JPS6157384B2 - - Google Patents

Info

Publication number
JPS6157384B2
JPS6157384B2 JP19359883A JP19359883A JPS6157384B2 JP S6157384 B2 JPS6157384 B2 JP S6157384B2 JP 19359883 A JP19359883 A JP 19359883A JP 19359883 A JP19359883 A JP 19359883A JP S6157384 B2 JPS6157384 B2 JP S6157384B2
Authority
JP
Japan
Prior art keywords
temperature
heating
less
superplastic
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19359883A
Other languages
Japanese (ja)
Other versions
JPS6086249A (en
Inventor
Yoshimitsu Myaki
Mitsuo Hino
Takehiko Eto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19359883A priority Critical patent/JPS6086249A/en
Priority to US06/660,126 priority patent/US4618382A/en
Publication of JPS6086249A publication Critical patent/JPS6086249A/en
Publication of JPS6157384B2 publication Critical patent/JPS6157384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超塑性アルミニウム合金の製造方法に
関し、さらに詳しくは、Al−Zn−Mg系の高強度
超塑性アルミニウム合金の製造方法に関する。 超塑性とは、ある外的条件の下で材料がくびれ
(neking)なしに、数100〜1000%の巨大な伸び
を生じる現象であり、恒温変態を利用した変態超
塑性と微細粒結晶材料で見られる微細粒超塑性
(構造超塑性)とに大別される。そして、この微
細粒超塑性を起させるためには、その材料の結晶
粒径を微細に制御することが必須である。 一般に、高強度アルミニウム合金は、鋳造後鋳
塊を400〜550℃の温度で均質化処理を行ない、次
いで、350〜550℃の温度で熱間加工および冷間加
工を行なつてから、450〜550℃の温度で溶体化処
理、時効処理を行なつて所望の材料とするのであ
るが、このような通常の工程では結晶粒は40〜
100μmと大きくなつてしまい、高温において変
形を行なつても超塑性伸びは得られない。 本発明は上記に説明したように、いままでは、
Al−Zn−Mg系の高強度アルミニウム合金では困
難であつた微細粒組識を得ることができる超塑性
アルミニウム合金の製造方法を提供するものであ
る。 本発明に係る超塑性アルミニウム合金の製造方
法は、(1)Zn3〜8wt%、Mg0.5〜3wt%を必須成分
とし、Cu3wt%以下、Mn0.05〜2.0wt%、Cr0.05
〜2.0wt%、Zr0.05〜0.5wt%、V0.05〜0.5wt%、
Ti0.15wt%以下の中から選んだ1種または2種
以上を含有し、残部Alおよび不純物からなるAl
−Zn−Mg系合金鋳塊を、400〜550℃の温度にお
いて均質化熱処理を行ない、次いで、350〜500℃
の温度で熱間加工を行なつた後、第1回の加熱保
持を450〜550℃の温度で0.5〜10Hr行ない、次
に、第2回の加熱温度まで冷却し、350〜450℃の
温度で0.5〜50Hrの第2回の加熱保持を行ない、
30℃/Hr以上の冷却速度で冷却してから、少なく
とも30%以上の冷間加工を行なうことを特徴とす
る超塑性アルミニウム合金の製造方法を第1の発
明とし、(2)Zn3〜8wt%、Mg0.5〜3wt%を必須成
分とし、Cu3wt%以下、Mn0.05〜2.0wt%、
Cr0.05〜0.5wt%、Zr0.05〜0.5wt%、V0.05〜
0.5wt%、Ti0.15wt%以下の中から選んだ1種ま
たは2種以上を含有し、残部Alおよび不純物か
らなるAl−Zn−Mg系合金鋳塊を、400〜550℃の
温度において均質化熱処理を行ない、次いで、
350〜500℃の温度で熱間加工を行なつた後、第1
回の加熱保持を450〜550℃の温度で0.5〜10Hr行
ない、次に、第2回の加熱温度まで冷却し、350
〜450℃の温度で0.5〜50Hrの第2回の加熱保持
を行ない、30℃/Hr以上の冷却速度で冷却してか
ら、20〜60%の冷間加工を行ない、続いて300℃
