JPS60251260A - Manufacture of super plastic aluminum alloy - Google Patents

Manufacture of super plastic aluminum alloy

Info

Publication number
JPS60251260A
JPS60251260A JP59107195A JP10719584A JPS60251260A JP S60251260 A JPS60251260 A JP S60251260A JP 59107195 A JP59107195 A JP 59107195A JP 10719584 A JP10719584 A JP 10719584A JP S60251260 A JPS60251260 A JP S60251260A
Authority
JP
Japan
Prior art keywords
rolling
temperature
cold
aluminum alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59107195A
Other languages
Japanese (ja)
Inventor
Mitsuo Hino
光雄 日野
Takehiko Eto
武比古 江藤
Yasuhiro Maeda
康弘 前田
Kazuo Furuki
古木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59107195A priority Critical patent/JPS60251260A/en
Publication of JPS60251260A publication Critical patent/JPS60251260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain an Al alloy whose super plasticity is further improved, by applying homogenizing heat treatment in two steps to an Al alloy ingot, then hot and cold rolling said ingot by cross rolling. CONSTITUTION:The Al alloy ingot of systems of Al-Cu, Al-Mg, Al-Mg-Si, Al- Zn-Mg is homogenizing heat treated at 400-550 deg.C, then subjected to said treatment at 300-550 deg.C. Said ingot is hot rolled at 300-550 deg.C, then heating held in 1-2 steps at said temp., and precipitation treated. Next, cooled by >=30 deg.C/hr rate, cold rolled by >=30% or 20-60%, then annealed for low temp. softening and cold rolled at >=300 deg.C. Thereat, during hot rolling, rolled by 10-40% reduction quantity, then cross rolled against the remaining reduction quantity. During cold rolling, cross rolling by 10-40% reduction quantity is added. By this method, the movement of dislocated precipitates is obstructed, the fine particle structure is maintained and the Al alloy whose super plastic elongation is improved is obtained.

Description

【発明の詳細な説明】 f産業上の利用分野J 本発明は超塑性アルミニウム合金の製造方法に関し、さ
らに詳しくは、超塑性伸びの優れた超塑性アルミニウム
合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application J The present invention relates to a method for producing a superplastic aluminum alloy, and more particularly to a method for producing a superplastic aluminum alloy with excellent superplastic elongation.

[従米枝術1 超塑性とは、ある外的条件の下で(・Alがくびれ(n
eckinFi)なしに、数百〜数千%の巨大な伸びを
生じる現象であり、恒温変態を利用した変態超塑性と微
細粒超塑性に大別される。微細粒超塑性を起させるため
には、その材料の結晶粒径を微細に制御することが必須
である。これは、合金組成の最適化と加工と熱処理等の
製造条件により達成することができる。
[Jumeishijutsu 1 Superplasticity means that under certain external conditions (・Al is constricted (n
This is a phenomenon in which a huge elongation of several hundred to several thousand percent occurs without eckinFi), and is broadly classified into transformation superplasticity using isothermal transformation and fine-grained superplasticity. In order to induce fine-grain superplasticity, it is essential to finely control the crystal grain size of the material. This can be achieved by optimizing the alloy composition and manufacturing conditions such as processing and heat treatment.

例エバ、AI−Zn−MPIM合金テハ、Zn3−8a
rt%、MHO,5−3+nt%ヲ必須成分トシ、Cu
 3+ut%以下、Mn O,05−2,0wt%、C
−r O,05−0,,5+uL%、Zr0.05〜0
.5u+t%、\! 0.05〜0.511It%、T
i0.15u+t%以下の中から選んだ1種または2種
以−1−を含有し、残部AIおよび不純物からなるAl
−Zn−Mg系合金鋳塊を、40()〜550°Cの温
度において均質化熱処理を行な円次いで、31’l (
’1〜500℃の温度で熱間加工を行なった後、第1回
の加熱保持を450〜550°Cの温度で0.5〜1、
 (l Hr行ない、次に、第2回の加熱温度まで冷却
し、350〜450’Cの温度で0.5〜50Hrの第
2回の加熱保持を行ない、30℃/Hr以−にの冷却速
度で冷却してか1少なくとも3()%以」二の冷間加工
を行なうか、或いは、20〜60%の冷間加工を行ない
、続いて300℃以下の低温軟化焼鈍と冷間加工を1回
以」1行なし・、さらに、100℃/ Hr以」−の速
度で350−55 (’l ’Cの温度で加熱軟化焼鈍
を行なうことにより、伸びが500%以上である材料を
製造することができる。
Example Eva, AI-Zn-MPIM alloy Teha, Zn3-8a
rt%, MHO, 5-3+nt%, essential components, Cu
3+ut% or less, MnO, 05-2,0wt%, C
-r O,05-0,,5+uL%, Zr0.05~0
.. 5u+t%,\! 0.05-0.511 It%, T
Al containing one or more selected from i0.15u+t% or less, with the remainder consisting of AI and impurities.
-The Zn-Mg alloy ingot was subjected to homogenization heat treatment at a temperature of 40 () to 550 °C.
'After hot working at a temperature of 1 to 500°C, the first heating holding is performed at a temperature of 450 to 550°C for 0.5 to 1.
(1 Hr, then cool to the second heating temperature, perform a second heating hold at a temperature of 350 to 450'C for 0.5 to 50 Hr, and cool to 30°C/Hr or more. Either the material is cooled at a speed of at least 3()% or cold working is performed at a rate of 20% to 60%, followed by low temperature softening annealing and cold working at a temperature below 300°C. A material with an elongation of 500% or more can be manufactured by performing heat softening annealing at a temperature of 350-55 ('l'C) at a rate of 100℃/Hr or more. can do.

