JP2000054093A - Manufacture of aluminum foil - Google Patents

Manufacture of aluminum foil

Info

Publication number
JP2000054093A
JP2000054093A JP22499598A JP22499598A JP2000054093A JP 2000054093 A JP2000054093 A JP 2000054093A JP 22499598 A JP22499598 A JP 22499598A JP 22499598 A JP22499598 A JP 22499598A JP 2000054093 A JP2000054093 A JP 2000054093A
Authority
JP
Japan
Prior art keywords
foil
rolling
aluminum foil
aluminum
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22499598A
Other languages
Japanese (ja)
Other versions
JP3529270B2 (en
Inventor
Shinichiro Hosono
晋一郎 細野
Nobuki Tanami
信希 田波
Kozo Hoshino
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22499598A priority Critical patent/JP3529270B2/en
Publication of JP2000054093A publication Critical patent/JP2000054093A/en
Application granted granted Critical
Publication of JP3529270B2 publication Critical patent/JP3529270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing aluminum foil, capable of reducing the thickness of foil without deteriorating foil rolling characteristics and pinhole characteristic even in the case of a composition equivalent to JIS1N30. SOLUTION: A molten aluminum alloy, having a composition consisting of, by weight, 0.3-1.0% Fe, <0.15% Si, and the balance Al with inevitable impurities, is semi-continuously cast at (0.3 to 3.0) deg.C/sec cooling rate at solidification, faced, homogenized at 400 to 620 deg.C, hot rolled at 200 to 260 deg.C finishing temperature, cold rolled after the completion of hot rolling, process annealed at 300 to 450 deg.C, and further cold rolled. By this procedure, rolling of aluminum foil in which the average intergranular spacing of an intermetallic compound of 0.1 to 0.8 μm grain size is 0.7 to 2.5 μm and the average grain size is <=35 μm is performed. Further, the additive quantity of Cu to be added to the aluminum alloy and also the additive quantity of Ti are regulated to <=0.02 wt.% and <=0.03 wt.%, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品及びその他の
包装、フィルムコンデンサ、ラベル又はたばこ等に使用
される箔の製造方法に関し、特に箔厚が15μm以下の
極薄のアルミニウム箔用途に使用されるピンホール特性
に優れるアルミニウム箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foil used for food and other packaging, film capacitors, labels or tobacco, and more particularly to an ultra-thin aluminum foil having a foil thickness of 15 μm or less. The present invention relates to a method for producing an aluminum foil having excellent pinhole characteristics.

【0002】[0002]

【従来の技術】従来、薄箔用のアルミニウム又はアルミ
ニウム合金は箔地材料としては、JIS1N30等の純
アルミニウム、8079合金又は8021合金等が使用
されている。なお、以下、純アルミニウム又はアルミニ
ウム合金を総称してアルミニウムという。アルミニウム
箔地は、一般的に、これらのアルミニウム鋳塊に均質化
処理、熱間圧延、冷間圧延及び中間焼鈍を施し、また、
必要に応じてその後、冷間圧延を施すことにより製造さ
れている。
2. Description of the Related Art Conventionally, as aluminum or aluminum alloy for thin foil, pure aluminum such as JIS1N30, 8079 alloy or 8021 alloy is used as a foil base material. Hereinafter, pure aluminum or aluminum alloy is collectively referred to as aluminum. Aluminum foil is generally subjected to homogenization, hot rolling, cold rolling and intermediate annealing of these aluminum ingots,
It is manufactured by performing cold rolling as necessary.

【0003】そして、得られたアルミニウム箔地に箔圧
延及び最終焼鈍を行うことによりアルミニウム箔が得ら
れる。ところで、5.5乃至7μmのアルミニウム箔が
実用化されているが、箔需要は6乃至7μmが大半であ
り、同じ厚さのアルミニウム箔は箔圧延での互換性の点
によりJIS1N30を使用したいとの要望が強い。一
般的に、箔厚の減少に伴う問題点としては、ピンホール
が著しく増加し、箔が本来有するべき性能である光、気
体及び液体等に対するバリアー性が低下すると共に、ピ
ンホールによる圧延中の箔切れが生じることが知られて
いる。
[0003] An aluminum foil is obtained by subjecting the obtained aluminum foil base to foil rolling and final annealing. By the way, although 5.5 to 7 μm aluminum foil has been put into practical use, foil demand is mostly 6 to 7 μm, and it is desired to use JIS1N30 for the same thickness of aluminum foil due to compatibility in foil rolling. Is strongly requested. In general, as a problem associated with a decrease in the thickness of the foil, pinholes are significantly increased, and the performance that the foil should originally have, such as light, gas, and liquid, is reduced. It is known that foil breakage occurs.

【0004】薄箔の仕上箔圧延は通常重合圧延により行
われ、ピンホールはマット面うねりの最大のところがブ
ライト面オイルピット等と連結して生ずることが知られ
ている。また、ピンホールはオイルピット面等の表面欠
陥と比べて、主にマット粗度に支配されることも知られ
ている。更に、オイルピットは圧延条件(リダクション
・バックテンション)に主に支配され、マット面は結晶
粒の自由変形により形成されると考えられ、箔地により
支配される要因が大きいことが知られている(特公平3
−60562号公報、軽金属学会第70回予行集33,
34,35)。
[0004] Finish foil rolling of a thin foil is usually carried out by polymerization rolling, and it is known that pinholes are formed by connecting the largest waviness of the mat surface with oil pits on the bright surface. It is also known that pinholes are mainly governed by mat roughness as compared to surface defects such as oil pit surfaces. Furthermore, oil pits are mainly governed by rolling conditions (reduction / back tension), and it is considered that the matte surface is formed by free deformation of crystal grains, and it is known that the factor governed by the foil material is large. (Tokuhei 3
-60562, 70th Dry Metal Collection of the Japan Institute of Light Metals 33,
34, 35).

【0005】そこで、マット面粗度を低減させるべく、
Fe含有量の増加や均質化処理以降の製造条件変更によ
りFe固溶度を減少させ、結晶粒を微細化することによ
り加工硬化を抑制できる箔として特開昭63−2632
2号公報等に開示されている。また、他の元素を添加す
るものも知られていて、例えば、Ni、Mn及びCrの
添加により結晶粒の微細化及び加工硬化の抑制を発現す
ることができる箔として特開昭63−282228号公
報、特開昭63−282244号公報及び特開平8−3
3644号公報等に開示されている。
Therefore, in order to reduce the mat surface roughness,
JP-A-63-26332 discloses a foil capable of suppressing the work hardening by decreasing the Fe solid solubility by increasing the Fe content or changing the manufacturing conditions after the homogenization treatment and making the crystal grains fine.
No. 2 and the like. In addition, those to which other elements are added are known. For example, Japanese Patent Application Laid-Open No. 63-282228 discloses a foil capable of exhibiting crystal grain refinement and suppression of work hardening by adding Ni, Mn and Cr. Gazette, JP-A-63-282244 and JP-A-8-3
No. 3644, and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Fe、
Ni、Mn、Crを添加するアルミニウム箔地では前述
のような互換性のメリットがない。また、JIS1N3
0相当の組成(Fe含有量のない場合)では、均質化処
理以降の製造条件変更により析出促進を行っても、箔厚
が6乃至7μmのアルミニウム箔を得る箔圧延において
は、大きな加工硬化の抑制効果を得られないばかりか、
工程変更によっては結晶粒が逆に大きくなってしまうこ
ともあり、ピンホールの発生量の増加及び圧延中の箔切
れの頻発を生じ易い等の問題があった。
However, Fe,
Aluminum foil to which Ni, Mn, and Cr are added does not have the advantage of compatibility as described above. Also, JIS1N3
With a composition equivalent to 0 (when there is no Fe content), even if the precipitation is promoted by changing the manufacturing conditions after the homogenization treatment, a large work hardening is required in foil rolling to obtain an aluminum foil having a foil thickness of 6 to 7 μm. Not only can you not get the suppression effect,
Depending on the process change, the crystal grains may become large on the contrary, and there are problems such as an increase in the amount of pinholes generated and frequent occurrence of foil breakage during rolling.

