JP2697820B2 - Method for producing aluminum alloy foil with excellent strength and pinhole characteristics - Google Patents

Method for producing aluminum alloy foil with excellent strength and pinhole characteristics

Info

Publication number
JP2697820B2
JP2697820B2 JP62114420A JP11442087A JP2697820B2 JP 2697820 B2 JP2697820 B2 JP 2697820B2 JP 62114420 A JP62114420 A JP 62114420A JP 11442087 A JP11442087 A JP 11442087A JP 2697820 B2 JP2697820 B2 JP 2697820B2
Authority
JP
Japan
Prior art keywords
foil
annealing
strength
aluminum alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62114420A
Other languages
Japanese (ja)
Other versions
JPS63282244A (en
Inventor
啓介 八木
義朗 戸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP62114420A priority Critical patent/JP2697820B2/en
Publication of JPS63282244A publication Critical patent/JPS63282244A/en
Application granted granted Critical
Publication of JP2697820B2 publication Critical patent/JP2697820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は箔焼鈍後の強度の高いアルミニウム箔を与え
るアルミニウム合金箔地の製造方法に関し、さらに詳し
くは、アルミニウム箔の薄肉化要求に対応できる箔焼鈍
後の強度が高い、しかもピンホール特性など品質の優れ
た薄肉化アルミニウム箔に加工できるアルミニウム合金
箔地の製造方法に関する。 (従来の技術) 一般に食品、薬品等の各種包装用アルミニウム箔やフ
ィルムコンデンサ用アルミニウム箔の材料としてはJIS1
N30合金が最も多く用いられている。さらに放送用アル
ミニウム箔は紙やプラスチックフィルムと貼り合せて用
いられることも多く、そのため接着剤やコート剤、印刷
インク等との接着力、密着力を高くするため、またフィ
ルムコンデンサ用箔では静電容量の低下を防止するため
に箔表面の圧延油を除去する必要があり、そこで箔の軟
化も兼ねて焼鈍脱脂が行われている。特に最近、これら
のアルミニウム箔に対して薄肉化の要求があり、薄肉化
された箔の延びによる印刷のズレ防止あるいはコンデン
サ巻き上げ時の箔切れ防止のため、焼鈍脱脂後の強度
(O材強度)を向上させる必要がある。しかしCuやMgを
添加して強度を上げようとすると加工硬化し易くなり、
アルミニウム箔の場合箔圧延において圧延性が悪くな
り、さらにその結果特に厚さ20μm以下の薄箔ではピン
ホールが発生し易くなる。 そこで箔用アルミニウム合金にZr又はZrとVを添加す
ることにより、合金の完全再結晶温度を上昇させ、その
結果箔の焼鈍脱脂処理において完全再結晶させることな
く加工組織を残存させた状態に保持して箔の強度向上を
はかることが提案されている(特開昭61−41742号)。 (発明が解決しようとする問題点) しかしながら、特開昭61−41742号公報記載の方法の
ように加工組織を残存させた状態すなわち部分再結晶組
織にすることは、実際操業上製品が非常に不安定とな
る。例えば箔製品をコイルとして焼鈍脱脂する際、コイ
ルの内巻と外巻あるいは幅方向で一定温度に制御するこ
とは非常に困難で、その結果温度差により再結晶率が部
分的に異なり、強度のバラツキとして現われてくる。従
って箔の長手方向、幅方向あるいはロット間での強度の
バラツキが大きいものとなって、その後の箔の加工工程
で非常に扱い難いものとなる。また上記公報の発明では
実施例において箔の焼鈍脱脂を350℃で1時間行ってそ
の後の強度を比較している。しかし、通常箔の焼鈍脱脂
は製品幅により異なるが、10数時間以上行っており、こ
の条件では同公報記載の合金でも完全再結晶し、強度は
従来品と同程度になってしまうことがあり、また短時間
にすると脱脂が不十分となる問題があった。 従って本発明は圧延性、ピンホール特性を損なうこと
なくO材強度を向上させ箔の薄肉化が可能なアルミニウ
ム合金箔地の製造方法を提供することを目的とする。 (問題を解決するための手段) 本発明者らはこれまでのアルミニウム箔に関する研究
から箔圧延における圧延性は、材料の加工硬化特性と密
接な関係にあり、加工硬化の度合いが大き過ぎる場合、
薄箔にするピンホール数が著しく多くなったり、さらに
は変形抵抗が大きいため、圧延できないことも起こりう
ることを見出した。また加工硬化の度合が小さい場合
は、圧延速度を上げられず生産性が悪くなるため、適度
な加工硬化特性を有する箔用材料が必要であることも見
出した。そこで適度な加工硬化特性を有し、しかも箔焼
鈍後のO材強度が高い箔用アルミニウム合金材料を開発
するため鋭意研究を重ねた結果、所定量のNiの添加が有
効であり、かつ冷間圧延及び箔地焼鈍の条件を制御する
ことにより、その目的が達成されることを見出した。本
発明はこの知見に基づいてなされたものである。 すなわち、本発明はNi 0.3〜1.2wt%を含有し、残部
がアルミニウム及び不可避不純物からなるアルミニウム
合金の板材を50%以上の圧下率で冷間圧延した後、300
〜400℃で箔地焼鈍を施し、さらにその後必要に応じて
冷間圧延を行うことを特徴とする強度及びピンホール特
性に優れたアルミニウム合金箔地の製造方法を提供する
ものである。 本発明においてアルミニウム合金にNiを添加すると材
料の加工硬化の度合いは大きくなるが、Niの添加量、冷
間圧延の圧下率及び箔地焼鈍条件を制御することにより
箔圧延における加工硬化を十分許容範囲に抑えることが
でき、ピンホール特性が損われることなく、また箔焼鈍
後のO材強度が向上するため箔の薄肉化が可能となる。 本発明においてNi含有量を0.3〜1.2wt%とするが、0.
3wt%未満では箔焼鈍後のO材強度向上の効果が小さ
く、1.2wt%を越えると粗大な化合物となり易く、薄箔
においてピンホールの原因となる。 本発明のアルミニウム合金に含有していてもよいNi以
外の金属として主な不純物であるFe、Si、Cuは、適度な
強度を持たせるのに有効であり、従って1100合金や1N30
合金程度の範囲で添加してもよい。またTiは鋳造組織を
微細にして熱間圧延を安定させるためにAl−Tiあるいは
Al−Ti−B母合金として添加することもあるが、添加し
ないで羽毛状晶組織とした方が金属間化合物が微細とな
るため、熱間圧延に支障がなければTiは少ない方が好ま
しい。 本発明における板材は通常のDC鋳塊を均質化処理後熱
間圧延して得られた板材、あるいは、連続鋳像により得
られた板材のいずれも使用することことができる。本発
明において板材を50%以上の圧下率で冷間圧延し、その
後300〜400℃で箔地焼鈍するのは、固溶元素を析出させ
るためである。箔圧延において重要な加工硬化特性は元
素の種類及びその元素の固容量と密接な関係にあり、固
容量が多いほど加工硬化し易くなるので、Ni及びその他
の不純物の固溶元素を析出させることにより過度の加工
硬化を防止するためである。この場合、箔地焼鈍前の冷
間圧延が50%未満だと箔地焼鈍の際固溶元素の析出が起
り難く、また箔地焼鈍温度が300℃未満、あるいは400℃
を越える場合析出が起り難い。箔地焼鈍後はさらに必要
に応じて、すなわち箔メーカーの圧延条件に適した調質
に従って冷間圧延を行い箔地とすることができる。この
ような箔地の厚さは特に制限はないが通常0.3〜1.0mmで
ある。 (発明の効果) 本発明によれば加工硬度の度合いが従来材並で、しか