この伸びは大別すると、(1)変形中の結晶粒の粗大化
による超塑性現象の停止および(2)晶出化合物の周り
の応力集中によるボイ1ベキャビテイ)の発生による材
料の破断により制約を受ける。前者については、遷移元
素の金属間化合物MIIAI6、Cr2Mg5A11e
、ZrAl、、等を微細に分散させることにより、結晶
粒の粗大化を抑制することにより改善でき、また、後者
については、先ず、FeおよびSi等の含有量を規制す
ることに上り晶出物の量を低j威することと、さらに、
晶出物サイズと応力集中係数にとの間には、 K−f(a)PI−・・・・・(1) a ; 晶出物の外径 f(a) : 晶出物のサイズに依存する形状因子の関
係があり、式(1)より晶出物のサイズを小さく、かつ
、均一に分散させることにより、晶出物周りの応力集中
を低減することが可能となり、超塑性伸びを向上させる
ことができ、ひいては、構造材として使用していく上で
の材料特性の向上が期待でトる。
Broadly speaking, this elongation is limited by (1) cessation of superplasticity due to coarsening of crystal grains during deformation, and (2) rupture of the material due to generation of voids due to stress concentration around crystallized compounds. receive. For the former, intermetallic compounds of transition elements MIIAI6, Cr2Mg5A11e
, ZrAl, etc. can be finely dispersed to suppress coarsening of crystal grains, and the latter can be improved by first controlling the content of Fe, Si, etc. and further, reducing the amount of
The relationship between the crystallized material size and the stress concentration factor is: K-f(a) PI-...(1) a ; Outer diameter of the crystallized material f(a) : Crystallized material size According to equation (1), by reducing the size of the crystallized material and dispersing it uniformly, it is possible to reduce the stress concentration around the crystallized material, thereby increasing the superplastic elongation. It is hoped that this will lead to improvements in material properties when used as structural materials.

[発明が解決しようとする問題点] 本発明は」1記に説明したように、従来の超塑性3− アルミニウム合金における超塑性をさらに向」ニさせる
ことが可能な超塑性アルミニウム合金の製造方法を提供
するものである。
[Problems to be Solved by the Invention] As explained in Section 1, the present invention provides a method for producing a superplastic aluminum alloy that can further improve the superplasticity of conventional superplastic aluminum alloys. It provides:

[問題点を解決するための手段1 本発明に係る超塑性アルミニウム合金の特徴とするとこ
ろは、即ち、 Al−Cu系、AI−h鞘糸、AI−th−8i系、A
l−Zn−Mg系のアルミニウム合金鋳塊を、400〜
550℃の温度で均質化熱処理を行ない、次いで、30
0〜550℃の温度で均質化熱処理を行ない、次いで、
30()〜550℃の温度で熱間圧延した後、350〜
550℃の温度において1段階或いは2段階の加熱保持
を行ない、30°CHr以上の冷却速度で冷却してから
少なくとも30%以上の冷開圧延を行なうが或いは20
〜60%の冷間圧延を行なった後に、300℃以下の低
温軟化焼鈍と冷間圧延とを1回以」1行なう場合におい
て、前記熱間圧延持および/または冷間圧延時に、板材
に対し互いに直角方向のクロス圧延を行ない、このクロ
ス圧延を熱間圧延時には所4一 定圧下量の10〜4(1%の圧下量で圧延を施した後に
、この圧延方向に対し直角方向に残りの圧下量で圧延し
、冷開圧延時には冷間圧延工程中に所定圧下量の10〜
40%の圧下量で前記圧延方向に対し直角方向に圧延す
る工程を付加することにある。
[Means for Solving the Problems 1] The superplastic aluminum alloy according to the present invention is characterized by: Al-Cu system, AI-h sheath thread, AI-th-8i system, A
l-Zn-Mg based aluminum alloy ingot from 400~
Homogenization heat treatment is carried out at a temperature of 550 °C, then 30
Homogenization heat treatment is performed at a temperature of 0 to 550°C, and then
After hot rolling at a temperature of 30()~550℃, 350~
Perform one or two stages of heating and holding at a temperature of 550°C, cool at a cooling rate of 30°CHr or more, and then perform cold open rolling of at least 30% or 20°C.
In the case where low-temperature softening annealing at 300°C or less and cold rolling are performed at least once after cold rolling of ~60%, the plate material is Cross rolling is carried out in directions perpendicular to each other, and after this cross rolling is rolled with a constant reduction of 10 to 4 (1%) during hot rolling, the remaining reduction is carried out in the direction perpendicular to this rolling direction. During cold-open rolling, a predetermined reduction amount of 10~
The purpose is to add a step of rolling in a direction perpendicular to the rolling direction with a reduction of 40%.

本発明1こ系る超塑性アルミニウム合金の製造方法につ
いて以下詳細に説明する。
The method for manufacturing the superplastic aluminum alloy according to the present invention will be described in detail below.

先ず、本発明に係る超塑性アルミニウム合金の製造方法
における熱処理および加工について説明する。
First, heat treatment and processing in the method for producing a superplastic aluminum alloy according to the present invention will be explained.

Al−Cu系、Al−Mg系、Al−Mg−8i系、A
l−Zn−Mg系の所定の含有成分および成分割合のア
ルミニウム合金を通常の方法により鋳造しで得られた鋳
塊は、内部に不均質に分布している主要元素の均質化お
よび熱間加工性を向上させるため、400〜550℃の
温度において充分な時間均質化熱処理を行ない、続いて
、300〜550℃の温度で熱間圧延を行なって所定の
板厚まで加工し、粗い鋳造組織は熱開ファイバー組織と
なると同時に糾織内にZn、Mg、 CLI等の析出物
およびC「、Zr、\I、Ti等の遷移元素の一部が部
分析出する。この熱間圧延時に、先す、所定圧下量の1
0〜40%の圧延を実施し、次いで、スラブを回転して
残りの圧下量をクロス圧延で行なえば、FeおよびSi
を主体とする不溶性の晶出物およびMn、Cr、Zr、
V等を主体とした不溶性の晶出物は、縦横のクロス圧延
を受けることにより、クロス圧延を実施しない場合より
も格段に微細に破壊され、その分布が均一となる。この
ようなことか呟超塑性伸びを大部く阻害していた晶出物
周りの応力集中は大幅に緩和されて材料が大きい伸びを
示すのである。このクロス圧延中、前段の圧延は10%
未満では晶出物の微細化、均一分散化に効果が少なく、
また、40%を越える圧延では次の圧延方向における圧
延による晶出物の分散効果が少なくなる。よって、クロ
ス圧延の前段圧下量は10〜40%とする。
Al-Cu series, Al-Mg series, Al-Mg-8i series, A
An ingot obtained by casting an l-Zn-Mg-based aluminum alloy with a predetermined content and ratio of ingredients by a conventional method is homogenized and hot worked to homogenize the main elements that are heterogeneously distributed inside. In order to improve the properties, homogenization heat treatment is carried out at a temperature of 400 to 550°C for a sufficient period of time, followed by hot rolling at a temperature of 300 to 550°C to reach a predetermined thickness, and the coarse cast structure is removed. At the same time as the thermally opened fiber structure is formed, precipitates such as Zn, Mg, CLI, etc. and some transition elements such as C, Zr, \I, and Ti are partially separated out in the weave. 1 of the predetermined reduction amount
If rolling is performed from 0 to 40%, then the slab is rotated and the remaining reduction is cross-rolled, Fe and Si
Insoluble crystallized substances mainly composed of Mn, Cr, Zr,
By subjecting the insoluble crystallized substances mainly composed of V and the like to vertical and horizontal cross rolling, they are broken much more finely than when cross rolling is not carried out, and their distribution becomes uniform. Perhaps because of this, the stress concentration around the crystallized substances, which had been largely inhibiting superplastic elongation, is significantly relaxed, and the material exhibits a large elongation. During this cross rolling, the rolling of the previous stage is 10%
If it is lower than
Moreover, if the rolling rate exceeds 40%, the effect of dispersing crystallized substances by rolling in the next rolling direction will be reduced. Therefore, the amount of reduction in the first stage of cross rolling is set to 10 to 40%.