【0007】本発明はかかる問題に鑑みてなされたもの
であり、JIS1N30相当の組成であっても、箔圧延
及びピンホール特性を損なうことなく、箔を薄箔化でき
るアルミニウム箔の製造方法を提供することを目的とす
る。
The present invention has been made in view of such a problem, and provides a method of manufacturing an aluminum foil capable of reducing the thickness of a foil without impairing foil rolling and pinhole characteristics even with a composition equivalent to JIS1N30. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明に係るアルミニウ
ム箔の製造方法は、Fe:0.3乃至1.0重量%、S
i:0.15重量%未満を含有し、残部がAl及び不可
避的不純物である組成のアルミニウム合金の溶湯を、凝
固時の冷却速度を0.3乃至3.0℃/secで半連続
鋳造し、面削した後、400乃至620℃の温度範囲で
均質化処理を施し、終了温度が200乃至260℃の温
度範囲となるように熱間圧延し、熱間圧延終了後に冷間
圧延を行い、300乃至450℃で中間焼鈍を施し、更
に冷間圧延をすることにより、粒径が0.1乃至0.8
μm以下の金属間化合物の平均粒子間距離が0.7乃至
2.5μm、平均結晶粒径が35μm以下であるアルミ
ニウム箔地を圧延することを特徴とする。
According to the present invention, there is provided a method for manufacturing an aluminum foil, comprising: Fe: 0.3 to 1.0% by weight;
i: A semi-continuous casting of a molten aluminum alloy containing less than 0.15% by weight, with the balance being Al and inevitable impurities, at a cooling rate of 0.3 to 3.0 ° C./sec during solidification. , After facing, subjected to homogenization treatment in the temperature range of 400 to 620 ° C., hot rolling so that the end temperature is in the temperature range of 200 to 260 ° C., cold rolling after the completion of hot rolling, Intermediate annealing is performed at 300 to 450 ° C., and further cold rolling is performed, so that the grain size is 0.1 to 0.8.
The method is characterized in that an aluminum foil material having an average inter-particle distance of 0.7 to 2.5 μm and an average crystal grain size of 35 μm or less is rolled.

【0009】本発明においては、前記冷間圧延後のアル
ミニウム箔地を70乃至110℃の温度範囲で箔圧延す
ることが好ましい。
In the present invention, it is preferable that the cold-rolled aluminum foil is rolled in a temperature range of 70 to 110 ° C.

【0010】また、本発明においては、前記アルミニウ
ム合金に添加するCuの添加量が0.02重量%以下で
あり、Tiの添加量が0.03重量%以下であることが
好ましい。
In the present invention, it is preferable that the amount of Cu added to the aluminum alloy is 0.02% by weight or less, and the amount of Ti added is 0.03% by weight or less.

【0011】更に、本発明においては、鋳造凝固時の冷
却速度、均質化処理条件、冷間圧延率及び中間焼鈍条件
の制御により粒子間距離の適正化を図ることにより、箔
圧延性に優れ、箔圧延後、ピンホールの発生数が少ない
アルミニウム箔を得ることができる。
Further, in the present invention, by controlling the cooling rate during casting solidification, homogenization treatment conditions, cold rolling reduction and intermediate annealing conditions to optimize the distance between particles, foil rollability is excellent. After the foil rolling, an aluminum foil having a small number of pinholes can be obtained.

【0012】[0012]

【発明の実施の形態】本発明者等らは、これまでのアル
ミニウム箔及び箔地に関する研究から、ピンホールを少
なくすることは、マット面粗度を低くすること、即ち、
仕上箔圧延時の変形ブロックを微小化することが必要で
あることを見出した。更には、マット面は結晶粒サイズ
のみではなく、転位セルサイズの自由変形によっても形
成されることも見出した。また、ピンホールを少なくす
るには、加工硬化を抑制することが有効であることは知
られているが、これは、転位整理によるサブグレイン化
により達成されることも究明した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have shown from studies on aluminum foil and foil base that reducing pinholes can reduce mat surface roughness, that is,
It has been found that it is necessary to miniaturize the deformed block during finishing foil rolling. Further, they have found that the matte surface is formed not only by the crystal grain size but also by the free deformation of the dislocation cell size. Although it is known that suppressing work hardening is effective in reducing pinholes, it has also been found that this can be achieved by subgrain formation by rearrangement of dislocations.

【0013】そこで、前述の特性を発現するアルミニウ
ム箔地を開発するため、鋭意研究を重ねた結果、粒径が
0.1乃至0.8μmの金属間化合物の粒子間距離を転
位セルサイズに調整することが有効であることを見出し
た。また、JIS1N30組成の場合には、この粒子間
距離の適正化は、従来行われてきた均質化処理以降の製
造条件変更のみでは、調整困難であり、鋳造条件の適正
化と均質化処理以降の箔地製造条件を組合せて制御する
と共に、箔圧延の温度領域を管理することにより、その
目的が達成されることを見出した。本発明はこの知見に
基づいてなされたものである。
Accordingly, as a result of intensive studies to develop an aluminum foil material exhibiting the above-mentioned characteristics, the inter-particle distance of the intermetallic compound having a particle size of 0.1 to 0.8 μm was adjusted to the dislocation cell size. Was found to be effective. In addition, in the case of the JIS1N30 composition, it is difficult to adjust the inter-particle distance only by changing the manufacturing conditions after the conventional homogenization treatment, and it is difficult to adjust the casting conditions and the homogenization treatment. It has been found that the object can be achieved by controlling the temperature range of the foil rolling while controlling the combination of the foil fabric manufacturing conditions. The present invention has been made based on this finding.

【0014】即ち、本発明においては、Fe:0.3乃
至1.0重量%、Si:0.15重量%未満を含有し、
残部がAl及び不可避的不純物である組成のアルミニウ
ム合金の溶湯を、凝固時の冷却速度を0.3乃至3.0
℃/secで半連続鋳造し、面削した後、400乃至6
00℃の温度範囲で均質化処理を施し、終了温度が20
0乃至260℃の温度範囲となるように熱間圧延し、熱
間圧延終了後に冷間圧延を行い、300乃至450℃で
中間焼鈍を施し、更に冷間圧延をすることにより、粒径
が0.1乃至0.8μm以下の金属間化合物の平均粒子
間距離が0.7乃至2.5μm、平均結晶粒径が35μ
m以下であるアルミニウム箔地を得る。このアルミニウ
ム箔地を70乃至110℃の温度範囲で箔圧延すること
によりアルミニウム箔を得る。
That is, in the present invention, Fe: 0.3 to 1.0% by weight, Si: less than 0.15% by weight,
The cooling rate at the time of solidification is set to 0.3 to 3.0 for a molten aluminum alloy having a balance of Al and inevitable impurities.
After semi-continuous casting at ℃ / sec, and after face milling, 400 to 6
The homogenization treatment is performed in the temperature range of 00 ° C, and the end temperature is 20
Hot rolling is performed so as to have a temperature range of 0 to 260 ° C., cold rolling is performed after completion of the hot rolling, intermediate annealing is performed at 300 to 450 ° C., and further cold rolling is performed, so that the grain size is 0. 0.1 to 0.8 μm or less of the intermetallic compound having an average interparticle distance of 0.7 to 2.5 μm and an average crystal grain size of 35 μm.
m or less is obtained. The aluminum foil is rolled in a temperature range of 70 to 110 ° C. to obtain an aluminum foil.

