JP3808276B2 - Aluminum alloy foil and method for producing the same - Google Patents

Aluminum alloy foil and method for producing the same Download PDF

Info

Publication number
JP3808276B2
JP3808276B2 JP2000099803A JP2000099803A JP3808276B2 JP 3808276 B2 JP3808276 B2 JP 3808276B2 JP 2000099803 A JP2000099803 A JP 2000099803A JP 2000099803 A JP2000099803 A JP 2000099803A JP 3808276 B2 JP3808276 B2 JP 3808276B2
Authority
JP
Japan
Prior art keywords
amount
foil
solid solution
rolling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000099803A
Other languages
Japanese (ja)
Other versions
JP2001288524A (en
Inventor
桂 梶原
康昭 杉崎
晃三 星野
知之 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000099803A priority Critical patent/JP3808276B2/en
Publication of JP2001288524A publication Critical patent/JP2001288524A/en
Application granted granted Critical
Publication of JP3808276B2 publication Critical patent/JP3808276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、食品、薬品及びその他の包装用材料等に使用されるアルミニウム合金の箔地に関し、特に箔圧延性が優れアルミニウム合金箔の薄箔化を可能にし、耐軟化強度特性が優れ製品箔の強度が良好で、箔圧延における生産性を向上することができるアルミニウム合金箔地及びその箔地を低コストで製造できるアルミニウム合金箔地の製造方法に関する。
【0002】
【従来の技術】
従来のアルミニウム箔は、約5乃至200μmの板厚を有し、材質はJIS−1N30,JIS−1050,JIS−1100等の純アルミニウムである。このアルミニウム箔は、主として食品及び薬品等の包装用材料等として使用されており、ポリエチレン、ビニール、紙、又は樹脂等と張り合わされて使用されることが多い。また、包装される内容物によってはこれを大気中の湿気又は紫外線から完全に遮断する必要があるため、包装用材料としてのアルミニウム箔は、用途によって種々であるが主にピンホールが少なくかつ高強度という高品質のものが要求される。
【0003】
このアルミニウム箔は、軟質箔又は硬質箔に合成樹脂フィルムを貼り合わせてラミネート材にして使用するのが一般的であるが、ラミネート材はその製造工程において、170乃至230℃の温度に数分間保持する焼き付け及びベーキング処理が施されるため、アルミニウム箔が軟化する可能性がある。従って、焼付及びベーキング処理後の製品箔の強度を確保するために、ラミネート材を構成するアルミニウム箔には耐軟化強度が必要とされる。
【0004】
通常、アルミニウム合金箔は、アルミニウム溶湯を半連続鋳造法又は連続鋳造法によりスラブに鋳造し、このスラブに均質化処理、熱間圧延、冷間圧延、中間焼鈍及び冷間圧延を施して厚さ0.1乃至0.6mmの箔地(板材)を得、更にこの箔地を厚さ5乃至200μmの箔に圧延して製造される。この箔地から箔までの圧延を箔圧延と称している。なお、中間焼鈍は前述のようなアルミニウム合金箔に要求される種々の品質を実現するためと、冷間圧延工程において加工硬化が過剰となり箔地が極めて硬くなるか又は逆に冷間圧延工程において加工軟化が生じて箔圧延中に箔切れが頻発するという問題点を回避するためになされている。このように、箔切れが頻発すると生産性が低下し、アルミニウム合金箔の製造コストが増大する。
【0005】
而して、近時、アルミニウム箔の低コスト化と薄箔化が要求されている。このアルミニウム箔の低コスト化のためには、アルミニウム箔地の製造工程において、中間焼鈍を省略することが有効であるが、上述の如く、中間焼鈍を省略すると箔圧延時に過剰な加工硬化又は加工軟化が生じて箔切れが頻発し、アルミニウム箔の製造コストが全体では逆に増加してしまうという問題点がある。また、箔切れ等を生じることなく箔圧延ができた場合でも、製品箔の強度及び伸びが不足し、かつコイル内でばらつきが生じるため製品としての歩留まりを著しく悪化させるという問題点がある。
【0006】
また、箔圧延のパス数を減らすことも箔圧延における生産性を向上させ、低コスト化の効果がある。例えば、厚さ0.1乃至0.3mm程度の箔地から所望の箔厚の箔まで従来5パスで圧延していたものを4パス又は3パスで圧延する。しかし、圧延条件によって異なるが、箔圧延時には加工熱によって箔の温度が通常50乃至100℃程度上昇する。パス数が減ると1パスあたりの圧下率が増加するため加工熱が増加し加工軟化を促進してしまうという問題点がある。
【0007】
一方、薄箔化に伴いアルミニウム箔に要求される品質のうち特に箔の強度が高強度で均質なものが要求されている。家庭用に使用されるアルミニウム箔は、通常箔厚10乃至20μmであり、特に薄い箔では箔厚5乃至10μmである。前述の如く、これらのアルミニウム箔はラミネート材として使用されることが多いが、加工軟化しやすい条件で製造されたアルミニウム箔は、ラミネート材製造時に加工軟化して強度低下を生じ問題となる。
【0008】
従来、アルミニウム合金薄板の製造方法として、Fe:0.10〜0.50質量%、Si:0.05〜0.20質量%、Ti:0.05〜0.20質量%を含有し、残部がAl及び不可避的不純物からなる組成を有し、熱間圧延後に中間焼鈍を行うことなく冷間圧延することを可能としたアルミニウム合金薄板の製造方法が開示されている(特開昭57−123966号公報)。
【0009】
また、包装用アルミニウム合金箔として、Fe:0.7〜1.8質量%、Mn:0.1〜1.5質量%を含有し、残部がAl及び不可避的不純物である組成を有し、最終焼鈍後の平均結晶粒径が10〜50μmであるもの(特開昭62−250143号公報)、及びFe:0.7〜1.8質量%、Mn:0.1〜1.5質量%、Si:0.2〜0.5質量%を含有し、残部がAl及び不可避的不純物である組成を有し、最終焼鈍後の平均結晶粒径が10〜60μmであるもの(特開昭62−250144号公報)が開示されている。
【0010】
更に、焼き付け塗装後の軟化及び結晶粒の成長を防止し、箔の強度を高めて薄肉化を可能とするために、Fe:0.8〜2.0質量%を含むアルミニウム合金箔において、全体の面積の60%以上が平均サイズ0.3μm以上、1.5μm以下のサブグレインにより覆われたものとした薬品包装用アルミニウム合金箔が開示されている(特開平4−214833号公報)。
【0011】
更にまた、箔圧延性が優れたアルミニウム合金箔地の製造方法として、Feを0.2〜2.8質量%、Siを0.05〜0.3%含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊を、均質化熱処理し、熱間圧延し、中間焼鈍することなく冷間圧延してアルミニウム合金箔地を製造する方法が開示されている(特開平11−217656号公報)。この従来技術においては、熱間圧延上がりの板厚を3mm以下とし、冷間圧延の少なくとも最終のパス上がり温度を100〜180℃に制御する。従って、この従来技術においては、箔圧延性が優れた箔地を、冷間圧延条件を制御して製造している。
【0012】
また、加工硬化を抑制して箔圧延性及びベーキング性を向上させるために、Feを0.5〜1.1質量%、Cuを0.01質量%未満及びTi、B、Zr等の結晶微細化剤を含有し、残部がAlと不可避的不純物からなるアルミニウム合金で、Fe及びCuの固溶量を夫々25ppm以下、かつFe又はCuのいずれかの固溶量が8ppm以上としたアルミニウム合金箔地が提案されている(特開平6−293931号公報)。
【0013】
【発明が解決しようとする課題】
しかしながら、前述の従来技術はいずれも以下に示す欠点を有する。即ち、特開昭57−123966号公報に開示された技術においては、中間焼鈍を行うことなく冷間圧延を可能とする方法を開示するものであり、冷間圧延により製造されるものは、板厚が0.1mm程度の薄板である。従って、この従来技術によれば、この程度の厚さのアルミニウム合金板は中間焼鈍なしに製造することができるものの、本発明のように、その後、5乃至200μmの厚さまで箔圧延される用途においては、箔圧延の過程で箔切れが生じてしまい、不向きである。即ち、この公報に開示された技術のみでは、箔圧延性が優れた箔地を低コストで製造することができない。
【0014】
また、特開昭62−250143号公報又は特開昭62−250144号公報に記載された従来技術は、Al−Fe−Mn系又はAl−Fe−Mn−Si系合金を対象とし、高Mn量の合金の結晶粒径を制御したものである。このため、箔厚が5〜20μmという極めて薄い箔を箔圧延しようとすると、加工硬化が大きく、良好な箔圧延をすることができない。従って、近時の薄箔化の要求を満足することができない。
【0015】
更に、特開平4−214833号公報に記載された従来技術は、焼き付け塗装を行う用途に適したアルミニウム合金箔であり、この焼き付け塗装時の軟化及び結晶粒成長を防止し、箔の強度を向上させて薄箔化を可能にしたものであるが、箔圧延性については何ら言及されておらず、近時の薄箔化の要求を満足できるものではない。
【0016】