さらに、この熱間圧延後、好ましくは、30%以上の冷
開加工を行なうことにより、さらに微細粒の材料が得ら
れ超塑性伸びも大きくなる。次に、この熱間圧延後に3
50〜550℃の温度で0.5〜20Hrの加熱保持を
してか呟 100℃/Hr以」二の冷却速度で冷却して
固溶元素の強制固溶を図る。
Further, after this hot rolling, by preferably performing cold opening of 30% or more, a material with even finer grains can be obtained and the superplastic elongation can also be increased. Next, after this hot rolling, 3
Heating is maintained at a temperature of 50 to 550° C. for 0.5 to 20 hours, and cooling is performed at a cooling rate of 100° C./hour or higher to force solid solution of the solid solution elements.

また、この熱処理を急速冷却、急速加熱が可能な連続焼
鈍炉により、400〜550℃の温度で1.0sec〜
]0m1n間行なってもよく、この加熱保持によりZn
、h旬、Cu等は固溶され、一方、遷移元素のMn、 
Or、Zr等はAIと金属間化合物のMnAL、Cr2
Mg3Al+a、ZrAl3等を析出する。
In addition, this heat treatment is performed in a continuous annealing furnace capable of rapid cooling and rapid heating at a temperature of 400 to 550°C for 1.0 seconds to
]0m1n, and by this heating and holding, Zn
, H, Cu, etc. are dissolved in solid solution, while the transition elements Mn,
Or, Zr, etc. are AI and intermetallic compounds MnAL, Cr2
Mg3Al+a, ZrAl3, etc. are precipitated.

この1段加熱保持後の冷却速度が1 (l O℃/ I
−1r未満では超塑性が得られず伸びが出にくくなる。
The cooling rate after this one-stage heating and holding is 1 (l O℃/I
If it is less than -1r, superplasticity will not be obtained and elongation will be difficult to achieve.

また、加熱保持を2段で行なう場合、先ず、450−5
50°Cの温度で0.5−10Hrの第1回の加熱保持
を行ない、続いて第2回の加熱保持温度まで冷却し、3
50〜450℃の温度で0.5〜50 HrI7)第2
回の加熱保持を行ない、30℃/ Hr以」二の冷却速
度で冷却する。この加熱保持の温度が高い程時間は短時
間でよい。
In addition, when heating and holding is performed in two stages, first, 450-5
The first heating and holding time was carried out at a temperature of 50°C for 0.5-10Hr, followed by cooling to the second heating and holding temperature, and
0.5-50 HrI7) 2nd at a temperature of 50-450°C
The sample is heated and held twice, and then cooled at a cooling rate of 30°C/Hr or more. The higher the temperature for this heating and holding, the shorter the time may be.

7− 2回の加熱保持において、第1回の加熱保持により析出
している溶質元素はその大部分力1溶され、続く第2回
の加熱保持により遷移元素のMn、Cr、Zr等とA1
との金属間化合物、MnA16、Cr2Mg、、AI+
a、Z r A l 3等が析出する。
7- In two heating and holding operations, most of the solute elements precipitated by the first heating and holding process are dissolved by force 1, and then by the second heating and holding process, the transition elements Mn, Cr, Zr, etc. and A1 are dissolved.
Intermetallic compounds with, MnA16, Cr2Mg, , AI+
a, Z r A l 3, etc. are precipitated.

また、この2回の加熱保持は加熱保持を1回で行なった
場合に比較して、遷移元素の析出形態が微細なことおよ
び若干のZn、Mg、Cu等とA1との高温時効析出物
が形成されるために、加熱保持後の冷却速度も30℃/
Hrと遅くなってもよく、製造がより容易となり、かつ
、冷開加工中に生成される転位の密度がより高くなり、
さらに微細な結晶粒が生成され超塑性伸びの大きいもの
が得られる。
In addition, compared to the case where heating and holding is performed only once, these two heating and holding operations result in finer precipitated forms of transition elements and some high-temperature aging precipitates of Zn, Mg, Cu, etc. and A1. In order to form, the cooling rate after heating and holding is also 30℃/
Hr may be slower, manufacturing is easier, and the density of dislocations generated during cold opening is higher,
Furthermore, finer crystal grains are generated and a product with large superplastic elongation can be obtained.

この2段加熱保持後の冷却速度は30℃/Hr未満にな
ると超塑性伸びが得られにくくなる。
If the cooling rate after this two-stage heating and holding is less than 30° C./Hr, it becomes difficult to obtain superplastic elongation.

