JP2013177685A - High strength aluminum alloy sheet for automatic plate-making printing plate - Google Patents
High strength aluminum alloy sheet for automatic plate-making printing plate Download PDFInfo
- Publication number
- JP2013177685A JP2013177685A JP2013082693A JP2013082693A JP2013177685A JP 2013177685 A JP2013177685 A JP 2013177685A JP 2013082693 A JP2013082693 A JP 2013082693A JP 2013082693 A JP2013082693 A JP 2013082693A JP 2013177685 A JP2013177685 A JP 2013177685A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- plate
- less
- alloy plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 94
- 238000007639 printing Methods 0.000 title claims abstract description 62
- 239000012535 impurity Substances 0.000 claims abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 230000002087 whitening effect Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 37
- 229910000765 intermetallic Inorganic materials 0.000 description 34
- 238000007788 roughening Methods 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 27
- 238000005098 hot rolling Methods 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 19
- 238000000137 annealing Methods 0.000 description 18
- 238000005097 cold rolling Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000000265 homogenisation Methods 0.000 description 15
- 238000005452 bending Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 8
- 229910017604 nitric acid Inorganic materials 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910018084 Al-Fe Inorganic materials 0.000 description 4
- 229910018192 Al—Fe Inorganic materials 0.000 description 4
- 229910002551 Fe-Mn Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 206010016807 Fluid retention Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- -1 containing this Chemical compound 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Printing Plates And Materials Therefor (AREA)
Abstract
Description
本発明は、印刷、特に平版印刷の支持体として使用される印刷版用高強度アルミニウム合金板に関するものである。 The present invention relates to a high-strength aluminum alloy plate for printing plates used as a support for printing, particularly lithographic printing.
一般に、オフセット印刷の支持体としては、アルミニウムまたはアルミニウム合金板が使用されており、印刷版への感光膜の密着性および非画像部の保水性を高めるために、合金板表面の片面に粗面化処理が行われている。この粗面化処理方法としては、ボール研磨法若しくはブラシ研磨法等の機械的処理方法、苛性ソーダ等のアルカリ性水溶液で脱脂された後に塩酸、若しくはこれを主体とする電解液、若しくは硝酸を主体とする電解液を使用して合金板表面を電気化学的に粗面化する電解粗面化処理方法、またはこれらの機械的処理方法と電解粗面化処理方法とを組み合わせた処理方法がある。そして、このように粗面化された表面に厚み1μm程度のアルマイト皮膜を形成させ、封孔処理、乾燥処理後、感光膜を塗装し、必要に応じてマット処理を行った後に、所定寸法に断裁することで印刷版とする。なお、電解粗面化処理により得られた粗面板は高い製版適正および印刷性能を示し、コイル材での連続処理に適している。 Generally, an aluminum or aluminum alloy plate is used as a support for offset printing. In order to improve the adhesion of the photosensitive film to the printing plate and the water retention of the non-image area, a rough surface is provided on one surface of the alloy plate. Is being processed. As this roughening treatment method, a mechanical treatment method such as a ball polishing method or a brush polishing method, degreasing with an alkaline aqueous solution such as caustic soda, and then mainly hydrochloric acid, an electrolytic solution mainly containing this, or nitric acid are mainly used. There is an electrolytic surface roughening treatment method that electrochemically roughens the surface of an alloy plate using an electrolytic solution, or a treatment method that combines these mechanical treatment methods and an electrolytic surface roughening treatment method. Then, an alumite film having a thickness of about 1 μm is formed on the roughened surface as described above, and after sealing and drying, a photosensitive film is applied and, if necessary, matte treatment is performed. Cut to make a printing plate. Note that the rough surface plate obtained by the electrolytic surface roughening treatment exhibits high plate-making appropriateness and printing performance, and is suitable for continuous treatment with a coil material.
このような、アルミニウム合金板を支持体として使用した印刷版では、新聞等の印刷部数が10万枚程度の印刷においては、印刷版を印刷ロール(印刷機)に装着する際、印刷枚数が多くなると、印刷版の端部の折り曲げ固定部において、アルミニウム合金板自体にクラックが生じやすい。そして、このクラックを起点として、印刷版の版切れ、すなわち、印刷版が所謂くわえ切れを起こす可能性があるという問題もあった。そのため、より強度に優れた印刷版用アルミニウム合金板の開発が望まれている。 In such a printing plate using an aluminum alloy plate as a support, when printing a newspaper or the like with about 100,000 copies, the number of printed sheets is large when the printing plate is mounted on a printing roll (printing machine). If it becomes, it will be easy to produce a crack in aluminum alloy board itself in the bending fixed part of the edge part of a printing plate. Then, starting from this crack, there is also a problem that the printing plate may be broken, that is, the printing plate may cause so-called gripping. Therefore, the development of an aluminum alloy plate for printing plates with higher strength is desired.
また、前記大量印刷における耐刷性の向上のためには、アルミニウム合金板を支持体とする印刷版を通常の方法で露光、現像処理した後、高温で加熱処理(バーニング処理)することにより画像部の感剤を熱硬化させる処理が行われている。バーニング処理は、通常200〜290℃×3〜10分の条件で行われるため、この処理により、支持体であるアルミニウム合金の強度が低下することのない耐熱性(バーニング性)も求められている。 Further, in order to improve the printing durability in the mass printing, a printing plate having an aluminum alloy plate as a support is exposed and developed by a usual method, and then subjected to heat treatment (burning treatment) at a high temperature. The process which thermosets the photosensitive agent of a part is performed. Since the burning treatment is usually performed under conditions of 200 to 290 ° C. × 3 to 10 minutes, the heat resistance (burning property) that does not lower the strength of the aluminum alloy as the support is also demanded by this treatment. .
このような強度特性および電解粗面化処理に適したアルミニウム合金板として、特許文献1または特許文献2には、Mg、Zn、Mn、Fe、Si、CuおよびTiを所定量添加したものが記載されている。これらのアルミニウム合金板においては、これらの元素を所定量添加することによって、塩酸あるいは硝酸電解粗面化処理での電解粗面化面の均一性と強度特性を向上させていた。 As an aluminum alloy plate suitable for such strength characteristics and electrolytic surface-roughening treatment, Patent Document 1 or Patent Document 2 describes the addition of a predetermined amount of Mg, Zn, Mn, Fe, Si, Cu, and Ti. Has been. In these aluminum alloy plates, by adding a predetermined amount of these elements, the uniformity and strength characteristics of the electrolytic roughened surface in the hydrochloric acid or nitric acid electrolytic roughening treatment have been improved.
しかしながら、従来のアルミニウム合金板においては、製造過程において、合金板の表面にはAl−Fe−Si系、Al−Fe系、Al−Fe−Mn系等の金属間化合物が生成する。この金属間化合物のうち、最大長さの大きい金属間化合物が存在すると、電解粗面化面の均一性が低下しやすい。そして、従来のアルミニウム合金板においては、表面に存在する金属間化合物が他の金属化合物と比べて最大長さが大きいために、電解粗面化面の均一性において満足できるレベルではない。 However, in the conventional aluminum alloy plate, an intermetallic compound such as Al—Fe—Si, Al—Fe, and Al—Fe—Mn is generated on the surface of the alloy plate during the manufacturing process. Among these intermetallic compounds, if there is an intermetallic compound having a large maximum length, the uniformity of the electrolytic roughened surface tends to decrease. And in the conventional aluminum alloy plate, since the intermetallic compound which exists in the surface has the largest maximum length compared with another metal compound, it is not a level which can be satisfied in the uniformity of an electrolytic roughening surface.
さらに近年においては、CTP(Computer To Plate)版の普及によりプレートセッター等が登場し、印刷版の製造等において自動化が進んでいる。このような時代変化から、梱包された印刷版の取り出しについても自動化が進んだ結果、梱包物から印刷版を取り出す時に、外部からの進入光(赤外線や紫外線センサーの進入光)による感光膜塗装面の誤露光を防止するため、印刷版の梱包においては、開梱したときに、印刷版の裏面(非塗装面や非粗面化処理面に相当)が表となる梱包形態のものも普及している。そのため、従来は特別な管理が必要でなかった裏面の表面状態も適正にする必要が生じている。すなわち、脱脂処理や電解粗面化処理により、粗面化処理される面の裏面(無通電処理面)が白色化する問題もあり、この裏面外観の状態から、自動製版処理装置において、印刷版位置のセンサーによる検知ができずに搬送トラブルを生ずる問題も生じている。 Furthermore, in recent years, plate setters and the like have appeared due to the spread of CTP (Computer To Plate) plates, and automation has been progressing in the production of printing plates and the like. As a result of these changes in the times, automation of the removal of packed printing plates has advanced. As a result, when the printing plate is removed from the package, the photosensitive film is coated with external light (infrared light or UV sensor light). In order to prevent misexposure of the printing plate, there is a widespread use of the packaging form that the back side of the printing plate (equivalent to a non-coating surface or a non-roughened surface) becomes the front when unpacking. ing. Therefore, it is necessary to make the surface state of the back surface appropriate, which conventionally did not require special management. That is, there is also a problem that the back surface (non-energized surface) of the surface to be roughened is whitened by degreasing or electrolytic surface roughening. From this appearance of the back surface, in the automatic plate making apparatus, the printing plate There has also been a problem that a position trouble cannot be detected by the position sensor, causing a conveyance trouble.
