JP3529270B2 - Manufacturing method of aluminum foil - Google Patents

Manufacturing method of aluminum foil

Info

Publication number
JP3529270B2
JP3529270B2 JP22499598A JP22499598A JP3529270B2 JP 3529270 B2 JP3529270 B2 JP 3529270B2 JP 22499598 A JP22499598 A JP 22499598A JP 22499598 A JP22499598 A JP 22499598A JP 3529270 B2 JP3529270 B2 JP 3529270B2
Authority
JP
Japan
Prior art keywords
foil
rolling
aluminum foil
aluminum
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22499598A
Other languages
Japanese (ja)
Other versions
JP2000054093A (en
Inventor
晋一郎 細野
信希 田波
晃三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22499598A priority Critical patent/JP3529270B2/en
Publication of JP2000054093A publication Critical patent/JP2000054093A/en
Application granted granted Critical
Publication of JP3529270B2 publication Critical patent/JP3529270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品及びその他の
包装、フィルムコンデンサ、ラベル又はたばこ等に使用
される箔の製造方法に関し、特に箔厚が15μm以下の
極薄のアルミニウム箔用途に使用されるピンホール特性
に優れるアルミニウム箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foil used for foods and other packaging, film capacitors, labels, tobacco, etc., and particularly used for an ultrathin aluminum foil having a foil thickness of 15 μm or less. The present invention relates to a method for manufacturing an aluminum foil having excellent pinhole characteristics.

【0002】[0002]

【従来の技術】従来、薄箔用のアルミニウム又はアルミ
ニウム合金は箔地材料としては、JIS1N30等の純
アルミニウム、8079合金又は8021合金等が使用
されている。なお、以下、純アルミニウム又はアルミニ
ウム合金を総称してアルミニウムという。アルミニウム
箔地は、一般的に、これらのアルミニウム鋳塊に均質化
処理、熱間圧延、冷間圧延及び中間焼鈍を施し、また、
必要に応じてその後、冷間圧延を施すことにより製造さ
れている。
2. Description of the Related Art Conventionally, as aluminum or aluminum alloy for thin foil, pure aluminum such as JIS1N30, 8079 alloy or 8021 alloy has been used as a foil material. In the following, pure aluminum or aluminum alloy is generically referred to as aluminum. Aluminum foil is generally obtained by subjecting these aluminum ingots to homogenization treatment, hot rolling, cold rolling and intermediate annealing, and
After that, it is manufactured by performing cold rolling if necessary.

【0003】そして、得られたアルミニウム箔地に箔圧
延及び最終焼鈍を行うことによりアルミニウム箔が得ら
れる。ところで、5.5乃至7μmのアルミニウム箔が
実用化されているが、箔需要は6乃至7μmが大半であ
り、同じ厚さのアルミニウム箔は箔圧延での互換性の点
によりJIS1N30を使用したいとの要望が強い。一
般的に、箔厚の減少に伴う問題点としては、ピンホール
が著しく増加し、箔が本来有するべき性能である光、気
体及び液体等に対するバリアー性が低下すると共に、ピ
ンホールによる圧延中の箔切れが生じることが知られて
いる。
Then, the aluminum foil obtained is subjected to foil rolling and final annealing to obtain an aluminum foil. By the way, although 5.5 to 7 μm aluminum foil has been put into practical use, most of the foil demand is 6 to 7 μm, and it is desirable to use JIS1N30 for aluminum foil of the same thickness due to compatibility in foil rolling. Is strongly requested. Generally, as a problem associated with the reduction of foil thickness, the number of pinholes is significantly increased, and the barrier property against light, gas, liquid, etc., which the foil originally should have, is deteriorated, and at the time of rolling by pinholes, It is known that foil breaks occur.

【0004】薄箔の仕上箔圧延は通常重合圧延により行
われ、ピンホールはマット面うねりの最大のところがブ
ライト面オイルピット等と連結して生ずることが知られ
ている。また、ピンホールはオイルピット面等の表面欠
陥と比べて、主にマット粗度に支配されることも知られ
ている。更に、オイルピットは圧延条件(リダクション
・バックテンション)に主に支配され、マット面は結晶
粒の自由変形により形成されると考えられ、箔地により
支配される要因が大きいことが知られている(特公平3
−60562号公報、軽金属学会第70回予行集33,
34,35)。
It is known that finishing foil rolling of thin foil is usually carried out by polymerization rolling, and pinholes are formed at the maximum waviness of matt surface by connecting with bright surface oil pits. It is also known that pinholes are mainly governed by matte roughness as compared with surface defects such as oil pit surfaces. Furthermore, it is considered that the oil pits are mainly controlled by rolling conditions (reduction / back tension), and the matte surface is formed by free deformation of crystal grains, and it is known that the factor controlled by the foil is large. (Tokuhei 3
-60562, Light Metal Society of Japan 70th Reprint Collection 33,
34, 35).

【0005】そこで、マット面粗度を低減させるべく、
Fe含有量の増加や均質化処理以降の製造条件変更によ
りFe固溶度を減少させ、結晶粒を微細化することによ
り加工硬化を抑制できる箔として特開昭63−2632
2号公報等に開示されている。また、他の元素を添加す
るものも知られていて、例えば、Ni、Mn及びCrの
添加により結晶粒の微細化及び加工硬化の抑制を発現す
ることができる箔として特開昭63−282228号公
報、特開昭63−282244号公報及び特開平8−3
3644号公報等に開示されている。
Therefore, in order to reduce the matte surface roughness,
As a foil capable of suppressing work hardening by decreasing the Fe solid solubility by changing the manufacturing conditions after the Fe content increase and the homogenization treatment and by refining the crystal grains, JP-A-63-2632.
It is disclosed in Japanese Patent Publication No. 2 and the like. Further, it is known to add other elements, for example, as a foil capable of exhibiting the miniaturization of crystal grains and suppression of work hardening by addition of Ni, Mn and Cr, as disclosed in JP-A-63-228228. Japanese Patent Laid-Open No. 63-282244 and Japanese Patent Laid-Open No. 8-3
It is disclosed in Japanese Patent No. 3644 and the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Fe、
Ni、Mn、Crを添加するアルミニウム箔地では前述
のような互換性のメリットがない。また、JIS1N3
0相当の組成(Fe含有量のない場合)では、均質化処
理以降の製造条件変更により析出促進を行っても、箔厚
が6乃至7μmのアルミニウム箔を得る箔圧延において
は、大きな加工硬化の抑制効果を得られないばかりか、
工程変更によっては結晶粒が逆に大きくなってしまうこ
ともあり、ピンホールの発生量の増加及び圧延中の箔切
れの頻発を生じ易い等の問題があった。
However, Fe,
The aluminum foil material to which Ni, Mn and Cr are added does not have the above-mentioned merit of compatibility. Also, JIS1N3
With a composition equivalent to 0 (when there is no Fe content), even if the precipitation is promoted by changing the manufacturing conditions after the homogenization treatment, in the foil rolling to obtain an aluminum foil having a foil thickness of 6 to 7 μm, a large work hardening is caused. Not only can you not obtain the suppression effect,
Depending on the process change, the crystal grains may become large on the contrary, which causes problems such as an increase in the amount of pinholes and frequent occurrence of foil breakage during rolling.