これらの加熱保持により熱間ファイバー組織を形成して
いた転位の下部組織は回復、再結晶により歪エネルギー
が低減され、続く冷間加工で転位が導入され易くなり、
かつ、Mn、Cr、Zrの析8− 小粒子により、次の冷開加工後の超塑性温度域での加熱
1こよって材料中に生成される微細粒組織が保持されて
超塑性が得られる。
Through these heating and holding operations, the dislocation substructure that had formed the hot fiber structure recovers and recrystallization reduces strain energy, making it easier for dislocations to be introduced during subsequent cold working.
In addition, due to the small particles of Mn, Cr, and Zr, the fine grain structure generated in the material is maintained by heating in the superplastic temperature range after the next cold opening process, and superplasticity is obtained. .

冷却後、少なくとも30%以上の冷開圧延を行なうので
あるが、30%未満の加工率では充分微細な結晶粒が得
られない。
After cooling, cold opening rolling is performed at least by 30% or more, but if the working rate is less than 30%, sufficiently fine grains cannot be obtained.

また、20〜60%の冷間圧延とこれに続く300℃以
下の低温軟化焼鈍とを1回以上行なうこともでき、この
低温焼鈍を導入することにより結晶粒はさらに微細化さ
れる。この場合の冷開圧延中に、所定冷間圧延量の10
〜40%の冷間クロス圧延を実施するのは晶出物の破壊
効果による超塑性伸び向上のためであり、この冷間クロ
ス圧延量を10〜40%とするのは、熱間クロス圧延の
場合と同じ理由である。
Further, 20-60% cold rolling followed by low-temperature softening annealing at 300°C or less can be performed one or more times, and by introducing this low-temperature annealing, the crystal grains are further refined. During the cold opening rolling in this case, 10 of the predetermined cold rolling amount
The reason for performing ~40% cold cross rolling is to improve superplastic elongation due to the destructive effect of crystallized substances, and the reason for setting this cold cross rolling amount to 10~40% is to improve the superplastic elongation due to the destructive effect of crystallized substances. The reason is the same as in the case.

このように、冷間加工された材料には、高い歪エネルギ
ーを有する転位の下部組織が高密度に形成されている。
In this manner, a dislocation substructure having high strain energy is formed in the cold-worked material at a high density.

この材料を引ト続き通常(1,5TmfTmは材料の敵
前(絶対温度))以上の超塑性温度域(アルミニウム合
金では400℃以」−)に加熱すると、高密度の転位組
織を起点として新しい結晶粒が形成され、従って、転位
組織は高密度である程微細粒組織が得られ超塑性となり
伸びか大きくなる。しかして、一度再結晶が完了すると
結晶粒界のエネルギ゛−が減少するため転位が移動して
結晶粒が粗大化し、そして、この粗大化した組織が超塑
性変形を阻害することになる。
If this material is subsequently heated to the superplastic temperature range (400°C or higher for aluminum alloys) above normal (1,5TmfTm is the absolute temperature of the material), new crystals start from the high-density dislocation structure. Grains are formed, and therefore, the higher the density of the dislocation structure, the finer the grain structure, the more superplastic it becomes, and the greater the elongation. Once recrystallization is completed, the energy at the grain boundaries decreases, dislocations move and the grains become coarser, and this coarsened structure inhibits superplastic deformation.

従って、本発明に係る超塑性アルミニウム合金の製造方
法における熱処理においては、熱間圧延後の加熱保持に
より形成された金属間化合物、M11A16、CrJ4
g++A11s、ZrA1.等の析出物の寸法と分布と
を制御することにより転位の移動を閉止して微細粒組織
を保持しているのである。即ち、析出物寸法が小さ過ぎ
たり、析出粒子間隔が大外過ぎると転位移動阻止効果が
得られない。
Therefore, in the heat treatment in the method for producing a superplastic aluminum alloy according to the present invention, the intermetallic compounds formed by heating and holding after hot rolling, M11A16, CrJ4
g++A11s, ZrA1. By controlling the size and distribution of such precipitates, the movement of dislocations is blocked and the fine grain structure is maintained. That is, if the size of the precipitates is too small or the distance between the precipitated particles is too large, the effect of inhibiting dislocation movement cannot be obtained.

また、本発明に係る超塑性アルミニウム合金の゛製造方
法により製造された材料は、冷間加工したままの状態で
超塑性の加工を行なってもようが、冷間加工後、100
°C/Hr以上の加熱速度で加熱し、350〜550 
’Cの温度で軟化して超塑性加工を行なってもよい。
In addition, although the material produced by the method for producing a superplastic aluminum alloy according to the present invention may be subjected to superplastic processing in the same state as it has been cold worked, after cold working,
Heating at a heating rate of 350 to 550 °C/Hr or more
It may be softened at a temperature of 'C and subjected to superplastic working.