本発明はかかる問題点に鑑みてなされたものであって、電解粗面化面の均一性に優れ、電解粗面化面の裏面が白色化しない印刷版とすると共に、強度特性にも優れた自動製版印刷版用高強度アルミニウム合金板を提供することを目的とする。 The present invention has been made in view of such a problem, and is excellent in uniformity of the electrolytic roughened surface, a printing plate in which the back surface of the electrolytic roughened surface is not whitened, and excellent in strength characteristics. An object of the present invention is to provide a high-strength aluminum alloy plate for automatic plate-making printing plates.
本発明者は、前記課題を解決するために鋭意研究した結果、アルミニウム合金の成分、製造条件を制御することにより、電解粗面化処理特性、電解粗面化面の裏面特性および強度特性を適正にすることができる発明を成すに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have appropriately controlled the electrolytic surface-roughening treatment characteristics, the back surface characteristics and the strength characteristics of the electrolytic surface-roughened surface by controlling the components and production conditions of the aluminum alloy. It came to make the invention which can be made.
すなわち、請求項1に係る自動製版印刷版用高強度アルミニウム合金板は、Si:0.03質量%以上0.15質量%以下、Fe:0.25質量%以上0.70質量%以下、Cu:0.0005質量%以上0.050質量%以下、Mg:0.05質量%以上0.40質量%未満、Ti:0.005質量%以上0.040質量%以下を含有し、Zn:0.05質量%以下、Mn:0.01質量%以下に規制し、残部がAlと不可避的不純物からなることを特徴とする。 That is, the high-strength aluminum alloy plate for automatic plate-making printing plates according to claim 1 is Si: 0.03% by mass to 0.15% by mass, Fe: 0.25% by mass to 0.70% by mass, Cu : 0.0005 mass% or more and 0.050 mass% or less, Mg: 0.05 mass% or more and less than 0.40 mass%, Ti: 0.005 mass% or more and 0.040 mass% or less, Zn: 0 .05 mass% or less, Mn: 0.01 mass% or less, and the balance is made of Al and inevitable impurities.
このように構成すれば、自動製版印刷版用高強度アルミニウム合金板(以下、適宜、アルミニウム合金板という)が所定量のSi、Fe、Cu、MgおよびTiを含有すると共に、Mn含有量を所定量以下に規制することによって、アルミニウム合金板の表面を電解粗面化処理した際、電解粗面化面を不均一にする最大長さの大きい金属間化合物の個数密度を少なくでき、微細な金属間化合物の数を増やすことができる。これにより、初期ピットの形成が促進される。さらに、Fe、Cu、Mgの作用により、アルミニウム合金板の強度が向上する。そして、Zn含有量を所定量以下に規制することにより、脱脂処理や電解液への浸漬によっても電解粗面化面の裏面が白色化することのないアルミニウム合金板とすることができる。このようにして得られたアルミニウム合金板を使用した支持体は、その電解粗面化面およびその裏面が印刷版として適正な表面特性となる。 With this configuration, the high-strength aluminum alloy plate for automatic plate making and printing plate (hereinafter referred to as “aluminum alloy plate” as appropriate) contains a predetermined amount of Si, Fe, Cu, Mg, and Ti, and the Mn content is determined. By restricting to a fixed amount or less, when the surface of the aluminum alloy plate is subjected to electrolytic surface roughening, the number density of intermetallic compounds having a large maximum length that makes the electrolytic surface roughened uneven can be reduced, and fine metal The number of intermetallic compounds can be increased. Thereby, formation of initial pits is promoted. Furthermore, the strength of the aluminum alloy plate is improved by the action of Fe, Cu, and Mg. And it can be set as the aluminum alloy plate by which the back surface of an electrolytic roughening surface is not whitened by degreasing and immersion in electrolyte solution by restricting Zn content to below predetermined amount. In the support using the aluminum alloy plate thus obtained, the electrolytic roughened surface and the back surface thereof have appropriate surface characteristics as a printing plate.
また、請求項2に係る自動製版印刷版用高強度アルミニウム合金板は、さらに、Ni:0.20質量%以下を含有することを特徴とし、請求項3に係る自動製版印刷版用高強度アルミニウム合金板は、前記Niの含有量が、0.005質量%以上0.20質量%以下であることを特徴とする。 The high-strength aluminum alloy plate for automatic plate-making printing plates according to claim 2 further contains Ni: 0.20% by mass or less, and the high-strength aluminum for automatic plate-making printing plates according to claim 3 The alloy plate is characterized in that the Ni content is 0.005 mass% or more and 0.20 mass% or less.
このように構成すれば、アルミニウム合金板の表面に、Al−Fe系の化合物よりさらに電位が貴であるAl−Fe−Ni系金属間化合物が生成し、電解粗面化処理の際、アルミニウム合金板表面の初期ピットの形成が促進される。そのため、このようにして得られたアルミニウム合金板を使用した支持体は、その電解粗面化面およびその裏面が印刷版としてさらに適正な表面特性となる。 With this configuration, an Al—Fe—Ni intermetallic compound having a higher potential than the Al—Fe compound is generated on the surface of the aluminum alloy plate, and the aluminum alloy is subjected to the electrolytic surface roughening treatment. Formation of initial pits on the plate surface is promoted. Therefore, in the support using the aluminum alloy plate obtained in this way, the electrolytic roughened surface and the back surface thereof have more appropriate surface characteristics as a printing plate.
さらに、25℃の2質量%塩酸中に30秒間浸漬した後のアルミニウム板表面のL値が87.0未満であることが好ましい。 Furthermore, it is preferable that the L value of the aluminum plate surface after being immersed in 2 mass% hydrochloric acid at 25 ° C. for 30 seconds is less than 87.0.
本発明に係る自動製版印刷版用高強度アルミニウム合金板によれば、電解粗面化面の均一性に優れ、電解粗面化面の裏面(無通電処理面)が白色化しないものとなる。また、アルミニウム合金板の強度が優れたものとなり、引張強度、曲げ疲労強度が向上し、印刷版がくわえ切れを起こすことを防止でき、さらにバーニング処理による強度低下も防止できる。 According to the high-strength aluminum alloy plate for automatic plate-making printing plates according to the present invention, the uniformity of the electrolytic roughened surface is excellent, and the back surface (non-energized surface) of the electrolytic roughened surface is not whitened. Further, the strength of the aluminum alloy plate is improved, the tensile strength and bending fatigue strength are improved, the printing plate can be prevented from being cut out, and the strength reduction due to the burning treatment can also be prevented.
(1)アルミニウム合金板
まず、本発明に係るアルミニウム合金板について説明する。
本発明に係るアルミニウム合金板は、所定量のSi、Fe、Cu、MgおよびTiを含有し、ZnとMnを所定量以下に規制し、残部がAlと不可避的不純物からなる。なお、必要に応じて、所定量のNiを含有してもよい。以下に、各化学成分の数値範囲の限定理由について説明する。
(1) Aluminum alloy plate First, the aluminum alloy plate according to the present invention will be described.
The aluminum alloy plate according to the present invention contains a predetermined amount of Si, Fe, Cu, Mg and Ti, restricts Zn and Mn to a predetermined amount or less, and the balance is made of Al and inevitable impurities. In addition, you may contain predetermined amount Ni as needed. The reason for limiting the numerical range of each chemical component will be described below.
(Si:0.03質量%以上0.15質量%以下)
Siは、アルミニウム合金板の表面にAl−Fe−Si系金属間化合物を析出させ、電解粗面化処理の際、アルミニウム合金板表面の初期ピットの形成を促進させる。その結果、アルミニウム合金板の電解粗面化面(以下、適宜、粗面という)の均一性を向上させる。Si含有量が0.03質量%未満では、アルミニウム合金板表面での金属間化合物の個数密度が少ないため、初期ピットの形成が不足し、粗面の均一性が劣る。一方、Si含有量が0.15質量%を超えると、アルミニウム合金板表面での金属間化合物の個数密度が多くなりすぎて、粗面の均一性が劣る。したがって、Si含有量は、0.03質量%以上0.15質量%以下とする。
(Si: 0.03 mass% or more and 0.15 mass% or less)
Si precipitates an Al—Fe—Si intermetallic compound on the surface of the aluminum alloy plate, and promotes the formation of initial pits on the surface of the aluminum alloy plate during the electrolytic surface roughening treatment. As a result, the uniformity of the electrolytically roughened surface (hereinafter referred to as “roughened surface”) of the aluminum alloy plate is improved. When the Si content is less than 0.03% by mass, the number density of intermetallic compounds on the surface of the aluminum alloy plate is small, so that the formation of initial pits is insufficient and the uniformity of the rough surface is poor. On the other hand, when the Si content exceeds 0.15% by mass, the number density of intermetallic compounds on the surface of the aluminum alloy plate increases so that the uniformity of the rough surface is inferior. Therefore, Si content shall be 0.03 mass% or more and 0.15 mass% or less.