以下の低温焼鈍と冷間加工を1回以上行なうこと
を特徴とする超塑性アルミニウム合金の製造方法
を第2の発明とし、(3)Zn3〜8wt%、Mg0.5〜3wt
%を必須成分とし、Cu3wt%以下、Mn0.05〜
2.0wt%、Cr0.05〜2.0wt%、Zr0.05〜0.5wt%、
V0.05〜0.5wt%、Ti0.15wt%以下の中から選ん
だ1種または2種以上を含有し、残部Alおよび
不純物からなるAl−Zn−Mg系合金鋳塊を、400
〜550℃の温度において均質化熱処理を行ない、
次いで、350〜500℃の温度で熱間加工を行なつた
後、第1回の加熱保持を450〜550℃の温度で0.5
〜10Hr行ない、次に、第2回の加熱温度まで冷
却し、350〜450℃の温度で0.5〜50Hrの第2回の
加熱保持を行ない、30℃/Hr以上の冷却速度で冷
却してから、少なくとも30%以上の冷間加工を行
なうか、或いは、20〜60%の冷冷間加工を行な
い、続いて300℃以下の低温軟化焼鈍と冷間加工
を1回以上行ない、さらに、100℃/Hr以上の速
度で350〜550℃の温度で加熱軟化処理を行なうこ
とを特徴とする超塑性アルミニウム合金の製造方
法を第3の発明とする3つの発明よりなるもので
ある。 本発明に係る超塑性アルミニウム合金の製造方
法について以下詳細に説明する。 先ず、アルミニウム合金の含有成分および成分
割合について説明する。 Znは含有量が3wt%未満では充分な強度が得ら
れず、また、8wt%を超える含有量では延性、耐
蝕性が損なわれる。よつて、Zn含有量は3〜8wt
%とする。 Mgは0.5wt%未満では充分な強度が得られず、
また、3wt%を越える含有量では冷間加工性が損
なわれる。よつて、Mg含有量は0.5〜3wt%とす
る。 Cuは3wt%を越えて含有されると延性、靭性が
損なわれる。よつて、Cu含有量は3wt%以下とす
る。 Mn、Cr、Zr、Vは夫々0.05wt%未満では後述
するように微細な結晶粒が得られず、また、
Mn2.0wt%、Cr、Zr、Vが夫々0.5wt%および
Ti0.15wt%を越えて含有されると鋳造時に充分
に固溶されず、巨大金属間化合物が発生して充分
な伸びが得られない。よつて、Mn含有量は0・
05〜2.0wt%、Cr含有量は0.05〜0.5wt%、Zr0.05
〜0.5wt%、V0.05*0.5wt%、Ti0.15wt%以下と
する。 なお、不純物として含有されることがある
Fe、Siは含有量が0.15wt%を越えると不溶性の
晶出物が発生して伸びの低下が著しくなる。よつ
て、FeおよびSiの含有量は夫々0.15wt%以下と
する。 次に、熱処理法について説明する。 上記に説明した含有成分および成分割合のアル
ミニウム合金を鋳造して得られた鋳塊を、内部に
不均質に分布している主要元素の均質化および熱
間加工性を向上させるため、400〜550℃の温度に
おいて充分な時間均質化熱処理を行ない。続い
て、350〜500℃の温度で熱間加工を行なつて所定
の板厚まで加工し、粗い鋳造組識は熱間フアイバ
ー組識となると同時に組識内にZn、Mg、Cu等の
析出物およびMn、Cr、Zr、V、Ti等の遷移元素
の一部が部分析出する。さらに、熱間加工後、30
%以上の冷間加工を行なうとより微細な結晶粒が
得られ超塑性伸びも大きくなる。 この熱間加工された材料は450〜550℃の温度で
0.5〜10Hrの第1回の加熱保持を行ない、続いて
第2回の加熱保持温度まで冷却し、350〜450℃の
温度で0.5〜50Hrの第2回の加熱保持を行ない、
30℃/Hr以上の冷却速度で冷却する。この加熱保
持の温度が高い程時間は短時間で良い。 2回の加熱保持において、第1回の加熱保持に
より析出している溶質元素はその大部分が固溶さ
れ、続く第2回の加熱保持により遷移元素Mn、
Cr、Zr等とAlとの金属間化合物MnAl6
Cr2Mg3Al18、ZrAl3等が析出し、次の冷間加工後
の超塑性温度域での加熱によつて材料中に生成さ
れる微細粒組織が保持されて超塑性が得られる。 また、この2回の加熱保持は加熱保持を1回で
行なつた場合に比較して、遷移元素の析出形態が
微細なことおよび若干のZn、Mg、Cu等とAlとの
高温時効析出物が形成されるために、加熱保持後
の冷却速度も30℃/Hrと遅くなつても良く、製造
がより容易となり、かつ、冷間加工中に生成され
る転位の密度がより高くなり、さらに微細な結晶
粒が生成され超塑性伸びの大きいものが得られ
る。この加熱保持により熱間フアイバー組織を形
成していた転位の下部組織は回復、再結晶により
歪エネルギーが低減され、続く冷間加工で転位が
導入され易くなる。 この加熱保持後の冷却速度は30℃/Hr未満にな
ると超塑性伸びが得られにくくなる。 冷却後、少なくとも30%以上の冷間加工を行な
うのであるが、30%未満の加工率では充分微細な
結晶粒が得られない。 また、20〜60%の冷間加工とこれに続く300℃
以下の低温軟化焼鈍とを1回以上行なうこともで