次に、本発明に係る超塑性アルミニウム合金の製造方法
において対象となるアルミニウム合金について説明する
Next, an aluminum alloy to be used in the method for producing a superplastic aluminum alloy according to the present invention will be explained.

Al−Cu系アルミニウム合金は、Cu2〜7u+t%
を必須成分として含有し、Mg2.5す1%以下、5i
2u+t%以下、Mn 0.05−2.Ou+t%、C
r O,05−0,5u+t%、Zr O,05−0,
5u+1%、V 0105−0,5u+t%、T i 
O,15+++t%以北の中から選んだ1種または2種
以上を含有し、残部AIおよび不純物からなるアルミニ
ウム合金である。
Al-Cu based aluminum alloy has Cu2~7u+t%
Contains Mg2.5 as an essential component, 1% or less, 5i
2u+t% or less, Mn 0.05-2. Ou+t%, C
r O, 05-0, 5u+t%, Zr O, 05-0,
5u+1%, V 0105-0,5u+t%, Ti
It is an aluminum alloy containing one or more selected from O, 15+++t% or more, and the balance consisting of AI and impurities.

Al−Mg系アルミニウム合金は、Mg2へ・7田1%
を必須成分として含有し、Mn0.05〜1,5u+t
%、Cr O,05〜0.5u+t%、V O,05−
0,5u+t%、TiO,15u+t%以下の中から選
んだ1種または2種以」二を含有し、残部A[および不
純物からなるアルミニウム合金である。
Al-Mg aluminum alloy has 1% of Mg2
Contains as an essential component, Mn0.05-1.5u+t
%, CrO,05~0.5u+t%,VO,05-
It is an aluminum alloy containing one or more selected from 0.5u+t%, TiO, 15u+t% or less, and the balance A and impurities.

Al−Mg−3i系アルミニウム合金は、Mg0.5〜
2,0田t%、Si0.3〜5.0+ut%を必須成分
とし11− で含有し、Cu 1ust%以下、Mn 0.5−1,
5u+t%、Cr O,05−0,5iut%、Zr 
O,05−0,5u+t%、■0.05〜0.5u+t
%、Ti O,15wt%以下の中から選んだ1種また
は2種以上を含有し、残部A1および不純物からなるア
ルミニウム合金である。
Al-Mg-3i series aluminum alloy has Mg0.5~
Contains 2.0 t%, Si 0.3-5.0+ut% as essential components, Cu 1ust% or less, Mn 0.5-1,
5u+t%, CrO, 05-0,5iut%, Zr
O,05-0,5u+t%, ■0.05-0.5u+t
%, TiO, and one or more selected from 15 wt% or less, and the balance is A1 and impurities.

AlZn−Mg系アルミニウム合金は、Zn3〜81%
、Mg O,5〜3111t%を必須成分として含有し
、Cu 3u+t%以下、Mn O,05−2,Ou+
t%、CrO,05−0,5u+t%、Zr 0.05
−0,5u+t%、V O,05−0,5…t%、Ti
 O,15u+t%の中から選んだ1種または2種以上
を含有し、残部A1および不純物からなるアルミニウム
合金である。
AlZn-Mg aluminum alloy contains 3 to 81% Zn.
, Mg O, 5 to 3111 t% as essential components, Cu 3u+t% or less, Mn O, 05-2, Ou+
t%, CrO, 05-0.5u+t%, Zr 0.05
-0,5u+t%, VO,05-0,5...t%, Ti
It is an aluminum alloy containing one or more selected from O, 15u+t%, and the balance A1 and impurities.

なお、不純物として含有されるFeおよびSi含有量は
夫々0.15u+t%を越えると不溶性の晶出物が生成
し、伸びの低下が著しいのでFe、Si含有量は夫々0
.15wt%以下に規制する。
Note that if the content of Fe and Si contained as impurities exceeds 0.15u+t%, insoluble crystallized substances will be formed and the elongation will be significantly reduced, so the content of Fe and Si should be set to 0.
.. It is regulated to 15wt% or less.

[実施例1 本発明に係る超塑性アルミニウム合金の製造方法につい
て実紙例を説明する。
[Example 1] An actual paper example will be explained regarding the method for manufacturing a superplastic aluminum alloy according to the present invention.