(Fe:0.25質量%以上0.70質量%以下)
Feは、アルミニウム合金板の強度向上のために重要な元素である。また、Feは、アルミニウム合金板の表面にAl−Fe−Si系金属間化合物等を析出させ、電解粗面化処理の際、アルミニウム合金板表面の初期ピットの形成を促進させる。その結果、アルミニウム合金板の粗面の均一性を向上させる。Fe含有量が0.25質量%未満では、アルミニウム合金板の強度が低くなり、引張強さ、曲げ疲労強度が低下し、印刷版の支持体として使用した際にくわえ切れが発生する。さらに、アルミニウム合金板表面での金属間化合物の個数密度が少ないため、初期ピットの形成が不足し、粗面の均一性が劣る。また、0.25質量%以上0.40質量%以下では、塩酸による電解粗面化処理では粗面の均一性は良好であるが、硝酸による電解粗面化処理ではやや均一性に劣る。しかし、0.40質量%を超え0.70質量%以下では、硝酸による粗面化処理でも粗面の均一性は良好なものとなる。一方、Fe含有量が0.70質量%を超えると、アルミニウム合金板表面での金属間化合物の個数密度が多くなりすぎ、また、アルミニウム合金板表面に粗大な金属間化合物が形成されて、粗面の均一性が劣る。したがって、Fe含有量は、0.25質量%以上0.70質量%以下とする。なお、Feの含有量は、さらに強度、粗面の均一性の向上を図るため、0.40質量%を超え0.70質量%以下が好ましい。
(Fe: 0.25 mass% to 0.70 mass%)
Fe is an important element for improving the strength of the aluminum alloy sheet. Further, Fe precipitates Al—Fe—Si intermetallic compounds and the like on the surface of the aluminum alloy plate, and promotes the formation of initial pits on the surface of the aluminum alloy plate during the electrolytic surface roughening treatment. As a result, the uniformity of the rough surface of the aluminum alloy plate is improved. When the Fe content is less than 0.25% by mass, the strength of the aluminum alloy plate is lowered, the tensile strength and the bending fatigue strength are lowered, and when the plate is used as a support for a printing plate, the cutting occurs. Furthermore, since the number density of the intermetallic compound on the surface of the aluminum alloy plate is small, the formation of initial pits is insufficient and the uniformity of the rough surface is poor. Moreover, in the range of 0.25 mass% or more and 0.40 mass% or less, the uniformity of the rough surface is good in the electrolytic surface roughening treatment with hydrochloric acid, but the uniformity is slightly inferior in the electrolytic surface roughening treatment with nitric acid. However, when it exceeds 0.40 mass% and is 0.70 mass% or less, the uniformity of the rough surface is good even with the roughening treatment with nitric acid. On the other hand, if the Fe content exceeds 0.70% by mass, the number density of intermetallic compounds on the surface of the aluminum alloy plate is excessively increased, and coarse intermetallic compounds are formed on the surface of the aluminum alloy plate, resulting in roughening. The surface uniformity is poor. Therefore, Fe content shall be 0.25 mass% or more and 0.70 mass% or less. The Fe content is preferably more than 0.40% by mass and 0.70% by mass or less in order to further improve the strength and uniformity of the rough surface.
(Cu:0.0005質量%以上0.050質量%以下)
Cuは、アルミニウムに固溶状態で存在し、アルミマトリックスの強度を向上させると共に、アルミマトリックスと金属間化合物の電位を調整する作用を有する。Cu含有量が0.0005質量%未満では、アルミニウム合金板の電解粗面化の際に、初期ピットの形成が不足し、粗面の均一性が劣る。一方、Cu含有量が0.050質量%を超えると、粗大なピットが多くなり、粗面の均一性が劣る。したがって、Cu含有量は、0.0005質量%以上0.050質量%以下とする。
(Cu: 0.0005 mass% or more and 0.050 mass% or less)
Cu exists in a solid solution state in aluminum, and has an effect of improving the strength of the aluminum matrix and adjusting the potential of the aluminum matrix and the intermetallic compound. When the Cu content is less than 0.0005% by mass, the formation of initial pits is insufficient during the electrolytic surface roughening of the aluminum alloy plate, and the uniformity of the rough surface is poor. On the other hand, when Cu content exceeds 0.050 mass%, coarse pits increase and the uniformity of the rough surface is inferior. Therefore, Cu content shall be 0.0005 mass% or more and 0.050 mass% or less.
(Mg:0.05質量%以上0.40質量%未満)
Mgは、アルミニウムに固溶状態で存在し、アルミマトリックスの強度を向上させる重要な元素である。Mg含有量が0.05質量%未満では、アルミニウム合金板の強度が低くなり、引張強さ、曲げ疲労強度およびバーニング処理後の強度が低下し、印刷版の支持体として使用した際にくわえ切れが発生する。一方、Mg含有量が0.40質量%以上では、粗大なピットが多くなり、粗面の均一性が劣る。さらに、アルミニウム合金板表面に粗大な金属間化合物が形成されて、粗面の均一性が劣る。したがって、Mg含有量は、0.05質量%以上0.40質量%未満とする。
(Mg: 0.05 mass% or more and less than 0.40 mass%)
Mg exists in a solid solution state in aluminum and is an important element for improving the strength of the aluminum matrix. When the Mg content is less than 0.05% by mass, the strength of the aluminum alloy sheet is lowered, and the tensile strength, bending fatigue strength and strength after the burning treatment are reduced, and the plate is completely cut out when used as a printing plate support. Will occur. On the other hand, when the Mg content is 0.40% by mass or more, coarse pits increase and the uniformity of the rough surface is poor. Further, a coarse intermetallic compound is formed on the surface of the aluminum alloy plate, and the uniformity of the rough surface is poor. Therefore, Mg content shall be 0.05 mass% or more and less than 0.40 mass%.
(Ti:0.005質量%以上0.040質量%以下)
Tiは、電解粗面化特性およびアルミニウム合金鋳塊の組織状態に大きな影響を及ぼす。Ti含有量が0.005質量%未満では、電解粗面化ピットが不均一になり、また鋳塊の結晶粒が微細化されずに粗大な結晶粒組織となるため、板製品のマクロ組織に、圧延方向に沿った帯状の筋が発生し、この帯状の筋が電解粗面化処理後にも残存する。一方、Ti含有量が0.040質量%を超えると、アルミニウム合金鋳塊の結晶粒を微細化する効果が飽和し、粗大なAl3Ti化合物が増加して電解粗面の均一性が低下する。したがって、Ti含有量は、0.005質量%以上0.040質量%以下とする。
(Ti: 0.005 mass% or more and 0.040 mass% or less)
Ti has a great influence on the electrolytic surface roughening characteristics and the structure of the aluminum alloy ingot. When the Ti content is less than 0.005% by mass, the electrolytic surface-roughening pits are not uniform, and the crystal grains of the ingot are not refined and become a coarse crystal grain structure. A strip-shaped streak along the rolling direction is generated, and the strip-shaped streak remains even after the electrolytic surface roughening treatment. On the other hand, when the Ti content exceeds 0.040% by mass, the effect of refining the crystal grains of the aluminum alloy ingot is saturated, and the coarse Al 3 Ti compound is increased, thereby reducing the uniformity of the electrolytic rough surface. . Therefore, Ti content shall be 0.005 mass% or more and 0.040 mass% or less.