き、この低温焼鈍を導入することにより結晶粒は
さらに微細化される。 このように冷間加工された材料には、高い歪エ
ネルギーを持つ転位の下部組織が高密度に形成さ
れる。この材料を通常0.5Tm{Tmは材料の融点
(絶対温度)}以上の超塑性温度域(アルミニウム
合金では400℃以上)に加熱すると高密度の転位
組織を起点として新しい結晶粒が形成され、従つ
て、転位組織が高密度程、微細粒組織が得られ超
塑性伸びが大きくなる。そして、一度再結晶が完
了すると、結晶粒界のエネルギーを減少するため
に転位が移動して結晶粒は粗大化する傾向があ
り、この粗大化した結晶粒が超塑性変形を阻害す
ることになる。 よつて、本発明に係る超塑性アルミニウム合金
の製造方法においては、熱間圧延後の加熱保持中
に形成されたMnAl6、Cr2Mg3Al16、ZrAl3等の析
出物の寸法を分布とを制御することにより転位の
移動を阻止し、微細粒組織を保持するものであ
る。即ち、析出物の寸法が小さ過ぎたり、粒子間
隔が大き過ぎると転位移動阻止効果が得られな
い。 また、本発明に係る超塑性アルミニウム合金の
製造方法においては、冷間加工のままの材料を超
塑性加工してもよいが、100℃/Hr以上の加熱速
度で加熱し、350〜550℃の温度で加熱軟化処理を
行なつてから超塑性加工を行なうこともできる。 本発明に係る超塑性アルミニウム合金の製造方
法において製造された微細結晶粒超塑性材料は適
切な温度(通常400℃以上)において、くびれ
(局所伸び)が発生することなく500%以上の超塑
性伸びが得られる。 本発明に係る超塑性アルミニウム合金の製造方
法の実施例を説明する。 実施例 1 通常のDC鋳造法により鋳造したZn5.7wt%、
Mg2.3wt%、Cu1.5wt%、Cr0.20wt%、Fe0.10wt
%、Si0.05wt%残部Alよりなる鋳塊(厚さ400
mm)を465℃の温度で12Hr均質化熱処理後、400
℃の温度で冷間圧延を行なつて4〜6mm厚の板と
し、第1表に示す工程で最終板厚2.5mmの材料を
作製し、510℃の温度に加熱後、歪速度2×
10-4/secで変形した。 第1表より明らかなように、本発明に係る超塑
性アルミニウム合金の製造方法により製造された
材料の超塑性伸びは比較材に比べて2倍以上約6
倍にも達するものがある。
The present invention relates to a method for producing a superplastic aluminum alloy, and more particularly, to a method for producing a high-strength Al-Zn-Mg-based superplastic aluminum alloy. Superplasticity is a phenomenon in which a material undergoes enormous elongation of several 100 to 1000% without necking under certain external conditions. It is broadly classified into fine-grained superplasticity (structural superplasticity). In order to cause this fine grain superplasticity, it is essential to finely control the crystal grain size of the material. Generally, high-strength aluminum alloys are produced by homogenizing the ingot after casting at a temperature of 400 to 550°C, then hot working and cold working at a temperature of 350 to 550°C, and then The desired material is obtained by solution heat treatment and aging treatment at a temperature of 550℃, but in such a normal process, the crystal grain size is 40~
It becomes as large as 100 μm, and superplastic elongation cannot be obtained even if deformation is performed at high temperatures. As explained above, the present invention has been described above.