更にまた、特開平11−217656号公報に開示された従来技術は、箔圧延性の向上と中間焼鈍の省略という双方の課題をもつものであるが、冷間圧延の最終のパス温度を100〜180℃に制御する必要があり、このため、冷間圧延設備にこれを可能とする設備を新たに付加する必要があり、設備の更新が必要であり、設備コストが著しく高くなるという難点がある。また、このような厳密な温度管理を強いられるということは、実操業により大量生産しようとする際に、極めて不利である。即ち、板幅サイズ、季節要因及び潤滑条件(温度、量)が種々変動した場合に、冷間圧延工程における上述の厳密な温度管理が極めて困難であり、またこのような温度管理ができないために、品質のバラツキが生じやすく、安定して薄箔用箔地を製造することができないという欠点がある。
【0017】
また、特開平6−293931号公報に開示された従来技術は、箔圧延性とベーキング性を向上させるものであるが、目的とするアルミニウム箔の特性を得るためには中間焼鈍の条件を細かく制御する必要があり、中間焼鈍を省略することができないばかりか、このような精密な制御を課されるため実際の製造に際しては生産性を阻害するという欠点がある。
【0018】
従って、従来技術では、優れた箔圧延性及び箔品質(薄箔化及び箔強度(耐軟化強度))と、低コストという双方の課題を同時に満足する箔地が得られず、その開発が強く要望されている。
【0019】
本発明はかかる問題点に鑑みてなされたものであって、箔圧延性及び製品箔の強度(耐軟化強度)が優れたアルミニウム合金箔地並びにこのアルミニウム合金箔地を中間焼鈍工程を省略して低コストで大量生産時にも安定して製造できる製造方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明に係るアルミニウム合金箔地は、Fe:0.5乃至2.5質量%、Si:0.01乃至0.3質量%、Cu:0.002乃至0.05質量%及びMn:0.003乃至0.05質量%を含有し、残部がAl及び不可避的不純物からなる組成を有し、固溶Fe量が10乃至200ppm、添加Si量に対する固溶Si量の比が0.2乃至0.75、固溶Cu量と固溶Mn量の合計が500ppm以下であることを特徴とする。
【0022】
また、前記アルミニウム合金箔地において、単体で存在するSiの含有量(以下、単体Si量という)が600ppm以下であることが好ましい。
【0024】
本発明に係るアルミニウム合金箔地の製造方法は、Fe:0.5乃至2.5質量%、Si:0.01乃至0.3質量%、Cu:0.002乃至0.05質量%及びMn:0.003乃至0.05質量%を含有し、残部がAl及び不可避的不純物からなる組成を有するアルミニウム合金鋳塊を、450乃至600℃の均熱温度に、2乃至20時間保持して均質化処理を行う工程と、粗圧延開始温度を450乃至550℃、粗圧延終了温度を350乃至500℃として熱間圧延における粗圧延を行う工程と、仕上圧延終了温度を250℃以下又は290℃以上として熱間圧延における仕上圧延を行う工程とを有し、中間焼鈍をすることなく、固溶Fe量が10乃至200ppm、添加Si量に対する固溶Si量の比が0.2乃至0.75、固溶Cu量と固溶Mn量の合計が500ppm以下であるアルミニウム合金箔地を製造することを特徴とする。
【0025】
アルミニウム合金箔地中のFe量、Si量、固溶Fe量及び(固溶Si量/添加Si量)比を制御することにより、箔圧延中の過剰な加工硬化及び加工軟化を抑制し、良好な箔圧延性を得ることができる。また、ラミネート焼付処理時の加工軟化を抑制し優れた耐軟化強度特性を得、良好な製品箔の強度を得ることができる。更に、単体Si量を制御することにより、前記固溶Si量を制御することができる。更にまた、固溶Cu量と固溶Mn量の合計量を制御すればより効果的である。前述の固溶Fe量、添加Si量に対する固溶Si量の比及び固溶Cu量と固溶Mn量の合計量を制御する手段として、アルミニウム合金箔中の組成を制御する方法と、製造条件即ち均質化処理条件、粗圧延条件及び仕上圧延条件を制御する方法が有効である。
【0026】
【発明の実施の形態】
本発明者等は、アルミニウム合金中の固溶Fe量、固溶Si量及び固溶Cu量と固溶Mn量の合計量を精緻に制御することにより、箔圧延時の加工軟化を抑制し、優れた箔圧延性及び箔強度を併せ持つアルミニウム合金箔地を、中間焼鈍処理をすることなく又は箔圧延パス数を減少させた条件で製造できることを知見した。本発明者等は、箔圧延時の加工軟化特性及び箔強度という特性に影響を及ぼす因子について鋭意研究を重ねた結果、前記加工軟化特性は添加成分の固溶量に支配的に影響されることを知見した。また従来、中間焼鈍処理を省略することにより、固溶Fe量及び固溶Si量の制御が十分になされなくなっていたことを知見した。
【0027】
ここで、本発明のアルミニウム合金においては、鋳造凝固時に生じる晶出物として最大粒径数ミクロン程度のAl−Fe系金属化合物があり、均質化熱処理及び熱間圧延中に生じる析出物として最大粒径がサブミクロンレベルのAl3Fe、α−AlFeSi及び単体Si等の微細析出物が存在する。これらの晶出物及び析出物の量は、鋳造、均質化熱処理及び熱間圧延工程の条件により変化しやすく、従ってマトリックス中の固溶Fe量及び固溶Si量も変化しやすい。
【0028】
以下本発明におけるアルミニウム合金箔地の成分及び各成分の固溶量の限定理由について説明する。
【0029】
固溶Fe量:10乃至200ppm
前記アルミニウム合金中に存在する固溶Fe量は、中間焼鈍処理を省略して製造したアルミニウム合金箔地における箔圧延時の加工軟化の抑制に大きく影響する。10ppm未満では前術の箔圧延時の加工軟化抑制効果が十分発揮されない。また、200ppmを超えると、逆に箔圧延時の加工硬化が大きくなってしまい箔圧延性を阻害する。従って、固溶Fe量は10乃至200ppmとする。より好ましくは、20乃至180ppmである。
【0030】
添加Si量に対する固溶Si量の比:0.2乃至0.75
析出Si量と固溶Si量のバランスは加工硬化と加工軟化のバランスに影響する。概して、析出Si量は加工硬化に寄与し固溶Si量は耐加工軟化性に寄与する。当然、添加Si量が増えれば固溶Si量も増える傾向にあるが、本発明者等は添加Si量に対する固溶Si量の比(固溶Si量/添加Si量)を制御することにより加工硬化と加工軟化のバランスを制御できることを見いだした。この比(固溶Si量/添加Si量)が0.2未満では、固溶Si量が不足するため加工軟化が過剰になり、箔圧延時の破断及び最終箔の耐軟化強度の低下が起こり好ましくない。一方、前記比が0.75を超えると、逆に加工硬化が過剰になり箔圧延性を阻害し所望の箔厚に圧延することが困難になる。従って、(固溶Si量/添加Si量)比は0.2乃至0.75、より好ましくは、0.21乃至0.7とする。
【0031】
なお、Feに関して固溶Fe量だけを規定した理由は、Fe添加量の大部分は鋳造時の晶出物として存在するため、固溶Fe量の差が箔特性に対して支配的になっているためである。
【0032】
この固溶Fe量は、熱フェノールによる残渣抽出法を行い、得られた溶液中のFe量をICP発光分析法により分析することにより測定できる。一方、固溶Si量は、熱フェノール法による金属間化合物中のSi量の測定に加え、塩酸溶解残渣法により単体Siだけを抽出する方法を組み合わせて測定する。即ち、熱フェノール残渣抽出法により晶出物及び析出物として存在しているAl3Fe及びAl−Fe−Si系金属間化合物中のSi量を残渣Si量として抽出し、他方、塩酸溶解残渣法により単体Si析出物だけを抽出し、これらの抽出物の量をICP発光分析法により夫々測定し、単体Si及び化合物Siの双方を含む全体のSi量から前記金属間化合物中のSi量及び前記単体Si量を引くことで、固溶Si量を求めることができる。なお、トータルの添加Si量の分析は、通常のX線分析法又はICP分析法等により行うことができる。
【0033】
Fe:0.5乃至2.5質量%
Feの含有量が0.5質量%未満では、均質化処理、熱間圧延及び冷間圧延の条件をいかなる条件としても、中間焼鈍処理を行うことなく前述の固溶量制御を行うことが難しく、箔圧延時の安定した加工硬化特性及び箔強度を得ることができない。また、2.5質量%を超えると、中間焼鈍処理を省略する工程ではいかなるプロセス条件下でも前記固溶量制御が難しく、加工硬化により箔圧延性が不安定になり、また耐食性に問題が生じる。従って、Fe含有量は0.5乃至2.5質量%とする。
【0034】
Si:0.01乃至0.3質量%
SiはFeと共に強度に寄与するが、0.01質量%未満ではその効果が得られず、0.3質量%を超えるとSi固溶量が増加するため加工硬化が過剰になり、箔にピンホールが多発する。従って、Si含有量は0.01乃至0.3質量%とする。
【0035】
以下に示す条件は、前記効果の安定化及び向上のためにより好ましい条件である。
【0036】
固溶Cu量と固溶Mn量の合計:500ppm以下
Cu及びMnの添加とその固溶量制御は、前述の箔圧延時の加工軟化抑制効果を更に安定化し促進する効果がある。固溶Cu及び固溶Mnは共に加工軟化抑制の効果があり、固溶Cu量と固溶Mn量の合計量が50ppm以上で、前記加工軟化抑制効果が安定的に発揮される。一方、固溶Cu量と固溶Mn量の合計量が500ppmを超えると、加工硬化が過剰になり箔圧延性を阻害する。従って、固溶Cu量と固溶Mn量の合計は500ppm以下とする。
【0037】
Cu:0.003乃至0.05質量%
Cuの添加は、固溶Cu量を増加させることにより箔圧延時の加工軟化を抑制し、加工硬化特性を更に安定化する効果がある。Cuが0.003質量%未満では、前記効果が得られない。一方、0.05質量%を超えると、固溶Cu量が前記上限値を超え加工硬化が過剰になり箔にピンホールが多発する。従って、Cuの添加量は0.003乃至0.05質量%とする。
【0038】
Mn:0.003乃至0.05質量%
MnもCuと同様に、固溶Mn量を増加させることにより箔圧延時の加工軟化を抑制し、加工硬化特性を更に安定化する。Mnが0.003質量%未満では、前記効果が得られない。一方、0.05質量%を超えると、固溶Mn量が前記上限値を超え加工硬化が過剰になり箔にピンホールが多発する。従って、Mnの添加量は0.003乃至0.05質量%とする。
【0039】
単体Si量:600ppm以下