(Zn:0.05質量%以下)
Znは、アルミニウムに固溶状態で存在し、アルミマトリックスと金属間化合物の電位を調整する作用を有する。しかし、Zn含有量が0.05質量%を超えると、Al−Fe系、Al−Fe−Mn系の金属間化合物に対して、アルミマトリックスの電位を卑にすることから、脱脂液や無通電状態の電解液への浸漬により、アルミマトリックスからのAl溶出が生ずる。これにより、電解粗面化面の裏面が白色化する。そのため、印刷版を自動製版処理装置に自動搬送する際に、印刷版位置のセンサーによる検知ができずに搬送トラブルを生ずる。この裏面白色化現象は、特に塩酸による電解粗面化処理時に生じやすい。したがって、Zn含有量は、0.05質量%以下とする。なお、Znの含有量は、より電解粗面化面の裏面の白色化を防ぐため、0.02質量%未満が好ましく、さらに電解粗面化面の裏面の白色化を防ぐため、Zn含有量はできるだけ少ないほうが好ましいことから、0.003質量%未満が好ましい。
(Zn: 0.05% by mass or less)
Zn exists in a solid solution state in aluminum and has an action of adjusting the potential of the aluminum matrix and the intermetallic compound. However, when the Zn content exceeds 0.05% by mass, the potential of the aluminum matrix is reduced with respect to the Al-Fe-based and Al-Fe-Mn-based intermetallic compounds. Al elution from the aluminum matrix occurs by immersion in the electrolyte in the state. Thereby, the back surface of the electrolytic roughened surface is whitened. For this reason, when the printing plate is automatically conveyed to the automatic plate making processing apparatus, the printing plate position cannot be detected by the sensor, causing a conveyance trouble. This backside whitening phenomenon is particularly likely to occur during electrolytic surface roughening with hydrochloric acid. Therefore, Zn content shall be 0.05 mass% or less. The Zn content is preferably less than 0.02% by mass in order to prevent further whitening of the back surface of the electrolytic roughened surface, and further to prevent whitening of the back surface of the electrolytic roughened surface. Is preferably as small as possible, and is preferably less than 0.003% by mass.
(Mn:0.01質量%以下)
Mnは、アルミニウム合金板の製造過程において、鋳塊製造時に形成されるいわゆる晶出物に加えて、均質化熱処理時にいわゆる析出物の形態で多く形成される。Mnを所定量を超えて含有すると、Al−Fe−Mn系の粗大な金属間化合物を生成する。その結果、アルミニウム合金板の粗面が不均一となる。Al−Fe−Mn系金属間化合物は、Mn含有量が0.01質量%以下では、アルミニウム合金中に固溶するために、アルミニウム合金板表面での粗大な金属間化合物を少なくすることができ、均一な粗面が得られる。一方、Mn含有量が0.01質量%を超えると、アルミニウム合金板表面に粗大な金属間化合物が形成されて、粗面の均一性が劣る。したがって、Mn含有量は、0.01質量%以下とする。
(Mn: 0.01% by mass or less)
Mn is formed in the form of so-called precipitates during the homogenization heat treatment in addition to the so-called crystallization formed during the production of the ingot during the production process of the aluminum alloy sheet. When Mn is contained in excess of a predetermined amount, an Al—Fe—Mn based coarse intermetallic compound is generated. As a result, the rough surface of the aluminum alloy plate becomes non-uniform. Since the Al—Fe—Mn intermetallic compound dissolves in the aluminum alloy when the Mn content is 0.01% by mass or less, coarse intermetallic compounds on the surface of the aluminum alloy plate can be reduced. A uniform rough surface can be obtained. On the other hand, if the Mn content exceeds 0.01% by mass, a coarse intermetallic compound is formed on the surface of the aluminum alloy plate, and the uniformity of the rough surface is poor. Therefore, the Mn content is 0.01% by mass or less.
(Ni:0.20質量%以下)
Niは、材料の化学溶解性を向上させ、電解粗面化時のエッチング性を向上させる元素である。Niは、アルミニウム合金板の表面にAl−Fe−Ni系金属間化合物を形成させる。この化合物はAl−Fe系の化合物よりさらに電位が貴であるため、電解粗面化処理の際、アルミニウム合金板表面の初期ピットの形成を促進させ、短時間で均一かつ微細な粗面を得ることが可能となる。しかし、Ni含有量が0.20質量%を超えると、粗大な金属間化合物が形成されて、粗面の均一性が劣る。また、Niは添加しなくてもよいが、0.005質量%以上添加すると、粗面の均一性を向上させる効果がより発揮されやすくなるため、0.005質量%以上添加するのが好ましい。なお、NiもZnと同様に化学溶解性を高めることになるが、アルミマトリクス自体が溶出することはなく、電解粗面化面の裏面が白色化することはない。したがって、Niを添加する場合は、Ni含有量は、0.20質量%以下、好ましくは、0.005質量%以上0.20質量%以下とする。
このように、本発明においては、アルミニウム合金板にNiを添加することで、粗面の均一性がさらに向上し、アルミニウム合金板の表面性をより良好にすることができる。
(Ni: 0.20 mass% or less)
Ni is an element that improves the chemical solubility of the material and improves the etching properties during electrolytic surface roughening. Ni forms an Al—Fe—Ni intermetallic compound on the surface of the aluminum alloy plate. Since this compound has a higher potential than Al-Fe-based compounds, it promotes the formation of initial pits on the surface of the aluminum alloy plate during the electrolytic surface roughening treatment, and a uniform and fine rough surface is obtained in a short time. It becomes possible. However, if the Ni content exceeds 0.20% by mass, a coarse intermetallic compound is formed, and the uniformity of the rough surface is poor. Ni may not be added. However, when 0.005% by mass or more is added, the effect of improving the uniformity of the rough surface is more likely to be exhibited, so 0.005% by mass or more is preferably added. Ni also increases the chemical solubility like Zn, but the aluminum matrix itself does not elute and the back surface of the electrolytically roughened surface does not become white. Therefore, when Ni is added, the Ni content is 0.20 mass% or less, preferably 0.005 mass% or more and 0.20 mass% or less.
Thus, in the present invention, by adding Ni to the aluminum alloy plate, the uniformity of the rough surface can be further improved and the surface property of the aluminum alloy plate can be made better.
(残部:Alと不可避的不純物)
不可避的不純物は、通常市販されているアルミニウム地金に含まれる不可避的不純物であれば、本発明の目的を損なうものではない。また、アルミニウム純度が99.0質量%以上であることが好ましい。純度が99.0質量%以上であれば、粗大な金属間化合物の形成がより抑制され、粗面が均一となりやすい。
(Balance: Al and inevitable impurities)
If the inevitable impurities are inevitable impurities contained in a commercially available aluminum ingot, the object of the present invention is not impaired. Moreover, it is preferable that aluminum purity is 99.0 mass% or more. If the purity is 99.0% by mass or more, the formation of coarse intermetallic compounds is further suppressed, and the rough surface tends to be uniform.
(2)アルミニウム合金板の製造方法
次に、本発明に係るアルミニウム合金板の製造方法について説明する。
アルミニウム合金板の製造方法としては、第1製造方法および第2製造方法があり、第1製造方法では、冷間圧延の途中に中間焼鈍を行わないのに対し、第2製造方法では、冷間圧延の途中に中間焼鈍を行うものである。第2製造方法では、中間焼鈍を行うため、熱間圧延での終了温度を、第1製造方法における終了温度よりも低くすることができる。
(2) Manufacturing method of aluminum alloy plate Next, the manufacturing method of the aluminum alloy plate which concerns on this invention is demonstrated.
As a manufacturing method of an aluminum alloy plate, there are a first manufacturing method and a second manufacturing method. In the first manufacturing method, intermediate annealing is not performed during the cold rolling, whereas in the second manufacturing method, a cold is performed. Intermediate annealing is performed during rolling. In the 2nd manufacturing method, since intermediate annealing is performed, the end temperature in hot rolling can be made lower than the end temperature in the 1st manufacturing method.
[第1製造方法]
本発明に係るアルミニウム合金板の第1の製造方法は、鋳塊を作製する第1工程と、鋳塊を均質化熱処理する第2工程と、均質化熱処理された鋳塊を熱間圧延する第3工程と、熱間圧延された圧延板を冷間圧延する第4工程とを含むことで構成される。
以下、各工程について説明する。
[First production method]
A first method for producing an aluminum alloy plate according to the present invention includes a first step of producing an ingot, a second step of homogenizing heat treatment of the ingot, and a first step of hot rolling the ingot subjected to the homogenization heat treatment. It comprises 3 processes and the 4th process of cold-rolling the hot-rolled rolled sheet.
Hereinafter, each step will be described.
(第1工程)
第1工程は、化学成分(Si、Fe、Cu、Mg、Ti、ZnおよびMn、さらに、Niを含有する場合はNi)の含有量を前記所定範囲に限定したアルミニウム合金を溶解、鋳造して鋳塊を作製する工程である。溶解、鋳造方法としては従来公知の方法を使用する。
(First step)
The first step is to melt and cast an aluminum alloy in which the content of chemical components (Si, Fe, Cu, Mg, Ti, Zn and Mn, and Ni in the case of containing Ni) is limited to the predetermined range. This is a process for producing an ingot. A conventionally known method is used as the melting and casting method.