The present invention provides a method for producing a superplastic aluminum alloy that can obtain a fine grain structure that is difficult to obtain with Al-Zn-Mg-based high-strength aluminum alloys. The method for producing a superplastic aluminum alloy according to the present invention includes (1) essential components of Zn3-8wt%, Mg0.5-3wt%, Cu3wt% or less, Mn0.05-2.0wt%, Cr0.05;
~2.0wt%, Zr0.05~0.5wt%, V0.05~0.5wt%,
Al containing one or more selected from Ti0.15wt% or less, with the balance consisting of Al and impurities.
-The Zn-Mg alloy ingot is subjected to homogenization heat treatment at a temperature of 400 to 550°C, and then at a temperature of 350 to 500°C.
After hot working at a temperature of Perform the second heating and holding for 0.5 to 50 Hr at
The first invention provides a method for producing a superplastic aluminum alloy, which is characterized by cooling at a cooling rate of 30°C/Hr or higher and then cold working by at least 30%, and (2) Zn3-8wt%. , Mg0.5~3wt% as essential components, Cu3wt% or less, Mn0.05~2.0wt%,
Cr0.05~0.5wt%, Zr0.05~0.5wt%, V0.05~
An Al-Zn-Mg alloy ingot containing one or more selected from 0.5wt% and 0.15wt% or less of Ti, with the balance consisting of Al and impurities is homogenized at a temperature of 400 to 550℃. Heat treatment is performed, and then
After hot working at a temperature of 350 to 500℃, the first
Heating and holding for 0.5 to 10 hours at a temperature of 450 to 550℃, then cooling to the second heating temperature and heating to 350℃
A second heating hold for 0.5-50 Hr at a temperature of ~450°C, followed by cooling at a cooling rate of 30°C/Hr or higher, followed by 20-60% cold working, followed by 300°C
The second invention is a method for producing a superplastic aluminum alloy, which is characterized by performing the following low-temperature annealing and cold working one or more times: (3) Zn3-8wt%, Mg0.5-3wt%
% is an essential component, Cu3wt% or less, Mn0.05~
2.0wt%, Cr0.05~2.0wt%, Zr0.05~0.5wt%,
An Al-Zn-Mg alloy ingot containing one or more selected from V0.05~0.5wt% and Ti0.15wt% or less, with the balance being Al and impurities,
Homogenization heat treatment at a temperature of ~550℃,
Next, after hot working at a temperature of 350 to 500°C, the first heating holding is performed at a temperature of 450 to 550°C for 0.5
〜10Hr, then cool down to the second heating temperature, hold the second heating for 0.5~50Hr at a temperature of 350~450℃, and then cool at a cooling rate of 30℃/Hr or more. , at least 30% or more cold working, or 20~60% cold working, followed by low temperature softening annealing and cold working at 300°C or less once or more, and then 100°C This invention consists of three inventions, the third invention being a method for producing a superplastic aluminum alloy, which is characterized by performing heat softening treatment at a temperature of 350 to 550° C. at a rate of at least /Hr. The method for producing a superplastic aluminum alloy according to the present invention will be described in detail below. First, the components and component ratios of the aluminum alloy will be explained. If the Zn content is less than 3 wt%, sufficient strength cannot be obtained, and if the content exceeds 8 wt%, ductility and corrosion resistance are impaired. Therefore, the Zn content is 3 to 8 wt.
%. If Mg is less than 0.5wt%, sufficient strength cannot be obtained.
Moreover, if the content exceeds 3 wt%, cold workability will be impaired. Therefore, the Mg content is set to 0.5 to 3 wt%. If Cu is contained in an amount exceeding 3wt%, ductility and toughness will be impaired. Therefore, the Cu content should be 3wt% or less. If Mn, Cr, Zr, and V are each less than 0.05wt%, fine crystal grains cannot be obtained as described later, and
Mn2.0wt%, Cr, Zr, V each 0.5wt% and
If Ti is contained in excess of 0.15 wt%, it will not be sufficiently solid-dissolved during casting, and giant intermetallic compounds will occur, making it impossible to obtain sufficient elongation. Therefore, the Mn content is 0.