単体Si量の制御は固溶Si量の安定化のために行う。単体Si量が600ppmを超えると固溶Si量が減少するため耐加工軟化特性の効果が現れない。従って、単体Si量は600ppm以下とする。より好ましくは400ppm以下であり、更に好ましくは300ppm以下である。単体Siの析出温度域は、Si量によって若干異なるが約400乃至150℃の範囲であるため熱間圧延工程で変動しやすく、単体Si量がなるべく少ない方が固溶Si量を安定制御しやすい。
【0040】
なお、前記成分の他に、鋳造時の凝固組織の結晶粒微細化を目的として、好ましくは本発明のアルミニウム合金にTiを0.005乃至0.05質量%及びBを0.005乃至0.05質量%程度添加することができる。
【0041】
次に、本発明のアルミニウム合金箔地の製造方法について説明する。本発明方法においては中間焼鈍処理を省略するため、前記固溶量は鋳造工程及び熱間圧延工程で制御せざるを得ないが、これは以下に示すような精緻な製造条件の制御によって達成することができる。
【0042】
前述の各成分の固溶量を本発明の範囲に制御するためには、中間焼鈍処理を省略し、かつ以下に示すような均質化処理条件及び熱間圧延条件の組み合わせにより製造することが好ましい。
【0043】
固溶量の制御方法は各成分により異なる。中間焼鈍処理を省略する場合、固溶Fe量は鋳造条件、均質化処理条件及び熱間圧延条件の組み合わせで決まり、固溶Si量は熱間圧延条件及びその終了温度の組み合わせで決まる。また、Cu及びMnを添加する場合は、固溶Cu量及び固溶Mn量は均質化処理条件及び熱間圧延条件の組み合わせで決まる。
【0044】
原料となるアルミニウム鋳塊の製造は、通常の半連続鋳造法(DC鋳造)又は連続鋳造法によって行い、その後均質化処理をして熱間圧延に供される。この均質化処理は、鋳塊の表面研削後に熱間圧延前の加熱を兼ねて行ってもいいし、熱間圧延の加熱前に均質化処理として別に行ってもよい。なお、予め均質化処理を行い、その後表面の不均一層を研削してから再加熱及び熱間圧延を行うと、鋳塊表面の酸化皮膜が少なくなるので表面品質が向上でき好ましい。
【0045】
均質化処理における均熱温度:450乃至600℃
均質化処理条件の制御は、固溶Fe量の制御に必要である。均熱温度が450℃未満だと析出物の析出が不十分となり、固溶Fe量が200ppmを超え加工硬化が過剰になる。また、Cu及びMn添加材の場合、固溶Cu量及び固溶Mn量が過剰になる。一方、均熱温度が600℃を超えると、固溶Fe量が10ppm未満となり加工軟化を生じやすくなる。また、Cu及びMn添加材の場合は固溶Cu量及び固溶Mn量が不足し好ましくない。従って、均熱温度は450乃至600℃とする。
【0046】
均質化処理における保持時間:2乃至20時間
保持時間が2時間未満だと、固溶Fe量が200ppmを超え加工硬化が過剰になる。また、Cu及びMn添加材の場合、固溶Cu量及び固溶Mn量が過剰になる。一方、保持時間が20時間を超えると、固溶Fe量が10ppm未満となり加工軟化を生じやすくなる。また、Cu及びMn添加材の場合は固溶Cu量及び固溶Mn量が不足し好ましくない。従って、保持時間は2乃至20時間とする。
【0047】
なお、固溶Fe量は初期状態である鋳塊での初期固溶量によっても変化する。初期固溶Fe量の制御は、鋳塊の凝固冷却速度を制御することによって行う。鋳塊のサイズによって異なるため、条件を厳密に規定することはできないが、凝固冷却速度を大きくすれば、初期固溶Fe量が増加する。但し、初期固溶Fe量が多すぎると、均質化処理及び熱間圧延で固溶Fe量を200ppm以下に制御することが困難になる。
【0048】
粗圧延開始温度:450乃至550℃
通常、熱間圧延工程は板厚10乃至50mmまで圧延する粗圧延工程と、タンデム圧延機によりコイルに圧延する仕上圧延工程とからなる。粗圧延の開始温度を制御することにより、Al3Fe及びAlFeSiの析出と、Al−Fe系金属間化合物中へのSiの混入を制御し、固溶Fe量と固溶Si量を制御することができる。また、Cu及びMnを添加する場合は、化合物中へのCu及びMnの混入を制御することによって固溶Cu量及び固溶Mn量を制御する効果も併せ持つ。450℃未満では、前記化合物の析出と前記化合物中へのSi、Cu及びMnの混入が不十分となり、固溶Fe量、固溶Si量、固溶Cu量及び固溶Mn量が過剰となる。一方、550℃を超えると、表面に焼き付きが生じ表面品質上好ましくない。従って、熱間圧延開始温度は450乃至550℃とする。
【0049】
粗圧延終了温度:350乃至500℃
粗圧延終了温度も粗圧延開始温度と同様にAl3Fe及びAlFeSiの析出と、Al−Fe系金属間化合物中へのSiの混入を制御し、固溶Fe量と固溶Si量を制御することができる。また、Cu及びMnを添加した場合は、化合物中へのCu及びMnの混入を制御することによって固溶Cu量及び固溶Mn量を制御する効果も併せ持つ。粗圧延終了温度が350℃未満では、前記化合物の析出と前記化合物中へのSi、Cu及びMnの混入が不十分となり、固溶Fe量、固溶Si量、固溶Cu量及び固溶Mn量が過剰となる。逆に500℃を超えると、固溶Fe量及び固溶Si量が不足し、加工軟化抑制の効果が不十分となる。また、Cu及びMnを添加する場合も固溶Cu量及び固溶Mn量が不足する。従って、熱間圧延終了温度は350乃至500℃とする。
【0050】
仕上圧延終了温度:250℃以下又は290℃以上
粗圧延温度と仕上圧延温度の組み合わせにより単体Si量を制御することができ、これにより固溶Si量を制御することができる。実際の圧延においては、コイルは熱容量が大きく外気に曝される表面積が比較的小さいため、仕上圧延終了後コイルはすぐには冷却されず、しばらくの間仕上圧延終了温度付近の温度範囲に保持される。仕上圧延終了温度が250℃を超え290℃未満の温度範囲にあるとき、単体Siが最も析出しやすくなり、かつ、この析出量が変動しやすい。仕上圧延終了温度が250℃以下では、前記温度範囲よりも低くなるため、単体Siの析出が過剰に起こらず固溶Si量が安定する。また、仕上圧延終了温度が290℃以上では、前記温度範囲よりも高くなり、かつコイル巻取り後も回復及び再結晶が進むため蓄積歪みが減少し、その後の冷却中における単体Siの析出量が少量に抑えられる。従って、仕上圧延終了温度は250℃以下又は290℃以上とする。
【0051】
熱間圧延終了後、板厚1.5乃至5mmの熱延板から板厚0.1乃至0.3mmの箔地まで冷間圧延を行う。このとき、中間焼鈍処理は省略する。
【0052】
【実施例】
以下に本発明の実施例を詳細に説明する。表1に示す組成のアルミニウム合金の鋳塊を、通常のDC鋳造法により鋳造した。その後、表2に示す製造条件に従い、均質化処理、表面研削及び熱間圧延前の加熱又は表面研削、均質化処理及び冷却(炉冷)を施し、熱間圧延及び冷間圧延を行い、板厚0.2mmの板材を得た。このとき、中間焼鈍工程は省略した。
【0053】
【表1】

Figure 0003808276
【0054】
【表2】
Figure 0003808276
【0055】
前述の方法で得た板材即ちアルミニウム合金箔地を使用し、各成分の固溶量並びに箔圧延性及び箔強度の評価を行った。以下、評価方法について説明する。
【0056】
最初に、各成分の固溶量の分析方法について説明する。前記板材について、熱フェノール抽出法及び塩酸溶解残渣法により、固溶Fe量、固溶Si量、単体Si量、固溶Cu量及び固溶Mn量を分析した。このとき、固溶Si量は前記方法により直接分析することができないため、下記の計算式により求めた。
【0057】
【数1】
固溶Si量=添加Si量−熱フェノール残渣中のSi量−塩酸溶解残渣法により求めた単体Si量
ここで、添加Si量はICP発光分析法により分析した。
例えば、実施例No.1では、
固溶Si量=700(添加量)−220(熱フェノール残渣)−5(単体Si)=475(ppm)
であり、従って、
固溶Si量/添加Si量=475/700=0.68
となる。
【0058】
【表3】
Figure 0003808276
【0059】
箔圧延性及び箔強度の評価方法を以下に示す。前記表1乃至3に示したアルミニウム合金箔地に箔圧延を施した。4パスで厚さ12μmまで圧延し、更にダブリング圧延により箔厚6μmとした。箔圧延性は、12μm及び6μmまでの箔圧延における破断回数で評価した。また、箔厚6μmの箔のピンホール発生数を評価した。箔強度として耐軟化強度特性を評価した。箔の強度レベルはFe量及びSi量によって変化するため、耐軟化特性は焼鈍後の強度低下量により評価した。前述の箔厚12μmの箔(硬質箔)及びこの箔に160℃の温度に20分間保持する焼鈍処理を施した箔(軟質箔)について引張試験を行い、下記数式2に示すような前記硬質箔と前記軟質箔の強度差(ΔTS)を求め、この強度差により耐軟化特性を評価した。このΔTSの値が小さいほど、耐軟化特性が優れていることになる。以上の評価結果を表4に示した。
【0060】
【数2】
ΔTS=硬質箔強度−軟質箔強度
【0061】
【表4】
Figure 0003808276
箔圧延性は1コイルあたりの箔圧延中の破断回数によって評価した。
◎:良好・・・・・破断回数 1回以下/コイル
○:可・・・・・・破断回数 2〜5回/コイル
△:悪い・・・・・破断回数 6〜10回/コイル
×:非常に悪い・・破断回数 11回以上/コイル
【0063】
前記表1乃至4における実施例No.乃至7は本発明実施例である。実施例No.5乃至7はCu及びMnの双方を含有し、実施例No.6は0.049質量%のMnを含有する。また、前記実施例No.乃至7のFe量、Si量、固溶Fe量及び(固溶Si量/添加Si量)比も、請求項で規定した条件を満たしている。そのため、表4に示すように、いずれも箔圧延性が優れ、ピンホール発生数が少なく、耐軟化強度特性が優れていた。
【0064】
これに対し、比較例No.8は、固溶Fe量が230ppmと多く、加工硬化が過剰になり箔圧延性が劣った。また、ピンホール発生数が多かった。これは、均質化処理温度、粗圧延開始温度及び粗圧延終了温度が低すぎたため、析出物が十分析出しなかったためと考えられる。
【0065】
