method after the second cold rolling pass. Thereafter, correction was performed by a tension leveler to obtain an aluminum alloy base plate for a lithographic printing plate.
[0066]
<Evaluation of characteristics>
About each aluminum alloy base plate of the present invention example of sample numbers II-1 to II-6 obtained by the above and II-7 to II-15 comparative example, by the evaluation and measurement method explained in Example 1, (A ) The crystal grain width of the surface portion of the hot rolled sheet and the crystal grain width of the core region, (B) The solid solution amount of Fe, Cu, Zr and the amount of simple substance Si for the aluminum alloy base plate obtained by cold rolling In addition, the number of elemental Si having an average grain size of 0.5 μm or more, the crystal grain width in the surface layer region, the elongation rate, the crystal grain width in the core region, the uniformity of the electrolytic roughened surface after the electrolytic roughening treatment, and roughening Evaluation and measurement of appearance uniformity, tensile strength, proof stress after burning treatment, and ink stain resistance were performed. The results are shown in Table 4.
[0067]
[Table 4]
Figure 0004110353
[0068]
In Tables 3 and 4, Sample Nos. II-1 to II-6, which are examples of the present invention, are such that the chemical composition of the aluminum alloy is within the specified range of the present invention, and the hot rolling conditions and cold rolling conditions are By being within the specified range of the present invention, the solid solution amounts of Fe, Cu, and Zr of the aluminum alloy base plate are within the allowable range, and there are few simple Si amounts and large particles having a diameter of 0.5 μm or more. The size is within the allowable range. As a result, a uniform electrolytic roughened surface is obtained, the roughened surface has a uniform appearance without streak, etc., has the required strength, excellent heat resistance, and ink stain resistance. A base plate with good properties was obtained.
[0069]
In contrast, Sample Nos. II-7 to II-15, which are comparative examples, have a hot rolling heating temperature or a hot rolling condition outside the specified range of the present invention. Despite the fact that the hot rolling conditions are within the specified range of the present invention, the solid solution amount of Fe, Cu, Zr of the aluminum alloy base plate, or the amount of single Si and large particles or crystal grain sizes of 0.5 μm diameter or more As a result, among the characteristics required for the present invention, the uniform electrolytic roughened surface, or the roughened surface is streak and the appearance is not uniform, or the required strength Out of range, heat resistance was inferior, and necessary ink stain resistance was not obtained. The individual comparative examples are as follows.
[0070]
Sample No. II-7 of Comparative Example is a cold-rolled base plate because the hot-rolling start temperature is higher than the specified range of the present invention and the crystal grain size of the hot-rolled plate surface portion becomes coarse. In addition, the crystal grains in the surface layer region become coarse, and as a result, streaks are observed on the roughened surface and the appearance becomes non-uniform. Furthermore, the solid solution amount of Fe and Cu has become higher than the specified range of the invention, and the tensile strength is out of the allowable range even if cold rolling is performed under the conditions of the specified range of the present invention. .
Sample No. II-8 of Comparative Example was subjected to homogenization at a temperature exceeding the limit range of the present invention, so that not only the solid solution amount of Fe and Cu became higher than the specified range of the present invention but also fine precipitates. Therefore, even when hot rolling was performed under the conditions within the specified range of the present invention, the crystal grains in the core portion were smaller than the specified range of the present invention. Therefore, even when cold rolling is performed under conditions within the specified range of the present invention, work hardening is promoted and the tensile strength is higher than the allowable range of the present invention.
In Comparative Example Sample No. II-9, the final pass start temperature of hot rolling is higher than the specified range of the present invention, so the crystal grains on the surface of the hot rolled plate become coarse, and as a result, cold The base plate after rolling had streaks on the roughened surface, and the appearance was uneven.
Sample No. II-10 of the comparative example has a very small crystal grain size on the surface of the hot rolled plate because the final pass start temperature and end temperature of the hot rolling are lower than the specified range of the present invention. Since this was not recrystallized, the processing strain was very large in the core region of the base plate, and as a result, the tensile strength was high. Moreover, due to the large processing strain, precipitation of simple Si during cold rolling was promoted, and the ink stain resistance was slightly lowered.
Since the sample number II-11 of the comparative example has a hot rolling final pass start temperature and an end temperature higher than the specified range of the present invention, the crystal grains on the surface of the hot rolled plate become coarse. As a result, the crystal grains in the surface region of the base plate obtained by cold rolling became coarse, streaks were observed on the roughened surface, and the appearance became non-uniform.