05~2.0wt%, Cr content is 0.05~0.5wt%, Zr0.05
~0.5wt%, V0.05*0.5wt%, Ti 0.15wt% or less. In addition, it may be contained as an impurity.
When the content of Fe and Si exceeds 0.15 wt%, insoluble crystallized substances are generated, resulting in a significant decrease in elongation. Therefore, the contents of Fe and Si are each 0.15 wt% or less. Next, the heat treatment method will be explained. In order to homogenize the main elements that are heterogeneously distributed inside the ingot and improve hot workability, we cast an ingot obtained by casting an aluminum alloy with the above-mentioned components and ratios. A homogenization heat treatment is carried out at a temperature of °C for a sufficient time. Next, hot working is carried out at a temperature of 350 to 500°C to reach the specified thickness, and the rough cast structure becomes a hot fiber structure, and at the same time, Zn, Mg, Cu, etc. Some transition elements such as Mn, Cr, Zr, V, and Ti are partially analyzed. Furthermore, after hot working, 30
If cold working is carried out by % or more, finer grains will be obtained and the superplastic elongation will also increase. This hot-processed material can be heated at temperatures between 450 and 550℃.
Perform the first heating and holding for 0.5 to 10 Hr, then cool to the second heating and holding temperature, and perform the second heating and holding for 0.5 to 50 Hr at a temperature of 350 to 450°C,
Cool at a cooling rate of 30℃/Hr or higher. The higher the temperature for this heating and holding, the shorter the time. During the two heating and holding cycles, most of the solute elements precipitated by the first heating and holding are dissolved in solid solution, and the second heating and holding process converts the transition elements Mn, Mn,
Intermetallic compound of Cr, Zr, etc. and Al MnAl 6 ,
Cr 2 Mg 3 Al 18 , ZrAl 3 , etc. are precipitated, and the fine grain structure generated in the material is maintained by heating in the superplastic temperature range after the next cold working, resulting in superplasticity. In addition, compared to the case where heating and holding is performed once, the precipitation form of transition elements is finer, and some high-temperature aging precipitates of Zn, Mg, Cu, etc. and Al are present. In order to form Fine crystal grains are generated and a product with large superplastic elongation can be obtained. By this heating and holding, the dislocation underlying structure that had formed the hot fiber structure recovers and recrystallizes, reducing the strain energy, making it easier for dislocations to be introduced in the subsequent cold working. If the cooling rate after this heating and holding is less than 30°C/Hr, it becomes difficult to obtain superplastic elongation. After cooling, cold working is performed to a rate of at least 30%, but if the working rate is less than 30%, sufficiently fine grains cannot be obtained. Also, 20-60% cold working followed by 300℃
The following low-temperature softening annealing can be performed one or more times, and by introducing this low-temperature annealing, the crystal grains are further refined. In the material that has been cold-worked in this manner, a dense dislocation substructure with high strain energy is formed. When this material is heated to the superplastic temperature range (usually 400°C or higher for aluminum alloys) above 0.5Tm {Tm is the melting point (absolute temperature) of the material}, new crystal grains are formed starting from the high-density dislocation structure, and Therefore, the higher the density of the dislocation structure, the finer the grain structure and the greater the superplastic elongation. Once recrystallization is completed, dislocations move to reduce the energy at grain boundaries, and the grains tend to become coarser, and these coarsened grains inhibit superplastic deformation. . Therefore, in the method for producing a superplastic aluminum alloy according to the present invention, the size distribution of precipitates such as MnAl 6 , Cr 2 Mg 3 Al 16 , and ZrAl 3 formed during heating and holding after hot rolling is determined. By controlling this, the movement of dislocations is prevented and the fine grain structure is maintained. That is, if the size of the precipitates is too small or the particle spacing is too large, the effect of inhibiting dislocation movement cannot be obtained. In addition, in the method for producing a superplastic aluminum alloy according to the present invention, the material as it is cold-worked may be subjected to superplastic working, but the material is heated at a heating rate of 100°C/Hr or more, and the material is heated at 350 to 550°C. Superplastic working can also be performed after heat softening treatment at a high temperature. The fine-grained superplastic material produced by the method for producing a superplastic aluminum alloy according to the present invention exhibits superplastic elongation of 500% or more without necking (local elongation) at an appropriate temperature (usually 400°C or higher). is obtained. An example of the method for manufacturing a superplastic aluminum alloy according to the present invention will be described. Example 1 Zn5.7wt% cast by normal DC casting method,
Mg2.3wt%, Cu1.5wt%, Cr0.20wt%, Fe0.10wt
%, Si0.05wt% balance Al ingot (thickness 400
mm) after 12Hr homogenization heat treatment at a temperature of 465℃, 400
A plate with a thickness of 4 to 6 mm was obtained by cold rolling at a temperature of 510°C, and a material with a final thickness of 2.5 mm was produced through the steps shown in Table 1. After heating to a temperature of 510°C, the strain rate was 2×.