【0015】以下、本発明におけるアルミニウム箔の成
分限定理由について説明する。
Hereinafter, the reasons for limiting the components of the aluminum foil in the present invention will be described.

【0016】Fe:0.3乃至1.0重量% Feは、アルミニウムへの固溶度が小さく、アルミニウ
ム中において他の元素と結合してAl−Fe系の金属間
化合物を生成する元素であると共に、再結晶の核として
作用するために、Fe添加は結晶粒の微細化に効果があ
る。Fe含有量が0.3重量%未満の場合では、鋳造時
に晶出する金属間化合物の数が不十分であり、結晶粒を
微細化する効果を得にくい。一方、Fe含有量が1.0
重量%を超える場合には、Al−Fe系の金属間化合物
の数が多く形成されるので、結晶粒の微細化効果は大き
いが、箔圧延時の変形抵抗が増大するため、圧延性が極
端に低下する。従って、Fe含有量は0.3乃至1.0
重量%とする。
[0016]Fe: 0.3 to 1.0% by weight  Fe has a low solid solubility in aluminum,
Bond with other elements in the Al-Fe system metal
It is an element that produces a compound, and as a nucleus for recrystallization
Therefore, the addition of Fe is effective in refining crystal grains.
You. If the Fe content is less than 0.3% by weight,
Insufficient number of intermetallic compounds crystallize in
It is difficult to obtain the effect of miniaturization. On the other hand, when the Fe content is 1.0
If the amount exceeds the weight percentage, an Al-Fe based intermetallic compound
The effect of crystal grain refinement is large because the number of
However, since the deformation resistance during foil rolling increases, the rollability is extremely low.
Drop to the edge. Therefore, the Fe content is 0.3 to 1.0.
% By weight.

【0017】Si:0.15重量%未満 Siは、地金中の不可避的不純物の1つである。Si
は、粗大なAl−Fe−Si系金属間化合物を生成し易
く、ピンホールが増大する原因となるため、少ない方が
良い。このため、Si含有量は0.15重量%未満であ
ることが望ましい。
[0017]Si: less than 0.15% by weight  Si is one of the unavoidable impurities in the metal. Si
Easily produces coarse Al-Fe-Si-based intermetallic compounds
And pinholes increase,
good. For this reason, the Si content is less than 0.15% by weight.
Is desirable.

【0018】粒径が0.1乃至0.8μmの金属間化合
物の平均粒子間距離:0.7乃至2.5μm 粒径が0.1乃至0.8μmの金属間化合物は、主に析
出物であり、均質化処理、熱間圧延及び中間焼鈍にて生
成する。これらの金属間化合物の分布は、箔圧延中の転
位蓄積及び整理に作用するために、その後の重合圧延に
おけるセルオーダーの変形ブロックサイズに影響を及ぼ
す。変形ブロックサイズの金属間化合物の平均粒子間距
離が0.7μm未満の場合には、重合圧延前パスでピン
止めとなり、即ち、転位蓄積が過多となり、後の重合圧
延にて複数の転位セル単位での変形ブロックとなるため
に、マット面が粗くなり、ピンホールが多発する。一
方、変形ブロックサイズの金属間化合物の平均粒子間距
離が2.5μmを超える場合には、重合圧延前パスでの
転位整理は容易となり、単一セルでの変形ブロックとな
るが、粗大セルが形成され易いために、マット面が粗く
なり、ピンホールが多発する。従って、粒径が0.1乃
至0.8μmの金属間化合物の平均粒子間距離は0.7
乃至2.5μmとする。
[0018]Intermetallic compound with particle size of 0.1-0.8μm
Average interparticle distance: 0.7 to 2.5 μm  Intermetallic compounds having a particle size of 0.1 to 0.8 μm are mainly precipitated
It is a product and is produced by homogenization, hot rolling and intermediate annealing.
To achieve. The distribution of these intermetallic compounds is
To accumulate and arrange
Effect on cell-order deformed block size
You. Average interparticle distance of deformed block size intermetallic compounds
If the separation is less than 0.7 μm,
Stops, that is, dislocation accumulation becomes excessive, and the subsequent polymerization pressure
Because it becomes a deformed block in multiple dislocation cell units
In addition, the mat surface becomes rough and pinholes frequently occur. one
On the other hand, the average interparticle distance of the intermetallic compound of the deformed block size
If the separation exceeds 2.5 μm,
Dislocation rearrangement becomes easy, resulting in a deformed block in a single cell.
However, since coarse cells are easily formed, the matte surface is rough.
And pinholes occur frequently. Therefore, the particle size is 0.1
The average interparticle distance of the intermetallic compound of 0.8 μm to 0.7 μm is 0.7
To 2.5 μm.

【0019】平均結晶粒径:35μm以下 箔地の結晶粒径は、中間焼鈍での結晶粒径である。この
結晶粒径は、重合圧延における変形ブロックサイズと軟
質強度に影響を及ぼす。平均結晶粒径が35μmを超え
る場合には、マット面粗度が粗くなり、ピンホールの多
発を招くと共に、軟質強度が低下する。
[0019]Average crystal grain size: 35 μm or less  The crystal grain size of the foil is the crystal grain size in the intermediate annealing. this
The crystal grain size depends on the deformed block size and softness in polymerization rolling.
Affects quality strength. Average grain size exceeds 35μm
In this case, the matte surface becomes rough and many pinholes
In addition, soft strength is reduced.

【0020】箔圧延温度:70乃至110℃ 箔圧延温度は転位蓄積及び整理の程度に作用するため
に、その後の重合圧延における転位セルオーダーの変形
ブロックサイズに影響を及ぼす。箔圧延温度が70℃未
満の場合には、上がり前箔の転位整理を発現できず、後
の重合圧延にて複数の単位せる単位での変形ブロックと
なるために、マット面が粗くなり、ピンホールが多発す
る。一方、箔圧延温度が110℃を超える場合には、余
りに転位整理が容易になり過ぎ、上がり前々での転位消
滅を生じ、次の上がり前での転位蓄積を生じ、後の重合
圧延にて複数の転位セル単位での変形ブロックとなるた
めに、マット面が粗くなり、ピンホールが多発する。
[0020]Foil rolling temperature: 70 to 110 ° C  Since the foil rolling temperature affects the degree of dislocation accumulation and arrangement
In addition, deformation of dislocation cell order in subsequent polymerization rolling
Affects block size. Foil rolling temperature is below 70 ° C
If it is full, dislocation rearrangement of the foil before rising cannot be expressed,
Deformation block with multiple units in polymerization rolling of
Mat surface becomes rough and pinholes occur frequently
You. On the other hand, if the foil rolling temperature exceeds 110 ° C,
Dislocation rearrangement becomes too easy, and dislocation disappears just before going up
Extinction, dislocation accumulation before the next rise, and subsequent polymerization
In rolling, it becomes a deformed block in multiple dislocation cell units
For this reason, the mat surface becomes rough and pinholes frequently occur.