Since the sample number II-12 of the comparative example had a low strain rate due to the slow rolling speed of the final hot rolling pass, the end temperature was lower than the specified range of the present invention. For this reason, the crystal grains on the surface of the hot rolled sheet become coarse, and the core region becomes unrecrystallized. As a result, the crystal grains in the surface layer region of the base plate become coarse, streaks appear on the roughened surface and the appearance becomes non-uniform, and the processing strain in the core region of the base plate becomes very large. Therefore, the tensile strength exceeded the specified range of the present invention. In addition, since the processing strain is large, the amount of simple Si increases during rolling, and the ink stain resistance is slightly inferior.
Sample No. II-13 of the comparative example has a low strain rate because the plate thickness before the final pass of hot rolling is small, the crystal grains on the surface of the hot rolled plate become coarse, and the core region has not been re-executed. It becomes a crystal. As a result, the crystal grains in the surface layer region of the support become coarse, streaks appear on the roughened surface and the appearance becomes non-uniform, and processing distortion is very high in the core region of the support. It becomes large and the tensile strength becomes high. In addition, since the processing strain is large, the amount of simple Si increases during rolling, and the ink stain resistance is slightly inferior.
Sample No. II-14 of the comparative example has a low strain rate because the rolling speed of the final hot rolling pass is low, and the crystal grain size on the surface of the hot rolled sheet becomes coarse. As a result, the crystal grains in the support surface layer region become coarse, streaks appear on the roughened surface, and the appearance becomes non-uniform.
Sample No. II-15 of Comparative Example has a hot rolled final plate thickness thinner than the prescribed range of the invention, so the crystal grain size on the surface of the hot rolled plate was small within the prescribed range of the invention. Since the processing strain has been strongly introduced, the processing strain becomes very large in the core region of the support and the tensile strength becomes high.
[0071]
Example 3
<Preparation of ingot>
A molten aluminum alloy having the chemical composition shown in Table 5 within the specified range of the present invention was melted. This molten metal was made into an aluminum alloy ingot having a thickness of 560 mm by a semi-continuous casting method, and was made to have a thickness of 540 mm by chamfering on both sides.
[0072]
[Table 5]
Figure 0004110353
[0073]
<Hot rolling>
Next, the aluminum alloy ingot was subjected to a homogenization treatment of holding at a temperature of 500 ° C. for 2 hours, and then lowered to a hot rolling start temperature of 390 ° C. in the same furnace and held for 1 hour. Using a reversible hot rolling mill with a work roll diameter of 900 mmφ, hot rolling was performed under the conditions of 15 rolling passes and a time between passes of 10 seconds to 1.5 minutes to obtain a hot rolled plate having a thickness of 6 mm. . Here, the final pass of the hot rolling was reduced from 18 mm thickness to 6 mm thickness (rolling rate 67%), the final pass starting temperature was 360 ° C., and the hot rolling was finished at 350 ° C. The rolling speed in the final pass was 100 m / min. The rolling time is 0.044 sec, the strain (logarithmic strain) is 1.10, and the strain rate ε is 25.0 sec. -1 Met.
[0074]
<Cold rolling>
Next, the hot rolled sheet at room temperature (40 ° C.) was cold-rolled. The cold rolling speed was 500 to 2000 m / min. However, the rolling speed was increased as the plate thickness decreased. The cold rolling method was a method in which a cold rolled plate was wound up after each pass to form a coil and used for the next pass.
Table 6 shows the conditions in each pass of cold rolling. Sample No. III-1 of the comparative example is shown in Table 6 with 6-pass cold rolling, thickness 6 mm → 3.5 mm → 2 mm → 1.2 mm → 0.7 mm → 0.42 mm → 0.25 mm. Performed at each rolling temperature. For cooling after 2 passes of cold rolling and 4 passes of cold rolling, the coil was forcibly cooled by a fan. The cooling rate by this was 0.2 degreeC / min.