It deformed at 10 -4 /sec. As is clear from Table 1, the superplastic elongation of the material produced by the method for producing a superplastic aluminum alloy according to the present invention is more than twice that of the comparative material, about 6
Some even double.

【表】 実施例 2 通常のDC法により鋳造された実施例1と同し
鋳塊(厚さ400mm)を465℃の温度で12Hr均質化
熱処理後、400℃の温度における熱間圧延により
12.5mm厚の板とした後、510℃の温度で3Hrおよ
び400℃の温度で10Hrの加熱保持を行なつた後、
約100℃/Hrの冷却速度で冷却後、第2表に示す
冷間圧延および低温焼鈍により2.5mm厚の材料を
作製し、510℃の温度に加熱後、歪速度2×
10-4/secで変形した。 第2表より明らかであるが、本発明に係る超塑
性アルミニウム合金の製造方法により製作された
材料は、低温軟化焼鈍しない材料と同等かまたは
それ以上の超塑性伸びのあることがわかる。
[Table] Example 2 The same ingot (thickness: 400 mm) as in Example 1, which was cast by the normal DC method, was homogenized at a temperature of 465°C for 12 hours, and then hot rolled at a temperature of 400°C.
After making a 12.5mm thick plate, it was heated and held at a temperature of 510℃ for 3 hours and at a temperature of 400℃ for 10 hours.
After cooling at a cooling rate of approximately 100°C/Hr, a material with a thickness of 2.5 mm was produced by cold rolling and low-temperature annealing as shown in Table 2, and after heating to a temperature of 510°C, the strain rate was 2×.
Deformed at 10 -4 /sec. As is clear from Table 2, it can be seen that the material produced by the method for producing a superplastic aluminum alloy according to the present invention has a superplastic elongation equal to or greater than that of a material that is not subjected to low-temperature softening annealing.

【表】 実施例 3 通常のDC法により鋳造した実施例1と同じ鋳
塊(厚さ400mm)を465℃の温度で12Hrの均質化
熱処理後、400℃の温度における熱間圧延により
6.3mm厚の板とし、510℃の温度で3Hrおよび400
℃の温度で10Hrの加熱保持を行なつた後、約100
℃/Hrの冷却速度で冷却し、冷間圧延により2.5
mm厚の板とし、第3表に示す加熱速度で480℃の
温度に加熱軟化処理し、510℃の温度で歪速度2
×10-4/secで変形した。 この第3表より明らかであるが、本発明に係る
超塑性アルミニウム合金の製造方法による100℃/
Hr以上の加熱速度で加熱して軟化処理した材料
の超塑性伸びは、加熱速度が40℃/Hrの場合に比
して格段と優れていることがわかる。
[Table] Example 3 The same ingot (thickness: 400 mm) as in Example 1, which was cast by the normal DC method, was subjected to homogenization heat treatment at a temperature of 465°C for 12 hours, and then hot rolled at a temperature of 400°C.
6.3mm thick plate, 3Hr and 400 at a temperature of 510℃
After heating and holding for 10 hours at a temperature of ℃, approximately 100
Cooled at a cooling rate of ℃/Hr and cold rolled to 2.5
A plate with a thickness of mm was heat-softened at a temperature of 480℃ at the heating rate shown in Table 3, and the strain rate was 2 at a temperature of 510℃.
Deformed at ×10 -4 /sec. As is clear from Table 3, the temperature at 100°C/
It can be seen that the superplastic elongation of the material softened by heating at a heating rate of 40° C./Hr or more is much better than that when the heating rate is 40° C./Hr.