【0021】Cu:0.02重量%以下 Cuは、アルミニウム中に固溶する元素であり、固溶硬
化によるO材強度の向上に有効であり、必要に応じて添
加しても良い。Cu含有量が0.005重量%未満の場
合には、固溶硬化が不十分であり、O材強度を向上する
強度を得にくい。一方、Cu含有量が0.02重量%を
超える場合には、固溶硬化の程度が大きすぎ、箔圧延時
の変形抵抗が増大するため、圧延性が極端に低下する。
従って、Cuは、0.02重量%以下であれば、必要に
応じて添加しても良い。
[0021]Cu: 0.02% by weight or less  Cu is an element that forms a solid solution in aluminum,
Is effective in improving the strength of the O material by
May be added. When the Cu content is less than 0.005% by weight
In the case, solid solution hardening is insufficient and O material strength is improved.
It is difficult to obtain strength. On the other hand, when the Cu content is 0.02% by weight,
If it exceeds, the degree of solid solution hardening is too large,
Since the deformation resistance increases, the rollability decreases extremely.
Therefore, if Cu is 0.02% by weight or less, it is necessary
You may add according to it.

【0022】Ti:0.03重量%以下 Tiは、Al−Ti又はAl−Ti−B母合金として添
加され、鋳塊組織を微細化するために使用される。箔圧
延後に筋模様が問題となる場合には、0.03重量%以
下の範囲で添加しても良いが、添加しないで羽毛状晶と
した方が鋳塊で晶出する金属間化合物が微細になるた
め、筋模様に支障がなければTiは少ない方が好まし
い。従ってTiは、0.03重量%以下であれば、必要
に応じて添加しても良い。
[0022]Ti: 0.03% by weight or less  Ti is added as Al-Ti or Al-Ti-B master alloy.
And used to refine the ingot structure. Foil pressure
When streaking becomes a problem after rolling, 0.03% by weight or less
It may be added in the range below, but without adding
The intermetallic compounds crystallized in the ingot become finer
If there is no problem with the streak pattern, it is preferable to use less Ti
No. Therefore, if Ti is 0.03% by weight or less, it is necessary
May be added according to

【0023】不可避的不純物 アルミニウムに含有する前記以外の不可避的不純物とし
ては、Mn,Mg,Zn,Cr,V,Zr,Bi,S
n,In,Pb等が挙げられるが、JIS1100及J
IS1N30程度の含有範囲であれば本発明の目的を損
なうものではない。
[0023]Inevitable impurities  Other unavoidable impurities contained in aluminum
Mn, Mg, Zn, Cr, V, Zr, Bi, S
n, In, Pb and the like.
If the content range is about IS1N30, the object of the present invention is impaired.
It is not something.

【0024】次に、本発明におけるアルミニウム箔の製
造方法における数値限定理由について説明する。
Next, the reasons for limiting the numerical values in the method for producing an aluminum foil according to the present invention will be described.

【0025】凝固時の冷却速度:0.3乃至3.0℃/
sec 前述のように、箔として優れたピンホール特性を発現す
るためには、箔地で粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適性化する必要がある。こ
の粒子間距離の適性化は、従来行われてきた均質化処理
以降の製造条件の変更のみでは調整困難であり、鋳造条
件の適正化と均質化処理以降の箔地製造条件を組み合わ
せて制御することにより、その目的は達成される。即
ち、凝固時の冷却速度を適正化することは粒子間距離を
適正化することとなり、ピンホールの低減に寄与する。
[0025]Cooling rate during solidification: 0.3 to 3.0 ° C /
sec  As described above, it exhibits excellent pinhole characteristics as a foil.
To do this, use a metal foil with a particle size of 0.1 to 0.8 μm
It is necessary to optimize the average interparticle distance of the intercalation compound. This
Optimizing the distance between particles is the same as the conventional homogenization process.
It is difficult to adjust only the subsequent changes in manufacturing conditions.
The production of foil material after the homogenization treatment
The purpose is achieved by controlling it. Immediately
In other words, optimizing the cooling rate during solidification reduces the distance between particles.
It is appropriate and contributes to the reduction of pinholes.

【0026】凝固時の冷却速度が3.0℃/secを超
えた場合には、造塊されたスラブでは、その後の均質化
処理、熱間圧延処理及び中間焼鈍により、過飽和固溶し
たFeが微細析出物として排出され、0.3μm以下の
析出物数を極端に増加させ、粒径が0.1乃至0.8μ
mの金属間化合物の平均粒子間距離が狭くなり、ピンホ
ールの多発を招く。一方、凝固時の冷却速度が3.0℃
/secを超えた場合には、3.0℃/secを超えた
場合には、0.3℃/sec未満の場合には、グラスス
クリーン内で浮遊晶を生じるため、圧延用スラブとして
造塊することは困難である。従って、凝固時の冷却速度
は0.3乃至3.0℃/secとする。好ましくは、凝
固時の冷却速度は0.3乃至2.4℃/secである。
When the cooling rate at the time of solidification exceeds 3.0 ° C./sec, the supersaturated solid solution of Fe in the agglomerated slab is subjected to homogenization, hot rolling and intermediate annealing. Discharged as fine precipitates, extremely increasing the number of precipitates of 0.3μm or less, the particle size is 0.1 to 0.8μ
The average distance between particles of the intermetallic compound of m becomes narrow, and pinholes frequently occur. On the other hand, the cooling rate during solidification is 3.0 ° C.
In the case of exceeding 3.0 ° C./sec, in the case of exceeding 3.0 ° C./sec, and in the case of less than 0.3 ° C./sec, floating crystals are generated in the glass screen. It is difficult to do. Therefore, the cooling rate during solidification is set to 0.3 to 3.0 ° C./sec. Preferably, the cooling rate during solidification is 0.3 to 2.4 ° C./sec.

【0027】均質化処理:400乃至620℃ 本発明の組成及び造塊条件のスラブを面削した後、均質
化処理を施す。この均質化処理は、固溶及び析出調整を
目的として行われ、粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適正化する重要な処理であ
り、ピンホールの低減に寄与する。均質化処理温度が4
00℃未満の場合には、固溶元素の析出による析出数が
不十分となり、粒子間距離を広くするため、ピンホール
の多発を招く。なお、長時間の焼鈍を行う場合には均質
化処理温度が400℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
均質化処理温度が620℃を超える場合には、固溶元素
の析出による析出数が不十分となり、粒子間距離を広く
するため、ピンホールの多発を招く。従って、均質化処
理温度は、400乃至620℃とする。この均質化処理
時間は特に規定するものではないが、2時間以上行うこ
とが好ましい。
[0027]Homogenization treatment: 400 to 620 ° C  After chamfering a slab of the composition and ingot-making conditions of the present invention,
A chemical treatment is performed. This homogenization process controls solid solution and precipitation.
Metal with a particle size of 0.1 to 0.8 μm
This is an important process to optimize the average interparticle distance
This contributes to the reduction of pinholes. Homogenization treatment temperature is 4
If the temperature is lower than 00 ° C., the number of precipitates due to the precipitation of solid solution elements
Insufficient and widening the distance between particles
Invites many. In addition, when performing long-time annealing,
Solid solution elements are sufficiently precipitated even when the temperature of the chemical treatment is lower than 400 ° C.
However, it is not preferable because production efficiency is deteriorated. on the other hand,
If the homogenization temperature exceeds 620 ° C,
Insufficient number of precipitates due to precipitation of
As a result, pinholes are frequently generated. Therefore, the homogenization process
The processing temperature is 400 to 620 ° C. This homogenization process
The time is not specified, but it should be more than 2 hours.
Is preferred.