実施例 一12= 通常のDC鋳造法により第1表に示す代表的なAl−C
u 系、 Al−Mg 系、 AI Mg Si 系、
 A1−Zn−Mg系のアルミニウム合金の鋳塊(厚さ
400 mm)を作製し、その後第2表に示す工程中、
熱間圧延時、冷間′圧延時にクロス圧延を実施して最終
板厚1.5或いは2 、5 nunの材料を製造し、第
2表に示す条件で変形した。
Example 112= Typical Al-C shown in Table 1 by normal DC casting method
u system, Al-Mg system, AI Mg Si system,
A1-Zn-Mg-based aluminum alloy ingot (thickness: 400 mm) was produced, and then during the steps shown in Table 2,
Cross rolling was carried out during hot rolling and cold rolling to produce materials with a final thickness of 1.5 or 2.5 nm, and the materials were deformed under the conditions shown in Table 2.

超塑性変形による伸びは第2表に示すように、本発明に
係る超塑性アルミニウム合金の製造方法による材料が、
クロス圧延を実施しない材料と比較して、超塑性伸びが
80〜15%以上向上することがわかる。
As shown in Table 2, the elongation due to superplastic deformation is as follows:
It can be seen that the superplastic elongation is improved by 80 to 15% or more compared to the material that is not cross-rolled.

[発明の効果] 以上詳細に説明したように、本発明に係る超塑性アルミ
ニウム合金の製造方法は上記の構成を有しているもので
あるから、超塑性伸びが格段に優れた材料が製造できる
という効果を有する。
[Effects of the Invention] As explained in detail above, since the method for producing a superplastic aluminum alloy according to the present invention has the above configuration, a material with significantly superior superplastic elongation can be produced. It has this effect.

特許出願人 株式会社 神戸製鋼所 代理人 弁理士 丸 木 良 久 手続補正書(自発) 昭和59年06’d忙5日 特許庁長官殿 1、事件の表示 昭和59年特許願第107195号 2、発明の名称 超塑性アルミニウム合金の製造方法 3、補正をする者 事件との関係 特許出願人 住所 神戸市中央区脇浜町1丁目3番18号名称 (1
19) 株式会社 神戸製鋼所代表者 牧 冬 彦 4、代理人 住所 東京都江東区南砂2丁目2番15号藤和東陽町コ
ープ901号 〒136電話(646) 6194 氏名 弁理士 (6937) 丸 木 良 久−17−
゛ 6、補正の対象 (1)明細書の発明の詳細な説明の欄 7、補正の内容 (1)明細書第12頁10行のrTi O,15a+t
%以化」を「T i 0.15111t%以下」と補正
する。
Patent Applicant Kobe Steel Co., Ltd. Agent Yoshihisa Maruki, Patent Attorney Procedural Amendment (Voluntary) June 1980, Busy 5th, Commissioner of the Patent Office 1, Indication of Case, 1989 Patent Application No. 107195 2, Title of the invention: Process for producing superplastic aluminum alloy 3, relationship to the amended case Patent applicant address: 1-3-18 Wakihama-cho, Chuo-ku, Kobe Name (1)
19) Kobe Steel, Ltd. Representative: Fuyuhiko Maki 4, Agent address: 901 Fujiwa Toyocho Co-op, 2-2-15 Minamisuna, Koto-ku, Tokyo Address: 136 Telephone (646) 6194 Name: Patent attorney (6937) Ryo Maruki Ku-17-
6. Subject of amendment (1) Detailed description of the invention column 7 of the specification, Contents of amendment (1) rTi O, 15a+t on page 12, line 10 of the specification
% or more" is corrected to "T i 0.15111t% or less."

(2)明細書第12頁16行の[0,15iut%以下
の中から]を「0.15+ut%以下、Zr O,05
−0、5u+t%の中から」と補正する。
(2) On page 12, line 16 of the specification, [from 0.15 iut% or less] is changed to “0.15+ut% or less, Zr O,05
-0, 5u+t%”.

Claims (1)