【表】 以上説明したように、本発明に係る超塑性アル
ミニウム合金の製造方法は上記の構成を有してい
るものであるから、この方法により製造された材
料はくびれ(局所伸び)が発生することなく、
500%以上の超塑性伸びが得られるという効果が
ある。
[Table] As explained above, since the method for producing a superplastic aluminum alloy according to the present invention has the above configuration, the material produced by this method has constriction (local elongation). without any
It has the effect of obtaining superplastic elongation of 500% or more.

Claims (1)

【特許請求の範囲】 1 Zn3〜8wt%、Mg0.5〜3wt%、 を必須成分とし、 Cu3wt%以下、Mn0.05〜2.0wt%、 Cr0.05〜2.0wt%、Zr0.05〜0.5wt%、 V0.05〜0.5wt%、Ti0.15wt%以下 の中から選んだ1種または2種以上を含有し、残
部Alおよび不純物からなるAl−Zn−Mg系合金鋳
塊を、400〜550℃の温度において均質化熱処理を
行ない、次いで、350〜500℃の温度で熱間加工を
行なつた後、第1回の加熱保持を450〜550℃の温
度で0.5〜10Hr行ない、次に、第2回の加熱温度
まで冷却し、350〜450℃の温度で0.5〜50Hrの第
2回の加熱保持を行ない、30℃/Hr以上の冷却速
度で冷却してから、少なくとも30%以上の冷間加
工を行なうことを特徴とする超塑性アルミニウム
合金の製造方法。 2 Zn3〜8wt%、Mg0.5〜3wt%、 を必須成分とし、 Cu3wt%以下、Mn0.05〜2.0wt%、 Cr0.05〜0.5wt%、Zr0.05〜0.5wt%、 V0.05〜0.5wt%、Ti0.15wt%以下 の中から選んだ1種または2種以上を含有し、残
部Alおよび不純物からなるAl−Zn−Mg系合金鋳
塊を、400〜550℃の温度において均質化熱処理を
行ない、次いで、350〜500℃の温度で熱間加工を
行なつた後、第1回の加熱保持を450〜550℃の温
度で0.5〜10Hr行ない、次に、第2回の加熱温度
まで冷却し、350〜450℃の温度で0.5〜50Hrの第
2回の加熱保持を行ない、30℃/Hr以上の冷却速
度で冷却してから、20〜60%の冷間加工を行な
い、続いて300℃以下の低温焼鈍と冷間加工を1
回以上行なうことを特徴とする超塑性アルミニウ
ム合金の製造方法。 3 Zn3〜8wt%、Mg0.5〜3wt%、 を必須成分とし、 Cu3wt%以下、Mn0.05〜2.0wt%、 Cr0.05〜2.0wt%、Zr0.05〜0.5wt%、 V0.05〜0.5wt%、Ti0.15wt%以下 の中から選んだ1種または2種以上を含有し、残
部Alおよび不純物からなるAl−Zn−Mg系合金鋳
塊を、400〜550℃の温度において均質化熱処理を
行ない、次いで、350〜500℃の温度で熱間加工を
行なつた後、第1回の加熱保持を450〜550℃の温
度で0.5〜10Hr行ない、次に、第2回の加熱温度
まで冷却し、350〜450℃の温度で0.5〜50Hrの第
2回の加熱保持を行ない、30℃/Hr以上の冷却速
度で冷却してから、少なくとも30%以上の冷間加
工を行なうか、或いは、20〜60%の冷間加工を行
ない、続いて300℃以下の低温軟化焼鈍と冷間加
工を1回以上行ない、さらに、100℃/Hr以上の
速度で350〜550℃の温度で加熱軟化処理を行なう
ことを特徴とする超塑性アルミニウム合金の製造
方法。
[Claims] 1 Zn3-8wt%, Mg0.5-3wt%, are essential components, Cu3wt% or less, Mn0.05-2.0wt%, Cr0.05-2.0wt%, Zr0.05-0.5wt %, V0.05 to 0.5wt%, Ti 0.15wt% or less, and the balance is Al and impurities. After performing homogenization heat treatment at a temperature of 350 to 500 °C, and then hot working at a temperature of 350 to 500 °C, the first heating holding was performed at a temperature of 450 to 550 °C for 0.5 to 10 hours, and then, Cool to the second heating temperature, perform a second heating hold for 0.5 to 50 Hr at a temperature of 350 to 450°C, cool at a cooling rate of 30°C/Hr or more, and then cool at least 30% or more. A method for manufacturing a superplastic aluminum alloy, which is characterized by performing preliminary working. 2 Zn3~8wt%, Mg0.5~3wt%, are essential components, Cu3wt% or less, Mn0.05~2.0wt%, Cr0.05~0.5wt%, Zr0.05~0.5wt%, V0.05~ An Al-Zn-Mg alloy ingot containing one or more selected from 0.5wt% and 0.15wt% or less of Ti, with the balance consisting of Al and impurities is homogenized at a temperature of 400 to 550℃. After heat treatment and then hot working at a temperature of 350 to 500°C, the first heating holding is performed at a temperature of 450 to 550°C for 0.5 to 10 hours, and then the second heating temperature is A second heating hold is performed for 0.5 to 50 hours at a temperature of 350 to 450℃, followed by cooling at a cooling rate of 30℃/Hr or higher, followed by cold working of 20 to 60%. 1. Low temperature annealing and cold working below 300℃