【0007】本発明はかかる問題に鑑みてなされたもの
であり、JIS1N30相当の組成であっても、箔圧延
及びピンホール特性を損なうことなく、箔を薄箔化でき
るアルミニウム箔の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and provides a method for producing an aluminum foil, which has a composition equivalent to JIS 1N30 and can be thinned without impairing foil rolling and pinhole characteristics. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明に係るアルミニウ
ム箔の製造方法は、Fe:0.3乃至1.0重量%、S
i:0.15重量%未満を含有し、残部がAl及び不可
避的不純物である組成のアルミニウム合金の溶湯を、凝
固時の冷却速度を0.3乃至3.0℃/secで半連続
鋳造し、面削した後、400乃至620℃の温度範囲で
均質化処理を施し、終了温度が200乃至260℃の温
度範囲となるように熱間圧延し、熱間圧延終了後に冷間
圧延を行い、300乃至450℃で2時間以上の中間焼
鈍を施し、更に冷間圧延をすることにより、粒径が0.
1乃至0.8μmの金属間化合物の平均粒子間距離が
0.7乃至2.5μm、平均結晶粒径が35μm以下で
あるアルミニウム箔地を得て、前記アルミニウム箔地を
圧延することを特徴とする。
The method for producing an aluminum foil according to the present invention is as follows: Fe: 0.3 to 1.0% by weight, S:
i: Semi-continuous casting of a molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. After face-shaping, homogenization treatment is performed in the temperature range of 400 to 620 ° C., hot rolling is performed so that the end temperature is in the temperature range of 200 to 260 ° C., and cold rolling is performed after completion of the hot rolling. By subjecting to intermediate annealing at 300 to 450 ° C. for 2 hours or more and further cold rolling, the grain size is reduced to 0.
An aluminum foil having an average interparticle distance of the intermetallic compound of 1 to 0.8 μm of 0.7 to 2.5 μm and an average crystal grain size of 35 μm or less is obtained.
Characterized by foil rolling.

【0009】本発明においては、前記冷間圧延後のアル
ミニウム箔地を70乃至110℃の温度範囲で箔圧延す
ることが好ましい。
In the present invention, it is preferable that the cold-rolled aluminum foil is foil-rolled in a temperature range of 70 to 110 ° C.

【0010】また、本発明においては、前記アルミニウ
ム合金に添加するCuの添加量が0.02重量%以下で
あり、Tiの添加量が0.03重量%以下であることが
好ましい。
Further, in the present invention, it is preferable that the amount of Cu added to the aluminum alloy is 0.02% by weight or less and the amount of Ti added is 0.03% by weight or less.

【0011】更に、本発明においては、鋳造凝固時の冷
却速度、均質化処理条件、冷間圧延率及び中間焼鈍条件
の制御により粒子間距離の適正化を図ることにより、箔
圧延性に優れ、箔圧延後、ピンホールの発生数が少ない
アルミニウム箔を得ることができる。
Further, in the present invention, by controlling the cooling rate at the time of solidification by casting, the homogenization treatment condition, the cold rolling ratio and the intermediate annealing condition, the interparticle distance is optimized so that the foil rolling property is excellent. After the foil rolling, it is possible to obtain an aluminum foil with few pinholes.

【0012】[0012]

【発明の実施の形態】本発明者等らは、これまでのアル
ミニウム箔及び箔地に関する研究から、ピンホールを少
なくすることは、マット面粗度を低くすること、即ち、
仕上箔圧延時の変形ブロックを微小化することが必要で
あることを見出した。更には、マット面は結晶粒サイズ
のみではなく、転位セルサイズの自由変形によっても形
成されることも見出した。また、ピンホールを少なくす
るには、加工硬化を抑制することが有効であることは知
られているが、これは、転位整理によるサブグレイン化
により達成されることも究明した。
BEST MODE FOR CARRYING OUT THE INVENTION From the research on aluminum foils and foils up to now, the present inventors have found that reducing pinholes reduces matte surface roughness, that is,
It was found that it is necessary to miniaturize the deformed block when rolling the finishing foil. Furthermore, they have found that the matte surface is formed not only by the crystal grain size but also by free deformation of the dislocation cell size. Further, it is known that suppressing work hardening is effective for reducing pinholes, but it was also clarified that this can be achieved by forming subgrains by dislocation organization.

【0013】そこで、前述の特性を発現するアルミニウ
ム箔地を開発するため、鋭意研究を重ねた結果、粒径が
0.1乃至0.8μmの金属間化合物の粒子間距離を転
位セルサイズに調整することが有効であることを見出し
た。また、JIS1N30組成の場合には、この粒子間
距離の適正化は、従来行われてきた均質化処理以降の製
造条件変更のみでは、調整困難であり、鋳造条件の適正
化と均質化処理以降の箔地製造条件を組合せて制御する
と共に、箔圧延の温度領域を管理することにより、その
目的が達成されることを見出した。本発明はこの知見に
基づいてなされたものである。
Therefore, as a result of intensive studies to develop an aluminum foil material exhibiting the above-mentioned characteristics, the interparticle distance of the intermetallic compound having a particle diameter of 0.1 to 0.8 μm was adjusted to the dislocation cell size. It has been found to be effective. Further, in the case of JIS1N30 composition, it is difficult to adjust the inter-particle distance by changing the manufacturing conditions after the conventional homogenization treatment. It has been found that the objective can be achieved by controlling the temperature range of foil rolling while controlling the foil manufacturing conditions in combination. The present invention has been made based on this finding.

【0014】即ち、本発明においては、Fe:0.3乃
至1.0重量%、Si:0.15重量%未満を含有し、
残部がAl及び不可避的不純物である組成のアルミニウ
ム合金の溶湯を、凝固時の冷却速度を0.3乃至3.0
℃/secで半連続鋳造し、面削した後、400乃至6
00℃の温度範囲で均質化処理を施し、終了温度が20
0乃至260℃の温度範囲となるように熱間圧延し、熱
間圧延終了後に冷間圧延を行い、300乃至450℃で
2時間以上の中間焼鈍を施し、更に冷間圧延をすること
により、粒径が0.1乃至0.8μmの金属間化合物の
平均粒子間距離が0.7乃至2.5μm、平均結晶粒径
が35μm以下であるアルミニウム箔地を得る。このア
ルミニウム箔地を70乃至110℃の温度範囲で箔圧延
することによりアルミニウム箔を得る。
That is, in the present invention, Fe: 0.3 to 1.0% by weight, Si: less than 0.15% by weight,
A molten aluminum alloy having a composition in which the balance is Al and inevitable impurities has a cooling rate of 0.3 to 3.0 during solidification.
400 ~ 6 after semi-continuous casting at ℃ / sec and chamfering
The homogenization treatment is performed in the temperature range of 00 ° C and the end temperature is 20
Hot rolling to a temperature range of 0 to 260 ° C., cold rolling after completion of hot rolling, at 300 to 450 ° C.
By performing intermediate annealing for 2 hours or more and further cold rolling, the average interparticle distance of the intermetallic compound having a grain size of 0.1 to 0.8 μm is 0.7 to 2.5 μm, and the average crystal grain is An aluminum foil material having a diameter of 35 μm or less is obtained. The aluminum foil is foil-rolled in the temperature range of 70 to 110 ° C. to obtain an aluminum foil.