また、比較例No.9は、(固溶Si量/添加Si量)比が0.15と低く、加工軟化を起こしたため箔圧延性及び耐軟化強度特性が極めて劣っていた。また、ピンホール発生数が多かった。これは、仕上圧延終了温度が275℃であったため単体Siの析出が過剰になり固溶Si量が不足したためと考えられる。
【0066】
また、比較例No.10は、Fe量が0.40質量%と少なく、更に(固溶Si量/添加Si量)比が0.80と高く、箔圧延性及び耐軟化強度特性が劣った。また、ピンホール発生数が多かった。
【0067】
また、比較例No.11は、Fe量が2.78質量%と多かったため、加工硬化が過剰になり箔圧延性が劣った。
【0068】
また、比較例No.12は、Si量が0.005質量%と少なかったため、加工軟化を起こし箔圧延性が劣った。また、耐軟化強度特性が極めて悪かった。更にピンホール発生数も多かった。
【0069】
また、比較例No.13は、Si量が0.41質量%と多く、また(固溶Si量/添加Si量)比が0.80と高かったため、箔圧延性が劣りピンホール発生数も多かった。
【0070】
また、比較例No.14は、Cu量及びMn量が多かったためピンホール発生数が多かった。
【0071】
【発明の効果】
以上詳述したように、本発明によれば、合金中の各成分の固溶量を制御することにより、箔圧延性及び箔強度が優れたアルミニウム合金箔地を得ることができる。即ち、アルミニウム合金箔地の組成、固溶Fe量及び(固溶Si量/添加Si量)比を本発明の特許請求の範囲に記載した範囲内に制御してアルミニウム合金箔地を製造することにより、この箔地を使用して箔圧延すれば、箔圧延中に加工軟化及び過剰な加工硬化を起こさず良好な箔圧延性を有し、耐軟化強度特性が優れているためラミネート材の焼付処理後も良好な箔強度を有するアルミニウム合金箔を製造することができる。更に、前記合金中の単体Si量、Cu量、Mn量及び固溶Cu量と固溶Mn量の合計量を適切に制御することにより、前述の効果を更に高めることができる。また、前記アルミニウム合金箔地を製造するにあたり、均質化処理条件、熱間圧延における粗圧延条件及び仕上圧延条件を、本発明の特許請求の範囲に記載した範囲に制御することによって、前記アルミニウム合金箔地を中間焼鈍工程を省略して製造することができる。これにより、より薄いアルミニウム合金箔をより低コストで製造することが可能となる。本発明のアルミニウム合金箔は、食品、薬品及びその他の包装用材料をはじめ広い用途に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy foil used in foods, medicines and other packaging materials, and in particular, has excellent foil rollability and enables thinning of the aluminum alloy foil, and has excellent softening strength characteristics and product foil. The present invention relates to an aluminum alloy foil that can improve the productivity in foil rolling and a method for producing an aluminum alloy foil that can produce the foil at low cost.
[0002]
[Prior art]
Conventional aluminum foil has a thickness of about 5 to 200 μm, and the material is pure aluminum such as JIS-1N30, JIS-1050, JIS-1100. This aluminum foil is mainly used as a packaging material for foods and medicines, and is often used by being laminated with polyethylene, vinyl, paper, resin, or the like. In addition, depending on the contents to be packaged, it may be necessary to completely shield it from moisture or ultraviolet rays in the atmosphere. Therefore, aluminum foil as a packaging material varies depending on the application, but mainly has few pinholes and is high. A high quality of strength is required.
[0003]
This aluminum foil is generally used by laminating a synthetic resin film on a soft foil or hard foil to make a laminate material. The laminate material is kept at a temperature of 170 to 230 ° C. for several minutes in the manufacturing process. Since the baking and baking processes are performed, the aluminum foil may be softened. Therefore, in order to ensure the strength of the product foil after baking and baking treatment, the aluminum foil constituting the laminate material needs to have softening resistance.
[0004]
Usually, aluminum alloy foil is made by casting molten aluminum into a slab by semi-continuous casting or continuous casting, and subjecting this slab to homogenization, hot rolling, cold rolling, intermediate annealing, and cold rolling. A foil (plate material) having a thickness of 0.1 to 0.6 mm is obtained, and the foil is further rolled into a foil having a thickness of 5 to 200 μm. This rolling from foil to foil is called foil rolling. In addition, intermediate annealing achieves various qualities required for the aluminum alloy foil as described above, and the work hardening becomes excessive in the cold rolling process, and the foil becomes extremely hard, or conversely in the cold rolling process. It is made to avoid the problem that processing softening occurs and foil breakage frequently occurs during foil rolling. In this way, when the foil breaks frequently, the productivity is lowered and the manufacturing cost of the aluminum alloy foil is increased.
[0005]
Thus, recently, there is a demand for cost reduction and thinning of the aluminum foil. In order to reduce the cost of the aluminum foil, it is effective to omit the intermediate annealing in the manufacturing process of the aluminum foil base. However, as described above, if the intermediate annealing is omitted, excessive work hardening or processing is performed during foil rolling. There is a problem that softening occurs and the foil breaks frequently, and the manufacturing cost of the aluminum foil increases conversely. Further, even when foil rolling can be performed without causing foil breakage or the like, there is a problem in that the strength and elongation of the product foil are insufficient, and variation occurs in the coil, so that the yield as a product is remarkably deteriorated.