も強加工領域では加工軟化を生じ、従って箔圧延におい
て圧延性を損うことなく、その結果ピンホールも少な
く、また箔焼鈍後のO材強度がバラツキがなく従来材よ
り高いため箔のより薄肉化が可能なアルミニウム合金箔
地を得ることができる。また、本発明のアルミニウム合
金箔地によれば箔の焼鈍脱脂を極めて効率適に行うこと
ができ、各種用途に応じた品質の優れた薄肉化アルミニ
ウム箔を得ることができる。 (実施例) 以下に本発明を実施例に基づきさらに詳細に説明す
る。 実施例1 第1表に示す合金組成、すなわち1N30合金相当の組成
をベースとし、Ni又はZrとVをそれぞれ添加した11種の
組成のアルミニウム合金のDC鋳塊を調製し、各鋳塊に均
質化処理(600℃×6時間)及び熱間圧延処理を施し
て、3.0mm厚(一部2.5mm厚)の板材とし、これら冷間圧
延前板材についてそれぞれ第1表に示す条件で第1次冷
間圧延及び箔地焼鈍を施し、さらに冷間圧延を行うこと
により0.42mm厚(一部0.45mm厚)の箔地試料を作製し
た。各箔地試料は箔圧延により7μm厚(一部15μm
厚)の箔とし、その後箔焼鈍(350℃×24時間)を施し
て最終箔とした。 各箔地試料の箔地焼鈍後の加工硬化曲線を第1図及び
第2図に示す。また各試料の最終箔について測定したピ
ンホール数及び引張強さを第2表に示す。 第1図及び第2図から明らかなように、本発明による
アルミニウム合金箔地(NO.1、No.2、No.3、No.8、及び
No.10)の加工強度が上がるのに従って従来材(No.5及
びNo.6)のそれより若干高くなるが、強加工領域では加
工が進むにつれてかえって低下し、この領域で圧延に好
都合な加工軟化現象が生じることを示している。これに
対して、従来冷の場合には顕著な加工軟化現象が示され
ず、また本発明範囲以外の比較例箔地(No.4、No.7、N
o.9及びNo.11)の場合いずれも強加工領域で軟化現象を
示すものの強度そのものは加工が進むにつれて著しく増
大している。 次に第2表に示す結果では、本発明によるアルミニウ
ム箔地(No.1、No.2、No.3、No.8及びNo.10)から得ら
れた箔のピンホール性は従来例箔地(No.5、6)からの
箔のそれぞ同等以上に良好であり、しかも箔地焼鈍後の
強度は従来例のそれより3割以上高くなり得ることが明
らかである。他方、比較例箔地では上述のように加工強
度が著しく増大するためピンホール数の非常に多い箔し
か得られず、薄箔化に適さないことを示している。 実施例2 第3表に示す合金組成すなわち1070合金相当組成をベ
ースとしてこれにNi又はZrとVをそれぞれ添加した6割
の組成のアルミニウム合金のDC鋳塊を調製し、各鋳塊に
均質化処理(600℃×6時間)及び熱間圧延を施し3.0mm
厚の板材とした。その後これらの冷間圧延前板材に対し
て第3表に示すように約73%の圧下率で第1次冷間圧延
を行った後、360℃×4時間の箔地焼鈍を施し、さらに
その後冷間圧延により0.42mm厚の箔地試料を作成した。
各箔地試料を箔圧延により7μm厚とし、その後箔焼鈍
(350℃×24時間)を施し最終箔とした。 第3図にこれら箔地試料の箔地焼鈍後の加工硬化曲線
を示す。また各箔地試料から得た最終箔について測定し
たピンホール数及び引張強さを第4表に示す。 第3図及び第4表の結果は実施例1の場合と同様、本
発明によるアルミニウム合金箔地が箔圧延性に優れ、ピ
ンホール数が少なく、しかも箔焼鈍後の強度の高い良好
な薄肉化箔となることを示している。すなわち、第3図
において、本発明方法によるアルミニウム合金箔地(N
o.12、No.13及びNO.14)は従来例箔地(No.16及びNo.1
7)に比べ加工強度は加工が進むにつれて若干高くなる
が強加工領域では軟化現象により好適な強度に低下する
ことを示している。また第4表には本発明によるアルミ
ニウム合金箔地から得た箔のピンホール数が従来例箔地
から得た箔のそれぞ同等でしかも箔焼鈍後の強度が非常
に高い(従来例の場合の1.4倍)箔が得られることを示
している。これに反し、従来例箔地から得た箔は強度が
低く、また比較例箔地から得た箔はピンホール性が悪い
という欠点を示している。
Description: TECHNICAL FIELD The present invention relates to a method for producing an aluminum alloy foil material which gives an aluminum foil having high strength after foil annealing, and more specifically, can respond to a demand for a thinner aluminum foil. The present invention relates to a method for manufacturing an aluminum alloy foil that can be processed into a thinned aluminum foil having high strength after foil annealing and excellent quality such as pinhole characteristics. (Conventional technology) Generally, JIS1 is used as a material for aluminum foil for packaging various kinds of food and medicine and aluminum foil for film capacitors.
N30 alloy is most often used. In addition, aluminum foil for broadcasting is often used by bonding it to paper or plastic film, so that the adhesive strength and adhesion to adhesives, coating agents, printing inks, etc. are increased. It is necessary to remove the rolling oil on the foil surface in order to prevent a decrease in capacity, and annealing degreasing is also performed therefor, while also softening the foil. In particular, recently, there has been a demand for thinning of these aluminum foils. In order to prevent displacement of printing due to extension of the thinned foils or breakage of foils when winding up capacitors, strength after annealing and degreasing (O material strength). Need to be improved. However, if you try to increase the strength by adding Cu or Mg, it becomes easier to work harden,