【0015】以下、本発明におけるアルミニウム箔の成
分限定理由について説明する。
The reasons for limiting the components of the aluminum foil in the present invention will be described below.

【0016】Fe:0.3乃至1.0重量% Feは、アルミニウムへの固溶度が小さく、アルミニウ
ム中において他の元素と結合してAl−Fe系の金属間
化合物を生成する元素であると共に、再結晶の核として
作用するために、Fe添加は結晶粒の微細化に効果があ
る。Fe含有量が0.3重量%未満の場合では、鋳造時
に晶出する金属間化合物の数が不十分であり、結晶粒を
微細化する効果を得にくい。一方、Fe含有量が1.0
重量%を超える場合には、Al−Fe系の金属間化合物
の数が多く形成されるので、結晶粒の微細化効果は大き
いが、箔圧延時の変形抵抗が増大するため、圧延性が極
端に低下する。従って、Fe含有量は0.3乃至1.0
重量%とする。
[0016]Fe: 0.3 to 1.0% by weight Fe has a small solid solubility in aluminum, and
Between Al-Fe-based metals by bonding with other elements in the aluminum
It is an element that forms a compound and also serves as a nucleus for recrystallization.
In order to function, addition of Fe is effective in refining crystal grains.
It When the Fe content is less than 0.3% by weight, during casting
Insufficient number of intermetallic compounds crystallize in the
It is difficult to obtain the effect of miniaturization. On the other hand, the Fe content is 1.0
When the content is more than weight%, an Al-Fe-based intermetallic compound
Since a large number of grains are formed, the grain refining effect is large.
However, the rolling resistance is extremely high because the deformation resistance during foil rolling increases.
Fall to the edge. Therefore, the Fe content is 0.3 to 1.0
Weight%

【0017】Si:0.15重量%未満 Siは、地金中の不可避的不純物の1つである。Si
は、粗大なAl−Fe−Si系金属間化合物を生成し易
く、ピンホールが増大する原因となるため、少ない方が
良い。このため、Si含有量は0.15重量%未満であ
ることが望ましい。
[0017]Si: less than 0.15% by weight Si is one of the inevitable impurities in the metal. Si
Easily forms a coarse Al-Fe-Si-based intermetallic compound.
Smaller, the number of pinholes increases.
good. Therefore, the Si content is less than 0.15% by weight.
Is desirable.

【0018】粒径が0.1乃至0.8μmの金属間化合
物の平均粒子間距離:0.7乃至2.5μm 粒径が0.1乃至0.8μmの金属間化合物は、主に析
出物であり、均質化処理、熱間圧延及び中間焼鈍にて生
成する。これらの金属間化合物の分布は、箔圧延中の転
位蓄積及び整理に作用するために、その後の重合圧延に
おけるセルオーダーの変形ブロックサイズに影響を及ぼ
す。変形ブロックサイズの金属間化合物の平均粒子間距
離が0.7μm未満の場合には、重合圧延前パスでピン
止めとなり、即ち、転位蓄積が過多となり、後の重合圧
延にて複数の転位セル単位での変形ブロックとなるため
に、マット面が粗くなり、ピンホールが多発する。一
方、変形ブロックサイズの金属間化合物の平均粒子間距
離が2.5μmを超える場合には、重合圧延前パスでの
転位整理は容易となり、単一セルでの変形ブロックとな
るが、粗大セルが形成され易いために、マット面が粗く
なり、ピンホールが多発する。従って、粒径が0.1乃
至0.8μmの金属間化合物の平均粒子間距離は0.7
乃至2.5μmとする。
[0018]Intermetallic compound with a particle size of 0.1 to 0.8 μm
Average particle-to-particle distance: 0.7 to 2.5 μm Intermetallic compounds with a particle size of 0.1 to 0.8 μm are mainly deposited.
It is a good product and is produced by homogenization, hot rolling and intermediate annealing.
To achieve. The distribution of these intermetallic compounds is
In order to affect the accumulation and rearrangement,
Affects the cell-order deformation block size in
You Average interparticle distance of deformed block size intermetallic compounds
If the separation is less than 0.7 μm, the
It becomes a stop, that is, dislocation accumulation becomes excessive, and the polymerization pressure after
Since it becomes a deformed block in units of multiple dislocation cells by extension
Moreover, the matte surface becomes rough and pinholes frequently occur. one
The mean interparticle distance of intermetallic compounds with deformed block size
If the separation exceeds 2.5 μm, it may be
Dislocation simplification becomes easier and it becomes a deformed block in a single cell.
However, the matte surface is rough because coarse cells are easily formed.
And pinholes occur frequently. Therefore, the particle size is 0.1
The average interparticle distance of the intermetallic compound of 0.8 μm is 0.7
To 2.5 μm.

【0019】平均結晶粒径:35μm以下 箔地の結晶粒径は、中間焼鈍での結晶粒径である。この
結晶粒径は、重合圧延における変形ブロックサイズと軟
質強度に影響を及ぼす。平均結晶粒径が35μmを超え
る場合には、マット面粗度が粗くなり、ピンホールの多
発を招くと共に、軟質強度が低下する。
[0019]Average crystal grain size: 35 μm or less The grain size of the foil is the grain size in the intermediate annealing. this
The grain size depends on the deformation block size and
Affects quality strength. Average crystal grain size exceeds 35 μm
In this case, the surface roughness of the mat becomes rough and pin holes are
In addition, the soft strength decreases.

【0020】箔圧延温度:70乃至110℃ 箔圧延温度は転位蓄積及び整理の程度に作用するため
に、その後の重合圧延における転位セルオーダーの変形
ブロックサイズに影響を及ぼす。箔圧延温度が70℃未
満の場合には、上がり前箔の転位整理を発現できず、後
の重合圧延にて複数の単位セル単位での変形ブロックと
なるために、マット面が粗くなり、ピンホールが多発す
る。一方、箔圧延温度が110℃を超える場合には、余
りに転位整理が容易になり過ぎ、上がり前々での転位消
滅を生じ、次の上がり前での転位蓄積を生じ、後の重合
圧延にて複数の転位セル単位での変形ブロックとなるた
めに、マット面が粗くなり、ピンホールが多発する。
Foil rolling temperature: 70 to 110 ° C. The foil rolling temperature affects the degree of dislocation accumulation and reduction, and therefore affects the dislocation cell order deformation block size in the subsequent polymerizing rolling. When the foil rolling temperature is lower than 70 ° C., the rearrangement of the foil before rising cannot be expressed, and it becomes a deformed block in a plurality of unit cells in the subsequent polymerizing rolling, so that the matte surface becomes rough and the pin There are many holes. On the other hand, when the foil rolling temperature exceeds 110 ° C., dislocation rearrangement becomes too easy, dislocation disappears before one rise, and dislocation accumulation occurs before the next rise. Since it becomes a deformed block in units of a plurality of dislocation cells, the matte surface becomes rough and pinholes frequently occur.