【0028】中間焼鈍:300乃至450℃ 前述の均質処理の後、熱間圧延し、次に冷間圧延を施
し、更に中間焼鈍する。この焼鈍は固溶元素の析出及び
再結晶を目的として行われるものであるが、前述の粒子
間距離は、中間焼鈍温度に影響される。中間焼鈍温度が
300℃未満の場合には、固溶元素の析出による析出数
が不十分となり、粒子間距離を広くするため、ピンホー
ルの多発を招く。なお、長時間の焼鈍を行う場合には中
間焼鈍温度が300℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
中間焼鈍温度が450℃を超える場合には、固溶元素の
析出による析出数が不十分となり、粒子間距離を広くす
るため、ピンホールの多発を招くと共に、平均結晶粒径
が粗大化し、O材強度も不足する。従って、中間焼鈍温
度は300乃至450℃とする。この中間焼鈍時間は特
に規定するものではないが、2時間以上行うことが好ま
しい。
[0028]Intermediate annealing: 300 to 450 ° C  After the homogenous treatment described above, hot rolling and then cold rolling are performed.
And further intermediate annealing. This annealing involves precipitation of solid solution elements and
This is performed for the purpose of recrystallization.
The distance is affected by the intermediate annealing temperature. Intermediate annealing temperature
If the temperature is lower than 300 ° C, the number of precipitated solid solution elements
Becomes insufficient and the distance between particles becomes wider,
Cause a frequent occurrence of le. When performing long-time annealing, medium
Solid solution elements are sufficiently precipitated even when the inter-annealing temperature is lower than 300 ° C.
However, it is not preferable because production efficiency is deteriorated. on the other hand,
If the intermediate annealing temperature exceeds 450 ° C,
Insufficient number of precipitates due to precipitation increases the interparticle distance
As a result, pinholes occur frequently, and the average crystal grain size
Are coarsened and the O material strength is also insufficient. Therefore, the intermediate annealing temperature
The temperature is 300 to 450 ° C. This intermediate annealing time is
Although not specified in the above, it is preferable that the
New

【0029】仕上熱間圧延終了温度:200乃至260
O材強度の向上及びマット面粗度の低減には、結晶粒の
微細化も有効である。結晶粒微細化には、仕上熱間終了
温度を低温にすることでホットコイル厚みを厚くするこ
となくR方位の集積を増加させることが有効である。仕
上熱間圧延終了温度が200℃未満の場合には、箔地と
して必要なコイル形状が得られず、箔圧延での圧延性に
劣る。一方、仕上熱間圧延終了温度が260℃を超える
場合には、R方位の集積が不足し、中間焼鈍で微細な再
結晶粒が得られない。従って、必要に応じて、結晶粒を
微細化する場合には仕上熱間圧延終了温度を200乃至
260℃の範囲で終了しても良い。
[0029]Finish hot rolling end temperature: 200 to 260
° C  To improve the O material strength and reduce the matte surface roughness,
Miniaturization is also effective. Finish hot finish for grain refinement
Increasing the thickness of the hot coil by lowering the temperature
It is effective to increase the integration of the R direction. Finish
If the upper hot rolling end temperature is less than 200 ° C,
Required coil shape cannot be obtained,
Inferior. On the other hand, the finish hot rolling end temperature exceeds 260 ° C.
In this case, the accumulation of the R orientation is insufficient, and
Crystal grains cannot be obtained. Therefore, if necessary,
When making finer, finish hot rolling finish temperature is 200 to
The process may be completed in the range of 260 ° C.

【0030】[0030]

【実施例】以下、本発明に係る製造方法により製造され
たアルミニウム箔の実施例について、比較例と比較して
具体的に説明する。
EXAMPLES Examples of the aluminum foil manufactured by the manufacturing method according to the present invention will be specifically described below in comparison with comparative examples.

【0031】第1実施例 下記表1乃至2に示す組成を有するアルミニウム溶湯を
表1に示す凝固時の冷却速度でDC鋳造し、スラブを面
削後、550℃の温度で5時間の均質化処理を行い、そ
の直後に熱間圧延を開始し、240℃で熱間圧延を終了
し、板厚5mmのアルミニウム板を得た。その後、圧延
率86%で冷間圧延を行い、得た板を375℃の温度で
4時間の中間焼鈍を行った。更に、冷間圧延して、厚さ
が0.3mmのアルミニウム箔地を製作した。得られた
アルミニウム箔地を表1に示す温度で箔圧延し、最終焼
鈍することにより厚さが6μmのアルミニウム箔を製作
した。
[0031]First embodiment  Aluminum melt having the composition shown in Tables 1 and 2 below
DC casting was performed at the solidification cooling rate shown in Table 1, and the slab was
After grinding, homogenize at 550 ° C for 5 hours.
Start hot rolling immediately after and finish hot rolling at 240 ° C
Then, an aluminum plate having a thickness of 5 mm was obtained. Then rolling
Cold rolling was performed at a rate of 86%, and the obtained plate was heated at a temperature of 375 ° C.
Intermediate annealing for 4 hours was performed. Furthermore, cold-rolled, thickness
Produced an aluminum foil substrate having a thickness of 0.3 mm. Got
Aluminum foil is rolled at the temperature shown in Table 1
Manufacture aluminum foil with thickness of 6μm by dulling
did.

【0032】得られたアルミニウム箔地を、箔圧延時に
おける圧延性について評価した。但し、圧延性評価欄に
おいて、○(良好)は圧延時において円滑に圧延できた
ことを示し、×(不良)は同一圧延条件において、薄肉
化が困難であるか、強度不足により圧延速度を速くでき
ない又は板厚分布等の平面性制御が困難等のトラブルが
発生する傾向が強いことを示す。また、造塊時に浮遊晶
の発生により、圧延用としてスラブが取れなかったもの
も×(不良)とした。
The obtained aluminum foil was evaluated for rollability during foil rolling. However, in the rollability evaluation column, ○ (good) indicates that the rolling could be performed smoothly during rolling, and x (poor) indicates that under the same rolling conditions, it was difficult to reduce the wall thickness or the rolling speed was increased due to insufficient strength. This indicates that there is a strong tendency to cause troubles such as inability to control flatness such as plate thickness distribution or the like. In addition, those in which a slab was not removed for rolling due to the generation of floating crystals during ingot making were also evaluated as x (defective).