In the case of aluminum foil, the rollability is poor in foil rolling, and as a result, pinholes are likely to occur particularly in a thin foil having a thickness of 20 μm or less. Therefore, by adding Zr or Zr and V to the aluminum alloy for the foil, the complete recrystallization temperature of the alloy is raised, and as a result, the processed structure remains without being completely recrystallized in the annealing degreasing treatment of the foil. It has been proposed to improve the strength of the foil (JP-A-61-41742). (Problems to be Solved by the Invention) However, in a method in which a processed structure is left, that is, in a partially recrystallized structure as in the method described in Japanese Patent Application Laid-Open No. 61-41742, the product is actually extremely Becomes unstable. For example, when annealing and degreasing a foil product as a coil, it is very difficult to control the temperature at a constant value in the inner and outer windings or in the width direction of the coil. It appears as variation. Therefore, there is a large variation in strength in the longitudinal direction, width direction, or between lots of the foil, and it becomes very difficult to handle the subsequent foil processing steps. Further, in the invention of the above publication, in the examples, annealing degreasing of the foil is performed at 350 ° C. for 1 hour, and the strength after that is compared. However, the annealing and degreasing of the normal foil varies depending on the product width, but is performed for more than 10 hours or more.In this condition, even the alloy described in the same publication completely recrystallizes, and the strength may be about the same as the conventional product. In addition, there is a problem that if the time is short, the degreasing becomes insufficient. Accordingly, an object of the present invention is to provide a method for producing an aluminum alloy foil material capable of improving the strength of the O material and reducing the thickness of the foil without impairing the rollability and pinhole characteristics. (Means for Solving the Problems) The present inventors have studied the aluminum foils so far, and the rollability in foil rolling is closely related to the work hardening characteristics of the material, and when the degree of work hardening is too large,
It has been found that rolling cannot be performed because the number of pinholes to be made into a thin foil is remarkably large, and furthermore, deformation resistance is large. In addition, when the degree of work hardening is low, the rolling speed cannot be increased and productivity is deteriorated. Therefore, it has been found that a foil material having appropriate work hardening characteristics is required. Therefore, as a result of intensive studies to develop aluminum alloy materials for foils having appropriate work hardening characteristics and high O-material strength after foil annealing, the addition of a predetermined amount of Ni is effective, and It has been found that the object is achieved by controlling the conditions of rolling and foil annealing. The present invention has been made based on this finding. That is, according to the present invention, an aluminum alloy sheet containing 0.3 to 1.2 wt% of Ni and the balance consisting of aluminum and unavoidable impurities is cold-rolled at a rolling reduction of 50% or more,
An object of the present invention is to provide a method for producing an aluminum alloy foil excellent in strength and pinhole characteristics, which comprises subjecting a foil base to annealing at a temperature of up to 400 ° C., and then performing cold rolling as needed. In the present invention, when Ni is added to an aluminum alloy, the degree of work hardening of the material increases, but work hardening in foil rolling is sufficiently tolerated by controlling the amount of Ni added, the reduction ratio of cold rolling, and the conditions of foil annealing. It is possible to reduce the thickness of the foil because the pinhole characteristics are not impaired and the strength of the O material after the foil annealing is improved. In the present invention, the Ni content is 0.3 to 1.2 wt%,