[0006]
In addition, reducing the number of foil rolling passes improves the productivity in foil rolling, and has the effect of reducing costs. For example, what was conventionally rolled in 5 passes from a foil having a thickness of about 0.1 to 0.3 mm to a foil having a desired thickness is rolled in 4 passes or 3 passes. However, although it depends on the rolling conditions, the foil temperature usually rises by about 50 to 100 ° C. due to processing heat during foil rolling. When the number of passes decreases, the rolling reduction per pass increases, so that there is a problem that the processing heat increases and the processing softening is promoted.
[0007]
On the other hand, among the qualities required for aluminum foil as the thickness of the foil decreases, particularly, the strength of the foil is required to be high and uniform. The aluminum foil used for home use has a foil thickness of usually 10 to 20 μm, and in particular, a thin foil has a foil thickness of 5 to 10 μm. As described above, these aluminum foils are often used as a laminate material. However, aluminum foils manufactured under conditions that tend to be softened by processing tend to be softened during production of the laminate material, resulting in a problem of strength reduction.
[0008]
Conventionally, as a method for producing an aluminum alloy sheet, Fe: 0.10 to 0.50 mass%, Si: 0.05 to 0.20 mass%, Ti: 0.05 to 0.20 mass%, and the balance Has disclosed a method for producing an aluminum alloy sheet having a composition comprising Al and inevitable impurities and enabling cold rolling without intermediate annealing after hot rolling (JP-A-57-123966). Issue gazette).
[0009]
Moreover, as an aluminum alloy foil for packaging, Fe: 0.7-1.8% by mass, Mn: 0.1-1.5% by mass, with the balance being Al and inevitable impurities, Those having an average crystal grain size of 10 to 50 μm after final annealing (JP-A-62-250143), Fe: 0.7 to 1.8% by mass, Mn: 0.1 to 1.5% by mass Si: 0.2 to 0.5% by mass, with the balance being Al and unavoidable impurities, and an average crystal grain size after final annealing of 10 to 60 μm (JP-A-62) -250144).
[0010]
Furthermore, in order to prevent softening and crystal grain growth after baking coating, and to increase the strength of the foil and enable thinning, in the aluminum alloy foil containing Fe: 0.8 to 2.0 mass%, An aluminum alloy foil for chemical packaging is disclosed in which 60% or more of the area is covered with subgrains having an average size of 0.3 μm or more and 1.5 μm or less (JP-A-4-214833).
[0011]
Further, as a method for producing an aluminum alloy foil having excellent foil rollability, Fe is contained in an amount of 0.2 to 2.8% by mass, Si is contained in an amount of 0.05 to 0.3%, and the balance is Al and inevitable impurities A method for producing an aluminum alloy foil by homogenizing heat treatment, hot rolling, and cold rolling without intermediate annealing is disclosed (Japanese Patent Laid-Open No. 11-217656). . In this prior art, the plate thickness after hot rolling is set to 3 mm or less, and at least the final pass rising temperature of cold rolling is controlled to 100 to 180 ° C. Therefore, in this prior art, a foil having excellent foil rollability is manufactured by controlling the cold rolling conditions.
[0012]
Moreover, in order to suppress work hardening and to improve foil rolling property and baking property, Fe is 0.5-1.1 mass%, Cu is less than 0.01 mass%, and crystal fineness, such as Ti, B, Zr, etc. Aluminum alloy foil containing an agent, the balance being Al and inevitable impurities, Fe and Cu having a solid solution amount of 25 ppm or less, and the solid solution amount of either Fe or Cu being 8 ppm or more A ground has been proposed (Japanese Patent Laid-Open No. 6-293931).
[0013]
[Problems to be solved by the invention]
However, each of the above-described conventional techniques has the following drawbacks. That is, the technique disclosed in Japanese Patent Application Laid-Open No. 57-123966 discloses a method that enables cold rolling without performing intermediate annealing. It is a thin plate having a thickness of about 0.1 mm. Therefore, according to this prior art, an aluminum alloy plate having such a thickness can be produced without intermediate annealing, but as in the present invention, the foil is subsequently rolled to a thickness of 5 to 200 μm. Is not suitable because foil breakage occurs in the process of foil rolling. That is, the foil disclosed in this publication cannot be used to produce a foil having excellent foil rollability at low cost.
[0014]
The prior art described in JP-A-62-250143 or JP-A-62-250144 is directed to Al—Fe—Mn or Al—Fe—Mn—Si alloys, and has a high Mn content. The crystal grain size of the alloy is controlled. For this reason, if it is going to carry out foil rolling of the very thin foil whose foil thickness is 5-20 micrometers, work hardening is large and favorable foil rolling cannot be performed. Therefore, the recent demand for thin foil cannot be satisfied.
[0015]
Furthermore, the prior art described in Japanese Patent Application Laid-Open No. 4-214833 is an aluminum alloy foil suitable for use in baking coating, and prevents the softening and crystal grain growth during the baking coating and improves the strength of the foil. However, the foil rollability is not mentioned at all, and the recent demand for thin foil cannot be satisfied.
[0016]
Furthermore, the prior art disclosed in Japanese Patent Application Laid-Open No. 11-217656 has both problems of improving the foil rollability and omitting the intermediate annealing, but the final pass temperature of the cold rolling is set to 100 to 100. It is necessary to control the temperature to 180 ° C. Therefore, it is necessary to newly add equipment that makes this possible to the cold rolling equipment, and it is necessary to renew the equipment. . In addition, being forced to perform such strict temperature control is extremely disadvantageous when mass production is attempted by actual operation. That is, when the plate width size, seasonal factors, and lubrication conditions (temperature, amount) are variously changed, the above-described strict temperature control in the cold rolling process is extremely difficult, and such temperature control is not possible. However, there is a drawback in that quality variation is likely to occur and a thin foil fabric cannot be produced stably.
[0017]
The prior art disclosed in Japanese Patent Application Laid-Open No. Hei 6-293931 improves the foil rolling property and baking property, but in order to obtain the desired characteristics of the aluminum foil, the intermediate annealing conditions are finely controlled. In addition to the fact that the intermediate annealing cannot be omitted, there is a drawback in that productivity is hindered in actual production because such precise control is imposed.
[0018]
Therefore, in the conventional technology, a foil material that satisfies both the problems of excellent foil rolling property and foil quality (thin foil and foil strength (softening strength)) and low cost cannot be obtained at the same time, and its development is strong. It is requested.
[0019]
The present invention has been made in view of such problems, and an aluminum alloy foil excellent in foil rollability and product foil strength (softening strength) and an intermediate annealing step of the aluminum alloy foil are omitted. An object of the present invention is to provide a production method that can be produced stably at a low cost even during mass production.
[0021]
[Means for Solving the Problems]
The aluminum alloy foil according to the present invention has Fe: 0.5 to 2.5 mass%, Si: 0.01 to 0.3 mass %, Cu: 0.002 to 0.05 mass%, and Mn: 0.00. 003 to 0.05 % by mass , with the balance being composed of Al and inevitable impurities, the solid solution Fe amount is 10 to 200 ppm, and the ratio of the solid solution Si amount to the added Si amount is 0.2 to 0 .75, characterized in that the total amount of solid solution Cu and solid solution Mn is 500 ppm or less.
[0022]
In the aluminum alloy foil, it is preferable that the content of Si present alone (hereinafter referred to as simple Si amount) is 600 ppm or less.
[0024]
The manufacturing method of the aluminum alloy foil according to the present invention includes Fe: 0.5 to 2.5 mass%, Si: 0.01 to 0.3 mass %, Cu: 0.002 to 0.05 mass%, and Mn. : An aluminum alloy ingot containing 0.003 to 0.05 % by mass with the balance consisting of Al and inevitable impurities, kept at a soaking temperature of 450 to 600 ° C. for 2 to 20 hours, and homogeneous A step of performing a heat treatment, a step of rough rolling in hot rolling at a rough rolling start temperature of 450 to 550 ° C. and a rough rolling end temperature of 350 to 500 ° C., and a finish rolling end temperature of 250 ° C. or lower or 290 ° C. or higher. And a step of performing finish rolling in hot rolling as, without intermediate annealing, the amount of solid solution Fe is 10 to 200 ppm, the ratio of the amount of solid solution Si to the amount of added Si is 0.2 to 0.75, Solid solution Total u amount and solute Mn amount is characterized by producing an aluminum alloy foil land is 500ppm or less.