(第2工程)
第2工程は、前記第1工程で作製された鋳塊を380℃以上600℃以下で均質化熱処理する工程である。この均質化熱処理、および後記する熱間圧延、冷間圧延によって、アルミニウム合金板の表面に存在する金属間化合物の個数密度を所定範囲にすることが可能となる。なお、均質化熱処理方法については、従来公知の方法を使用する。以下、均質化熱処理温度の数値限定理由について説明する。
(Second step)
The second step is a step of subjecting the ingot produced in the first step to a homogenization heat treatment at 380 ° C. or more and 600 ° C. or less. By this homogenization heat treatment and hot rolling and cold rolling described later, the number density of intermetallic compounds existing on the surface of the aluminum alloy plate can be set within a predetermined range. As a homogenization heat treatment method, a conventionally known method is used. Hereinafter, the reason for limiting the numerical value of the homogenization heat treatment temperature will be described.
(均質化熱処理温度:380℃以上600℃以下)
均質化熱処理温度が380℃未満では、均質化熱処理が不十分であることに加えて、金属間化合物の析出量が少なく、アルミニウム合金板の表面に存在する金属間化合物の大きさが小さくなる。そのため、粗面化処理において初期ピットの形成が促進されず、粗面化不足となり、粗面の均一性が劣る。一方、均質化熱処理温度が600℃を超えると、金属間化合物が固溶し、アルミニウム合金板の表面に存在する金属間化合物の個数密度が少なくなるため、ピットひとつひとつの直径が大きくなり、粗面の均一性が劣る。したがって、均質化熱処理温度は、380℃以上600℃以下とする。
なお、適正な温度範囲よりも高温側・低温側のほうが、バーニング処理後の強度は高くなるが、この場合、温度範囲を外れるため、粗面の均一性が劣ることとなる。そこで、均質化熱処理温度を適正化することにより、粗面の均一性が劣ることなく、Fe、Cu、Mgの固溶度が高まることで、バーニング処理後の強度低下も抑制される。
(Homogenization heat treatment temperature: 380 to 600 ° C)
When the homogenization heat treatment temperature is less than 380 ° C., in addition to insufficient homogenization heat treatment, the amount of precipitation of intermetallic compounds is small, and the size of intermetallic compounds existing on the surface of the aluminum alloy plate is small. Therefore, the formation of initial pits is not promoted in the roughening treatment, resulting in insufficient roughening and poor uniformity of the rough surface. On the other hand, when the homogenization heat treatment temperature exceeds 600 ° C., the intermetallic compound is dissolved, and the number density of the intermetallic compound existing on the surface of the aluminum alloy plate decreases, so that the diameter of each pit increases and the rough surface The uniformity of is poor. Therefore, the homogenization heat treatment temperature is set to 380 ° C. or more and 600 ° C. or less.
In addition, although the intensity | strength after a burning process becomes higher in the high temperature side and low temperature side rather than an appropriate temperature range, in this case, since it remove | deviates from a temperature range, the uniformity of a rough surface will be inferior. Therefore, by optimizing the homogenization heat treatment temperature, the solid surface of the rough surface is not inferior, and the solid solubility of Fe, Cu, and Mg is increased, thereby suppressing the strength reduction after the burning treatment.
(第3工程)
第3工程は、前記第2工程で均質化熱処理された鋳塊を、圧延終了温度300℃以上370℃以下で熱間圧延する工程である。なお、熱間圧延方法については、従来公知の方法を使用する。また、必要に応じて、熱間圧延を複数回繰り返し行ってもよい。以下、熱間圧延の圧延終了温度の数値限定について説明する。
(Third step)
The third step is a step of hot rolling the ingot subjected to the homogenization heat treatment in the second step at a rolling end temperature of 300 ° C. or higher and 370 ° C. or lower. In addition, about a hot rolling method, a conventionally well-known method is used. Moreover, you may repeat hot rolling in multiple times as needed. Hereinafter, numerical limitation of the rolling end temperature of hot rolling will be described.
(熱間圧延終了温度:300℃以上370℃以下)
熱間圧延終了温度が300℃未満では、圧延板中の動的再結晶が不十分であり、圧延板の結晶組織が不均一となり、粗面の均一性が劣る。また、それに加えて、アルミニウム合金板の表面に存在する金属間化合物の個数密度が不足するため、初期ピットの形成が促進されず、粗面の均一性が劣る。一方、熱間圧延終了温度が370℃を超えると、熱間圧延の各パス間において結晶粒が過剰に成長してしまい、粗面の均一性が劣る。また、それに加えて、金属間化合物が固溶し、アルミニウム合金板の表面に存在する金属間化合物の個数密度が少なくなるため、初期ピットの形成が促進されず、粗面の均一性が劣る。なお、熱間圧延終了温度を前記範囲にすることで、熱間圧延の直後の荒焼鈍を行う必要がなく、また、冷間圧延の途中の中間焼鈍を省略することができる。
したがって、熱間圧延工程の後の冷間圧延工程の途中の中間焼鈍を省略する場合には、熱間圧延終了温度は、300℃以上370℃以下とする。
(Hot rolling finish temperature: 300 ° C or higher and 370 ° C or lower)
When the hot rolling end temperature is less than 300 ° C., dynamic recrystallization in the rolled sheet is insufficient, the crystal structure of the rolled sheet becomes uneven, and the uniformity of the rough surface is inferior. In addition, since the number density of intermetallic compounds existing on the surface of the aluminum alloy plate is insufficient, the formation of initial pits is not promoted, and the uniformity of the rough surface is poor. On the other hand, if the hot rolling end temperature exceeds 370 ° C., crystal grains grow excessively between the passes of hot rolling, and the uniformity of the rough surface is poor. In addition, since the intermetallic compound is dissolved and the number density of the intermetallic compound existing on the surface of the aluminum alloy plate is reduced, the formation of initial pits is not promoted, and the uniformity of the rough surface is poor. In addition, it is not necessary to perform rough annealing immediately after hot rolling by setting the hot rolling end temperature in the above range, and intermediate annealing in the middle of cold rolling can be omitted.
Therefore, when the intermediate annealing in the middle of the cold rolling process after the hot rolling process is omitted, the hot rolling end temperature is set to 300 ° C. or more and 370 ° C. or less.
(第4工程)
第4工程は、前記第3工程で熱間圧延された圧延板を、中間焼鈍を行わずに冷間圧延してアルミニウム合金板を作製する工程である。なお、冷間圧延方法については、従来公知の方法を使用する。ここで、冷間圧延率は60〜95%が好ましい。また、必要に応じて、冷間圧延を複数回繰り返し行ってもよい。
(4th process)
The fourth step is a step for producing an aluminum alloy plate by cold rolling the rolled plate hot-rolled in the third step without performing intermediate annealing. In addition, about a cold rolling method, a conventionally well-known method is used. Here, the cold rolling rate is preferably 60 to 95%. Moreover, you may repeat cold rolling in multiple times as needed.
[第2製造方法]
本発明に係るアルミニウム合金板の第2の製造方法は、鋳塊を作製する第1工程と、鋳塊を均質化熱処理する第2工程と、均質化熱処理された鋳塊を熱間圧延する第3工程と、熱間圧延された熱間圧延板を冷間圧延し、さらに中間焼鈍、冷間圧延する第4工程とを含むことで構成される。
以下、各工程について説明する。
[Second production method]
The second method for producing an aluminum alloy sheet according to the present invention includes a first step of producing an ingot, a second step of homogenizing heat treatment of the ingot, and a second step of hot rolling the ingot subjected to the homogenization heat treatment. It is comprised by including the 3rd process and the 4th process which cold-rolls the hot-rolled hot-rolled board, and also intermediate-annealing and cold-rolling.
Hereinafter, each step will be described.
第1工程、第2工程については、前記第1製造方法と同様であるため、ここでは、説明を省略する。 Since the first step and the second step are the same as those in the first manufacturing method, description thereof is omitted here.
(第3工程)
第3工程は、前記第2工程で均質化熱処理された鋳塊を、圧延終了温度250℃以上300℃以下で熱間圧延する工程である。第2製造方法では、冷間圧延の途中で中間焼鈍を行うため、圧延終了温度を、第1製造方法における終了温度よりも低い温度に設定することができる。なお、圧延終了温度以外については、前記第1製造方法の第3工程と同様である。以下、熱間圧延の圧延終了温度の数値限定について説明する。
(Third step)
The third step is a step of hot rolling the ingot subjected to the homogenization heat treatment in the second step at a rolling end temperature of 250 ° C. or higher and 300 ° C. or lower. In the second manufacturing method, since the intermediate annealing is performed in the middle of cold rolling, the rolling end temperature can be set to a temperature lower than the end temperature in the first manufacturing method. In addition, it is the same as that of the 3rd process of the said 1st manufacturing method except rolling end temperature. Hereinafter, numerical limitation of the rolling end temperature of hot rolling will be described.