If the content is less than 3 wt%, the effect of improving the strength of the O material after foil annealing is small, and if it exceeds 1.2 wt%, the compound tends to become coarse, which causes pinholes in the thin foil. Fe, Si, and Cu, which are main impurities as metals other than Ni that may be contained in the aluminum alloy of the present invention, are effective in imparting appropriate strength, and are therefore effective in providing 1100 alloy and 1N30.
You may add in the range of an alloy. In addition, Ti is made of Al-Ti or
Although it may be added as an Al-Ti-B master alloy, it is preferable to use a feathered crystal structure without the addition, since the intermetallic compound becomes finer, so that the Ti content is small as long as it does not hinder hot rolling. As the plate material in the present invention, either a plate material obtained by hot rolling an ordinary DC ingot after homogenization treatment or a plate material obtained by a continuous casting image can be used. In the present invention, the reason why the sheet material is cold-rolled at a reduction ratio of 50% or more and then subjected to foil ground annealing at 300 to 400 ° C. is to precipitate solid-solution elements. Important work hardening characteristics in foil rolling are closely related to the type of element and the solid capacity of the element, and the higher the solid capacity, the easier it is to work harden, so that solid solution elements of Ni and other impurities should be precipitated. This is to prevent excessive work hardening. In this case, if the cold rolling before foil annealing is less than 50%, precipitation of solid solution elements hardly occurs during foil annealing, and the foil annealing temperature is less than 300 ° C or 400 ° C.
If it exceeds, precipitation hardly occurs. After the foil annealing, cold rolling can be performed as necessary, that is, according to tempering suitable for the rolling conditions of the foil maker, to obtain a foil. The thickness of such foil is not particularly limited, but is usually 0.3 to 1.0 mm. (Effects of the Invention) According to the present invention, the degree of processing hardness is comparable to that of the conventional material, and the processing is softened in the strong processing area, so that the rollability is not impaired in the foil rolling, so that the number of pinholes is small, and Since the strength of the O material after the foil annealing does not vary and is higher than that of the conventional material, it is possible to obtain an aluminum alloy foil material capable of making the foil thinner. Further, according to the aluminum alloy foil of the present invention, annealing and degreasing of the foil can be performed extremely efficiently, and a thinned aluminum foil having excellent quality according to various uses can be obtained. (Examples) Hereinafter, the present invention will be described in more detail based on examples. Example 1 Based on the alloy compositions shown in Table 1, that is, a composition corresponding to 1N30 alloy, DC ingots of 11 kinds of aluminum alloys were prepared by adding Ni or Zr and V, respectively. The sheet is subjected to a hot rolling treatment (600 ° C. × 6 hours) and a hot rolling treatment to form a 3.0 mm-thick (partly 2.5 mm-thick) sheet material. Cold rolling and foil annealing were performed, and further cold rolling was performed to prepare a 0.42 mm thick (0.45 mm thick) foil sample. Each foil ground sample is 7 μm thick (15 μm in part) by foil rolling.