[0025]
Suppresses excessive work hardening and softening during foil rolling by controlling the amount of Fe, Si, solid solution Fe and (solid solution Si / added Si) in aluminum alloy foil Foil rolling property can be obtained. Moreover, the softening strength characteristic which was excellent by suppressing the process softening at the time of a laminate baking process, and the favorable strength of product foil can be obtained. Furthermore, the solid solution Si amount can be controlled by controlling the amount of simple Si. Furthermore, it is more effective if the total amount of the solute Cu amount and the solute Mn amount is controlled. As a means for controlling the solid solution Fe amount, the ratio of the solid solution Si amount to the added Si amount, and the total amount of the solid solution Cu amount and the solid solution Mn amount, a method for controlling the composition in the aluminum alloy foil, and the production conditions That is, a method of controlling the homogenization treatment conditions, rough rolling conditions, and finish rolling conditions is effective.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors precisely control the total amount of solid solution Fe amount, solid solution Si amount and solid solution Cu amount and solid solution Mn amount in the aluminum alloy, thereby suppressing work softening during foil rolling, It has been found that an aluminum alloy foil having excellent foil rollability and foil strength can be produced without intermediate annealing treatment or under a condition in which the number of foil rolling passes is reduced. As a result of extensive research on factors affecting the properties of work softening properties and foil strength during foil rolling, the present inventors have found that the work softening properties are predominantly affected by the amount of solid solution of the additive component. I found out. In addition, it has been found that the amount of solid solution Fe and the amount of solid solution Si has not been sufficiently controlled by omitting the intermediate annealing treatment.
[0027]
Here, in the aluminum alloy of the present invention, there is an Al-Fe-based metal compound having a maximum particle size of about several microns as a crystallized product generated during casting solidification, and a maximum particle as a precipitate generated during homogenization heat treatment and hot rolling. There are fine precipitates such as Al 3 Fe, α-AlFeSi and elemental Si having a submicron diameter. The amounts of these crystallized substances and precipitates are likely to change depending on the conditions of casting, homogenizing heat treatment, and hot rolling process, and accordingly, the amount of solute Fe and solute Si in the matrix are also easily changed.
[0028]
Hereinafter, the reasons for limiting the components of the aluminum alloy foil and the solid solution amount of each component in the present invention will be described.
[0029]
Solid solution Fe amount: 10 to 200 ppm
The amount of solid solution Fe present in the aluminum alloy greatly affects the suppression of work softening during foil rolling in an aluminum alloy foil produced by omitting the intermediate annealing treatment. If it is less than 10 ppm, the effect of suppressing the work softening during the foil rolling in the previous operation is not sufficiently exhibited. On the other hand, if it exceeds 200 ppm, work hardening during foil rolling increases, and foil rollability is impaired. Therefore, the solid solution Fe amount is 10 to 200 ppm. More preferably, it is 20 to 180 ppm.
[0030]
Ratio of dissolved Si amount to added Si amount: 0.2 to 0.75
The balance between the precipitated Si amount and the solute Si amount affects the balance between work hardening and work softening. In general, the amount of precipitated Si contributes to work hardening, and the amount of solute Si contributes to resistance to work softening. Naturally, as the amount of added Si increases, the amount of dissolved Si also tends to increase. However, the present inventors have worked by controlling the ratio of the amount of dissolved Si to the amount of added Si (the amount of dissolved Si / the amount of added Si). It has been found that the balance between hardening and work softening can be controlled. If this ratio (the amount of solute Si / the amount of added Si) is less than 0.2, the amount of solute Si is insufficient, so that work softening becomes excessive, resulting in breakage during foil rolling and a decrease in the softening strength of the final foil. It is not preferable. On the other hand, when the ratio exceeds 0.75, the work hardening is excessive, and the foil rollability is hindered and it becomes difficult to roll to a desired foil thickness. Therefore, the ratio of (solid solution Si amount / added Si amount) is 0.2 to 0.75, more preferably 0.21 to 0.7.
[0031]
The reason why only the amount of solid solution Fe is specified for Fe is that the majority of the amount of added Fe exists as a crystallized product during casting, so the difference in the amount of solid solution Fe becomes dominant for the foil characteristics. Because it is.
[0032]
This amount of solid solution Fe can be measured by performing a residue extraction method with hot phenol and analyzing the amount of Fe in the obtained solution by ICP emission analysis. On the other hand, the amount of dissolved Si is measured by combining the method of extracting only elemental Si by the hydrochloric acid dissolution residue method in addition to the measurement of the amount of Si in the intermetallic compound by the hot phenol method. That is, the amount of Si in Al 3 Fe and Al—Fe—Si intermetallic compounds present as crystallized products and precipitates is extracted as a residual Si amount by the hot phenol residue extraction method, while the hydrochloric acid dissolution residue method To extract only simple Si precipitates, and the amounts of these extracts are measured by ICP emission spectrometry, respectively, and from the total Si amount including both simple Si and compound Si, the amount of Si in the intermetallic compound and the above-mentioned By subtracting the amount of simple Si, the amount of dissolved Si can be determined. The total amount of added Si can be analyzed by a normal X-ray analysis method or ICP analysis method.
[0033]
Fe: 0.5 to 2.5% by mass
When the Fe content is less than 0.5% by mass, it is difficult to control the solid solution amount without performing an intermediate annealing process, regardless of the conditions of homogenization, hot rolling and cold rolling. The stable work hardening characteristic and foil strength at the time of foil rolling cannot be obtained. On the other hand, if it exceeds 2.5% by mass, it is difficult to control the amount of the solid solution under any process conditions in the process of omitting the intermediate annealing treatment, the foil rolling property becomes unstable due to work hardening, and the corrosion resistance is problematic. . Therefore, the Fe content is 0.5 to 2.5 mass%.
[0034]
Si: 0.01 to 0.3% by mass
Si contributes to the strength together with Fe, but the effect cannot be obtained if it is less than 0.01% by mass, and if it exceeds 0.3% by mass, the amount of Si solid solution increases, so that work hardening becomes excessive, and the foil is pinned. There are many halls. Therefore, the Si content is 0.01 to 0.3% by mass.
[0035]
The conditions shown below are more preferable conditions for stabilizing and improving the effect.
[0036]
Total of solid solution Cu amount and solid solution Mn amount: 500 ppm or less The addition of Cu and Mn and the control of the solid solution amount have the effect of further stabilizing and promoting the effect of suppressing the softening during foil rolling. Both the solid solution Cu and the solid solution Mn have an effect of suppressing work softening, and the total amount of the solid solution Cu amount and the solid solution Mn amount is 50 ppm or more, and the work softening suppression effect is stably exhibited. On the other hand, when the total amount of the solid solution Cu amount and the solid solution Mn amount exceeds 500 ppm, work hardening becomes excessive and foil rollability is hindered. Therefore, the total of the solid solution Cu amount and the solid solution Mn amount is 500 ppm or less.
[0037]
Cu: 0.003 to 0.05 mass%
The addition of Cu has an effect of suppressing work softening during foil rolling by increasing the amount of solid solution Cu and further stabilizing work hardening characteristics. If Cu is less than 0.003 mass%, the above effect cannot be obtained. On the other hand, when it exceeds 0.05 mass%, the amount of solid solution Cu exceeds the said upper limit and work hardening becomes excessive, and pinholes occur frequently in the foil. Therefore, the addition amount of Cu is set to 0.003 to 0.05 mass%.
[0038]
Mn: 0.003 to 0.05 mass%
Similarly to Cu, Mn also suppresses work softening during foil rolling by increasing the amount of dissolved Mn and further stabilizes work hardening characteristics. If Mn is less than 0.003 mass%, the above effect cannot be obtained. On the other hand, when it exceeds 0.05 mass%, the amount of solid solution Mn exceeds the said upper limit, work hardening becomes excessive, and pinholes occur frequently in foil. Therefore, the amount of Mn added is set to 0.003 to 0.05 mass%.
[0039]
Elemental Si amount: 600 ppm or less The amount of elemental Si is controlled to stabilize the amount of dissolved Si. When the amount of simple Si exceeds 600 ppm, the amount of solid solution Si decreases, so the effect of the work softening resistance does not appear. Therefore, the amount of simple Si is 600 ppm or less. More preferably, it is 400 ppm or less, More preferably, it is 300 ppm or less. The precipitation temperature range of single Si is slightly different depending on the amount of Si, but is in the range of about 400 to 150 ° C., so it is likely to fluctuate in the hot rolling process. .
[0040]
In addition to the above components, 0.005 to 0.05 mass% Ti and 0.005 to 0.005% of B are preferably added to the aluminum alloy of the present invention for the purpose of refining crystal grains of the solidified structure during casting. About 05% by mass can be added.
[0041]
Next, the manufacturing method of the aluminum alloy foil of the present invention will be described. Since the intermediate annealing treatment is omitted in the method of the present invention, the amount of the solid solution must be controlled in the casting process and the hot rolling process. This is achieved by controlling the precise manufacturing conditions as described below. be able to.
[0042]
In order to control the solid solution amount of each of the above-mentioned components within the scope of the present invention, it is preferable to omit the intermediate annealing treatment and to produce by a combination of homogenization treatment conditions and hot rolling conditions as shown below. .
[0043]
The method for controlling the amount of solid solution varies depending on each component. When the intermediate annealing treatment is omitted, the solid solution Fe amount is determined by a combination of casting conditions, homogenization treatment conditions, and hot rolling conditions, and the solid solution Si amount is determined by a combination of hot rolling conditions and its end temperature. Moreover, when adding Cu and Mn, the amount of solid solution Cu and the amount of solid solution Mn are determined by the combination of homogenization process conditions and hot rolling conditions.