【0021】Cu:0.02重量%以下 Cuは、アルミニウム中に固溶する元素であり、固溶硬
化によるO材強度の向上に有効であり、必要に応じて添
加しても良い。Cu含有量が0.005重量%未満の場
合には、固溶硬化が不十分であり、O材強度を向上する
強度を得にくい。一方、Cu含有量が0.02重量%を
超える場合には、固溶硬化の程度が大きすぎ、箔圧延時
の変形抵抗が増大するため、圧延性が極端に低下する。
従って、Cuは、0.02重量%以下であれば、必要に
応じて添加しても良い。
[0021]Cu: 0.02 wt% or less Cu is an element that forms a solid solution in aluminum, and solid solution hardening
Is effective in improving the strength of O material, and if necessary, added
You may add. When the Cu content is less than 0.005% by weight
In this case, solid solution hardening is insufficient and the O material strength is improved.
Hard to get strength. On the other hand, the Cu content is 0.02% by weight.
If it exceeds, the degree of solid solution hardening is too great and the foil is rolled.
Since the deformation resistance of No. 1 increases, the rolling property is extremely reduced.
Therefore, if Cu is 0.02 wt% or less, it is necessary.
You may add according to it.

【0022】Ti:0.03重量%以下 Tiは、Al−Ti又はAl−Ti−B母合金として添
加され、鋳塊組織を微細化するために使用される。箔圧
延後に筋模様が問題となる場合には、0.03重量%以
下の範囲で添加しても良いが、添加しないで羽毛状晶と
した方が鋳塊で晶出する金属間化合物が微細になるた
め、筋模様に支障がなければTiは少ない方が好まし
い。従ってTiは、0.03重量%以下であれば、必要
に応じて添加しても良い。
[0022]Ti: 0.03 wt% or less Ti is added as an Al-Ti or Al-Ti-B mother alloy.
And used for refining the ingot structure. Foil pressure
If streaking becomes a problem after stretching, 0.03% by weight or more
It may be added in the range below, but without adding it
The finer the intermetallic compounds crystallized in the ingot.
Therefore, if there is no hindrance to the streak pattern, less Ti is preferable.
Yes. Therefore, if Ti is 0.03% by weight or less, it is necessary.
You may add according to.

【0023】不可避的不純物 アルミニウムに含有する前記以外の不可避的不純物とし
ては、Mn,Mg,Zn,Cr,V,Zr,Bi,S
n,In,Pb等が挙げられるが、JIS1100及J
IS1N30程度の含有範囲であれば本発明の目的を損
なうものではない。
[0023]Inevitable impurities As unavoidable impurities other than the above contained in aluminum
For Mn, Mg, Zn, Cr, V, Zr, Bi, S
n, In, Pb, etc. may be mentioned, but JIS 1100 and J
If the content range is around IS1N30, the purpose of the present invention will be impaired.
It's not like that.

【0024】次に、本発明におけるアルミニウム箔の製
造方法における数値限定理由について説明する。
Next, the reasons for limiting the numerical values in the method for producing an aluminum foil according to the present invention will be described.

【0025】凝固時の冷却速度:0.3乃至3.0℃/
sec 前述のように、箔として優れたピンホール特性を発現す
るためには、箔地で粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適性化する必要がある。こ
の粒子間距離の適性化は、従来行われてきた均質化処理
以降の製造条件の変更のみでは調整困難であり、鋳造条
件の適正化と均質化処理以降の箔地製造条件を組み合わ
せて制御することにより、その目的は達成される。即
ち、凝固時の冷却速度を適正化することは粒子間距離を
適正化することとなり、ピンホールの低減に寄与する。
[0025]Cooling rate during solidification: 0.3 to 3.0 ° C /
sec As mentioned above, it exhibits excellent pinhole characteristics as a foil.
In order to achieve this, a metal with a grain size of 0.1 to 0.8 μm
It is necessary to optimize the average interparticle distance of the interstitial compound. This
The homogenization process that has been performed in the past
It is difficult to make adjustments only by changing the manufacturing conditions thereafter.
Combining the production conditions of the foil material after the optimization and homogenization
Therefore, the purpose is achieved. Immediately
By optimizing the cooling rate during solidification, the distance between particles must be
It will be optimized and will contribute to the reduction of pinholes.

【0026】凝固時の冷却速度が3.0℃/secを超
えた場合には、造塊されたスラブでは、その後の均質化
処理、熱間圧延処理及び中間焼鈍により、過飽和固溶し
たFeが微細析出物として排出され、0.3μm以下の
析出物数を極端に増加させ、粒径が0.1乃至0.8μ
mの金属間化合物の平均粒子間距離が狭くなり、ピンホ
ールの多発を招く。一方、凝固時の冷却速度が0.3℃
/sec未満の場合には、グラススクリーン内で浮遊晶
を生じるため、圧延用スラブとして造塊することは困難
である。従って、凝固時の冷却速度は0.3乃至3.0
℃/secとする。好ましくは、凝固時の冷却速度は
0.3乃至2.4℃/secである。
When the cooling rate during solidification exceeds 3.0 ° C./sec, in the ingots slab, the supersaturated solid solution Fe is generated by the subsequent homogenization treatment, hot rolling treatment and intermediate annealing. Emitted as fine precipitates, the number of precipitates of 0.3 μm or less is extremely increased, and the particle size is 0.1 to 0.8 μm.
The average interparticle distance of the intermetallic compound of m becomes narrow, which causes frequent occurrence of pinholes. On the other hand, the cooling rate during solidification is 0 . 3 ° C
If it is less than / sec, floating crystals are generated in the glass screen, and it is difficult to make an ingot as a rolling slab. Therefore, the cooling rate during solidification is 0.3 to 3.0.
C / sec. Preferably, the cooling rate during solidification is 0.3 to 2.4 ° C./sec.

【0027】均質化処理:400乃至620℃ 本発明の組成及び造塊条件のスラブを面削した後、均質
化処理を施す。この均質化処理は、固溶及び析出調整を
目的として行われ、粒径が0.1乃至0.8μmの金属
間化合物の平均粒子間距離を適正化する重要な処理であ
り、ピンホールの低減に寄与する。均質化処理温度が4
00℃未満の場合には、固溶元素の析出による析出数が
不十分となり、粒子間距離を広くするため、ピンホール
の多発を招く。なお、長時間の焼鈍を行う場合には均質
化処理温度が400℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
均質化処理温度が620℃を超える場合には、固溶元素
の析出による析出数が不十分となり、粒子間距離を広く
するため、ピンホールの多発を招く。従って、均質化処
理温度は、400乃至620℃とする。この均質化処理
時間は特に規定するものではないが、2時間以上行うこ
とが好ましい。
[0027]Homogenization treatment: 400 to 620 ° C After chamfering a slab having the composition and ingot of the present invention,
Apply chemical treatment. This homogenization process controls solid solution and precipitation.
Metals with a particle size of 0.1 to 0.8 μm
It is an important process to optimize the average interparticle distance of intermetallic compounds.
Contributes to the reduction of pinholes. Homogenization temperature is 4
When the temperature is less than 00 ° C, the number of precipitates due to the precipitation of solid solution elements is
Insufficient to increase the distance between particles, pinhole
Cause frequent occurrence. It should be noted that when annealing for a long time, it is homogeneous
The solid solution element is sufficiently precipitated even when the chemical treatment temperature is less than 400 ° C.
However, it is not preferable because the production efficiency is deteriorated. on the other hand,
If the homogenization temperature exceeds 620 ° C, the solid solution element
The number of precipitates due to the precipitation of
Therefore, many pinholes are caused. Therefore, the homogenization process
The processing temperature is 400 to 620 ° C. This homogenization process
The time is not specified, but it should be 2 hours or more.
And are preferred.