Thick), and then subjected to foil annealing (350 ° C. × 24 hours) to obtain a final foil. FIG. 1 and FIG. 2 show work hardening curves of each foil sample after foil annealing. Table 2 shows the number of pinholes and the tensile strength measured for the final foil of each sample. As is clear from FIGS. 1 and 2, the aluminum alloy foil material (NO.1, No.2, No.3, No.8, and
As the working strength of No. 10) increases, it becomes slightly higher than that of the conventional materials (No. 5 and No. 6), but in the strong working area, it decreases rather as the working progresses, and in this area, the processing convenient for rolling This indicates that a softening phenomenon occurs. On the other hand, in the case of the conventional cooling, no remarkable work softening phenomenon was shown, and the foils of the comparative examples (No. 4, No. 7, N
In both cases of o.9 and No.11), although the softening phenomenon occurs in the strong working region, the strength itself increases remarkably as the working proceeds. Next, the results shown in Table 2 show that the pinhole properties of the foils obtained from the aluminum foil fabric (No. 1, No. 2, No. 3, No. 8, and No. 10) according to the present invention are the same as those of the conventional foil. It is clear that the foils from the ground (Nos. 5 and 6) are equal to or better than each other, and that the strength after the foil ground annealing can be 30% or more higher than that of the conventional example. On the other hand, the foil strength of the comparative example significantly increased the processing strength as described above, so that only a foil having a very large number of pinholes was obtained, indicating that it was not suitable for thinning the foil. Example 2 A DC ingot of an aluminum alloy having a composition of 60% was prepared by adding Ni or Zr and V to the alloy composition shown in Table 3, that is, a composition corresponding to the 1070 alloy, and homogenized into each ingot. Treated (600 ° C x 6 hours) and hot rolled, 3.0mm
A thick plate was used. Then, as shown in Table 3, these sheets before cold rolling were subjected to primary cold rolling at a rolling reduction of about 73%, and then subjected to foil ground annealing at 360 ° C. for 4 hours, and further thereafter. A 0.42 mm thick foil sample was prepared by cold rolling.
Each foil sample was rolled to a thickness of 7 μm, and then subjected to foil annealing (350 ° C. × 24 hours) to obtain a final foil. FIG. 3 shows the work hardening curves of these foil samples after the foil annealing. Table 4 shows the number of pinholes and the tensile strength measured for the final foil obtained from each foil base sample. The results in FIGS. 3 and 4 show that the aluminum alloy foil of the present invention has excellent foil rolling properties, a small number of pinholes, and high strength after foil annealing. It shows that it becomes foil. That is, in FIG. 3, the aluminum alloy foil (N
o.12, No.13 and No.14) are conventional foils (No.16 and No.1)
Compared with 7), the working strength slightly increases as the working progresses, but in the strong working area, the strength decreases due to the softening phenomenon. Table 4 shows that the number of pinholes of the foil obtained from the aluminum alloy foil of the present invention is the same as that of the foil obtained from the conventional foil, and the strength after the foil annealing is very high (in the case of the conventional example). 1.4 times that of the film). On the other hand, the foil obtained from the conventional foil has low strength, and the foil obtained from the comparative foil has poor pinhole properties.