[0044]
Production of the aluminum ingot as a raw material is performed by a normal semi-continuous casting method (DC casting) or continuous casting method, and then subjected to a homogenization treatment and subjected to hot rolling. This homogenization treatment may be performed in combination with the heating before hot rolling after the surface grinding of the ingot, or may be performed separately as the homogenization treatment before heating in the hot rolling. In addition, it is preferable to perform homogenization in advance and then grind the non-uniform layer on the surface, and then perform reheating and hot rolling to improve the surface quality because the oxide film on the ingot surface is reduced.
[0045]
Soaking temperature in homogenization treatment: 450 to 600 ° C
Control of the homogenization treatment condition is necessary for control of the amount of solid solution Fe. When the soaking temperature is less than 450 ° C., precipitation of precipitates becomes insufficient, the amount of solid solution Fe exceeds 200 ppm, and work hardening becomes excessive. Moreover, in the case of Cu and Mn additive, the amount of solid solution Cu and the amount of solid solution Mn become excessive. On the other hand, when the soaking temperature exceeds 600 ° C., the amount of dissolved Fe is less than 10 ppm, and work softening is likely to occur. Moreover, in the case of Cu and Mn additive, the amount of solid solution Cu and the amount of solid solution Mn are insufficient, which is not preferable. Therefore, the soaking temperature is set to 450 to 600 ° C.
[0046]
Holding time in homogenization treatment: 2 to 20 hours If the holding time is less than 2 hours, the amount of solid solution Fe exceeds 200 ppm and work hardening becomes excessive. Moreover, in the case of Cu and Mn additive, the amount of solid solution Cu and the amount of solid solution Mn become excessive. On the other hand, when the holding time exceeds 20 hours, the amount of solid solution Fe becomes less than 10 ppm, and work softening tends to occur. Moreover, in the case of Cu and Mn additive, the amount of solid solution Cu and the amount of solid solution Mn are insufficient, which is not preferable. Therefore, the holding time is 2 to 20 hours.
[0047]
In addition, the amount of solid solution Fe changes also with the initial amount of solid solution in the ingot which is an initial state. The initial solid solution Fe amount is controlled by controlling the solidification cooling rate of the ingot. Since it differs depending on the size of the ingot, the conditions cannot be strictly defined. However, if the solidification cooling rate is increased, the amount of initial solid solution Fe increases. However, when there is too much initial amount of solid solution Fe, it becomes difficult to control the amount of solid solution Fe to 200 ppm or less by a homogenization process and hot rolling.
[0048]
Rough rolling start temperature: 450 to 550 ° C
Usually, the hot rolling process includes a rough rolling process for rolling to a plate thickness of 10 to 50 mm and a finish rolling process for rolling into a coil by a tandem rolling mill. By controlling the starting temperature of rough rolling, the precipitation of Al 3 Fe and AlFeSi and the mixing of Si into the Al—Fe intermetallic compound are controlled, and the amount of solid solution Fe and the amount of solid solution Si are controlled. Can do. Moreover, when adding Cu and Mn, it has the effect of controlling the amount of solid solution Cu and the amount of solid solution Mn by controlling the mixing of Cu and Mn into the compound. If it is less than 450 degreeC, precipitation of the said compound and mixing of Si, Cu, and Mn into the said compound will become inadequate, and solid solution Fe amount, solid solution Si amount, solid solution Cu amount, and solid solution Mn amount will become excess. . On the other hand, if it exceeds 550 ° C., the surface is seized, which is not preferable in terms of surface quality. Accordingly, the hot rolling start temperature is set to 450 to 550 ° C.
[0049]
Rough rolling finish temperature: 350 to 500 ° C
As with the rough rolling start temperature, the rough rolling end temperature controls the precipitation of Al 3 Fe and AlFeSi and the mixing of Si into the Al—Fe intermetallic compound, thereby controlling the amount of solid solution Fe and the amount of solid solution Si. be able to. Moreover, when Cu and Mn are added, it has the effect of controlling the amount of solid solution Cu and the amount of solid solution Mn by controlling the mixing of Cu and Mn into the compound. When the rough rolling finish temperature is less than 350 ° C., precipitation of the compound and mixing of Si, Cu and Mn into the compound become insufficient, so that the amount of solid solution Fe, the amount of solid solution Si, the amount of solid solution Cu and the amount of solid solution Mn The amount becomes excessive. On the other hand, when the temperature exceeds 500 ° C., the amount of solid solution Fe and the amount of solid solution Si are insufficient, and the effect of suppressing work softening becomes insufficient. Moreover, when adding Cu and Mn, the amount of solid solution Cu and the amount of solid solution Mn are insufficient. Therefore, the hot rolling end temperature is set to 350 to 500 ° C.
[0050]
Finish rolling end temperature: 250 ° C. or lower or 290 ° C. or higher The amount of simple Si can be controlled by a combination of the rough rolling temperature and the finish rolling temperature, and thus the amount of dissolved Si can be controlled. In actual rolling, since the coil has a large heat capacity and a relatively small surface area exposed to the outside air, the coil is not cooled immediately after finishing rolling, and is kept in the temperature range near the finishing rolling finishing temperature for a while. The When the finish rolling finish temperature is in the temperature range of more than 250 ° C. and less than 290 ° C., simple substance Si is most likely to precipitate, and the amount of precipitation is likely to vary. When the finish rolling finish temperature is 250 ° C. or lower, the temperature is lower than the above temperature range, so that precipitation of simple Si does not occur excessively and the amount of solute Si is stabilized. In addition, when the finish rolling finish temperature is 290 ° C. or higher, the temperature becomes higher than the above temperature range, and recovery and recrystallization proceed even after coil winding, so that accumulated strain is reduced. It can be suppressed to a small amount. Therefore, finish rolling finish temperature shall be 250 degrees C or less or 290 degrees C or more.
[0051]
After the hot rolling is completed, cold rolling is performed from a hot rolled sheet having a thickness of 1.5 to 5 mm to a foil having a thickness of 0.1 to 0.3 mm. At this time, the intermediate annealing process is omitted.
[0052]
【Example】
Examples of the present invention will be described in detail below. An ingot of aluminum alloy having the composition shown in Table 1 was cast by a normal DC casting method. Then, in accordance with the manufacturing conditions shown in Table 2, homogenization, surface grinding and heating before hot rolling or surface grinding, homogenization and cooling (furnace cooling) are performed, hot rolling and cold rolling are performed, A plate material having a thickness of 0.2 mm was obtained. At this time, the intermediate annealing process was omitted.
[0053]
[Table 1]
Figure 0003808276
[0054]
[Table 2]
Figure 0003808276
[0055]
The plate material obtained by the above-mentioned method, that is, an aluminum alloy foil was used, and the solid solution amount of each component, foil rollability and foil strength were evaluated. Hereinafter, the evaluation method will be described.
[0056]
First, a method for analyzing the solid solution amount of each component will be described. About the said board | plate material, the amount of solid solution Fe, the amount of solid solution Si, the amount of simple substance Si, the amount of solid solution Cu, and the amount of solid solution Mn were analyzed by the hot phenol extraction method and the hydrochloric acid dissolution residue method. At this time, the amount of solute Si cannot be directly analyzed by the above method, and thus was obtained by the following calculation formula.
[0057]
[Expression 1]
Solid solution Si amount = added Si amount-Si amount in hot phenol residue-single Si amount determined by hydrochloric acid dissolution residue method Here, the added Si amount was analyzed by ICP emission spectrometry.
For example, Example No. In 1,
Solid solution Si amount = 700 (addition amount) −220 (thermal phenol residue) −5 (single Si) = 475 (ppm)
And therefore
Solid solution Si amount / added Si amount = 475/700 = 0.68
It becomes.
[0058]
[Table 3]
Figure 0003808276
[0059]
Evaluation methods for foil rollability and foil strength are shown below. The aluminum alloy foil shown in Tables 1 to 3 was subjected to foil rolling. It was rolled to a thickness of 12 μm in 4 passes, and a foil thickness of 6 μm was obtained by doubling rolling. The foil rollability was evaluated by the number of breaks in foil rolling up to 12 μm and 6 μm. Further, the number of pinholes generated in a foil having a foil thickness of 6 μm was evaluated. The softening strength characteristics were evaluated as the foil strength. Since the strength level of the foil varies depending on the Fe content and the Si content, the softening resistance was evaluated by the strength decrease after annealing. A tensile test was performed on the above-mentioned foil having a thickness of 12 μm (hard foil) and a foil (soft foil) subjected to an annealing treatment at a temperature of 160 ° C. for 20 minutes. And the difference in strength (ΔTS) of the soft foil, and the softening resistance was evaluated based on the difference in strength. The smaller the value of ΔTS, the better the softening resistance. The above evaluation results are shown in Table 4.
[0060]
[Expression 2]
ΔTS = hard foil strength−soft foil strength
[Table 4]
Figure 0003808276
The foil rollability was evaluated by the number of breaks during foil rolling per coil.