【0033】更に、最終焼鈍の6μmのアルミニウム箔
を幅が15mm、有効長さが100mmの短冊状に形成
した試験片を製作した。試験片をインストロン式の引張
試験機により引張強さを測定し、これをO材の強度とし
た。O材の強度は、70MPa未満が劣り、70MPa
を超えるものが優れることを示す。
Further, a test piece in which a 6 μm aluminum foil of final annealing was formed into a strip having a width of 15 mm and an effective length of 100 mm was manufactured. The tensile strength of the test piece was measured by an Instron type tensile tester, and this was taken as the strength of the O material. The strength of the O material is poor at less than 70 MPa,
It shows that what exceeds is excellent.

【0034】また、最終焼鈍の6μmのアルミニウム箔
について、ピンホール検知機により1m3当たりのピン
ホール数(直径5μm以上のもの)を測定した。ピンホ
ールは100個/m2以下が優れる。
The number of pinholes per 1 m 3 (with a diameter of 5 μm or more) was measured with a pinhole detector for the final-annealed 6 μm aluminum foil. The number of pinholes is excellent at 100 holes / m 2 or less.

【0035】なお、表中の凝固時の冷却速度、粒子間距
離及び平均結晶粒径は以下により測定した。凝固時の冷
却速度は、造塊後の鋳塊により湯底側の定常部を採取
し、次に長辺面中央部の表皮より100mmの位置より
小片を採取し、更に電解研磨の後に交線法と二次枝法に
てDASを測定することにより算出した。詳細には、軽
金属学会の研究報告書No.20「アルミニウムのデント
ライトアームスペーシングと冷却速度の測定法」に記載
の方法にて行い、交線法と二次枝法との測定値補正は数
式1に示される経験式を使用した。凝固時の冷却速度の
算出については、Fe量が0.65重量%以下の場合は
数式2を用い、Fe量が0.65重量%を超える場合は
数式3を用いて算出する。
The cooling rate, solidification distance and average crystal grain size during solidification in the table were measured as follows. The cooling rate at the time of solidification is as follows: the stationary part on the bottom side of the molten metal is sampled from the ingot after ingot formation, then a small piece is sampled from the skin at the center of the long side 100 mm from the skin, and after the electropolishing, the intersection It was calculated by measuring DAS by the method and the secondary branch method. In detail, the method described in Research Report No. 20 of the Japan Institute of Light Metals, “Dentrite arm spacing and cooling rate measurement method for aluminum” was used. The empirical formula shown in FIG. The cooling rate at the time of solidification is calculated using Equation 2 when the Fe amount is 0.65% by weight or less, and using Equation 3 when the Fe amount exceeds 0.65% by weight.

【0036】[0036]

【数1】dr=1.49×ds dr:交線法によるDAS、ds:二次枝法によるDA
[Mathematical formula-see original document] dr = 1.49 * ds dr: DAS by intersection method, ds: DA by secondary branch method
S

【0037】[0037]

【数2】ds=33.4×C-0.33 C:凝固時の冷却
速度
## EQU2 ## ds = 33.4 × C −0.33 C: Cooling rate during solidification

【0038】[0038]

【数3】ds=77×C-0.42 C:凝固時の冷却速度## EQU3 ## ds = 77 × C -0.42 C: Cooling rate during solidification

【0039】平均粒子間距離は、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離である。この平
均粒子間距離は、透過型電子顕微鏡と画像処理装置を使
用し、測定した。即ち、アルミニウム箔地より7.5m
m角の小片を採取し、箔厚0.1mmに研磨後、直径3
mmの円盤状に打ち抜く。これを温度350℃、時間5
分の条件で転位除去処理を行い、次に、ジェット研磨に
より箔厚が5μmの観察サンプルを作製した。これらを
倍率10000倍にて析出物の観察をし、総面積が35
12μm2になる視野数の写真を撮影した。また、この
観察の際に、フリンジ法により観察点の厚さも測定する
ことにより、観察体積を算出した。更に、この観察体積
と画像処理によりカウントした粒径が0.1乃至0.8
μmの総金属間化合物の数とにより平均粒子間距離を算
出した。
The average distance between the particles is 0.1 to 0.5.
It is an average interparticle distance of an intermetallic compound of 8 μm. The average interparticle distance was measured using a transmission electron microscope and an image processing device. That is, 7.5m from aluminum foil
A small piece of m-square was collected and polished to a foil thickness of 0.1 mm.
Punch out into a mm disk. This is carried out at a temperature of 350 ° C. for 5 hours.
The dislocation removal treatment was performed under the conditions of minutes, and then an observation sample having a foil thickness of 5 μm was prepared by jet polishing. These were observed for precipitates at a magnification of 10,000 times, and the total area was 35
A photograph was taken with a field number of 12 μm 2 . At the time of this observation, the thickness of the observation point was also measured by the fringe method to calculate the observation volume. Further, the particle size counted by this observation volume and image processing is 0.1 to 0.8.
The average interparticle distance was calculated from the number of total intermetallic compounds of μm.

【0040】平均結晶粒径は、中間焼鈍を施した部材よ
り小片を採取し、電解研磨後に偏光光学顕微鏡により倍
率100倍で撮影した写真から、交線法を用いて算出し
た。
The average crystal grain size was calculated by a crossing method from a photograph taken at a magnification of 100 times with a polarizing optical microscope after electropolishing and taking a small piece from a member subjected to intermediate annealing.

【0041】上述の圧延評価基準、ピンホール特性及び
O材強度の測定条件に基づいて評価し、又は測定した結
果を表2に示す。
Table 2 shows the results of evaluation or measurement based on the above-mentioned rolling evaluation criteria, pinhole characteristics, and measurement conditions of O-material strength.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】上記表2に示すように、実施例のNo.1乃
至6は、良好な圧延性を得た。また、ピンホール数及び
O材強度に関しても実施例No.1乃至6は、好ましい値
であり、全体に亘って良好なアルミニウム箔を得ること
ができた。
As shown in Table 2 above, Nos. 1 to 6 of Examples obtained good rolling properties. Examples Nos. 1 to 6 were also favorable values for the number of pinholes and the O-material strength, and a good aluminum foil could be obtained over the entirety.

【0045】一方、比較例No.20は、ピンホール数及
びO材強度は良好であるものの、過剰なFeの添加によ
り圧延性が低下した。比較例No.21は、圧延性は、良
好であったが、Feの添加不足により結晶粒を微細にす
ることができないために、ピンホール数及びO材強度が
実施例に比べて劣った。比較例22及び24は、圧延性
及びO材強度は良好であったが、比較例No.22は過剰
なSiの添加により、比較例No.24は過剰なTiの添
加により、多量のピンホールが発生した。比較例No.2
3は、O材強度は良好なものの、過剰なCuの添加によ
り、圧延性が不良で及びピンホールの発生量が多かっ
た。
On the other hand, in Comparative Example No. 20, although the number of pinholes and the strength of the O material were good, the rollability was lowered due to excessive addition of Fe. In Comparative Example No. 21, the rollability was good, but the crystal grains could not be made fine due to insufficient addition of Fe, so that the number of pinholes and the O material strength were inferior to those of the examples. Comparative Examples 22 and 24 had good rollability and O-material strength, but Comparative Example No. 22 had a large amount of pinholes due to excessive Si addition, and Comparative Example No. 24 had a large amount of pinholes due to excessive Ti addition. There has occurred. Comparative example No.2
In No. 3, although the O material strength was good, the rollability was poor and the amount of pinholes generated was large due to the addition of excessive Cu.