【図面の簡単な説明】 第1図、第2図及び第3図はそれぞれ箔地焼鈍後の箔地
の加工硬化曲線を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2 and FIG. 3 are graphs each showing a work hardening curve of the foil after annealing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 686 8719−4K C22F 1/00 686A 691 8719−4K 691B 694 8719−4K 694A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22F 1/00 686 8719-4K C22F 1/00 686A 691 8719-4K 691B 694 8719-4K 694A

Claims (1)

(57)【特許請求の範囲】 1.Ni 0.3〜1.2wt%を含有し、残部がアルミニウム及
び不可避不純物からなるアルミニウム合金の板材を50%
以上の圧下率で冷間圧延した後、300〜400℃で箔地焼鈍
を施し、さらにその後必要に応じて冷間圧延を行うこと
を特徴とする強度及びピンホール特性に優れたアルミニ
ウム合金箔地の製造方法。
(57) [Claims] 50% of aluminum alloy sheet material containing 0.3-1.2wt% Ni, the balance being aluminum and unavoidable impurities
An aluminum alloy foil excellent in strength and pinhole characteristics, characterized in that after being cold-rolled at the above rolling reduction, the foil is annealed at 300 to 400 ° C., and then cold-rolled if necessary. Manufacturing method.
JP62114420A 1987-05-13 1987-05-13 Method for producing aluminum alloy foil with excellent strength and pinhole characteristics Expired - Fee Related JP2697820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114420A JP2697820B2 (en) 1987-05-13 1987-05-13 Method for producing aluminum alloy foil with excellent strength and pinhole characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114420A JP2697820B2 (en) 1987-05-13 1987-05-13 Method for producing aluminum alloy foil with excellent strength and pinhole characteristics