【特許請求の範囲】[Claims] Al−Cu系、Al−Mg系、Al−Mg−8i系、A
l−Zn−Mg系のアルミニウム合金鋳塊を、400〜
550°Cの温度で均質化熱処理を行ない、次いで、3
00〜550℃の温度で均質化熱処理を行ない、次いで
、300〜550℃の温度で熱間圧延した後、350〜
550℃の温度において1段階或いは2段階の加熱保持
を行ない、30°C/Hr以上の冷却速度で冷却してか
ら少なくとも30%以上の冷開圧延を行なうか或いは2
0〜60%の冷間圧延を行なった後に、300°C以下
の低温軟化焼鈍と冷間圧延とを1回以上行なう場合にお
いて、前記熱間圧延時および/または冷開圧延時に、板
材に対し互いに直角方向のクロス圧延を行ない、このク
ロス圧延を熱間圧延時には所定圧下量の10〜40%の
圧下量で圧延を施した後に、この圧延方向に対し直角方
向に残りの圧下量で圧延し、冷間圧延時には冷間圧延工
程中に所定圧下量の1()〜40%の圧下量で前記圧延
方向に対し直角方向に圧延する工程をイ」加することを
特徴とする超塑性アルミニウム合金の製造方法。
Al-Cu series, Al-Mg series, Al-Mg-8i series, A
l-Zn-Mg based aluminum alloy ingot from 400~
homogenization heat treatment at a temperature of 550 °C, then 3
After homogenization heat treatment at a temperature of 00 to 550 °C, and then hot rolling at a temperature of 300 to 550 °C,
Perform one or two stages of heating and holding at a temperature of 550°C, cool at a cooling rate of 30°C/Hr or more, and then perform cold open rolling of at least 30%, or
In the case where low-temperature softening annealing at 300°C or less and cold rolling are performed once or more after cold rolling of 0 to 60%, the plate material is Cross rolling is carried out in directions perpendicular to each other, and when this cross rolling is hot rolled, it is rolled with a reduction amount of 10 to 40% of the predetermined reduction amount, and then rolled with the remaining reduction amount in a direction perpendicular to this rolling direction. , a superplastic aluminum alloy characterized in that during cold rolling, a step of rolling in a direction perpendicular to the rolling direction with a reduction amount of 1 ( ) to 40% of a predetermined reduction amount is added during the cold rolling process. manufacturing method.
JP59107195A 1984-05-26 1984-05-26 Manufacture of super plastic aluminum alloy Pending JPS60251260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107195A JPS60251260A (en) 1984-05-26 1984-05-26 Manufacture of super plastic aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107195A JPS60251260A (en) 1984-05-26 1984-05-26 Manufacture of super plastic aluminum alloy

Publications (1)

Publication Number Publication Date
JPS60251260A true JPS60251260A (en) 1985-12-11

Family

ID=14452883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107195A Pending JPS60251260A (en) 1984-05-26 1984-05-26 Manufacture of super plastic aluminum alloy

Country Status (1)

Country Link
JP (1) JPS60251260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122196A (en) * 1990-06-11 1992-06-16 Alusuisse-Lonza Services Ltd. Superplastic sheet metal made from an aluminum alloy
WO2000037702A1 (en) * 1998-12-22 2000-06-29 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminium alloy product and method of its manufacture
US6277219B1 (en) 1998-12-22 2001-08-21 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminum alloy product and method of its manufacture
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122196A (en) * 1990-06-11 1992-06-16 Alusuisse-Lonza Services Ltd. Superplastic sheet metal made from an aluminum alloy
WO2000037702A1 (en) * 1998-12-22 2000-06-29 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminium alloy product and method of its manufacture
US6277219B1 (en) 1998-12-22 2001-08-21 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminum alloy product and method of its manufacture
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7815758B2 (en) 2002-08-20 2010-10-19 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods
US11746400B2 (en) 2019-06-03 2023-09-05 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same

Similar Documents

Publication Publication Date Title
US6056835A (en) Superplastic aluminum alloy and process for producing same
EP0157600B1 (en) Aluminum lithium alloys
US4336075A (en) Aluminum alloy products and method of making same
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPH06212377A (en) Method of improving aging characteristic of beta titanium alloy
US4961792A (en) Aluminum-lithium alloys having improved corrosion resistance containing Mg and Zn
EP0325937B1 (en) Aluminum-lithium alloys
US4921548A (en) Aluminum-lithium alloys and method of making same
JPS60251260A (en) Manufacture of super plastic aluminum alloy
JPS623226B2 (en)
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPS6149796A (en) Manufacture of superplastic aluminum alloy for diffused junction
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JPH01259147A (en) Manufacture of al-cu-li-zr super plastic plate
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPS60238461A (en) Manufacture of superplastic aluminum alloy
JPS6157384B2 (en)
JPS6086248A (en) Preparation of super-plastic aluminum alloy
JPH03183750A (en) Production of superplastic aluminum alloy having high strength
JPH08311626A (en) Production of superalloy material
JPS60238459A (en) Manufacture of superplastic aluminum alloy
JPS6318042A (en) Manufacture of superplastic aluminum alloy
JPS6286150A (en) Manufacture of superplastic aluminum alloy
JPS60238462A (en) Manufacture of superplastic aluminum alloy