◎: Good …… Number of breaks 1 or less / coil ○: Possible …… Number of breaks 2 to 5 times / coil △: Poor ... Number of breaks 6 to 10 times / coil ×: Very bad ... No more than 11 breaks / coil
Example No. 5 to 7 in Table 1 to 4 is an embodiment of the present invention. Real施例No. 5-7 contain both Cu and Mn, Example No. 6 contains 0.049 mass% Mn. In addition, in Example No. The Fe amount, Si amount, solid solution Fe amount, and (solid solution Si amount / added Si amount) ratio of 5 to 7 also satisfy the conditions defined in claim 1 . Therefore, as shown in Table 4, all were excellent in foil rollability, the number of pinholes generated was small, and the softening strength characteristics were excellent.
[0064]
On the other hand, Comparative Example No. 8 had a large amount of solid solution Fe of 230 ppm, which resulted in excessive work hardening and poor foil rollability. In addition, there were many pinholes. This is probably because the homogenization temperature, the rough rolling start temperature, and the rough rolling end temperature were too low, and the precipitates were not sufficiently precipitated.
[0065]
Further, Comparative Example No. 9 had a low (solid-solution Si amount / added Si amount) ratio of 0.15, and since the work softening occurred, the foil rollability and the softening strength resistance properties were extremely inferior. In addition, there were many pinholes. This is presumably because the finish rolling finish temperature was 275 ° C., so that the precipitation of simple Si was excessive and the amount of dissolved Si was insufficient.
[0066]
In Comparative Example No. 10, the Fe amount was as low as 0.40% by mass, and the (solid solution Si amount / added Si amount) ratio was as high as 0.80, and the foil rollability and softening strength resistance were inferior. . In addition, there were many pinholes.
[0067]
Moreover, since comparative example No. 11 had much Fe amount of 2.78 mass%, work hardening became excessive and foil rolling property was inferior.
[0068]
In Comparative Example No. 12, since the Si amount was as small as 0.005% by mass, work softening occurred and the foil rollability was inferior. Moreover, the softening strength characteristics were extremely poor. In addition, there were many pinholes.
[0069]
In Comparative Example No. 13, the Si amount was as large as 0.41% by mass, and the ratio of (solid solution Si amount / added Si amount) was as high as 0.80. Therefore, the foil rollability was poor and the number of pinholes generated was also low. There were many.
[0070]
Further, Comparative Example No. 14 had a large number of pinholes due to a large amount of Cu and Mn.
[0071]
【The invention's effect】
As described above in detail, according to the present invention, an aluminum alloy foil excellent in foil rollability and foil strength can be obtained by controlling the solid solution amount of each component in the alloy. That is, an aluminum alloy foil is manufactured by controlling the composition of aluminum alloy foil, the amount of solid solution Fe and the ratio of (solid solution Si amount / added Si amount) within the range described in the claims of the present invention. If this foil is used, the laminate material is baked because it has good foil rollability and excellent softening strength properties without causing work softening and excessive work hardening during foil rolling. An aluminum alloy foil having a good foil strength can be produced even after the treatment. Furthermore, the above-described effects can be further enhanced by appropriately controlling the amount of elemental Si, Cu, Mn, and the total amount of solid solution Cu and solid solution Mn in the alloy. Further, in producing the aluminum alloy foil, the aluminum alloy is controlled by controlling the homogenization treatment conditions, the rough rolling conditions in hot rolling, and the finish rolling conditions to the ranges described in the claims of the present invention. The foil can be manufactured by omitting the intermediate annealing step. Thereby, a thinner aluminum alloy foil can be manufactured at a lower cost. The aluminum alloy foil of the present invention can be used for a wide range of applications including foods, medicines and other packaging materials.

Claims (3)

Fe:0.5乃至2.5質量%、Si:0.01乃至0.3質量%、Cu:0.002乃至0.05質量%及びMn:0.003乃至0.05質量%を含有し、残部がAl及び不可避的不純物からなる組成を有し、固溶Fe量が10乃至200ppm、添加Si量に対する固溶Si量の比が0.2乃至0.75、固溶Cu量と固溶Mn量の合計が500ppm以下であることを特徴とするアルミニウム合金箔地。Fe: 0.5 to 2.5 mass%, Si: 0.01 to 0.3 mass %, Cu: 0.002 to 0.05 mass%, and Mn: 0.003 to 0.05 mass % The balance is composed of Al and inevitable impurities, the solid solution Fe amount is 10 to 200 ppm, the ratio of the solid solution Si amount to the added Si amount is 0.2 to 0.75, the solid solution Cu amount and the solid solution An aluminum alloy foil characterized in that the total amount of Mn is 500 ppm or less. 単体で存在するSiの含有量が600ppm以下であることを特徴とする請求項1に記載のアルミニウム合金箔地。  The aluminum alloy foil according to claim 1, wherein the content of Si present alone is 600 ppm or less. Fe:0.5乃至2.5質量%、Si:0.01乃至0.3質量%、Cu:0.002至0.05質量%及びMn:0.003乃至0.05質量%を含有し、残部がAl及び不可避的不純物からなる組成を有するアルミニウム合金鋳塊を、450乃至600℃の均熱温度に、2乃至20時間保持して均質化処理を行う工程と、粗圧延開始温度を450乃至550℃、粗圧延終了温度を350乃至500℃として熱間圧延における粗圧延を行う工程と、仕上圧延終了温度を250℃以下又は290℃以上として熱間圧延における仕上圧延を行う工程とを有し、中間焼鈍をすることなく、固溶Fe量が10乃至200ppm、添加Si量に対する固溶Si量の比が0.2乃至0.75、固溶Cu量と固溶Mn量の合計が500ppm以下であるアルミニウム合金箔地を製造することを特徴とするアルミニウム合金箔地の製造方法。Fe: 0.5 to 2.5 mass%, Si: 0.01 to 0.3 mass %, Cu: 0.002 to 0.05 mass%, and Mn: 0.003 to 0.05 mass % A step of homogenizing the aluminum alloy ingot having a composition composed of Al and unavoidable impurities at a soaking temperature of 450 to 600 ° C. for 2 to 20 hours, and a rough rolling start temperature of 450 To 550 ° C., rough rolling end temperature to 350 to 500 ° C. and rough rolling in hot rolling, and finish rolling end temperature to 250 ° C. or lower or 290 ° C. or higher and finish rolling in hot rolling. Without intermediate annealing, the solid solution Fe amount is 10 to 200 ppm, the ratio of the solid solution Si amount to the added Si amount is 0.2 to 0.75, and the total of the solid solution Cu amount and the solid solution Mn amount is 500 ppm. Is Method for producing an aluminum alloy foil locations, characterized in that the production of aluminum alloy foil land.
JP2000099803A 2000-03-31 2000-03-31 Aluminum alloy foil and method for producing the same Expired - Lifetime JP3808276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000099803A JP3808276B2 (en) 2000-03-31 2000-03-31 Aluminum alloy foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000099803A JP3808276B2 (en) 2000-03-31 2000-03-31 Aluminum alloy foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001288524A JP2001288524A (en) 2001-10-19
JP3808276B2 true JP3808276B2 (en) 2006-08-09

Family

ID=18614102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000099803A Expired - Lifetime JP3808276B2 (en) 2000-03-31 2000-03-31 Aluminum alloy foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3808276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008342A (en) * 2012-12-27 2013-04-03 亚洲铝业(中国)有限公司 Production method of 5052-H32 aluminum alloy plate-strip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799903B2 (en) * 2005-05-09 2011-10-26 住友軽金属工業株式会社 Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
KR101842689B1 (en) 2010-09-16 2018-03-27 가부시키가이샤 유에이씨제이 Material for molded packages
CN103270182B (en) * 2010-12-20 2016-08-10 株式会社Uacj Electrode collector alloy foil and manufacture method thereof
JP6431315B2 (en) * 2014-08-14 2018-11-28 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008342A (en) * 2012-12-27 2013-04-03 亚洲铝业(中国)有限公司 Production method of 5052-H32 aluminum alloy plate-strip

Also Published As

Publication number Publication date
JP2001288524A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
TW201807210A (en) Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP2000087198A (en) MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JP3767492B2 (en) Method for producing aluminum flexible foil
US5380379A (en) Aluminum foil product and manufacturing method
JP3808276B2 (en) Aluminum alloy foil and method for producing the same
JP3787695B2 (en) Aluminum alloy foil and method for producing the same
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP7414453B2 (en) Aluminum alloy material and its manufacturing method
JP2000054093A (en) Manufacture of aluminum foil
JPS61110744A (en) Al alloy plate for packing and its manufacture
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP3737744B2 (en) Method for manufacturing aluminum foil
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JP3798231B2 (en) Aluminum alloy foil and method for producing the same
JP2000054046A (en) Aluminum foil base for thin foil and its production
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP5080150B2 (en) Manufacturing method of aluminum alloy plate for high-strength cap with excellent openability and ear rate
JP2697820B2 (en) Method for producing aluminum alloy foil with excellent strength and pinhole characteristics
JPH04313403A (en) Manufacture of aluminum alloy plate for forming
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JP2945178B2 (en) Manufacturing method of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Ref document number: 3808276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

EXPY Cancellation because of completion of term