【0028】中間焼鈍:300乃至450℃ 前述の均質処理の後、熱間圧延し、次に冷間圧延を施
し、更に中間焼鈍する。この焼鈍は固溶元素の析出及び
再結晶を目的として行われるものであるが、前述の粒子
間距離は、中間焼鈍温度に影響される。中間焼鈍温度が
300℃未満の場合には、固溶元素の析出による析出数
が不十分となり、粒子間距離を広くするため、ピンホー
ルの多発を招く。なお、長時間の焼鈍を行う場合には中
間焼鈍温度が300℃未満でも固溶元素が充分に析出す
るが、生産効率が悪くなるために好ましくない。一方、
中間焼鈍温度が450℃を超える場合には、固溶元素の
析出による析出数が不十分となり、粒子間距離を広くす
るため、ピンホールの多発を招くと共に、平均結晶粒径
が粗大化し、O材強度も不足する。従って、中間焼鈍温
度は300乃至450℃とする。この中間焼鈍時間は特
に規定するものではないが、2時間以上行うことが好ま
しい。
[0028]Intermediate annealing: 300 to 450 ° C After the above homogenization treatment, hot rolling and then cold rolling were performed.
Then, intermediate annealing is performed. This annealing is the precipitation of solid solution elements and
The above-mentioned particles are used for the purpose of recrystallization.
The inter-distance is affected by the intermediate annealing temperature. The intermediate annealing temperature is
When the temperature is less than 300 ° C, the number of precipitates due to the precipitation of solid solution elements
Becomes insufficient and the distance between particles is widened.
Invites Le frequently. When performing long-term annealing,
Even if the inter-annealing temperature is less than 300 ° C, solid solution elements are sufficiently precipitated
However, it is not preferable because the production efficiency is deteriorated. on the other hand,
When the intermediate annealing temperature exceeds 450 ° C, the solid solution element
The number of precipitates becomes insufficient due to precipitation, increasing the distance between particles.
Therefore, many pinholes are generated and the average crystal grain size is increased.
Becomes coarse and the strength of O material is insufficient. Therefore, the intermediate annealing temperature
The temperature is 300 to 450 ° C. This intermediate annealing time is special
However, it is preferable to do it for 2 hours or more.
Good

【0029】仕上熱間圧延終了温度:200乃至260
O材強度の向上及びマット面粗度の低減には、結晶粒の
微細化も有効である。結晶粒微細化には、仕上熱間終了
温度を低温にすることでホットコイル厚みを厚くするこ
となくR方位の集積を増加させることが有効である。仕
上熱間圧延終了温度が200℃未満の場合には、箔地と
して必要なコイル形状が得られず、箔圧延での圧延性に
劣る。一方、仕上熱間圧延終了温度が260℃を超える
場合には、R方位の集積が不足し、中間焼鈍で微細な再
結晶粒が得られない。従って、必要に応じて、結晶粒を
微細化する場合には仕上熱間圧延終了温度を200乃至
260℃の範囲で終了しても良い。
[0029]Finishing hot rolling finish temperature: 200 to 260
To improve the strength of O material and reduce the roughness of matte surface,
Miniaturization is also effective. Finishing hot ends for grain refinement
The hot coil thickness can be increased by lowering the temperature.
It is effective to increase the accumulation of R orientation. Finish
If the upper hot rolling finish temperature is less than 200 ° C,
And the required coil shape cannot be obtained, making it easier to roll in foil rolling.
Inferior. On the other hand, the finish hot rolling finish temperature exceeds 260 ° C.
In this case, the accumulation of R orientation is insufficient, and fine annealing
Crystal grains cannot be obtained. Therefore, if necessary, crystal grains
In the case of miniaturization, the finish hot rolling end temperature is 200 to
You may finish in the range of 260 degreeC.

【0030】[0030]

【実施例】以下、本発明に係る製造方法により製造され
たアルミニウム箔の実施例について、比較例と比較して
具体的に説明する。
EXAMPLES Examples of the aluminum foil manufactured by the manufacturing method according to the present invention will be specifically described below in comparison with comparative examples.

【0031】第1実施例 下記表1に示す組成を有するアルミニウム溶湯を下記表
に示す凝固時の冷却速度でDC鋳造し、スラブを面削
後、550℃の温度で5時間の均質化処理を行い、その
直後に熱間圧延を開始し、240℃で熱間圧延を終了
し、板厚5mmのアルミニウム板を得た。その後、圧延
率86%で冷間圧延を行い、得た板を375℃の温度で
4時間の中間焼鈍を行った。更に、冷間圧延して、厚さ
が0.3mmのアルミニウム箔地を製作した
Example 1 A molten aluminum having the composition shown in Table 1 below was prepared.
DC casting was carried out at the cooling rate during solidification shown in 2 , the slab was faced, homogenized at a temperature of 550 ° C. for 5 hours, immediately followed by hot rolling, and hot rolling at 240 ° C. After that, an aluminum plate having a plate thickness of 5 mm was obtained. After that, cold rolling was performed at a rolling ratio of 86%, and the obtained sheet was subjected to intermediate annealing at a temperature of 375 ° C. for 4 hours. Further, it was cold-rolled to produce an aluminum foil having a thickness of 0.3 mm .

【0032】得られたアルミニウム箔地について各種評
価を行った。先ず、各種温度で箔圧延して厚さが6μm
のアルミニウム箔を作製し、箔圧延時の圧延性について
評価した。その結果、圧延時において円滑に圧延できた
場合を○(良好)、同一圧延条件において、薄肉化が困
難であるか、強度不足により圧延速度を速くできない又
は板厚分布等の平面性制御が困難等のトラブルが発生す
る傾向が強かった場合を×(不良)とした。なお、造塊
時に浮遊晶の発生により、圧延用としてスラブが取れな
かったものも×(不良)とした。
Various evaluations on the obtained aluminum foil
Valuable. First, the foil is rolled at various temperatures and the thickness is 6 μm.
Rollability of aluminum foil produced by
evaluated. As a result, smooth rolling was possible during rolling
○ (good), it is difficult to reduce the wall thickness under the same rolling conditions.
It is difficult or the rolling speed cannot be increased due to insufficient strength.
Causes problems such as difficulty in controlling flatness such as thickness distribution.
When there was a strong tendency to occur, it was rated as x (bad). In addition , those in which the slab could not be removed for rolling due to the generation of floating crystals during the ingot making were also marked as x (defective).