【0046】比較例26、28、30及び32は、圧延
性及びO材強度は良好であるものの、鋳造凝固時の冷却
速度が速すぎ、粒子間距離が狭くなったために、マット
面が粗くなり、極めて多量のピンホールが発生した。比
較例25、27、29及び31は、鋳造凝固時の冷却速
度が遅すぎ、グラススクリーン内で浮遊晶を生じたため
に、圧延用スラブが製作できなかったものである。比較
例No.33は、結晶粒径が大きいためにピンホールが多
発すると共に、O材強度も低くなった。比較例No.34
及び35は、箔圧延温度が請求項に規定する範囲から外
れているためにピンホールが多発した。
In Comparative Examples 26, 28, 30, and 32, although the rollability and the O-material strength were good, the matte surface became rough because the cooling rate during casting solidification was too high and the distance between the particles was narrow. An extremely large number of pinholes were generated. In Comparative Examples 25, 27, 29 and 31, the slab for rolling could not be produced because the cooling rate at the time of casting and solidification was too slow to generate floating crystals in the glass screen. In Comparative Example No. 33, the number of pinholes was increased due to the large crystal grain size, and the O material strength was also low. Comparative Example No. 34
In Nos. And 35, pinholes occurred frequently because the foil rolling temperature was out of the range defined in the claims.

【0047】第2実施例 表1及び表2に示す実施例No.1、4及び6と組成及び
凝固時の冷却速度がそれぞれ同じ鋳塊について、面削
後、表3に示す均質化処理を施し、その直後に熱間圧延
を開始し表3に示す温度で圧延を終了し、板厚5mmの
アルミニウム板を得た。冷間圧延して、厚さ0.3mm
のアルミニウム箔地を製作した。得られたアルミニウム
箔地を表3に示す温度で箔圧延し、最終焼鈍することに
より、厚さが6μmのアルミニウム箔を製作した。
[0047]Second embodiment  Examples Nos. 1, 4 and 6 shown in Tables 1 and 2 and compositions and
For ingots with the same cooling rate during solidification,
Thereafter, a homogenization treatment shown in Table 3 was performed, and immediately thereafter, hot rolling was performed.
And finished rolling at the temperature shown in Table 3, and
An aluminum plate was obtained. Cold rolled, 0.3mm thick
Of aluminum foil was manufactured. Aluminum obtained
The foil is rolled at the temperature shown in Table 3 and finally annealed.
Thus, an aluminum foil having a thickness of 6 μm was produced.

【0048】前述の第1実施例と同様に粒子間距離及び
圧延評価基準並びにピンホール特性及びO材強度の測定
条件に基づいて評価及び測定した結果を表4に示す。
Table 4 shows the results of evaluation and measurement based on the interparticle distance, rolling evaluation criteria, and the measurement conditions of pinhole characteristics and O-material strength, as in the first embodiment.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】表4に示すように、本実施例の実施例No.
7乃至12については、良好な圧延性を得た。また、ピ
ンホール数及びO材強度についても同様に実施例No.7
乃至12については、好ましい値であり、全体に亘って
良好な箔を得ることができた。
As shown in Table 4, Example No.
For Nos. 7 to 12, good rollability was obtained. In addition, the number of pinholes and the O-material strength were similarly measured in Example No. 7.
12 to 12 are preferable values, and a good foil was obtained over the whole.

【0052】一方、比較例No.36乃至45は、圧延性
については良好であった。しかしながら、比較例No.3
6乃至45においては、均質化処理温度又は中間処理温
度が請求項に規定する範囲から外れているか若しくは圧
延率が低いために、粒子間距離が広くなるためにマット
面が粗くなり、ピンホールが多発した。比較例No.39
及び43は中間焼鈍温度が高く、比較例No.45は熱間
圧延終了温度が高いために結晶粒が粗大化し、O材強度
も低下した。比較例No.46は、熱間圧延終了温度が低
いために、箔圧延に必要な平面形状が得られず、箔圧延
性に問題がある。また、比較例No.47及び48は、箔
圧延温度が請求項に規定する範囲から外れるためにピン
ホールが多発した。
On the other hand, Comparative Examples Nos. 36 to 45 had good rolling properties. However, Comparative Example No. 3
In 6 to 45, since the homogenization treatment temperature or the intermediate treatment temperature is out of the range specified in the claims or the rolling ratio is low, the distance between the particles is widened, the matte surface becomes rough, and the pinholes are reduced. Occurred frequently. Comparative Example No. 39
In Nos. 43 and 43, the intermediate annealing temperature was high, and in Comparative Example No. 45, the hot rolling end temperature was high, so that the crystal grains became coarse and the O-material strength was lowered. In Comparative Example No. 46, since the hot rolling end temperature was low, a planar shape required for foil rolling was not obtained, and there was a problem in foil rollability. In Comparative Examples Nos. 47 and 48, pinholes occurred frequently because the foil rolling temperature was out of the range defined in the claims.

【0053】[0053]

【発明の効果】以上詳述したように本発明によれば、鋳
造凝固時の冷却速度、均質化処理条件、冷間圧延率及び
中間焼鈍条件の制御により粒子間距離の適正化を図るこ
とにより、箔圧延性に優れ、箔圧延後、ピンホールの発
生数が少ないアルミニウム箔を得ることができる。
As described above in detail, according to the present invention, by controlling the cooling rate at the time of casting solidification, the homogenization processing conditions, the cold rolling reduction, and the intermediate annealing conditions, the interparticle distance can be optimized. It is possible to obtain an aluminum foil which is excellent in foil rollability and has a small number of pinholes after the foil rolling.

【0054】更に、本発明によれば、熱間圧延における
温度範囲及び1パス当たりの圧延率と熱間圧延終了温度
の適正化を組み合わせることにより、結晶粒の微細化が
図れ、箔圧延後のピンホールの発生数が少ないと共に、
O材強度にも優れるアルミニウム箔を得ることができ
る。
Further, according to the present invention, by combining the temperature range in hot rolling, the rolling ratio per pass, and the optimization of the hot rolling end temperature, the crystal grains can be refined, and after the foil rolling, With a small number of pinholes,
An aluminum foil having excellent O material strength can be obtained.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661Z 681 681 682 682 683 683 686 686B 691 691B 692 692A 694 694B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C22F 1/00 661 C22F 1/00 661Z 681 681 682 682 683 683 683 686 686B 691 691B 692 692A 694 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Fe:0.3乃至1.0重量%、Si:
0.15重量%未満を含有し、残部がAl及び不可避的
不純物である組成のアルミニウム合金の溶湯を、凝固時
の冷却速度を0.3乃至3.0℃/secで半連続鋳造
し、面削した後、400乃至620℃の温度範囲で均質
化処理を施し、終了温度が200乃至260℃の温度範
囲となるように熱間圧延し、熱間圧延終了後に冷間圧延
を行い、300乃至450℃で中間焼鈍を施し、更に冷
間圧延をすることにより、粒径が0.1乃至0.8μm
以下の金属間化合物の平均粒子間距離が0.7乃至2.
5μm、平均結晶粒径が35μm以下であるアルミニウ
ム箔地を圧延することを特徴とするアルミニウム箔の製
造方法。
1. Fe: 0.3 to 1.0% by weight, Si:
A melt of an aluminum alloy containing less than 0.15% by weight, with the balance being Al and inevitable impurities, is semi-continuously cast at a cooling rate of 0.3 to 3.0 ° C./sec during solidification. After shaving, a homogenization treatment is performed in a temperature range of 400 to 620 ° C., hot rolling is performed so that an end temperature is in a temperature range of 200 to 260 ° C., and cold rolling is performed after hot rolling is completed. Intermediate annealing at 450 ° C and cold rolling further reduce the grain size to 0.1 to 0.8 µm.
The following intermetallic compounds have an average interparticle distance of 0.7 to 2.
A method for producing an aluminum foil, comprising rolling an aluminum foil base having an average crystal grain size of 5 μm or less and 35 μm or less.
【請求項2】 前記冷間圧延後のアルミニウム箔地を7
0乃至110℃の温度範囲で箔圧延することを特徴とす
る請求項1に記載のアルミニウム箔の製造方法。
2. The method according to claim 1, wherein the cold-rolled aluminum foil material is
The method for producing an aluminum foil according to claim 1, wherein the foil is rolled in a temperature range of 0 to 110 ° C.
【請求項3】 前記アルミニウム合金に添加するCuの
添加量が0.02重量%以下であることを特徴とする請
求項1又は2に記載のアルミニウム箔の製造方法。
3. The method for producing an aluminum foil according to claim 1, wherein an amount of Cu added to the aluminum alloy is 0.02% by weight or less.
【請求項4】 前記アルミニウム合金に添加するTiの
添加量が0.03重量%以下であることを特徴とする請
求項1乃至3のいずれか1項に記載のアルミニウム箔の
製造方法。
4. The method for producing an aluminum foil according to claim 1, wherein the amount of Ti added to the aluminum alloy is 0.03% by weight or less.
JP22499598A 1998-08-07 1998-08-07 Manufacturing method of aluminum foil Expired - Lifetime JP3529270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22499598A JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22499598A JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Publications (2)