Publications (2)

Publication Number Publication Date
JPS63282244A JPS63282244A (en) 1988-11-18
JP2697820B2 true JP2697820B2 (en) 1998-01-14

Family

ID=14637263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114420A Expired - Fee Related JP2697820B2 (en) 1987-05-13 1987-05-13 Method for producing aluminum alloy foil with excellent strength and pinhole characteristics

Country Status (1)

Country Link
JP (1) JP2697820B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551710A (en) * 1991-08-23 1993-03-02 Showa Alum Corp Method for annealing aluminum foil
JP2663090B2 (en) * 1993-02-25 1997-10-15 昭和アルミニウム株式会社 Metal strip frame processing apparatus and processing method
JP5179244B2 (en) * 2008-04-30 2013-04-10 三菱アルミニウム株式会社 Aluminum foil for circuit and method for manufacturing circuit material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537366A (en) * 1976-07-09 1978-01-23 Seikosha Kk Changeover device
JPS6141742A (en) * 1984-07-31 1986-02-28 Showa Alum Corp High strength aluminum alloy foil and its manufacture

Also Published As

Publication number Publication date
JPS63282244A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
US5116428A (en) Rolled thin sheets of aluminum alloy
JP2697820B2 (en) Method for producing aluminum alloy foil with excellent strength and pinhole characteristics
JPH08325663A (en) Aluminum alloy sheet excellent in press formability and its production
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JPH0363442B2 (en)
JP3808276B2 (en) Aluminum alloy foil and method for producing the same
JPH11217656A (en) Production of aluminum alloy foil excellent in foil rollability
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
EP1141433A2 (en) High strength aluminium alloy sheet and process
JP2872784B2 (en) Manufacturing method of aluminum foil
JPH0320454B2 (en)
JP2003164903A (en) Method for manufacturing aluminium foil
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP2945178B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH11279724A (en) Production of aluminum alloy sheet for deep drawing
JP2001234270A (en) Method for producing aluminum alloy sheet having fine crystal grain structure and aluminum alloy sheet obtained by the same producing method
JPH0585630B2 (en)
JP3180812B2 (en) Method for producing Al-Fe alloy foil
US5372780A (en) Aluminum alloys suitable for lithographic printing plates
JP3854401B2 (en) Method for producing aluminum alloy support for lithographic printing plate
JPH04313403A (en) Manufacture of aluminum alloy plate for forming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees