JP3529271B2 - Manufacturing method of aluminum foil - Google Patents

Manufacturing method of aluminum foil

Info

Publication number
JP3529271B2
JP3529271B2 JP22500098A JP22500098A JP3529271B2 JP 3529271 B2 JP3529271 B2 JP 3529271B2 JP 22500098 A JP22500098 A JP 22500098A JP 22500098 A JP22500098 A JP 22500098A JP 3529271 B2 JP3529271 B2 JP 3529271B2
Authority
JP
Japan
Prior art keywords
rolling
foil
aluminum foil
aluminum
pinholes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22500098A
Other languages
Japanese (ja)
Other versions
JP2000054094A (en
Inventor
晋一郎 細野
信希 田波
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22500098A priority Critical patent/JP3529271B2/en
Publication of JP2000054094A publication Critical patent/JP2000054094A/en
Application granted granted Critical
Publication of JP3529271B2 publication Critical patent/JP3529271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品及びその他の
包装、フィルムコンデンサ、ラベル又はたばこ等に使用
される箔の製造方法に関し、特に箔厚が15μm以下の
極薄のアルミニウム箔用途に使用されるピンホール特性
が優れたアルミニウム箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foil used for foods and other packaging, film capacitors, labels, tobacco, etc., and particularly used for an ultrathin aluminum foil having a foil thickness of 15 μm or less. The present invention relates to a method for producing an aluminum foil having excellent pinhole characteristics.

【0002】[0002]

【従来の技術】従来、薄箔用のアルミニウム又はアルミ
ニウム合金は、箔地材料としては、JIS1N30等の
純アルミニウム、8079合金又は8021合金等が使
用されている。なお、以下、純アルミニウム及びアルミ
ニウム合金を総称してアルミニウムという。アルミニウ
ム箔地は、一般的に、これらのアルミニウム鋳塊に均質
化処理、熱間圧延、冷間圧延及び中間焼鈍を施し、ま
た、必要に応じてその後、冷間圧延を施すことにより製
造されている。
2. Description of the Related Art Conventionally, for aluminum or aluminum alloy for thin foil, pure aluminum such as JIS 1N30, 8079 alloy or 8021 alloy has been used as a foil material. In the following, pure aluminum and aluminum alloys are collectively referred to as aluminum. Aluminum foil is generally produced by subjecting these aluminum ingots to homogenization treatment, hot rolling, cold rolling and intermediate annealing, and then, if necessary, cold rolling. There is.

【0003】そして、得られたアルミニウム箔地に箔圧
延及び最終焼鈍を行うことによりアルミニウム箔が得ら
れる。ところで、5.5乃至7μmのアルミニウム箔が
実用化されているが、箔需要は6乃至7μmが大半であ
り、同じ厚さのアルミニウム箔は箔圧延での互換性の点
によりJIS1N30を使用したいとの要望が強い。一
般的に、箔厚の減少に伴う問題点としては、ピンホール
が著しく増加し、箔が本来有するべき性能である光、気
体及び液体等に対するバリアー性が低下すると共に、ピ
ンホールによる圧延中の箔切れが生じることが知られて
いる。
Then, the aluminum foil obtained is subjected to foil rolling and final annealing to obtain an aluminum foil. By the way, although 5.5 to 7 μm aluminum foil has been put into practical use, most of the foil demand is 6 to 7 μm, and it is desirable to use JIS1N30 for aluminum foil of the same thickness due to compatibility in foil rolling. Is strongly requested. Generally, as a problem associated with the reduction of foil thickness, the number of pinholes is significantly increased, and the barrier property against light, gas, liquid, etc., which the foil originally should have, is deteriorated, and at the time of rolling by pinholes, It is known that foil breaks occur.

【0004】薄箔の仕上箔圧延は通常重合圧延により行
われ、ピンホールはマット面うねりの最大のところがブ
ライト面オイルピット等と連結して生ずることが知られ
ている。また、ピンホールはオイルピット面等の表面欠
陥と比べて、主にマット粗度に支配されることも知られ
ている。更に、オイルピットは圧延条件(リダクション
・バックテンション)に主に支配され、マット面は結晶
粒の自由変形により形成されると考えられ、箔地により
支配される要因が大きい(特公平3−60562号公
報、軽金属学会第70回予行集33,34,35)。
It is known that finishing foil rolling of thin foil is usually carried out by polymerization rolling, and pinholes are formed at the maximum waviness of matt surface by connecting with bright surface oil pits. It is also known that pinholes are mainly governed by matte roughness as compared with surface defects such as oil pit surfaces. Further, it is considered that the oil pits are mainly controlled by rolling conditions (reduction / back tension), and the matte surface is formed by free deformation of crystal grains, and the factor controlled by the foil is large (Japanese Patent Publication No. 3-60562). No. Gazette, 70th Reconstruction of Japan Institute of Light Metals 33, 34, 35).

【0005】そこで、マット面粗度を低減させるべく、
Fe含有量の増加や均質化処理以降の製造条件変更によ
りFe固溶度を減少させ、結晶粒を微細化することによ
り加工硬化を抑制できる箔として特開昭63−2632
2号公報等に開示されている。また、他の元素を添加す
るものも知られていて、例えば、Ni、Mn及びCrの
添加により結晶粒の微細化及び加工硬化の抑制を発現す
ることができる箔として特開昭63−282228号公
報、特開昭63−282244号公報及び特開平8−3
3644号公報等に開示されている。
Therefore, in order to reduce the matte surface roughness,
As a foil capable of suppressing work hardening by decreasing the Fe solid solubility by changing the manufacturing conditions after the Fe content increase and the homogenization treatment and by refining the crystal grains, JP-A-63-2632.
It is disclosed in Japanese Patent Publication No. 2 and the like. Further, it is known to add other elements, for example, as a foil capable of exhibiting the miniaturization of crystal grains and suppression of work hardening by addition of Ni, Mn and Cr, as disclosed in JP-A-63-228228. Japanese Patent Laid-Open No. 63-282244 and Japanese Patent Laid-Open No. 8-3
It is disclosed in Japanese Patent No. 3644 and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Fe、
Ni、Mn、Crを添加するアルミニウム箔地では前述
のような互換性のメリットがない。また、JIS1N3
0相当の組成(Fe含有量のない場合)では、均質化処
理以降の製造条件変更により析出促進を行っても、箔厚
が6乃至7μmのアルミニウム箔を得る箔圧延において
は、大きな加工硬化の抑制効果を得られないばかりか、
工程変更によっては結晶粒が逆に大きくなってしまうこ
ともあり、ピンホールの発生量の増加及び箔断裂の頻発
を生じ易い等の問題があった。
However, Fe,
The aluminum foil material to which Ni, Mn and Cr are added does not have the above-mentioned merit of compatibility. Also, JIS1N3
With a composition equivalent to 0 (when there is no Fe content), even if the precipitation is promoted by changing the manufacturing conditions after the homogenization treatment, in the foil rolling to obtain an aluminum foil having a foil thickness of 6 to 7 μm, a large work hardening is caused. Not only can you not obtain the suppression effect,
Depending on the process change, the crystal grains may become large on the contrary, which causes problems such as an increase in the amount of pinholes and frequent occurrence of foil tears.

【0007】本発明はかかる問題に鑑みてなされたもの
であり、JIS1N30相当の組成であっても、箔圧延
及びピンホール特性を損なうことなく、箔を薄箔化でき
るアルミニウム箔の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and provides a method for producing an aluminum foil, which has a composition equivalent to JIS 1N30 and can be thinned without impairing foil rolling and pinhole characteristics. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明に係るアルミニウ
ム箔の製造方法は、Fe:0.3乃至1.0重量%、S
i:0.15重量%未満を含有し、残部がAl及び不可
避的不純物である組成のアルミニウム合金の溶湯を、凝
固時の冷却速度を0.3乃至3.0℃/secで半連続
鋳造し、面削した後、400乃至620℃の温度範囲で
均質化処理を施し熱間圧延した後に冷間圧延を行い、
300乃至450℃で2時間以上の中間焼鈍を施し、更
に冷間圧延をすることにより、粒径が0.1乃至0.8
μmの金属間化合物の平均粒子間距離が0.7乃至2.
5μmであるアルミニウム箔地を得て、前記アルミニウ
ム箔地を70乃至110℃の温度範囲で箔圧延をするこ
とを特徴とする。
The method for producing an aluminum foil according to the present invention is as follows: Fe: 0.3 to 1.0% by weight, S:
i: Semi-continuous casting of a molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. after scalped, subjected to homogenizing treatment at a temperature range of 400 to 620 ° C., subjected to cold rolling after hot rolling,
By performing intermediate annealing at 300 to 450 ° C. for 2 hours or more and further cold rolling, the grain size is 0.1 to 0.8.
The average interparticle distance of the intermetallic compound of μm is 0.7 to 2.
The aluminum foil having a thickness of 5 μm is obtained , and the aluminum foil
The foil foil is rolled in a temperature range of 70 to 110 ° C.

【0009】また、本発明においては、前記アルミニウ
ム合金に添加するCuの添加量が0.02重量%以下で
あると共に、Tiの添加量も0.03重量%以下である
ことが好ましい。
Further, in the present invention, it is preferable that the addition amount of Cu added to the aluminum alloy is 0.02% by weight or less and the addition amount of Ti is 0.03% by weight or less.

【0010】更に、本発明においては、鋳造凝固時の冷
却速度、均質化処理条件、冷間圧延率及び中間焼鈍条件
の制御により粒子間距離の適正化を図ることにより、箔
圧延性に優れ、箔圧延後、ピンホールの発生数が少ない
アルミニウム箔を得ることができる。
Further, in the present invention, by controlling the cooling rate at the time of solidification by casting, homogenization treatment conditions, cold rolling rate and intermediate annealing conditions, the interparticle distance is optimized, and thus the foil rolling property is excellent. After the foil rolling, it is possible to obtain an aluminum foil with few pinholes.

【0011】[0011]

【発明の実施の形態】本発明者等らは、これまでのアル
ミニウム箔及び箔地に関する研究から、ピンホールを少
なくすることは、マット面粗度を低くすること、即ち、
仕上箔圧延時の変形ブロックを微小化することが必要で
あることを見出した。更には、マット面は結晶粒サイズ
のみではなく、転位セルサイズの自由変形によっても形
成されることも見出した。また、ピンホールを少なくす
るには、加工硬化を抑制することが有効であることは知
られているが、これは、転位整理によるサブグレイン化
により達成されていることも究明した。
BEST MODE FOR CARRYING OUT THE INVENTION From the research on aluminum foils and foils up to now, the present inventors have found that reducing pinholes reduces matte surface roughness, that is,
It was found that it is necessary to miniaturize the deformed block when rolling the finishing foil. Furthermore, they have found that the matte surface is formed not only by the crystal grain size but also by free deformation of the dislocation cell size. Further, it is known that suppressing work hardening is effective for reducing pinholes, but it was also clarified that this was achieved by forming subgrains by dislocation organization.

【0012】そこで、前述の特性を発現するアルミニウ
ム箔地を開発するため、鋭意研究を重ねた結果、粒径が
0.1乃至0.8μmの金属間化合物の粒子間距離を転
位セルサイズに調整することが有効であることを見出し
た。また、JIS1N30組成の場合には、この粒子間
距離の適正化は、従来行われてきた均質化処理以降の製
造条件変更のみでは、調整困難であり、鍛造条件の適正
化と均質化処理以降の箔地製造条件を組合わせて制御す
ると共に、箔圧延の温度領域を管理することにより、そ
の目的が達成されることを見出した。本発明はこの知見
に基づいてなされたものである。
Therefore, as a result of intensive studies to develop an aluminum foil having the above-mentioned characteristics, the interparticle distance of the intermetallic compound having a particle size of 0.1 to 0.8 μm was adjusted to the dislocation cell size. It has been found to be effective. Further, in the case of the JIS1N30 composition, it is difficult to adjust the interparticle distance properly only by changing the manufacturing conditions after the conventional homogenization treatment, and it is difficult to adjust the forging conditions after the homogenization treatment and the homogenization treatment. It was found that the objective can be achieved by controlling the temperature range of foil rolling while controlling the combination of foil manufacturing conditions. The present invention has been made based on this finding.

【0013】即ち、本発明においては、Fe:0.3乃
至1.0重量%、Si:0.15重量%未満を含有し、
残部がAl及び不可避的不純物である組成のアルミニウ
ム合金の溶湯を、凝固時の冷却速度を0.3乃至3.0
℃/secで半連続鋳造し、面削した後、400乃至6
00℃の温度範囲で均質化処理を施し熱間圧延した
に冷間圧延を行い、300乃至450℃で2時間以上の
中間焼鈍を施し、更に冷間圧延をすることにより、粒径
が0.1乃至0.8μmの金属間化合物の平均粒子間距
離が0.7乃至2.5μmであるアルミニウム箔地を得
る。このアルミニウム箔地を70乃至110℃の温度範
囲で箔圧延することによりアルミニウム箔を得る。
That is, in the present invention, Fe: 0.3 to 1.0% by weight, Si: less than 0.15% by weight,
A molten aluminum alloy having a composition in which the balance is Al and inevitable impurities has a cooling rate of 0.3 to 3.0 during solidification.
400 ~ 6 after semi-continuous casting at ℃ / sec and chamfering
Subjected to a homogenization treatment at a temperature range of 00 ° C., <br/> after hot rolling performed cold rolling, subjected to 2 hours or more <br/> intermediate annealing at 300 to 450 ° C., between further cold rolling By doing so, an aluminum foil having an average interparticle distance of the intermetallic compound having a particle diameter of 0.1 to 0.8 μm is 0.7 to 2.5 μm is obtained. The aluminum foil is foil-rolled in the temperature range of 70 to 110 ° C. to obtain an aluminum foil.

【0014】以下、本発明におけるアルミニウム箔の成
分限定理由について説明する。
The reasons for limiting the components of the aluminum foil in the present invention will be described below.

【0015】Fe:0.3乃至1.0重量% Feは、アルミニウムへの固溶度が小さく、アルミニウ
ム中において他の元素と結合してAl−Fe系の金属間
化合物を生成する元素である。また、このAl−Fe系
の金属間化合物は再結晶の核として作用するために、F
e添加は結晶粒の微細化に効果がある。Fe含有量が
0.3重量%未満の場合では、鋳造時に晶出する金属間
化合物の数が不十分であり、結晶粒を微細化する効果を
得にくい。一方、Fe含有量が1.0重量%を超える場
合には、Al−Fe系の金属間化合物の数が多く形成さ
れるので、結晶粒の微細化効果は大きいが、箔圧延時の
変形抵抗が増大するため、圧延性が極端に低下する。従
って、Fe含有量は0.3乃至1.0重量%とする。
[0015]Fe: 0.3 to 1.0% by weight Fe has a small solid solubility in aluminum, and
Between Al-Fe-based metals by bonding with other elements in the aluminum
An element that produces a compound. In addition, this Al-Fe system
Since the intermetallic compound of F acts as a nucleus of recrystallization,
The addition of e is effective in making the crystal grains finer. Fe content is
In the case of less than 0.3% by weight, between the metals that crystallize during casting
Insufficient number of compounds has the effect of refining crystal grains.
Hard to get. On the other hand, when the Fe content exceeds 1.0% by weight
In this case, a large number of Al-Fe-based intermetallic compounds are formed.
Therefore, the grain refining effect is great, but it is
Since the deformation resistance is increased, the rolling property is extremely reduced. Servant
Thus, the Fe content is 0.3 to 1.0% by weight.

【0016】Si:0.15重量%未満 Siは、地金中の不可避的不純物の1つである。Si
は、粗大なAl−Fe−Si系金属間化合物を生成し易
く、ピンホールが増大する原因となるため、少ない方が
良い。このため、Si含有量は0.15重量%未満であ
ることが望ましい。
[0016]Si: less than 0.15% by weight Si is one of the inevitable impurities in the metal. Si
Easily forms a coarse Al-Fe-Si-based intermetallic compound.
Smaller, the number of pinholes increases.
good. Therefore, the Si content is less than 0.15% by weight.
Is desirable.

【0017】粒径が0.1乃至0.8μmの金属間化合
物の平均粒子間距離:0.7乃至2.5μm 粒径が0.1乃至0.8μmの金属間化合物は、主に析
出物であり、均質化処理、熱間圧延及び中間焼鈍にて生
成する。これらの金属間化合物の分布は、箔圧延中の転
位蓄積及び整理に作用するために、その後の重合圧延に
おけるセルオーダーの変形ブロックサイズに影響を及ぼ
す。変形ブロックサイズの金属間化合物の平均粒子間距
離が0.7μm未満の場合には、重合圧延前パスでピン
止めとなり、即ち、転位蓄積が過多となり、後の重合圧
延にて複数の転位セル単位での変形ブロックとなるため
に、マット面が粗くなり、ピンホールが多発する。一
方、変形ブロックサイズの金属間化合物の平均粒子間距
離が2.5μmを超える場合には、重合圧延前パスでの
転位整理は容易となり、単一セルでの変形ブロックとな
るが、粗大セルが形成され易いために、マット面が粗く
なり、ピンホールが多発する。従って、粒径が0.1乃
至0.8μmの金属間化合物の平均粒子間距離は0.7
乃至2.5μmとする。
[0017]Intermetallic compound with a particle size of 0.1 to 0.8 μm
Average particle-to-particle distance: 0.7 to 2.5 μm Intermetallic compounds with a particle size of 0.1 to 0.8 μm are mainly deposited.
It is a good product and is produced by homogenization, hot rolling and intermediate annealing.
To achieve. The distribution of these intermetallic compounds is
In order to affect the accumulation and rearrangement,
Affects the cell-order deformation block size in
You Average interparticle distance of deformed block size intermetallic compounds
If the separation is less than 0.7 μm, the
It becomes a stop, that is, dislocation accumulation becomes excessive, and the polymerization pressure after
Since it becomes a deformed block in units of multiple dislocation cells by extension
Moreover, the matte surface becomes rough and pinholes frequently occur. one
The mean interparticle distance of intermetallic compounds with deformed block size
If the separation exceeds 2.5 μm, it may be
Dislocation simplification becomes easier and it becomes a deformed block in a single cell.
However, the matte surface is rough because coarse cells are easily formed.
And pinholes occur frequently. Therefore, the particle size is 0.1
The average interparticle distance of the intermetallic compound of 0.8 μm is 0.7
To 2.5 μm.

【0018】箔圧延温度:70乃至110℃ 箔圧延温度は転位蓄積及び整理の程度に作用するため
に、その後の重合圧延における転位セルオーダーの変形
ブロックサイズに影響を及ぼす。箔圧延温度が70℃未
満の場合には、上がり前箔の転位整理を発現できず、後
の重合圧延にて複数の単位セル単位での変形ブロックと
なるために、マット面が粗くなり、ピンホールが多発す
る。一方、箔圧延温度が110℃を超える場合には、余
りに転位整理が容易になり過ぎ、上がり前々での転位消
滅を生じ、次の上がり前での転位蓄積を生じ、後の重合
圧延にて複数の転位セル単位での変形ブロックとなるた
めに、マット面が粗くなり、ピンホールが多発する。
Foil rolling temperature: 70 to 110 ° C. The foil rolling temperature affects the degree of dislocation accumulation and reduction, and therefore affects the dislocation cell order deformation block size in the subsequent polymerizing rolling. When the foil rolling temperature is lower than 70 ° C., the rearrangement of the foil before rising cannot be expressed, and it becomes a deformed block in a plurality of unit cells in the subsequent polymerizing rolling, so that the matte surface becomes rough and the pin There are many holes. On the other hand, when the foil rolling temperature exceeds 110 ° C., dislocation rearrangement becomes too easy, dislocation disappears before one rise, and dislocation accumulation occurs before the next rise. Since it becomes a deformed block in units of a plurality of dislocation cells, the matte surface becomes rough and pinholes frequently occur.

【0019】Cu:0.02重量%以下 Cuは、アルミニウム中に固溶する元素であり、固溶硬
化によるO材強度の向上に有効であり、必要に応じて添
加しても良い。Cu含有量が0.005重量%未満の場
合には、固溶硬化が不十分であり、O材強度を向上する
強度を得にくい。一方、Cu含有量が0.02重量%を
超える場合には、固溶硬化の程度が大きすぎ、箔圧延時
の変形抵抗が増大するため、圧延性が極端に低下する。
従って、Cuは、0.02重量%以下であれば、必要に
応じて添加しても良い。
[0019]Cu: 0.02 wt% or less Cu is an element that forms a solid solution in aluminum, and solid solution hardening
Is effective in improving the strength of O material, and if necessary, added
You may add. When the Cu content is less than 0.005% by weight
In this case, solid solution hardening is insufficient and the O material strength is improved.
Hard to get strength. On the other hand, the Cu content is 0.02% by weight.
If it exceeds, the degree of solid solution hardening is too great and the foil is rolled.
Since the deformation resistance of No. 1 increases, the rolling property is extremely reduced.
Therefore, if Cu is 0.02 wt% or less, it is necessary.
You may add according to it.

【0020】Ti:0.03重量%以下 Tiは、Al−Ti又はAl−Ti−B母合金として添
加され、鋳塊組織を微細化するために使用される。箔圧
延後に筋模様が問題となる場合には、0.03重量%以
下の範囲で添加しても良いが、添加しないで羽毛状晶と
した方が鋳塊で晶出する金属間化合物が微細になるた
め、筋模様に支障がなければTiは少ない方が好まし
い。従ってTiは、0.03重量%以下であれば、必要
に応じて添加しても良い。
[0020]Ti: 0.03 wt% or less Ti is added as an Al-Ti or Al-Ti-B mother alloy.
And used for refining the ingot structure. Foil pressure
If streaking becomes a problem after stretching, 0.03% by weight or more
It may be added in the range below, but without adding it
The finer the intermetallic compounds crystallized in the ingot.
Therefore, if there is no hindrance to the streak pattern, less Ti is preferable.
Yes. Therefore, if Ti is 0.03% by weight or less, it is necessary.
You may add according to.

【0021】不可避的不純物 アルミニウムに含有する前記以外の不可避的不純物とし
ては、Mn,Mg,Zn,Cr,V,Zr,Bi,S
n,In,Pb等が挙げられるが、JIS1100及J
IS1N30程度の含有範囲であれば本発明の目的を損
なうものではない。
[0021]Inevitable impurities As unavoidable impurities other than the above contained in aluminum
For Mn, Mg, Zn, Cr, V, Zr, Bi, S
n, In, Pb, etc. may be mentioned, but JIS 1100 and J
If the content range is around IS1N30, the purpose of the present invention will be impaired.
It's not like that.

【0022】次に、本発明におけるアルミニウム箔の製
造方法における条件処理の限定理由について説明する。
Next, the reasons for limiting the condition treatment in the method for producing an aluminum foil according to the present invention will be described.

【0023】凝固時の冷却速度:0.3乃至3.0℃/
sec 前述のように、箔として優れたピンホール特性を発現す
るためには、箔地で粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適性化する必要がある。こ
の粒子間距離の適性化は、従来行われてきた均質化処理
以降の製造条件の変更のみでは調整困難であり、鋳造条
件の適正化と均質化処理以降の箔地製造条件を組合わせ
て制御することにより、その目的は達成される。即ち、
凝固時の冷却速度を適正化することは粒子間距離を適正
化することとなり、ピンホールの低減に寄与する。
[0023]Cooling rate during solidification: 0.3 to 3.0 ° C /
sec As mentioned above, it exhibits excellent pinhole characteristics as a foil.
In order to achieve this, a metal with a grain size of 0.1 to 0.8 μm
It is necessary to optimize the average interparticle distance of the interstitial compound. This
The homogenization process that has been performed in the past
It is difficult to make adjustments only by changing the manufacturing conditions thereafter.
Combining the foil manufacturing conditions after the optimization and homogenization
The purpose is achieved by controlling by. That is,
Optimizing the cooling rate during solidification is appropriate for the distance between particles.
Will contribute to the reduction of pinholes.

【0024】凝固時の冷却速度が3.0℃/secを超
えた場合には、造塊されたスラブは、その後の均質化処
理、熱間圧延処理及び中間焼鈍により、過飽和固溶した
Feが微細析出物として排出され、粒径が0.3μm以
下の析出物数を極端に増加させ、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離が狭くなり、ピ
ンホールの多発を招く。一方、0.3℃/sec未満の
場合には、グラススクリーン内で浮遊晶を生じるため、
圧延用スラブとして造塊することは困難である。従っ
て、凝固時の冷却速度は0.3乃至3.0℃/secと
する。好ましくは、凝固時の冷却速度は0.3乃至2.
4℃/secである。
When the cooling rate at the time of solidification exceeds 3.0 ° C./sec, the ingot-cast slab is subjected to subsequent homogenization treatment, hot rolling treatment and intermediate annealing, so that the supersaturated solid solution Fe is formed. The number of precipitates discharged as fine precipitates and having a grain size of 0.3 μm or less is extremely increased, and the grain size is 0.1 to 0.
The average interparticle distance of the intermetallic compound of 8 μm becomes narrow, which causes frequent occurrence of pinholes. On the other hand, if it is less than 0.3 ° C / sec, floating crystals are generated in the glass screen,
It is difficult to make an ingot as a rolling slab. Therefore, the cooling rate during solidification is 0.3 to 3.0 ° C./sec. Preferably, the cooling rate during solidification is 0.3 to 2.
4 ° C./sec.

【0025】均質化処理:400乃至620℃ 本発明の組成及び造塊条件のスラブを面削した後、均質
化処理を施す。この均質化処理は、固溶及び析出調整を
目的として行われ、粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適正化する重要な処理であ
り、ピンホールの低減に寄与する。均質化処理温度が4
00℃未満の場合には、固溶元素の析出による析出数が
不十分となり、粒子間距離を広くするため、ピンホール
の多発を招く。なお、長時間の焼鈍を行う場合には均質
化処理温度が400℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
均質化処理温度が620℃を超える場合には、固溶元素
の析出による析出数が不十分となり、粒子間距離を広く
するため、ピンホールの多発を招く。従って、均質化処
理温度は、400乃至620℃とする。この均質化処理
時間は特に規定するものではないが、2時間以上行うこ
とが好ましい。
[0025]Homogenization treatment: 400 to 620 ° C After chamfering a slab having the composition and ingot of the present invention,
Apply chemical treatment. This homogenization process controls solid solution and precipitation.
Metals with a particle size of 0.1 to 0.8 μm
It is an important process to optimize the average interparticle distance of intermetallic compounds.
Contributes to the reduction of pinholes. Homogenization temperature is 4
When the temperature is less than 00 ° C, the number of precipitates due to the precipitation of solid solution elements is
Insufficient to increase the distance between particles, pinhole
Cause frequent occurrence. It should be noted that when annealing for a long time, it is homogeneous
The solid solution element is sufficiently precipitated even when the chemical treatment temperature is less than 400 ° C.
However, it is not preferable because the production efficiency is deteriorated. on the other hand,
If the homogenization temperature exceeds 620 ° C, the solid solution element
The number of precipitates due to the precipitation of
Therefore, many pinholes are caused. Therefore, the homogenization process
The processing temperature is 400 to 620 ° C. This homogenization process
The time is not specified, but it should be 2 hours or more.
And are preferred.

【0026】中間焼鈍:300乃至450℃ 前述の均質処理の後、熱間圧延し、次に冷間圧延を施
し、更に中間焼鈍する。この焼鈍は固溶元素の析出及び
再結晶を目的として行われるものであるが、前述の粒子
間距離は、中間焼鈍温度に影響される。中間焼鈍温度が
300℃未満の場合には、固溶元素の析出による析出数
が不十分となり、粒子間距離を広くするため、ピンホー
ルの多発を招く。なお、長時間の焼鈍を行う場合には中
間焼鈍温度が300℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
中間焼鈍温度が450℃を超える場合には、固溶元素の
析出による析出数が不十分となり、粒子間距離を広くす
るため、ピンホールの多発を招くと共に、平均結晶粒径
が粗大化し、O材強度も不足する。従って、中間焼鈍温
度は300乃至450℃とする。この中間焼鈍時間は特
に規定するものではないが、2時間以上行うことが好ま
しい。
The intermediate annealing: 300 to after 450 ° C. homogenization process described above, hot rolling, then subjected to cold rolling, further intermediate annealing. This annealing is performed for the purpose of precipitating and recrystallizing the solid solution element, and the above-mentioned inter-grain distance is affected by the intermediate annealing temperature. When the intermediate annealing temperature is less than 300 ° C., the number of precipitates due to the precipitation of the solid solution element becomes insufficient and the interparticle distance is widened, resulting in frequent occurrence of pinholes. When performing annealing for a long time, solid solution elements are sufficiently precipitated even if the intermediate annealing temperature is lower than 300 ° C, but this is not preferable because the production efficiency is deteriorated. on the other hand,
When the intermediate annealing temperature exceeds 450 ° C., the number of precipitates due to the precipitation of the solid solution element becomes insufficient, and the inter-grain distance is widened, so that pinholes frequently occur and the average crystal grain size becomes coarse. Material strength is also insufficient. Therefore, the intermediate annealing temperature is set to 300 to 450 ° C. This intermediate annealing time is not particularly specified, but it is preferably performed for 2 hours or more.

【0027】[0027]

【実施例】以下、本発明に係る製造方法により製造され
たアルミニウム箔の実施例について、比較例と比較して
具体的に説明する。
EXAMPLES Examples of the aluminum foil manufactured by the manufacturing method according to the present invention will be specifically described below in comparison with comparative examples.

【0028】第1実施例 下記表1に示す組成を有するアルミニウム溶湯を下記
に示す凝固時の冷却速度で半連続鋳造し、スラブを面
削した後、550℃の温度で5時間の均質化処理を行
い、その直後に熱間圧延を開始し、240℃で熱間圧延
を終了し、板厚5mmのアルミニウム板を得た。その
後、圧延率86%で冷間圧延を行い、得た板を375℃
の温度で4時間の中間焼鈍を行った。更に、冷間圧延し
て、厚さが0.3mmのアルミニウム箔地を製作した
[0028] Table molten aluminum having the composition shown in the first embodiment the following Table 1
After semi-continuous casting at the cooling rate during solidification shown in 2 and chamfering the slab, homogenization treatment is performed at a temperature of 550 ° C for 5 hours, hot rolling is started immediately after that, and hot rolling is performed at 240 ° C. Rolling was completed to obtain an aluminum plate having a plate thickness of 5 mm. After that, cold rolling was performed at a rolling rate of 86%, and the obtained plate was 375 ° C.
Intermediate annealing was performed at the temperature of 4 hours. Further, it was cold-rolled to produce an aluminum foil having a thickness of 0.3 mm .

【0029】得られたアルミニウム箔地について各種評
価を行った。先ず、下記表2に示す温度で箔圧延して厚
さが6μmのアルミニウム箔を作製し、箔圧延時の圧延
性について評価した。その結果、圧延時において円滑に
圧延できた場合を○(良好)、同一圧延条件において、
薄肉化が困難であるか、強度不足により圧延速度を速く
できない又は板厚分布等の平面性制御が困難等のトラブ
ルが発生する傾向が強かった場合を×(不良)とした。
なお、造塊時に浮遊晶の発生により、圧延用としてスラ
ブが取れなかったものも×(不良)とした。
Various evaluations of the obtained aluminum foil
Valuable. First, the foil is rolled at the temperature shown in Table 2 below to obtain the thickness.
Of aluminum foil with a size of 6 μm and rolling during foil rolling
The sex was evaluated. As a result, smooth rolling
When the rolling was successful, ○ (good), under the same rolling conditions,
It is difficult to reduce the wall thickness or the rolling speed is high due to insufficient strength.
Traverse that cannot be performed or flatness control such as plate thickness distribution is difficult
When there was a strong tendency of occurrence of cracks, it was defined as × (bad).
In addition , those in which the slab could not be removed for rolling due to the generation of floating crystals during the ingot making were also marked as x (defective).

【0030】また、箔圧延温度は、先進率、張力、パス
スケ及び圧延荷重を制御することにより温度管理を行
い、各箔圧延パス終了後のコイル温度を接触温度計にて
実測し、その中での最高温度とした。
The foil rolling temperature is controlled by controlling the advance rate, tension, pass scale and rolling load, and the coil temperature after each foil rolling pass is measured by a contact thermometer. And the maximum temperature.

【0031】更に、厚さが6μmのアルミニウム箔につ
いて、ピンホール検知機により1m 当たりのピンホー
ル数(直径5μm以上のもの)を測定した。ピンホール
は100個/m以下が優れる。
Further, the number of pinholes (having a diameter of 5 μm or more) per 1 m 2 was measured with a pinhole detector for an aluminum foil having a thickness of 6 μm. 100 or less pinholes / m 2 are excellent.

【0032】なお、凝固時の冷却速度及び平均粒子間距
離は以下に示す方法により測定した。凝固時の冷却速度
は、造塊後の鋳塊により湯底側の定常部を採取し、次に
長辺面中央部の表皮より100mmの位置より小片を採
取し、更に電解研磨の後に交線法と二次枝法にてDAS
を測定することにより算出した。詳細には、軽金属学会
の研究報告書No.20「アルミニウムのデントライトア
ームスペーシングと冷却速度の測定法」に記載の方法に
て行い、交線法と二次枝法との測定値補正は数式1に示
される経験式を使用した。凝固時の冷却速度の算出につ
いては、Fe量が0.65重量%以下の場合は数式2を
使用し、Fe量が0.65重量%を超える場合は数式3
を使用して算出した
The cooling rate during solidification and the average interparticle distance
Away it was measured with a method described below. The cooling rate at the time of solidification is to collect a steady part on the bottom side of the molten metal by the ingot after ingot formation, then collect a small piece from the position of 100 mm from the skin of the central part of the long side surface, and further after electrolytic polishing, intersect Method and secondary branch method DAS
Was calculated by measuring Specifically, the method is described in Research Report No. 20 of the Japan Institute of Light Metals, "Dentrite Arm Spacing of Aluminum and Measuring Method of Cooling Rate", and the correction of the measured values of the intersection line method and the secondary branch method is a mathematical formula. The empirical formula shown in 1 was used. Regarding the calculation of the cooling rate at the time of solidification, Equation 2 is used when the Fe content is 0.65% by weight or less, and Equation 3 is used when the Fe content exceeds 0.65% by weight.
It was calculated using.

【0033】[0033]

【数1】dr=1.49×ds dr:交線法によるDAS、ds:二次枝法によるDA
## EQU1 ## dr = 1.49 × ds dr: DAS by the intersecting line method, ds: DA by the secondary branch method
S

【0034】[0034]

【数2】ds=33.4×C-0.33 C:凝固時の冷却
速度
[ Formula 2] ds = 33.4 × C −0.33 C: Cooling rate during solidification

【0035】[0035]

【数3】ds=77×C-0.42 C:凝固時の冷却速度[ Formula 3] ds = 77 × C −0.42 C: Cooling rate during solidification

【0036】平均粒子間距離は、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離である。この平
均粒子間距離は、透過型電子顕微鏡と画像処理装置を使
用し測定した。即ち、アルミニウム箔地より7.5m
m角の小片を採取し、厚さ0.1mmに研磨後、直径3
mmの円盤状に打ち抜いた。これを温度350℃、時間
5分の条件で転位除去処理を行い、次に、ジェット研磨
により厚さが5μmの観察サンプルを作製した。これら
を倍率10000倍にて析出物の観察をし、総面積が3
512μmになる視野数の写真を撮影した。また、こ
の観察の際に、フリンジ法により観察点の厚さも測定す
ることにより、観察体積を算出した。更に、この観察体
積と画像処理によりカウントした粒径が0.1乃至0.
8μmの総金属間化合物の数とにより平均粒子間距離を
算出した。
The average interparticle distance is such that the particle diameter is 0.1 to 0.
It is the average interparticle distance of the intermetallic compound of 8 μm. The average interparticle distance was measured using a transmission electron microscope and the image processing apparatus. That is, 7.5m from aluminum foil
Take a small piece of m square, grind it to a thickness of 0.1 mm, and
mm had the disconnect out in the shape of a disc. This was subjected to dislocation removal treatment under conditions of a temperature of 350 ° C. and a time of 5 minutes, and was then jet-polished to prepare an observation sample having a thickness of 5 μm. These were observed at a magnification of 10000 times, and the total area was 3
A photograph was taken with a field number of 512 μm 2 . Further, at the time of this observation, the observation volume was calculated by measuring the thickness of the observation point by the fringe method. Further, the particle size counted by this observation volume and image processing is 0.1 to 0.
The average interparticle distance was calculated based on the total number of intermetallic compounds of 8 μm.

【0037】上述の方法により測定及び評価した圧延
性、ピンホール数及び平均粒子間距離を下記表2にまと
めて示す。
Rolling measured and evaluated by the method described above
The properties, number of pinholes and average distance between particles are summarized in Table 2 below.
I will show you.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】上記表2に示すように、実施例のNo.1乃
至6は、良好な圧延性を得た。また、ピンホール数に
しても実施例No.1乃至6は、好ましい値であり、全体
に亘って良好なアルミニウム箔を得ることができた。
As shown in Table 2 above, Nos. 1 to 6 of the examples obtained good rolling property. In addition, regarding the number of pinholes, Example Nos. 1 to 6 were preferable values, and a good aluminum foil could be obtained over the whole.

【0041】一方、比較例No.20は、ピンホール数は
良好な数であるものの、過剰なFeの添加により圧延性
が低下した。比較例No.21は、圧延性は、良好であっ
たが、Feの添加不足により結晶粒を微細にすることが
できないために、ピンホール数が実施例に比べて劣っ
た。比較例22及び24は、圧延性は良好であったが、
比較例No.22は過剰なSiの添加により、比較例No.2
4は過剰なTiの添加により、多量のピンホールが発生
した。比較例No.23は、過剰なCuの添加により、圧
延性が不良であると共に、ピンホールの発生量が多かっ
た。
On the other hand, in Comparative Example No. 20, although the number of pinholes was good, the rolling property was deteriorated due to the addition of excessive Fe. In Comparative Example No. 21, the rolling property was good, but the number of pinholes was inferior to that in the Examples because the crystal grains could not be made fine due to insufficient addition of Fe. Comparative Examples 22 and 24 were good in rolling property,
Comparative example No. 22 is a comparative example No. 2 due to the addition of excess Si.
In No. 4, a large amount of pinholes were generated due to the excessive addition of Ti. Comparative Example No. 23 had a poor rollability and a large amount of pinholes due to the addition of excessive Cu.

【0042】比較例26、28、30及び32は、圧延
性は良好であるものの、鋳造凝固時の冷却速度が請求項
に規定された範囲より速すぎ、平均粒子間距離が狭くな
ったために、マット面が粗くなり、極めて多量のピンホ
ールが発生した。比較例25、27、29及び31は、
鋳造凝固時の冷却速度が請求項に規定された範囲より遅
すぎ、グラススクリーン内で浮遊晶を生じたために、圧
延用スラブが製作できなかったものである。比較例No.
33及び34は、箔圧延温度が請求項に規定する範囲か
ら外れているためにピンホールが多発した。
Comparative Examples 26, 28, 30 and 32 were rolled
Although the property was good, the cooling rate during solidification by casting was too fast than the range specified in the claims, and the average interparticle distance was narrowed, so that the matte surface became rough and extremely many pinholes were generated. Comparative Examples 25, 27, 29 and 31 are
A cooling slab could not be manufactured because the cooling rate during solidification by casting was too slow than the range specified in the claims and floating crystals were generated in the glass screen. Comparative example No.
Nos. 33 and 34 had many pinholes because the foil rolling temperature was out of the range defined in the claims.

【0043】第2実施例 表1及び表2に示す実施例No.1、4及び6と組成及び
凝固時の冷却速度がそれぞれ同じ鋳塊について、面削し
た後、表3に示す均質化処理を施し、その直後に熱間圧
を行い、板厚5mmのアルミニウム板を得た。得た板
を冷間圧延した後、下記表3に示す条件で中間焼鈍を行
い、更に、冷間圧延して、厚さ0.3mmのアルミニウ
ム箔地を製作した得られたアルミニウム箔地を表3に
示す温度で箔圧延し、厚さが6μmのアルミニウム箔を
製作した。
Second Example Ingots having the same composition and cooling rate during solidification as those of Examples Nos. 1, 4 and 6 shown in Tables 1 and 2 were faced, and then homogenized as shown in Table 3. Immediately after that, hot rolling was performed to obtain an aluminum plate having a plate thickness of 5 mm. Board obtained
After cold rolling, intermediate annealing was performed under the conditions shown in Table 3 below.
Further, cold rolling was performed to produce an aluminum foil having a thickness of 0.3 mm . The aluminum foil obtained was rolled at the temperature shown in Table 3 to produce an aluminum foil having a thickness of 6 μm.

【0044】前述の第1実施例と同様の方法により測定
及び評価した圧延性、ピンホール数及び平均粒子間距離
を下記表3にまとめて示す。
Measurement by the same method as the above-mentioned first embodiment
And evaluated rollability, number of pinholes, and average distance between particles
Are summarized in Table 3 below.

【0045】[0045]

【表3】 [Table 3]

【0046】表3に示すように、本実施例の実施例No.
7乃至12については、良好な圧延性を得た。また、ピ
ンホール数についても同様に実施例No.7乃至12につ
いては、好ましい値であり、全体に亘って良好な箔を得
ることができた。
As shown in Table 3, Example No.
For Nos. 7 to 12, good rollability was obtained. Similarly, the number of pinholes was also a preferable value for Examples Nos. 7 to 12, and a good foil could be obtained over the whole.

【0047】一方、比較例No.35乃至4は、圧延性
については良好であった。しかしながら、比較例No.3
5乃至43においては、均質化処理温度又は中間焼鈍
理温度が請求項に規定する範囲から外れているために、
平均粒子間距離が広くなり、よってマット面が粗くな
り、ピンホールが多発した。また、比較例No.44及び
45は、箔圧延温度が請求項に規定する範囲から外れる
ためにピンホールが多発した。
Meanwhile, Comparative Example No.35 to 4 5 was better for rolling resistance. However, Comparative Example No. 3
In Nos. 5 to 43, since the homogenization treatment temperature or the intermediate annealing treatment temperature is out of the range defined in the claims,
The average interparticle distance was widened, so the matte surface became rough and pinholes occurred frequently. Further, in Comparative Examples Nos. 44 and 45, the pin rolling occurred frequently because the foil rolling temperature was out of the range specified in the claims.

【0048】[0048]

【発明の効果】以上詳述したように本発明によれば、鋳
造凝固時の冷却速度、均質化処理条件及び中間焼鈍条件
の制御により粒子間距離の適正化を図ることにより、箔
圧延性に優れ、箔圧延後、ピンホールの発生数が少ない
アルミニウム箔を得ることができる。
According to the present invention as described in detail above, the cooling rate during the casting solidification, by achieve an appropriate distance between particles by controlling the homogenization conditions及 beauty intermediate annealing condition foil rolling It is possible to obtain an aluminum foil having excellent properties and having a small number of pinholes after the foil is rolled.

フロントページの続き (56)参考文献 特開 昭61−257459(JP,A) 特開 平8−333644(JP,A) 特開 平6−25781(JP,A) 特開 平6−293931(JP,A) 特開 平4−337043(JP,A) 特開 昭59−64754(JP,A) 三木功,Al−Fe合金の凝固時にお ける鉄の挙度,軽金属,日本,軽金属学 会,1975年 1月,Vol.25,No. 1,p.1−9 (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 C22C 21/00 - 21/18 Continuation of the front page (56) Reference JP-A-61-257459 (JP, A) JP-A-8-333644 (JP, A) JP-A-6-25781 (JP, A) JP-A-6-293931 (JP , A) JP-A-4-337043 (JP, A) JP-A-59-64754 (JP, A) Miki Isao, Iron index during solidification of Al-Fe alloys, light metal, Japan, Light Metal Society, 1975 January, Vol. 25, No. 1, p. 1-9 (58) Fields surveyed (Int.Cl. 7 , DB name) C22F 1/04-1/057 C22C 21/00-21/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe:0.3乃至1.0重量%、Si:
0.15重量%未満を含有し、残部がAl及び不可避的
不純物である組成のアルミニウム合金の溶湯を、凝固時
の冷却速度を0.3乃至3.0℃/secで半連続鋳造
し、面削した後、400乃至620℃の温度範囲で均質
化処理を施し熱間圧延した後に冷間圧延を行い、30
0乃至450℃で2時間以上の中間焼鈍を施し、更に冷
間圧延をすることにより、粒径が0.1乃至0.8μ
金属間化合物の平均粒子間距離が0.7乃至2.5μ
mであるアルミニウム箔地を得て、前記アルミニウム箔
地を70乃至110℃の温度範囲で箔圧延をすることを
特徴とするアルミニウム箔の製造方法。
1. Fe: 0.3 to 1.0% by weight, Si:
A molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities is semi-continuously cast at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. after cutting, subjected to a homogenization treatment at a temperature range of 400 to 620 ° C., subjected to cold rolling after hot rolling, 30
Subjected to intermediate annealing at least 2 hours at 0 to 450 ° C., further by cold rolling, grain size 0.1 to 0.8 micron m
The average interparticle distance of the intermetallic compound of 0.7 to 2.5 μ
m to obtain an aluminum foil, and the aluminum foil
A method for producing an aluminum foil, which comprises rolling the base in a temperature range of 70 to 110 ° C.
【請求項2】 前記アルミニウム合金に添加するCuの
添加量が0.02重量%以下であることを特徴とする請
求項1に記載のアルミニウム箔の製造方法。
2. The method for producing an aluminum foil according to claim 1, wherein the amount of Cu added to the aluminum alloy is 0.02% by weight or less.
【請求項3】 前記アルミニウム合金に添加するTiの
添加量が0.03重量%以下であることを特徴とする請
求項1又は2に記載のアルミニウム箔の製造方法。
3. The method for producing an aluminum foil according to claim 1, wherein the amount of Ti added to the aluminum alloy is 0.03% by weight or less.
JP22500098A 1998-08-07 1998-08-07 Manufacturing method of aluminum foil Expired - Lifetime JP3529271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22500098A JP3529271B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22500098A JP3529271B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Publications (2)

Publication Number Publication Date
JP2000054094A JP2000054094A (en) 2000-02-22
JP3529271B2 true JP3529271B2 (en) 2004-05-24

Family

ID=16822521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22500098A Expired - Lifetime JP3529271B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Country Status (1)

Country Link
JP (1) JP3529271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270182B (en) * 2010-12-20 2016-08-10 株式会社Uacj Electrode collector alloy foil and manufacture method thereof
TWI486217B (en) * 2012-09-13 2015-06-01 China Steel Corp Aluminum foil and producing method of the same
JP2019167554A (en) * 2018-03-22 2019-10-03 日立金属株式会社 Method of producing aluminum foil, and aluminum foil
CN113578967B (en) * 2021-06-27 2022-05-31 中国科学院金属研究所 Preparation method of 550-650 ℃ high-temperature titanium alloy foil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三木功,Al−Fe合金の凝固時における鉄の挙度,軽金属,日本,軽金属学会,1975年 1月,Vol.25,No.1,p.1−9

Also Published As

Publication number Publication date
JP2000054094A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP3529270B2 (en) Manufacturing method of aluminum foil
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
KR101057264B1 (en) Aluminum alloy sheet and manufacturing method
JP3767492B2 (en) Method for producing aluminum flexible foil
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP3529273B2 (en) Aluminum foil base for thin foil and method for producing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
WO2019124530A1 (en) Aluminum alloy foil for cell collector
JP3529271B2 (en) Manufacturing method of aluminum foil
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP3529272B2 (en) Aluminum foil base for thin foil and method for producing the same
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
JP3529269B2 (en) Aluminum foil ground and method of manufacturing the same
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP3529268B2 (en) Aluminum foil ground and method of manufacturing the same
JP3986688B2 (en) Method for producing rolled Al-Mn alloy material having fine recrystallized grain structure
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP3808276B2 (en) Aluminum alloy foil and method for producing the same
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JPH0585630B2 (en)
JP4250030B2 (en) Aluminum alloy plate for glittering wheel rim and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term