(熱間圧延終了温度:250℃以上300℃以下)
熱間圧延終了温度が250℃未満では、圧延板中の動的再結晶が不十分であり、圧延板の結晶組織が不均一となり、粗面の均一性が劣る。また、それに加えて、アルミニウム合金板の表面に存在する金属間化合物の個数密度が不足するため、初期ピットの形成が促進されず、粗面の均一性が劣る。一方、熱間圧延終了温度が300℃を超えると、得られた熱間圧延板に冷間圧延を施した後に中間焼鈍を行うと、歪エネルギーの蓄積が不足して、中間焼鈍によって生じる再結晶粒を微細にできないことから、粗面の均一性に劣る。
したがって、熱間圧延工程後の冷間圧延工程の途中で中間焼鈍を行う場合には、熱間圧延終了温度は、250℃以上300℃以下とする。
(Hot rolling finish temperature: 250 ° C or higher and 300 ° C or lower)
When the hot rolling finish temperature is less than 250 ° C., dynamic recrystallization in the rolled sheet is insufficient, the crystal structure of the rolled sheet becomes non-uniform, and the uniformity of the rough surface is inferior. In addition, since the number density of intermetallic compounds existing on the surface of the aluminum alloy plate is insufficient, the formation of initial pits is not promoted, and the uniformity of the rough surface is poor. On the other hand, when the hot rolling finish temperature exceeds 300 ° C., when intermediate annealing is performed after cold rolling is performed on the obtained hot rolled sheet, accumulation of strain energy is insufficient and recrystallization caused by the intermediate annealing is performed. Since the grains cannot be made fine, the uniformity of the rough surface is inferior.
Therefore, when intermediate annealing is performed in the middle of the cold rolling process after the hot rolling process, the hot rolling end temperature is set to 250 ° C. or more and 300 ° C. or less.
(第4工程)
第4工程は、前記第3工程で熱間圧延された圧延板を冷間圧延し、さらに中間焼鈍、冷間圧延してアルミニウム合金板を作製する工程である。中間焼鈍については、従来公知の条件で行えばよい。例えば、バッチ式焼鈍では400〜500℃×1〜10時間、連続焼鈍では400〜550℃×0〜30秒間の条件で行うことが好ましい。なお、冷間圧延の途中で中間焼鈍を行うこと以外は前記第1製造方法の第4工程と同様であるため、ここでは、説明を省略する。
(4th process)
The fourth step is a step of cold-rolling the rolled plate hot-rolled in the third step and further intermediate annealing and cold rolling to produce an aluminum alloy plate. The intermediate annealing may be performed under conventionally known conditions. For example, it is preferable that batch annealing is performed at 400 to 500 ° C. for 1 to 10 hours, and continuous annealing is performed at 400 to 550 ° C. for 0 to 30 seconds. In addition, since it is the same as that of the 4th process of the said 1st manufacturing method except performing intermediate annealing in the middle of cold rolling, description is abbreviate | omitted here.
本発明の製造方法は、以上説明したとおりであるが、第1製造方法および第2製造方法を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、鋳塊を面削する面削工程や、ごみ等の不要物を除去する不要物除去工程や、板の歪みを矯正する歪み矯正処理工程等、他の工程を含めてもよい。 The production method of the present invention is as described above, but in performing the first production method and the second production method, within a range that does not adversely affect each step, Other processes such as a chamfering process for chamfering the ingot, an unnecessary object removing process for removing unnecessary substances such as dust, and a distortion correcting process process for correcting distortion of the plate may be included.
本発明に係るアルミニウム合金板の実施例(実施例1〜13)について、その比較例(比較例1〜14)と比較して具体的に説明する。 Examples (Examples 1 to 13) of the aluminum alloy sheet according to the present invention will be specifically described in comparison with comparative examples (Comparative Examples 1 to 14).
<実施例1〜13、比較例1〜14>
ここでは、第1製造方法によりアルミニウム合金板を作製した。
表1に示す組成を有するアルミニウム合金を溶解、鋳造して鋳塊を作製し、面削して580mm厚さとした。この鋳塊を480℃×4hで均質化熱処理し、圧延終了温度330℃で熱間圧延して厚さ3mmでコイル状に巻き取った。この熱間圧延板に、中間焼鈍を施さずに冷間圧延を施して最終製品厚さ0.3mmの圧延板とした後に、テンションレベラーによる矯正を施し、評価用コイル製品を作製した。このコイル製品外周からシート状のアルミニウム合金板を切り出した。なお、表1において、成分を含有していないものについては、「−」で示し、本発明の請求範囲を満たさないものについては、数値に下線を引いて示す。
<Examples 1-13, Comparative Examples 1-14>
Here, an aluminum alloy plate was produced by the first production method.
An aluminum alloy having the composition shown in Table 1 was melted and cast to produce an ingot, which was chamfered to a thickness of 580 mm. The ingot was homogenized by heat treatment at 480 ° C. × 4 h, hot-rolled at a rolling end temperature of 330 ° C., and wound into a coil with a thickness of 3 mm. The hot-rolled sheet was cold-rolled without being subjected to intermediate annealing to form a rolled sheet having a final product thickness of 0.3 mm, and then subjected to correction with a tension leveler to produce an evaluation coil product. A sheet-like aluminum alloy plate was cut out from the outer periphery of the coil product. In Table 1, those not containing a component are indicated by “−”, and those not satisfying the claims of the present invention are indicated by underlining the numerical values.
次に、前記のアルミニウム合金板の表面を、以下の条件で電解粗面化処理した。
(電解粗面化処理条件)
アルミニウム合金板を、5質量%水酸化ナトリウム水溶液で、温度50℃にて30秒間脱脂した後、1質量%硝酸で、室温にて30秒間中和洗浄した。中和洗浄されたアルミニウム合金板を、2質量%塩酸中で、電流密度120A/dm2、周波数50Hz、温度25℃の電解条件で、10秒間の電解処理する方法と、2質量%硝酸中で、電流密度50A/dm2、周波数50Hz、温度25℃の電解条件で、30秒間の電解処理する方法で交流電解粗面化処理した。電解粗面化処理されたアルミニウム合金板を、5質量%水酸化ナトリウム水溶液で、温度50℃にて10秒間デスマット処理した後、30質量%硝酸で、室温にて30秒間中和洗浄し、水洗、乾燥させ、これを評価試料とした。
Next, the surface of the aluminum alloy plate was subjected to an electrolytic surface roughening treatment under the following conditions.
(Electrolytic surface roughening conditions)
The aluminum alloy plate was degreased with a 5 mass% aqueous sodium hydroxide solution at a temperature of 50 ° C for 30 seconds, and then neutralized and washed with 1 mass% nitric acid at room temperature for 30 seconds. The neutralized and washed aluminum alloy plate is subjected to an electrolytic treatment for 10 seconds in 2% by mass hydrochloric acid under electrolysis conditions of a current density of 120 A / dm 2 , a frequency of 50 Hz, and a temperature of 25 ° C., and in 2% by mass nitric acid. An AC electrolytic surface roughening treatment was performed by an electrolytic treatment for 30 seconds under an electrolytic condition of a current density of 50 A / dm 2 , a frequency of 50 Hz, and a temperature of 25 ° C. The aluminum alloy plate subjected to electrolytic surface roughening treatment was desmutted with a 5% by mass aqueous sodium hydroxide solution at a temperature of 50 ° C. for 10 seconds, then neutralized with 30% by mass nitric acid at room temperature for 30 seconds, and washed with water. The sample was dried and used as an evaluation sample.
この評価試料について、粗面の均一性を調べた。その結果を表1に示す。
(均一性の評価方法)
評価試料の粗面を、SEMを用いて2000倍で表面観察し、これを写真撮影した。この写真を並べて全長100cmの線を平行に3本引き、この線の下にある最大のピットと最小のピットの大きさ(最大長さ)の差を求めることにより均一性を評価した。ここで、ピットの大きさの差が1μm以下のものを◎(極めて良好)とし、ピットの大きさの差が1μmを超え1.5μm以下のものを○(良好)とし、1.5μmを超え2μm以下のものを△(やや良好)とし、2μmを超えるものを×(不良)とした。そして、◎、○、△の判定を合格とした。
For this evaluation sample, the uniformity of the rough surface was examined. The results are shown in Table 1.
(Evaluation method of uniformity)
The rough surface of the evaluation sample was observed with a SEM at a magnification of 2000 times and photographed. The photographs were placed side by side and three lines with a total length of 100 cm were drawn in parallel, and the uniformity was evaluated by determining the difference in size (maximum length) between the largest pit and the smallest pit below this line. Here, when the difference in the pit size is 1 μm or less, ◎ (very good), and when the pit size difference exceeds 1 μm and 1.5 μm or less, ○ (good), exceeding 1.5 μm Those having a thickness of 2 μm or less were evaluated as Δ (slightly good), and those exceeding 2 μm were evaluated as x (defective). And the evaluation of (double-circle), (circle), (triangle | delta) was set as the pass.
また、前記アルミニウム合金板について、裏面白色化特性を調べた。その結果を表1に示す。
(裏面白色化特性の評価方法)
アルミニウム合金板を、5質量%水酸化ナトリウム水溶液で、温度50℃にて30秒間脱脂した後、1質量%硝酸で、室温にて30秒間中和洗浄した。中和洗浄されたアルミニウム合金板を、2質量%塩酸中(温度25℃)に30秒間浸漬した後、5質量%水酸化ナトリウム水溶液で、温度50℃にて10秒間デスマット処理した。その表面性状について色差計にて明度L値を測定し、裏面白色化特性(裏面は通電されない)を評価した。L値が86.5未満のものを殆ど白色化しないということで◎(極めて良好)とし、86.5以上87.0未満のものを○(良好)とし、87.0以上のものを白色化したということで×(不良)とした。
Moreover, the back surface whitening characteristic was investigated about the said aluminum alloy plate. The results are shown in Table 1.
(Evaluation method for backside whitening characteristics)
The aluminum alloy plate was degreased with a 5 mass% aqueous sodium hydroxide solution at a temperature of 50 ° C for 30 seconds, and then neutralized and washed with 1 mass% nitric acid at room temperature for 30 seconds. The neutralized and washed aluminum alloy plate was immersed in 2% by mass hydrochloric acid (temperature 25 ° C.) for 30 seconds, and then desmutted with a 5% by mass aqueous sodium hydroxide solution at a temperature of 50 ° C. for 10 seconds. The lightness L value was measured with the color difference meter about the surface property, and the back surface whitening characteristic (the back surface is not energized) was evaluated. A value of L less than 86.5 is hardly whitened because it is hardly whitened, a value of 86.5 or more and less than 87.0 is marked as ◯ (good), and a value of 87.0 or more is whitened. Therefore, it was set as x (defect).
次に、前記アルミニウム合金板について、以下の方法で引張強さ、および曲げ疲労強度を測定または算出した。その結果を表1に示す。 Next, the tensile strength and bending fatigue strength of the aluminum alloy plate were measured or calculated by the following method. The results are shown in Table 1.
(引張強さの評価方法)
アルミニウム合金板からJIS5号試験片(JISZ2201)各4枚を切り出しにより作製した。この試験片(試験片A)を各2枚、および、この試験片を雰囲気温度240℃に設定した空気炉に挿入し、炉蓋を閉めた後に再び雰囲気温度が240℃に到達してから10分間経過後に炉内から取り出した試験片(試験片B)各2枚(バーニング処理後の引張強さの評価用)を用いて、JISZ2241に準じて引張試験を行い、引張強さを測定した。ここで、各2枚の平均値を算出し、試験片Aでは引張強さが180MPa以上のものを○(良好)とし、引張強さが180MPa未満のものを×(不良)とし、試験片Bでは引張強さが135MPa以上のものを○(良好)とし、引張強さが135MPa未満のものを×(不良)とした。
(Tensile strength evaluation method)
Four pieces each of JIS No. 5 test pieces (JISZ2201) were cut out from the aluminum alloy plate. Two pieces of each of these test pieces (test piece A) and this test piece were inserted into an air furnace set at an atmospheric temperature of 240 ° C., and after the furnace lid was closed, the atmospheric temperature reached 240 ° C. again. A tensile test was performed according to JISZ2241, using two test pieces (test piece B) each taken out from the furnace after the lapse of minutes (for evaluation of tensile strength after burning treatment), and the tensile strength was measured. Here, the average value of each of the two pieces is calculated, and in the test piece A, a specimen having a tensile strength of 180 MPa or more is evaluated as ◯ (good), and a specimen having a tensile strength of less than 180 MPa is evaluated as x (defective). In this case, a sample having a tensile strength of 135 MPa or more was evaluated as “good”, and a sample having a tensile strength of less than 135 MPa was evaluated as “poor”.
(曲げ疲労強度の評価方法)
アルミニウム合金板から試験片(長さ10mm×幅80mm)を切り出しにより作製した。この試験片を用いて、JISZ2273に準じた平面曲げ疲労試験を、試験片の厚み方向に与える片振り幅5mmで行った。そして、繰返し曲げ104回での破断応力を算出し、この破断応力を曲げ疲労強度とした。ここで、破断応力350MPa以上のものを○(良好)とし、350MPa未満のものを×(不良)とした。この曲げ疲労強度が良好なアルミニウム合金板を用いた印刷版は、くわえ切れ性が良好である。
(Bending fatigue strength evaluation method)
A test piece (length 10 mm × width 80 mm) was cut out from the aluminum alloy plate. Using this test piece, a plane bending fatigue test according to JISZ2273 was performed with a swing width of 5 mm given in the thickness direction of the test piece. Then, the breaking stress at 10 4 repeated bendings was calculated, and this breaking stress was defined as bending fatigue strength. Here, the one having a breaking stress of 350 MPa or more was evaluated as ◯ (good), and the one less than 350 MPa was evaluated as x (defective). A printing plate using an aluminum alloy plate having good bending fatigue strength has good gripping properties.
次に、前記アルミニウム合金板を支持体として使用した印刷版について、印刷版としての表面性を調べた。その結果を表1に示す。 Next, the surface properties of the printing plate using the aluminum alloy plate as a support were examined. The results are shown in Table 1.
(印刷版の表面性の評価方法)
印刷版を汎用の印刷機に装着して、ロール状に巻き取り、印刷を行うことで表面性を評価した。網点面積の面内バラツキ等が生じなかったもの、および、インク不要部へインクが残ってしまうような印刷品質低下が生じなかったものを○(極めて良好)とし、網点面積の面内バラツキ等がわずかに生じたものの、印刷品質は低下せず、製品として問題がなかったものを△(良好)とし、網点面積の面内バラツキ等が生じたもの、インク不要部にインクが残ってしまって印刷品質が低下したものを×(不良)とした。そして、○、△の判定を合格とした。
(Method for evaluating surface properties of printing plates)
The printing plate was mounted on a general-purpose printing machine, wound up into a roll, and printed to evaluate the surface properties. A dot that does not cause in-plane variation in the halftone dot area, or a print quality that does not deteriorate such that ink remains in an unnecessary part of the ink is marked as ◯ (very good). Slightly occurred, etc., but the print quality did not deteriorate, and there was no problem as a product. △ (good), halftone dot area variation etc. occurred, ink remained in the ink unnecessary part An x (defect) is indicated when the print quality is degraded. And the determination of (circle) and (triangle | delta) was set as the pass.
表1に示すように、実施例1〜13は、化学組成が本発明の請求範囲(以下、請求範囲と称す)を満足するため、粗面の均一性、裏面白色化特性、アルミニウム合金板の強度(引張強さ、バーニング処理後の引強さ、曲げ疲労強度)、印刷版の表面性に優れるものであった。なお、実施例11、12は、Niが好ましい量添加されているために、粗面の均一性が特に優れていた。 As shown in Table 1, in Examples 1 to 13, since the chemical composition satisfies the claims of the present invention (hereinafter referred to as claims), the uniformity of the rough surface, the whitening property of the back surface, and the aluminum alloy plate It was excellent in strength (tensile strength, tensile strength after burning treatment, bending fatigue strength) and surface properties of the printing plate. In Examples 11 and 12, since a preferable amount of Ni was added, the uniformity of the rough surface was particularly excellent.
比較例1は、Si含有量が請求範囲の下限値未満であるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。比較例2は、Si含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 1, since the Si content was less than the lower limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior. In Comparative Example 2, since the Si content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例3は、Fe含有量が請求範囲の下限値未満であるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。また、強度が不足し、引張強さ、曲げ疲労強度に劣るものであった。比較例4は、Fe含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 3, since the Fe content was less than the lower limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior. Further, the strength was insufficient, and the tensile strength and bending fatigue strength were inferior. In Comparative Example 4, since the Fe content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例5は、Cu含有量が請求範囲の下限値未満であるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。比較例6は、Cu含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 5, since the Cu content was less than the lower limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior. In Comparative Example 6, since the Cu content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例7は、Mg含有量が請求範囲の下限値未満であるため、強度が不足し、引張強さ、曲げ疲労強度に劣るものであった。比較例8は、Mg含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 7, since the Mg content was less than the lower limit value of the claims, the strength was insufficient, and the tensile strength and bending fatigue strength were inferior. In Comparative Example 8, since the Mg content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例9、10は、Mn含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Examples 9 and 10, since the Mn content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例11は、Zn含有量が請求範囲の上限値を超えるため、裏面白色化特性に劣るものであった。比較例12は、Ni含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 11, since the Zn content exceeded the upper limit of the claims, the back surface whitening characteristics were inferior. In Comparative Example 12, since the Ni content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
比較例13は、Ti含有量が請求範囲の下限値未満であるため、粗面の均一性に劣り、また、表面に帯状の筋が残存したため、印刷版の表面性に劣るものであった。比較例14は、Ti含有量が請求範囲の上限値を超えるため、粗面の均一性に劣り、印刷版の表面性に劣るものであった。 In Comparative Example 13, since the Ti content was less than the lower limit of the claims, the uniformity of the rough surface was inferior, and the strip-like streaks remained on the surface, so that the surface property of the printing plate was inferior. In Comparative Example 14, since the Ti content exceeded the upper limit of the claims, the uniformity of the rough surface was inferior and the surface property of the printing plate was inferior.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013082693A JP2013177685A (en) | 2013-04-11 | 2013-04-11 | High strength aluminum alloy sheet for automatic plate-making printing plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013082693A JP2013177685A (en) | 2013-04-11 | 2013-04-11 | High strength aluminum alloy sheet for automatic plate-making printing plate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011048579A Division JP5250067B2 (en) | 2011-03-07 | 2011-03-07 | High-strength aluminum alloy plate for printing plates with excellent reverse whitening prevention |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013177685A true JP2013177685A (en) | 2013-09-09 |
Family
ID=49269579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013082693A Pending JP2013177685A (en) | 2013-04-11 | 2013-04-11 | High strength aluminum alloy sheet for automatic plate-making printing plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013177685A (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605861A (en) * | 1983-06-22 | 1985-01-12 | Furukawa Alum Co Ltd | Production of base for lithographic printing plate |
JPS61146598A (en) * | 1984-12-20 | 1986-07-04 | Furukawa Alum Co Ltd | Supporter for lithographic printing plate and its manufacture |
JPS62230946A (en) * | 1986-04-01 | 1987-10-09 | Furukawa Alum Co Ltd | Aluminum alloy support for planographic printing plate |
JPH1161364A (en) * | 1997-08-22 | 1999-03-05 | Sky Alum Co Ltd | Manufacture of aluminum alloy support for lithographic printing plate and aluminum alloy support for lithographic printing plate |
JP2003082426A (en) * | 2001-09-12 | 2003-03-19 | Fuji Photo Film Co Ltd | Supporting body for lithographic printing plate and lithographic printing original plate |
JP2005042187A (en) * | 2003-07-25 | 2005-02-17 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for planographic printing plate, its manufacturing method, and planographic printing plate |
JP2005330588A (en) * | 2001-12-28 | 2005-12-02 | Mitsubishi Alum Co Ltd | Aluminum alloy plate for lithographic printing form and lithographic printing form |
JP2006205557A (en) * | 2005-01-28 | 2006-08-10 | Fuji Photo Film Co Ltd | Substrate for lithographic printing plate |
JP2007069601A (en) * | 2005-08-12 | 2007-03-22 | Fujifilm Corp | Support for lithographic printing plate and original lithographic printing plate |
JP2008063667A (en) * | 2007-10-12 | 2008-03-21 | Mitsubishi Alum Co Ltd | Aluminum alloy material for lithography and its manufacturing method |
JP2009083190A (en) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | Aluminum alloy sheet for lithographic printing plate and its manufacturing method |
JP2009097092A (en) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | Aluminum alloy sheet for lithographic printing plate and its manufacturing method |
JP2010012779A (en) * | 2008-06-24 | 2010-01-21 | Bridgnorth Aluminium Ltd | Alloy suitable for being processed into lithographic printing sheet |
JP2010023402A (en) * | 2008-07-23 | 2010-02-04 | Fujifilm Corp | Aluminum support for lithographic printing plate |
JP2011505493A (en) * | 2007-11-30 | 2011-02-24 | ハイドロ アルミニウム ドイチュラント ゲーエムベーハー | Aluminum strip for lithographic printing plate support and its manufacture |
JP5250067B2 (en) * | 2011-03-07 | 2013-07-31 | 株式会社神戸製鋼所 | High-strength aluminum alloy plate for printing plates with excellent reverse whitening prevention |
-
2013
- 2013-04-11 JP JP2013082693A patent/JP2013177685A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605861A (en) * | 1983-06-22 | 1985-01-12 | Furukawa Alum Co Ltd | Production of base for lithographic printing plate |
JPS61146598A (en) * | 1984-12-20 | 1986-07-04 | Furukawa Alum Co Ltd | Supporter for lithographic printing plate and its manufacture |
JPS62230946A (en) * | 1986-04-01 | 1987-10-09 | Furukawa Alum Co Ltd | Aluminum alloy support for planographic printing plate |
JPH1161364A (en) * | 1997-08-22 | 1999-03-05 | Sky Alum Co Ltd | Manufacture of aluminum alloy support for lithographic printing plate and aluminum alloy support for lithographic printing plate |
JP2003082426A (en) * | 2001-09-12 | 2003-03-19 | Fuji Photo Film Co Ltd | Supporting body for lithographic printing plate and lithographic printing original plate |
JP2005330588A (en) * | 2001-12-28 | 2005-12-02 | Mitsubishi Alum Co Ltd | Aluminum alloy plate for lithographic printing form and lithographic printing form |
JP2005042187A (en) * | 2003-07-25 | 2005-02-17 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for planographic printing plate, its manufacturing method, and planographic printing plate |
JP2006205557A (en) * | 2005-01-28 | 2006-08-10 | Fuji Photo Film Co Ltd | Substrate for lithographic printing plate |
JP2007069601A (en) * | 2005-08-12 | 2007-03-22 | Fujifilm Corp | Support for lithographic printing plate and original lithographic printing plate |
JP2009083190A (en) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | Aluminum alloy sheet for lithographic printing plate and its manufacturing method |
JP2009097092A (en) * | 2007-09-28 | 2009-05-07 | Fujifilm Corp | Aluminum alloy sheet for lithographic printing plate and its manufacturing method |
JP2008063667A (en) * | 2007-10-12 | 2008-03-21 | Mitsubishi Alum Co Ltd | Aluminum alloy material for lithography and its manufacturing method |
JP2011505493A (en) * | 2007-11-30 | 2011-02-24 | ハイドロ アルミニウム ドイチュラント ゲーエムベーハー | Aluminum strip for lithographic printing plate support and its manufacture |
JP2010012779A (en) * | 2008-06-24 | 2010-01-21 | Bridgnorth Aluminium Ltd | Alloy suitable for being processed into lithographic printing sheet |
JP2010023402A (en) * | 2008-07-23 | 2010-02-04 | Fujifilm Corp | Aluminum support for lithographic printing plate |
JP5250067B2 (en) * | 2011-03-07 | 2013-07-31 | 株式会社神戸製鋼所 | High-strength aluminum alloy plate for printing plates with excellent reverse whitening prevention |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4764459B2 (en) | High-strength aluminum alloy plate for printing plates with excellent reverse whitening prevention | |
JP4740896B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP5210103B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4913008B2 (en) | Aluminum alloy material for lithographic printing and method for producing the same | |
JP4181596B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP4181597B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP5250067B2 (en) | High-strength aluminum alloy plate for printing plates with excellent reverse whitening prevention | |
JP5250068B2 (en) | Method for producing high-strength aluminum alloy plate for printing plate with excellent reverse whitening prevention | |
JP2013174018A (en) | Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making | |
JP2009083190A (en) | Aluminum alloy sheet for lithographic printing plate and its manufacturing method | |
JP4105042B2 (en) | Aluminum alloy material for lithographic printing plate and method for producing the same | |
JP2004292862A (en) | Aluminum alloy support for lithographic printing plate, and production method therefor | |
US20080289731A1 (en) | Method of producing aluminum alloy sheet for lithographic printing plate | |
JP2013177685A (en) | High strength aluminum alloy sheet for automatic plate-making printing plate | |
KR101104556B1 (en) | High-strength aluminum alloy plate for printing plate | |
JP5314396B2 (en) | Aluminum alloy plate for lithographic printing plates | |
JP4110353B2 (en) | Aluminum alloy base plate for lithographic printing plate and method for producing the same | |
JP5116267B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP5753389B2 (en) | Aluminum alloy plate for printing plate and method for producing the same | |
JP4105043B2 (en) | Aluminum alloy material for lithographic printing plate and method for producing the same | |
JP3788837B2 (en) | Aluminum alloy plate for printing plate and method for producing the same | |
JP5004267B2 (en) | Aluminum alloy plate for printing plate, method for producing the same, and photosensitive planographic printing plate | |
JP2014122407A (en) | Aluminum alloy plate for printing plate and production method thereof | |
JP2008272941A (en) | Manufacturing method of aluminum alloy plate for lithographic printing plate | |
JP2007131917A (en) | Aluminum alloy sheet for printing plate and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20140408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140605 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150512 |