A method for producing a superplastic aluminum alloy, characterized by carrying out the process more than once. 3 Zn3~8wt%, Mg0.5~3wt%, are essential components, Cu3wt% or less, Mn0.05~2.0wt%, Cr0.05~2.0wt%, Zr0.05~0.5wt%, V0.05~ An Al-Zn-Mg alloy ingot containing one or more selected from 0.5wt% and 0.15wt% or less of Ti, with the balance consisting of Al and impurities is homogenized at a temperature of 400 to 550℃. After heat treatment and then hot working at a temperature of 350 to 500°C, the first heating holding is performed at a temperature of 450 to 550°C for 0.5 to 10 hours, and then the second heating temperature is After cooling to a temperature of 350 to 450℃ and a second heating hold for 0.5 to 50Hr, cooling at a cooling rate of 30℃/Hr or more, cold working by at least 30% or more, or Alternatively, perform 20-60% cold working, then perform low-temperature softening annealing and cold working at 300°C or less, and then heat at a temperature of 350-550°C at a rate of 100°C/Hr or more. A method for producing a superplastic aluminum alloy, which comprises performing a softening treatment.
JP19359883A 1983-10-17 1983-10-17 Preparation of super-plastic aluminum alloy Granted JPS6086249A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19359883A JPS6086249A (en) 1983-10-17 1983-10-17 Preparation of super-plastic aluminum alloy
US06/660,126 US4618382A (en) 1983-10-17 1984-10-12 Superplastic aluminium alloy sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19359883A JPS6086249A (en) 1983-10-17 1983-10-17 Preparation of super-plastic aluminum alloy

Publications (2)

Publication Number Publication Date
JPS6086249A JPS6086249A (en) 1985-05-15
JPS6157384B2 true JPS6157384B2 (en) 1986-12-06

Family

ID=16310616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19359883A Granted JPS6086249A (en) 1983-10-17 1983-10-17 Preparation of super-plastic aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6086249A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770848A (en) * 1987-08-17 1988-09-13 Rockwell International Corporation Grain refinement and superplastic forming of an aluminum base alloy
KR101834590B1 (en) * 2010-09-08 2018-03-05 아르코닉 인코포레이티드 Improved 6xxx aluminum alloys, and methods for producing the same
CN111511941B (en) * 2017-12-22 2021-12-31 日本发条株式会社 Aluminum alloy, aluminum alloy spring, and aluminum alloy fastening member

Also Published As

Publication number Publication date
JPS6086249A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US4618382A (en) Superplastic aluminium alloy sheets
JPS6115148B2 (en)
JPS623225B2 (en)
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPS623226B2 (en)
US5810949A (en) Method for treating an aluminum alloy product to improve formability and surface finish characteristics
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPS6157384B2 (en)
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPH039183B2 (en)
JPS60251260A (en) Manufacture of super plastic aluminum alloy
JPS6149796A (en) Manufacture of superplastic aluminum alloy for diffused junction
JPS62225B2 (en)
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JPS6157383B2 (en)
JPS6157387B2 (en)
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPS62226B2 (en)
JPS6157386B2 (en)
JPS622024B2 (en)
JPH0747801B2 (en) Manufacturing method of aluminum alloy sheet for superplastic forming
JPH07116569B2 (en) Method for producing A1-Li-Cu-Mg based superplastic plate with little anisotropy
JP2652016B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPS6318042A (en) Manufacture of superplastic aluminum alloy