【0033】次に、常法に従い、最終焼鈍をした厚さが
6μmのアルミニウム箔を幅が15mm、有効長さが1
00mmの短冊状に形成した試験片を製作した。そし
て、この試験片をインストロン式の引張試験機により引
張強さを測定し、これをO材の強度とした。O材の強度
は、70MPa未満が劣り、70MPaを超えるものが
優れることを示す。
Then, according to a conventional method, a final-annealed aluminum foil having a thickness of 6 μm has a width of 15 mm and an effective length of 1
A test piece formed in a strip shape of 00 mm was manufactured . That
Then, the tensile strength of this test piece was measured by an Instron type tensile tester, and this was taken as the strength of O material. Regarding the strength of the O material, less than 70 MPa is inferior, and one exceeding 70 MPa is excellent.

【0034】また、厚さが6μmのアルミニウム箔につ
いて、ピンホール検知機により1m 当たりのピンホー
ル数(直径5μm以上のもの)を測定した。ピンホール
は100個/m以下が優れる。
With respect to the aluminum foil having a thickness of 6 μm, the number of pinholes per 1 m 2 (having a diameter of 5 μm or more) was measured by a pinhole detector. 100 or less pinholes / m 2 are excellent.

【0035】更に、凝固時の冷却速度、粒子間距離及び
平均結晶粒径を以下に示す方法で測定した。凝固時の冷
却速度は、造塊後の鋳塊により湯底側の定常部を採取
し、次に長辺面中央部の表皮より100mmの位置より
小片を採取し、更に電解研磨の後に交線法と二次枝法に
てDASを測定することにより算出した。詳細には、軽
金属学会の研究報告書No.20「アルミニウムのデント
ライトアームスペーシングと冷却速度の測定法」に記載
の方法にて行い、交線法と二次枝法との測定値補正は数
式1に示される経験式を使用した。凝固時の冷却速度の
算出については、Fe量が0.65重量%以下の場合は
数式2を用い、Fe量が0.65重量%を超える場合は
数式3を用いて算出した
Further, the cooling rate during solidification, the distance between particles and the average crystal grain size were measured by the following methods . The cooling rate at the time of solidification is to collect a steady part on the bottom side of the molten metal by the ingot after ingot formation, then collect a small piece from the position of 100 mm from the skin of the central part of the long side surface, and further after electrolytic polishing, intersect Method and the secondary branch method were used to calculate DAS. Specifically, the method is described in Research Report No. 20 of the Japan Institute of Light Metals, "Dentrite Arm Spacing of Aluminum and Measuring Method of Cooling Rate", and the correction of the measured values of the intersection line method and the secondary branch method is a mathematical formula. The empirical formula shown in 1 was used. The calculation of the cooling rate during solidification, if the Fe content is 0.65 wt% or less using Equation 2, when the Fe content exceeds 0.65 wt% was calculated using Equation 3.

【0036】[0036]

【数1】dr=1.49×ds dr:交線法によるDAS、ds:二次枝法によるDA
## EQU1 ## dr = 1.49 × ds dr: DAS by the intersecting line method, ds: DA by the secondary branch method
S

【0037】[0037]

【数2】ds=33.4×C-0.33 C:凝固時の冷却
速度
[ Formula 2] ds = 33.4 × C −0.33 C: Cooling rate during solidification

【0038】[0038]

【数3】ds=77×C-0.42 C:凝固時の冷却速度[ Formula 3] ds = 77 × C −0.42 C: Cooling rate during solidification

【0039】平均粒子間距離は、粒径が0.1乃至0.
8μmの金属間化合物の平均粒子間距離である。この平
均粒子間距離は、透過型電子顕微鏡と画像処理装置を使
用し測定した。即ち、アルミニウム箔地より7.5m
m角の小片を採取し、厚さ0.1mmに研磨後、直径3
mmの円盤状に打ち抜いた。これを温度350℃、時間
5分の条件で転位除去処理を行い、次に、ジェット研磨
により厚さが5μmの観察サンプルを作製した。これら
を倍率10000倍にて析出物の観察をし、総面積が3
512μm2になる視野数の写真を撮影した。また、こ
の観察の際に、フリンジ法により観察点の厚さも測定す
ることにより、観察体積を算出した。更に、この観察体
積と画像処理によりカウントした粒径が0.1乃至0.
8μmの総金属間化合物の数とにより平均粒子間距離を
算出した。
The average interparticle distance is such that the particle diameter is 0.1 to 0.
It is the average interparticle distance of the intermetallic compound of 8 μm. The average interparticle distance was measured using a transmission electron microscope and the image processing apparatus. That is, 7.5m from aluminum foil
Take a small piece of m square, grind it to a thickness of 0.1 mm, and
mm had the disconnect out in the shape of a disc. This was subjected to dislocation removal treatment under conditions of a temperature of 350 ° C. and a time of 5 minutes, and was then jet-polished to prepare an observation sample having a thickness of 5 μm. These were observed at a magnification of 10000 times, and the total area was 3
Photographs were taken with a field number of 512 μm 2 . Further, at the time of this observation, the observation volume was calculated by measuring the thickness of the observation point by the fringe method. Further, the particle size counted by this observation volume and image processing is 0.1 to 0.
The average interparticle distance was calculated based on the total number of intermetallic compounds of 8 μm.

【0040】平均結晶粒径は、中間焼鈍を施した部材よ
り小片を採取し、電解研磨後に偏光光学顕微鏡により倍
率100倍で撮影した写真から、交線法を用いて算出し
た。
The average crystal grain size was calculated by the line-of-intersection method from a photograph of a small piece taken from a member subjected to intermediate annealing, which was taken by a polarizing optical microscope at a magnification of 100 times after electrolytic polishing.

【0041】上述の方法により評価した圧延性、ピンホ
ール数、O材強度、平均粒子間距離及び平均結晶粒径を
下記表2にまとめて示す。
Rollability, pinho evaluated by the above method
Number, O material strength, average inter-particle distance and average crystal grain size
It is summarized in Table 2 below.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】上記表2に示すように、実施例のNo.1
乃至4及び6は、良好な圧延性を得た。また、ピンホー
ル数及びO材強度に関しても実施例No.1乃至4及び
は、好ましい値であり、全体に亘って良好なアルミニ
ウム箔を得ることができた。
As shown in Table 2 above, No. 1
Nos. 4 and 6 obtained good rollability. Further, regarding the number of pinholes and the strength of O material, the example No. 1 to 4 and
6 was a preferable value, and a good aluminum foil could be obtained over the whole area.

【0045】一方、比較例No.20は、ピンホール数及
びO材強度は良好であるものの、過剰なFeの添加によ
り圧延性が低下した。比較例No.21は、圧延性は、良
好であったが、Feの添加不足により結晶粒を微細にす
ることができないために、ピンホール数及びO材強度が
実施例に比べて劣った。比較例22及び24は、圧延性
及びO材強度は良好であったが、比較例No.22は過剰
なSiの添加により、比較例No.24は過剰なTiの添
加により、多量のピンホールが発生した。比較例No.2
3は、O材強度は良好なものの、過剰なCuの添加によ
り、圧延性が不良で及びピンホールの発生量が多かっ
た。
On the other hand, in Comparative Example No. 20, although the number of pinholes and the O material strength were good, the rolling property was deteriorated due to the addition of excessive Fe. In Comparative Example No. 21, the rolling property was good, but the number of pinholes and the O material strength were inferior to those of the Examples because the crystal grains could not be made fine due to insufficient addition of Fe. Comparative Examples 22 and 24 were good in rollability and O material strength, but Comparative Example No. 22 was added with an excessive amount of Si, and Comparative Example No. 24 was added with an excessive amount of Ti. There has occurred. Comparative example No. 2
In No. 3, although the O material strength was good, the rollability was poor and the amount of pinholes was large due to the addition of excessive Cu.

【0046】比較例26、28、30及び32は、圧延
性及びO材強度は良好であるものの、鋳造凝固時の冷却
速度が速すぎ、粒子間距離が狭くなったために、マット
面が粗くなり、極めて多量のピンホールが発生した。比
較例25、27、29及び31は、鋳造凝固時の冷却速
度が遅すぎ、グラススクリーン内で浮遊晶を生じたため
に、圧延用スラブが製作できなかったものである。比較
例No.33は、結晶粒径が大きいためにピンホールが多
発すると共に、O材強度も低くなった。比較例No.34
及び35は、箔圧延温度が請求項に規定する範囲から外
れているためにピンホールが多発した。
In Comparative Examples 26, 28, 30 and 32, although the rolling property and the O material strength were good, the cooling rate during the solidification by casting was too fast and the distance between the particles became narrow, so that the matte surface became rough. , An extremely large number of pinholes were generated. In Comparative Examples 25, 27, 29 and 31, the cooling slab could not be manufactured because the cooling rate during solidification by casting was too slow and floating crystals were generated in the glass screen. In Comparative Example No. 33, since the crystal grain size was large, pinholes frequently occurred, and the O material strength was also low. Comparative Example No. 34
Nos. 35 and 35 had many pinholes because the foil rolling temperature was out of the range specified in the claims.

【0047】第2実施例 上記 表1及び表2に示す実施例No.1、4及び6と組成
及び凝固時の冷却速度がそれぞれ同じ鋳塊について、面
削後、下記表3に示す条件で均質化処理を施し、その直
後に熱間圧延を開始し、下記表3に示す温度で熱間圧延
を終了し、板厚5mmのアルミニウム板を得た。その
後、冷間圧延し、下記表3に示す条件で中間焼鈍し、更
冷間圧延して、厚さ0.3mmのアルミニウム箔地を
製作した。得られたアルミニウム箔地を下記に示す
温度で箔圧延し、厚さが6μmのアルミニウム箔を製作
した。
Second Example For ingots having the same composition and cooling rate during solidification as those of Examples No. 1, 4 and 6 shown in Tables 1 and 2 above, after chamfering, under the conditions shown in Table 3 below. subjected to a homogenization treatment, started hot rolled immediately thereafter, exit the hot rolling at a temperature shown in table 3, to obtain an aluminum sheet having a thickness of 5 mm. After that, cold rolling was performed, and intermediate annealing was performed under the conditions shown in Table 3 below.
And cold-rolled in, were fabricated aluminum foil land of thickness 0.3mm. The obtained aluminum foil was foil-rolled at the temperature shown in Table 4 below to produce an aluminum foil having a thickness of 6 μm.

【0048】前述の第1実施例と同様の方法で評価した
圧延性、ピンホール数、O材強度、平均粒子間距離及び
平均結晶粒径を下記表4にまとめて示す。
Evaluation was made in the same manner as in the first embodiment described above .
Rollability, number of pinholes, O material strength, average interparticle distance and
The average crystal grain size is summarized in Table 4 below.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】表4に示すように、本実施例の実施例No.
7乃至12については、良好な圧延性を得た。また、ピ
ンホール数及びO材強度についても同様に実施例No.7
乃至12については、好ましい値であり、全体に亘って
良好な箔を得ることができた。
As shown in Table 4, Example No.
For Nos. 7 to 12, good rollability was obtained. In addition, regarding the number of pinholes and the strength of O material, the same results as in Example No.
About 12 to 12, it was a preferable value, and a good foil could be obtained over the whole.

【0052】一方、比較例No.36乃至45は、圧延性
については良好であった。しかしながら、比較例No.3
6乃至45においては、均質化処理温度又は中間処理温
度が請求項に規定する範囲から外れているか若しくは圧
延率が低いために、粒子間距離が広くなるためにマット
面が粗くなり、ピンホールが多発した。比較例No.39
及び43は中間焼鈍温度が高く、比較例No.45は熱間
圧延終了温度が高いために結晶粒が粗大化し、O材強度
も低下した。比較例No.46は、熱間圧延終了温度が低
いために、箔圧延に必要な平面形状が得られず、箔圧延
性に問題がある。また、比較例No.47及び48は、箔
圧延温度が請求項に規定する範囲から外れるためにピン
ホールが多発した。
On the other hand, Comparative Examples Nos. 36 to 45 were good in rolling property. However, Comparative Example No. 3
In Nos. 6 to 45, the homogenization treatment temperature or the intermediate treatment temperature is out of the range defined in the claims or the rolling ratio is low, the inter-particle distance becomes wide, the matte surface becomes rough, and the pinholes are formed. It happened a lot. Comparative Example No. 39
Nos. 43 and 43 had a high intermediate annealing temperature, and Comparative Example No. 45 had a high hot rolling finish temperature, so that the crystal grains became coarse and the O material strength also decreased. In Comparative Example No. 46, the hot rolling finish temperature is low, so the plane shape required for foil rolling cannot be obtained, and there is a problem in foil rollability. Further, in Comparative Examples Nos. 47 and 48, the foil rolling temperature was out of the range specified in the claims, so that pinholes frequently occurred.

【0053】[0053]

【発明の効果】以上詳述したように本発明によれば、鋳
造凝固時の冷却速度、均質化処理条件、冷間圧延率及び
中間焼鈍条件の制御により粒子間距離の適正化を図るこ
とにより、箔圧延性に優れ、箔圧延後、ピンホールの発
生数が少ないアルミニウム箔を得ることができる。
As described above in detail, according to the present invention, the interparticle distance is optimized by controlling the cooling rate at the time of solidification by casting, the homogenizing condition, the cold rolling rate and the intermediate annealing condition. It is possible to obtain an aluminum foil which is excellent in foil rollability and has few pinholes after foil rolling.

【0054】更に、本発明によれば、熱間圧延における
温度範囲及び1パス当たりの圧延率と熱間圧延終了温度
の適正化を組み合わせることにより、結晶粒の微細化が
図れ、箔圧延後のピンホールの発生数が少ないと共に、
O材強度にも優れるアルミニウム箔を得ることができ
る。
Further, according to the present invention, by combining the temperature range in hot rolling, the rolling rate per pass, and the optimization of the hot rolling end temperature, the crystal grains can be made finer and the foil after foil rolling can be achieved. With a small number of pinholes,
It is possible to obtain an aluminum foil excellent in O material strength.

フロントページの続き (56)参考文献 特開 昭61−257459(JP,A) 特開 平8−333644(JP,A) 特開 平6−25781(JP,A) 特開 平6−293931(JP,A) 特開 平4−337043(JP,A) 特開 昭59−64754(JP,A) 三木功,Al−Fe合金の凝固時にお ける鉄の挙度,軽金属,日本,軽金属学 会,1975年 1月,Vol.25,No. 1,p.1−9 (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 C22C 21/00 - 21/18 Continuation of the front page (56) Reference JP-A-61-257459 (JP, A) JP-A-8-333644 (JP, A) JP-A-6-25781 (JP, A) JP-A-6-293931 (JP , A) JP-A-4-337043 (JP, A) JP-A-59-64754 (JP, A) Miki Isao, Iron index during solidification of Al-Fe alloys, light metal, Japan, Light Metal Society, 1975 January, Vol. 25, No. 1, p. 1-9 (58) Fields surveyed (Int.Cl. 7 , DB name) C22F 1/04-1/057 C22C 21/00-21/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe:0.3乃至1.0重量%、Si:
0.15重量%未満を含有し、残部がAl及び不可避的
不純物である組成のアルミニウム合金の溶湯を、凝固時
の冷却速度を0.3乃至3.0℃/secで半連続鋳造
し、面削した後、400乃至620℃の温度範囲で均質
化処理を施し、終了温度が200乃至260℃の温度範
囲となるように熱間圧延し、熱間圧延終了後に冷間圧延
を行い、300乃至450℃で2時間以上の中間焼鈍を
施し、更に冷間圧延をすることにより、粒径が0.1乃
至0.8μmの金属間化合物の平均粒子間距離が0.7
乃至2.5μm、平均結晶粒径が35μm以下であるア
ルミニウム箔地を得て、前記アルミニウム箔地を箔圧延
することを特徴とするアルミニウム箔の製造方法。
1. Fe: 0.3 to 1.0% by weight, Si:
A molten aluminum alloy containing less than 0.15% by weight and the balance being Al and unavoidable impurities is semi-continuously cast at a cooling rate during solidification of 0.3 to 3.0 ° C./sec. After shaving, homogenization treatment is performed in the temperature range of 400 to 620 ° C., hot rolling is performed so that the end temperature is in the temperature range of 200 to 260 ° C., cold rolling is performed after completion of the hot rolling, and 300 to By performing intermediate annealing at 450 ° C. for 2 hours or more and further cold rolling, the average interparticle distance of the intermetallic compound having a grain size of 0.1 to 0.8 μm is 0.7.
To 2.5 μm and an average crystal grain size of 35 μm or less is obtained, and the aluminum foil is foil- rolled.
【請求項2】 前記冷間圧延後のアルミニウム箔地を7
0乃至110℃の温度範囲で箔圧延することを特徴とす
る請求項1に記載のアルミニウム箔の製造方法。
2. The aluminum foil after the cold rolling is
The method for producing an aluminum foil according to claim 1, wherein the foil rolling is performed in a temperature range of 0 to 110 ° C.
【請求項3】 前記アルミニウム合金に添加するCuの
添加量が0.02重量%以下であることを特徴とする請
求項1又は2に記載のアルミニウム箔の製造方法。
3. The method for producing an aluminum foil according to claim 1, wherein the amount of Cu added to the aluminum alloy is 0.02% by weight or less.
【請求項4】 前記アルミニウム合金に添加するTiの
添加量が0.03重量%以下であることを特徴とする請
求項1乃至3のいずれか1項に記載のアルミニウム箔の
製造方法。
4. The method for producing an aluminum foil according to claim 1, wherein the amount of Ti added to the aluminum alloy is 0.03% by weight or less.
JP22499598A 1998-08-07 1998-08-07 Manufacturing method of aluminum foil Expired - Lifetime JP3529270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22499598A JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22499598A JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Publications (2)

Publication Number Publication Date
JP2000054093A JP2000054093A (en) 2000-02-22
JP3529270B2 true JP3529270B2 (en) 2004-05-24

Family

ID=16822447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22499598A Expired - Lifetime JP3529270B2 (en) 1998-08-07 1998-08-07 Manufacturing method of aluminum foil

Country Status (1)

Country Link
JP (1) JP3529270B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832370B2 (en) * 2002-05-07 2011-12-07 日本製箔株式会社 Aluminum alloy foil and method for producing the same
JP4447979B2 (en) * 2004-07-16 2010-04-07 三菱アルミニウム株式会社 Aluminum foil excellent in strength after annealing and method for producing the aluminum foil
JP4781114B2 (en) * 2006-01-23 2011-09-28 古河スカイ株式会社 Manufacturing method of materials for medium and low pressure anode electrolytic capacitors
JP2008127656A (en) * 2006-11-22 2008-06-05 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP5019371B2 (en) * 2007-07-13 2012-09-05 住友軽金属工業株式会社 Aluminum foil material for electrolytic capacitor electrodes
RU2463116C1 (en) * 2011-07-05 2012-10-10 Александр Иванович Трайно Method of producing sheets from aluminium alloys
JP6047304B2 (en) * 2012-05-11 2016-12-21 株式会社Uacj High strength aluminum alloy brazing sheet and method for producing the same
JP6254806B2 (en) * 2013-09-27 2017-12-27 株式会社Uacj Aluminum alloy rolled sheet for electrolytic treatment, electrolytic treated aluminum alloy rolled sheet and method for producing the same
RU2615958C1 (en) * 2016-02-04 2017-04-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный технический университет им. Г.И. Носова" (ФГБОУ ВПО "МГТУ") Aluminium alloys thin-sheet rolling method
RU2699432C1 (en) * 2019-01-15 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им. Г.И. Носова" Asymmetrical cryogenic rolling method
CN111118352B (en) * 2020-03-23 2021-07-20 洛阳台联新材料有限公司 Processing technology for preparing composite aluminum foil by using 8011 alloy
CN115927918A (en) * 2021-12-17 2023-04-07 江苏常铝铝业集团股份有限公司 Aluminum foil for air conditioner and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三木功,Al−Fe合金の凝固時における鉄の挙度,軽金属,日本,軽金属学会,1975年 1月,Vol.25,No.1,p.1−9

Also Published As

Publication number Publication date
JP2000054093A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP3529270B2 (en) Manufacturing method of aluminum foil
KR101785121B1 (en) Magnesium alloy sheet
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
CN103946404A (en) Aluminum alloy sheet having excellent press formability and shape fixability, and method for manufacturing same
KR101057264B1 (en) Aluminum alloy sheet and manufacturing method
JP3529273B2 (en) Aluminum foil base for thin foil and method for producing the same
JP3767492B2 (en) Method for producing aluminum flexible foil
WO2019124530A1 (en) Aluminum alloy foil for cell collector
JP3529271B2 (en) Manufacturing method of aluminum foil
JP3529272B2 (en) Aluminum foil base for thin foil and method for producing the same
JP3529268B2 (en) Aluminum foil ground and method of manufacturing the same
JP3529269B2 (en) Aluminum foil ground and method of manufacturing the same
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JP3986688B2 (en) Method for producing rolled Al-Mn alloy material having fine recrystallized grain structure
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP3808276B2 (en) Aluminum alloy foil and method for producing the same
JP4591986B2 (en) Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability
JPH0585630B2 (en)
JP4250030B2 (en) Aluminum alloy plate for glittering wheel rim and manufacturing method thereof
JP2945178B2 (en) Manufacturing method of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term