Sample Nos. III-2 and III-3 of Comparative Examples and Sample Nos. III-4 and III-5 of Examples were subjected to 4 passes of cold rolling, thickness 6 mm → 3 mm → 1 mm → 0.5 mm → 0.24 mm. I went there. It carried out at each cold rolling temperature shown in Table 6. When cooling was performed after two passes of cold rolling, the coil was rapidly cooled at a cooling rate of 10 ° C./min until the start of rolling in the third pass of cold rolling. The cooling method after the final four cold rolling passes is to cool rapidly to room temperature at a cooling rate of 10 ° C./min, by placing a coil in an oil-based refrigerant liquid spray tank, The forced cooling was performed at 2 ° C./min, and the method was air cooling with a fan. Table 6 summarizes the cold rolling temperatures and cooling rates when cooling is performed in the comparative examples and examples.
Thereafter, correction was performed with a tension leveler to obtain a base plate for an aluminum alloy support for a lithographic printing plate.
[0075]
[Table 6]
Figure 0004110353
[0076]
<Evaluation of characteristics>
About each aluminum alloy base plate of the present invention example and comparative example of sample numbers III-1 to III-5 obtained by the above, by the evaluation and measurement method described in Example 1, the surface of (A) hot rolled plate Crystal grain width of core part and crystal grain width of core region, (B) about aluminum alloy base plate obtained by cold rolling, each solid solution amount of Fe, Cu, Zr, simple substance Si amount and average grain size 0.5 μm The number of the above single Si, the crystal grain width of the surface layer region, the elongation rate, the crystal grain width of the core region, the uniformity of the electrolytic roughened surface after the electrolytic roughening treatment, the uniformity of the roughened appearance, the tensile strength The proof stress after burning treatment and the ink stain resistance were evaluated and measured. The results are shown in Table 7.
[0077]
[Table 7]
Figure 0004110353
[0078]
In Tables 5, 6, and 7, sample numbers III-4 to III-5, which are examples of the present invention, indicate that the chemical composition of the aluminum alloy is within the specified range of the present invention, and hot rolling within the specified range of the present invention. The amount of solid solution of Fe, Cu, Zr in the base plate for the support is within an allowable range due to the heating temperature, the hot rolling conditions, and the cold rolling conditions. The number of Si particles is also within the specified range of the present invention, and because the crystal grain size is within the allowable range, a uniform electrolytic roughened surface is obtained, and the roughened surface is uniform in appearance without streak, A base plate having the required strength, excellent heat resistance, and good ink stain resistance was obtained.
[0079]
On the other hand, sample numbers III-1 to III-3 which are comparative examples have cold rolling conditions, or cooling conditions during or after cold rolling are outside the specified range of the present invention. Regardless of the chemical composition of the aluminum alloy within the specified range, the heating temperature for hot rolling, and the hot rolling conditions, the amount of single Si in the base plate for the support and the number of large single Si particles other than 0.5 μm in diameter are large. Out of the allowable range of the present invention, as a result, among the characteristics required for the present invention, the necessary ink stain resistance could not be obtained, or it was out of the required tensile strength range. The individual comparative examples are as follows.
[0080]
Since the sample number III-1 of the comparative example does not reach the recovery temperature or higher in the cold rolling, the tensile strength becomes higher than the specified range of the present invention.
Sample numbers III-2 and III-3 of the comparative examples were used in the cold rolling in which all cold rolling 4 passes were continuously performed and a cold rolling temperature equal to or higher than the recovery temperature was obtained. Since rapid cooling was not performed after cold rolling and sufficient cooling was not performed by forced cooling with a fan, the amount of single Si and the number of large single Si particles having a diameter of 0.5 μm or more were outside the allowable range of the present invention. As a result, the necessary ink stain resistance among the characteristics required for the present invention could not be obtained.
[0081]
【The invention's effect】
According to the present invention, the uniformity of the roughened surface and the uniformity of the appearance are high, and the roughening treatment does not cause processing unevenness such as streak and image quality unevenness, and has both necessary strength and bending workability. Therefore, there is provided an aluminum alloy base plate for a lithographic printing plate having an appropriate range of tensile strength and sufficient strength after burning, and having excellent ink stain resistance.

Claims (4)

平版印刷版用アルミニウム合金素板であって、
(1)下記の成分:
Fe:0.10〜0.40wt%、
Si:0.03〜0.15wt%、
Cu:0.004〜0.020wt%、
Ti:0.01〜0.05wt%、
Mg:0.002〜0.02wt%、
Zr:0.001〜0.030wt%、
B:0.0001〜0.02wt%、および
残部:アルミニウムおよび不可避的不純物元素
から成り、ただし、
Fe固溶量が30ppm 未満、
Cu固溶量が100ppm 未満、
Zr固溶量が200ppm 未満、
Fe固溶量+(1/2)Zr固溶量≧25ppmであって、
(2)板表面から少なくとも深さ20μmまでの表層領域が下記条件(A)、(B):
(A)圧延方向に対して直角方向の結晶粒幅sDが、平均値で50μm未満かつ最大値で100μm未満であり、かつ、
(B)上記結晶粒幅sDに対して圧延方向の結晶粒長さsLが10倍以上、
を満たす冷間圧延加工組織であり、
(3)板厚中央部にある板厚の2/3以上の厚さの芯領域における圧延方向に直角方向の結晶粒幅cDが、平均値で100μm以上であり、
(4)板厚が0.1〜0.5mm、引張強さが145〜190MPa、270℃×7分間のバーニング処理後の耐力が100MPa 以上であり、
(5)単体Si量が30ppm 以下で、素板の0.5μm深さ当りにおいて円相当径にして粒径が0.5μm以上の単体Siが200個/mm2 以下である、
ことを特徴とする平版印刷版用アルミニウム合金素板。
An aluminum alloy base plate for a lithographic printing plate,
(1) The following ingredients:
Fe: 0.10 to 0.40 wt%,
Si: 0.03-0.15 wt%,
Cu: 0.004 to 0.020 wt%,
Ti: 0.01 to 0.05 wt%,
Mg: 0.002-0.02 wt%,
Zr: 0.001 to 0.030 wt%,
B: 0.0001 to 0.02 wt%, and the balance: aluminum and inevitable impurity elements, provided that
Fe solid solution amount is less than 30ppm,
Cu solid solution amount is less than 100ppm,
Zr solid solution amount is less than 200ppm,
Fe solid solution amount + (1/2) Zr solid solution amount ≧ 25 ppm,
(2) The surface layer region from the plate surface to a depth of at least 20 μm has the following conditions (A) and (B)
(A) The crystal grain width sD in the direction perpendicular to the rolling direction is less than 50 μm on average and less than 100 μm on the maximum, and
(B) The grain length sL in the rolling direction is 10 times or more than the grain width sD,
A cold-rolled processed structure satisfying
(3) The crystal grain width cD in the direction perpendicular to the rolling direction in the core region having a thickness of 2/3 or more of the plate thickness at the center of the plate thickness is 100 μm or more on average.
(4) The plate thickness is 0.1 to 0.5 mm, the tensile strength is 145 to 190 MPa, the proof stress after burning at 270 ° C. for 7 minutes is 100 MPa or more,
(5) The amount of elemental Si is 30 ppm or less, and the number of elemental Si having a circle equivalent diameter and a particle diameter of 0.5 μm or more per 200 μm depth is 0.5 / m 2 or less per 0.5 μm depth of the base plate.
An aluminum alloy base plate for a lithographic printing plate characterized by the above.
平版印刷版用アルミニウム合金素板の製造方法において、
Fe:0.10〜0.40wt%、
Si:0.03〜0.15wt%、
Cu:0.004〜0.020wt%、
Ti:0.01〜0.05wt%、
Mg:0.002〜0.02wt%、
Zr:0.001〜0.030wt%、
B:0.0001〜0.02wt%、および
残部:アルミニウムおよび不可避的不純物元素
から成るアルミニウム合金スラブを、均質化処理を行わず、または550℃未満で均質化処理を行った後に、熱間圧延し、その後冷間圧延し、必要に応じて矯正を行う方法であって、
上記熱間圧延を下記条件:
熱間圧延の開始温度:300〜480℃、
最終パスの開始温度:300〜380℃、
最終パスの終了温度:320〜380℃、
最終パスの歪み速度:15/sec 以上、および
熱間圧延後の板厚:4.5〜10mm、
にて行い、その後、
上記冷間圧延を中間焼鈍なしに行う、
ことを特徴とする平版印刷版用アルミニウム合金素板の製造方法。
In the method for producing an aluminum alloy base plate for a lithographic printing plate,
Fe: 0.10 to 0.40 wt%,
Si: 0.03-0.15 wt%,
Cu: 0.004 to 0.020 wt%,
Ti: 0.01 to 0.05 wt%,
Mg: 0.002-0.02 wt%,
Zr: 0.001 to 0.030 wt%,
B: 0.0001 to 0.02 wt%, and balance: hot rolling after aluminum alloy slab composed of aluminum and inevitable impurity elements is subjected to homogenization treatment at a temperature of less than 550 ° C. And then cold rolling and correcting as necessary,
The above hot rolling is performed under the following conditions:
Hot rolling start temperature: 300-480 ° C.