Publication Number Publication Date
JP2000054093A true JP2000054093A (en) 2000-02-22
JP3529270B2 JP3529270B2 (en) 2004-05-24

Family

ID=16822447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22499598A Expired - Lifetime JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Country Status (1)

Country Link
JP (1) JP3529270B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028591A (en) * 2004-07-16 2006-02-02 Mitsubishi Alum Co Ltd Aluminum foil having excellent strength after annealing and method for producing the same
JP2007191778A (en) * 2006-01-23 2007-08-02 Furukawa Sky Kk Material for medium and low voltage anode electrolytic capacitor and its production method
JP2007308805A (en) * 2002-05-07 2007-11-29 Nippon Foil Mfg Co Ltd Aluminum alloy foil and its manufacturing method
JP2008127656A (en) * 2006-11-22 2008-06-05 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2009019248A (en) * 2007-07-13 2009-01-29 Sumitomo Light Metal Ind Ltd Aluminum foil material for electrode of electrolytic capacitor
RU2463116C1 (en) * 2011-07-05 2012-10-10 Александр Иванович Трайно Method of producing sheets from aluminium alloys
JP2013234376A (en) * 2012-05-11 2013-11-21 Furukawa-Sky Aluminum Corp High strength aluminum alloy brazing sheet and method for manufacturing the same
JP2015067844A (en) * 2013-09-27 2015-04-13 株式会社Uacj Aluminum alloy material for electrolytic treatment, electrolytically treated aluminum alloy material and method for producing the same
RU2615958C1 (en) * 2016-02-04 2017-04-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВПО "МГТУ") Aluminium alloys thin-sheet rolling method
RU2699432C1 (en) * 2019-01-15 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Asymmetrical cryogenic rolling method
CN111118352A (en) * 2020-03-23 2020-05-08 洛阳台联新材料有限公司 Processing technology for preparing composite aluminum foil by using 8011 alloy
CN115927918A (en) * 2021-12-17 2023-04-07 江苏常铝铝业集团股份有限公司 Aluminum foil for air conditioner and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308805A (en) * 2002-05-07 2007-11-29 Nippon Foil Mfg Co Ltd Aluminum alloy foil and its manufacturing method
JP2006028591A (en) * 2004-07-16 2006-02-02 Mitsubishi Alum Co Ltd Aluminum foil having excellent strength after annealing and method for producing the same
JP2007191778A (en) * 2006-01-23 2007-08-02 Furukawa Sky Kk Material for medium and low voltage anode electrolytic capacitor and its production method
JP2008127656A (en) * 2006-11-22 2008-06-05 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2009019248A (en) * 2007-07-13 2009-01-29 Sumitomo Light Metal Ind Ltd Aluminum foil material for electrode of electrolytic capacitor
RU2463116C1 (en) * 2011-07-05 2012-10-10 Александр Иванович Трайно Method of producing sheets from aluminium alloys
JP2013234376A (en) * 2012-05-11 2013-11-21 Furukawa-Sky Aluminum Corp High strength aluminum alloy brazing sheet and method for manufacturing the same
JP2015067844A (en) * 2013-09-27 2015-04-13 株式会社Uacj Aluminum alloy material for electrolytic treatment, electrolytically treated aluminum alloy material and method for producing the same
RU2615958C1 (en) * 2016-02-04 2017-04-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВПО "МГТУ") Aluminium alloys thin-sheet rolling method
RU2699432C1 (en) * 2019-01-15 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Asymmetrical cryogenic rolling method
EA039054B1 (en) * 2019-01-15 2021-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВО "МГТУ им. Г.И. Носова") Asymmetrical cryogenic rolling method
CN111118352A (en) * 2020-03-23 2020-05-08 洛阳台联新材料有限公司 Processing technology for preparing composite aluminum foil by using 8011 alloy
CN115927918A (en) * 2021-12-17 2023-04-07 江苏常铝铝业集团股份有限公司 Aluminum foil for air conditioner and preparation method thereof

Also Published As

Publication number Publication date
JP3529270B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
CN109563572B (en) Aluminum alloy plate for magnetic disk substrate, method for producing same, and magnetic disk
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2000054093A (en) Manufacture of aluminum foil
KR101057264B1 (en) Aluminum alloy sheet and manufacturing method
JP3529273B2 (en) Aluminum foil base for thin foil and method for producing the same
JP3767492B2 (en) Method for producing aluminum flexible foil
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP3529271B2 (en) Manufacturing method of aluminum foil
JP2000054045A (en) Aluminum foil base for thin foil and its production
JPH06145927A (en) Production of al-mg alloy rolled sheet for magnetic disk
JP3529268B2 (en) Aluminum foil ground and method of manufacturing the same
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JP3529269B2 (en) Aluminum foil ground and method of manufacturing the same
JP3808276B2 (en) Aluminum alloy foil and method for producing the same
JPH0585630B2 (en)
JPH10310836A (en) Aluminum alloy clad sheet for high capacitance magnetic disk substrate, excellent in recyclability, and its production
JP2945178B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP7132415B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP2654891B2 (en) Manufacturing method of aluminum foil
JPH07195150A (en) Method for casting aluminum alloy for hdd
JP4250030B2 (en) Aluminum alloy plate for glittering wheel rim and manufacturing method thereof
JP5060253B2 (en) Aluminum rolled plate and manufacturing method thereof
JP3355058B2 (en) Aluminum alloy plate for lighting reflector and method of manufacturing the same
JPH05255791A (en) Aluminum alloy rolled sheet for forming excellent in stress corrosion cracking resistance and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term