Starting temperature of the final pass: 300-380 ° C
End temperature of the final pass: 320-380 ° C
Strain rate of final pass: 15 / sec or more, and plate thickness after hot rolling: 4.5 to 10 mm,
And then
The cold rolling is performed without intermediate annealing.
A method for producing an aluminum alloy base plate for a lithographic printing plate.
前記冷間圧延の少なくとも最終パス後の板温度が回復温度以上、190℃未満であり、該最終パス後10分以内に5℃/分以上の冷却速度で急速冷却を行うことを特徴とする請求項2に記載の平版印刷版用アルミニウム合金素板の製造方法。The plate temperature at least after the final pass of the cold rolling is not less than the recovery temperature and less than 190 ° C , and rapid cooling is performed at a cooling rate of 5 ° C / min or more within 10 minutes after the final pass. Item 3. A method for producing an aluminum alloy base plate for a lithographic printing plate according to Item 2. 前記冷間圧延後の回復温度が100℃以上であることを特徴とする請求項3に記載の平版印刷版用アルミニウム合金素板の製造方法。Method of manufacturing an aluminum alloy material plate for a lithographic printing plate as claimed in claim 3, wherein the recovery temperature after the cold rolling is 100 ° C. or higher.
JP2000333239A 2000-10-31 2000-10-31 Aluminum alloy base plate for lithographic printing plate and method for producing the same Expired - Fee Related JP4110353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333239A JP4110353B2 (en) 2000-10-31 2000-10-31 Aluminum alloy base plate for lithographic printing plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000333239A JP4110353B2 (en) 2000-10-31 2000-10-31 Aluminum alloy base plate for lithographic printing plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002129270A JP2002129270A (en) 2002-05-09
JP4110353B2 true JP4110353B2 (en) 2008-07-02

Family

ID=18809350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333239A Expired - Fee Related JP4110353B2 (en) 2000-10-31 2000-10-31 Aluminum alloy base plate for lithographic printing plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4110353B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593332B2 (en) * 2005-03-25 2010-12-08 古河スカイ株式会社 Method for producing aluminum alloy plate for lithographic printing plate
ATE394240T1 (en) 2005-07-14 2008-05-15 Fujifilm Corp SUPPORT FOR A LITHOGRAPHIC PRINTING PLATE AND METHOD FOR THE PRODUCTION THEREOF AND A PRE-SENSITIZED PRINTING PLATE
JP5247011B2 (en) * 2005-08-12 2013-07-24 富士フイルム株式会社 Lithographic printing plate support and lithographic printing plate precursor
JP5495298B2 (en) * 2009-09-10 2014-05-21 株式会社Uacj Aluminum alloy plate for lithographic printing plate and method for producing the same

Also Published As

Publication number Publication date
JP2002129270A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP3693485B2 (en) Manufacturing method of aluminum alloy base plate for lithographic printing plate
US6337136B1 (en) Aluminum alloy support for lithographic printing plate and process for producing substrate for support
KR20140046089A (en) High-strength aluminum alloy plate for lithographic plate and manufacturing method therefor
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
US20090252642A1 (en) Aluminum alloy sheet for lithographic printing plate and method of producing the same
JP4110353B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
JPH11115333A (en) Aluminum alloy plate for printing plate and manufacture thereof
JPS6280255A (en) Manufacture of aluminum alloy support for offset printing
JP3650507B2 (en) Aluminum alloy support for lithographic printing plate and method for producing the same
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JP4016310B2 (en) Aluminum alloy support for lithographic printing plate and method for producing base plate for support
JP5116267B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
US8118951B2 (en) Aluminum alloy sheet for lithographic printing plate
JP5314396B2 (en) Aluminum alloy plate for lithographic printing plates
JP4925248B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3983611B2 (en) Method for producing aluminum alloy plate for printing plate
JP3662418B2 (en) Support for lithographic printing plate
JPH08179496A (en) Photosensitive planographic printing plate, production thereof, aluminum alloy plate for printing plate and production thereof
JP3256106B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP3788837B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP2001293969A (en) Aluminum alloy substrate for ps plate and manufacturing method therefor
JP4593593B2 (en) Aluminum alloy plate for printing plate and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4110353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees