JPH0261025A - Al-si alloy plate material having excellent formability and its manufacture - Google Patents

Al-si alloy plate material having excellent formability and its manufacture

Info

Publication number
JPH0261025A
JPH0261025A JP21203688A JP21203688A JPH0261025A JP H0261025 A JPH0261025 A JP H0261025A JP 21203688 A JP21203688 A JP 21203688A JP 21203688 A JP21203688 A JP 21203688A JP H0261025 A JPH0261025 A JP H0261025A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
plate material
excellent formability
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21203688A
Other languages
Japanese (ja)
Inventor
Kazunori Kobayashi
一徳 小林
Mitsuo Hino
光雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21203688A priority Critical patent/JPH0261025A/en
Publication of JPH0261025A publication Critical patent/JPH0261025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture the title plate material having excellent formability and low thermal expansion coefficient by subjecting the ingot of an Al alloy contg. specific amt. of Si as essential alloy components to specific homogenizing treatment and thereafter to hot rolling and cod rolling. CONSTITUTION:The ingot of an Al alloy contg. as essential alloy components, 3 to 15% Si and furthermore contg., at need, one or more kinds among 0.5 to 5.0% Mg, 0.2 to 3.0% Cu, 0.5 to 2.0% Ni, 0.06 to 1.0% Mn, 0.06 to 0.3% Cr, 0.006 to 0.2% Zr, 0.06 to 0.2% V, 0.01 to 0.1% Ti, 0.001 to 0.2% B and 0.1 to 2.0% Zn is subjected to homogenizing treatment at the burning temp. or above of 450 to 540 deg.C. The Al alloy successively subjected to hot rolling and cold rolling into desired plate thickness. In this way, the average size of Si grains is regulated to 4 to 15mum, by which the Al-Si alloy plate material for electrical apparatus parts having excellent formability and low thermal expansion coefficient can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はAl2−Si系合金板材に係り、電気機器、特
にワープロ、パソコン、エンジニアリング・ワーク・ス
テーション等のシャーシの如く強度と成形性の両者が要
求され、且つ記憶ディスクとの熱膨張係数との関係から
熱膨張係数が低いことが要求される用途に好適な、成形
性の優れたAl−Si系合金板材とその製造方法に関す
る。 (従来の技術及び解決しようとする課題)従来より、コ
ンピューターのハード・ディスク・ドライブ、ブロッピ
ー・ディスク・ドライブのような精密部品には、低コス
ト、低熱膨張の理由からアルミニウムダイキャスト品、
例えばJISADe12などが多用されている。 しかし、近時、製品の薄肉化による軽量化及び更なるコ
ストダウンを図るために、アルミニウム合金の板材が強
く要望されてきている。 しかし、従来のアルミニウム合金板材、例えば、成形加
工用合金(7)JIS5052やJIS5083などの
Al−Mg系合金をディスク・ドライブの蓋に用いると
、アルミニウム合金ダイカストADC1211のベース
プレートとの熱膨張係数との差から歪が発生し、読取エ
ラーを惹き起こすことがある。 また、ディスク・ドライブのヘッドアームやキャリッジ
もアルミ板から製作される場合があるが、従来のアルミ
ニウム合金では熱膨張係数が高いので、同様の問題が生
じる。 そこで、熱膨張係数が低い成形加工用アルミニウム合金
板材の開発が要請されているのが現状である。 本発明は、上記要請に応えるべくなされたものであって
、成形性に優れ且つ熱膨張係数が低く。 コンピューター等の電気機器部品用に適するアルミニウ
ム合金板材を提供し、ま、たその製造方法を提供するこ
とを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、従来の成形加工
用アルミニウム合金が熱膨張係数が高いことに鑑みて、
他の成分系においてその化学成分の調整並びに製造条件
について鋭意研究を重ねた。 その結果、熱膨張係数を低下させることに有効な添加元
素としてSiがあり、Si量は適度に多いほど熱膨張係
数が低くなる。しかし、Si量が多くなるとまf製造段
階における圧延性が悪く、また製品の成形性も悪くなる
ことが判明した。 そこで、Siを比較的多く含有するアルミニウム合金に
おいて圧延性、製品の成形性が悪化する原因の究明に努
めたところ、最終製品でのSi粒子径が圧延性、成形性
に大きく影響を及ぼすことが判明し、その対策として均
質化処理条件によりSi粒子径をコントロールすること
により、可能であることを見出したものである。 すなわち、本発明に係るアルミニウム合金板材は、必須
合金成分としてSi:3〜15%を含有し、必要に応じ
て更に、Mg:Q、5〜5.0%、Cu:O62〜3.
0%、Ni:0.5〜2.0%、Mn:0.06〜1.
0%、Cr:0.06〜0.3%、Zr:0.06〜0
.2%、V:0.06〜0.2%、Ti:0.01〜0
.1%、B:O,OOl 〜0.2%及びZn: 0 
。 1〜2.0%のうちの1種又は2種以上を含有し。 残部がAl及び不純物からなる組成を有し、Si粒子の
平均径が4〜15μmであることを特徴とする成形性に
優れ熱膨張係数の低い電気機器部品用Al2−Si系合
金板材を要旨とするものである。 また、か\るアルミニウム合金板材の製造方法は、上記
組成を有するアルミニウム合金につき、その鋳塊をバー
ニング温度以下の450〜540℃の範囲の温度で均質
化処理を施し、続いて熱間圧延、冷間圧延により所望の
板厚とし、81粒子の平均径が4〜15μmのものを得
ることを特徴とする成形性に優れ熱膨張係数の低い電気
機器部品用Al−Si系合金板材の製造方法を要旨とす
るものである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由を説明する。 Si: Siは、その含有量に比例して熱膨張係数を低下させ、
またMgとの共存によりMg、Siを生成して析出硬化
により強度を上げることに寄与する元素である。しかし
、Siが3%未満では熱膨張係数を低下させる効果は少
なく、また15%を超えれば成形性が不足する。したが
って、Si量は3〜15%の範囲内とする。 本発明では、少なくともSiを上記量で含有させること
を必須とするが、熱膨張係数、成形性の改善を目的とし
て以下の元素の1種又は2種以上を必要に応じて含有さ
せることができる。 Mg: Mgは既で述べたようにSLとの共存により強度を上げ
ることに寄与する元素であるが、0.5%未満ではその
効果が得られず、逆に多過ぎれば成形性が低下する。ま
た、Mgはその含有量に比例して熱膨張係数を上昇させ
る元素である。したがって、Mg量は0.5〜5.0%
の範囲内とする。 Cu: Cuはその含有量に比例して強度を上げるのに寄与する
元素であるが、0.2%未満ではその効果は少なく、一
方、3.0%を超えれば強度は向上するが成形性が低下
する。また、Cuは熱膨張係数を低下させることに有効
である。したがって、Cu量は0.2〜3.0%の範囲
とする。 Ni: Niは熱膨張係数を低下させることに大変有効な元素で
あるが、0.5%未満ではその効果が少なく、また多過
ぎれば成形性を低下させることになる。したがって、N
i量は0.5〜2.0%の範囲とする。 Mn、 Cr、 Zr、 V : Mn、Cr、Zr、Vは再結晶粒を微細化させ、強度を
上げることに寄与するが、含有量が多過ぎると巨大晶出
物を生成し、成形性を低下させる。 したがって、それぞれ、Mn量は0.06〜1.0%、
Cr量は0.06〜0.3%、Zr量は0.06〜0.
2%、V量は0.06〜0.2%の範囲とする。 Ti、B: Ti、Bは鋳塊の結晶粒を微細化させ、粗大なSi粒子
の晶出を抑制することにより、成形性を向上させる元素
であるが、含有量が多過ぎると巨大晶出物を生成し、成
形性を低下させる。したがって、Ti量は0.01〜0
.1%、B量は0.001〜0.05%の範囲とする。 Zn: Znは成形性の向上に付与する元素であるが、その含有
量に比例して熱膨張係数を上昇させる作用がある。した
がって、Zn量は0.1〜2.0%の範囲とする。 なお、不可避的不純物のFeは1.0%以下、またその
他の不純物のBe、Mo、Coなどは、それぞれ0.0
5%以下であれば本発明板材の特性を損なうものではな
い。 また、上記SL、Mg、Cu、Znは所望の板厚とした
後の調質において、溶体化焼入を施すことにより過飽和
に固溶し、成形加工後の塗装焼付時の析出硬化による強
度の上昇に寄与する元素でもある。 次に本発明の製造方法について説明する。 まず、前述の化学成分を有するアルミニウム合金は常法
により溶解、鋳造して鋳塊を作成する。 その際、共晶Siを微細化させるためにNa或いはSr
を添加する場合がある。 続いて、鋳塊に均質化処理を施すが、この均質化処理は
バーニング温度以下の450〜540℃の範囲の温度で
行うことが必要である。この処理は鋳造組織を均一にす
ると共に、特にSi粒子径をコントロールするためのも
ので、上記温度範囲で均質化処理することによって最終
製品のSi粒子径を4〜15μ亀にすることができる。 なお、加熱保持時間は特に制限されないが、2〜12時
間であるのが望ましい。 次に熱間圧延及び冷間圧延を行うが、これらの圧延条件
は特に限定する必要はない。また熱間圧延後に荒焼鈍及
び中間焼鈍を行ってもよく、冷間圧延後に調質処理を行
なうこともできる。調質処理は、例えば最終焼鈍として
330〜440℃で行い、再結晶させて0材とする場合
や、480〜550℃で溶体化した後に焼入れてT4材
とする場合などがある。 最終製品でのSi粒子径のコントロールは、前述のよう
に均質化処理条件により行うが、更にはTi、Bなどの
元素の添加によっても行うこともでき、そのSi粒子平
均径は4〜15μmとする。 しかし、4μm未満では均一に分散させることによる成
形性向上の効果は少なく、また15μmを超えると成形
性が極端に低下するので好ましくなり)。 (実施例) 次に本発明の実施例を示す。 実施■よ 第1表に示す化学成分を有するアルミニウム合金を通常
の方法により、溶解し、共晶Siの微細化のためにNa
を添加した後、鋳造して鋳塊を得た。この鋳塊を面前し
、510℃に4時間保持する均質化処理を施した後、熱
間圧延、冷間圧延を行って1.0m+11厚の板材とし
た。次いで、この板材を加熱速度40℃/hrで370
℃に2時間保持し、40℃/hrの冷却速度で冷却する
調質処理を行った。 得られた板材の機械的性質及び熱膨張係数を第2表に示
す。 第2表に示すように、本発明材Nα1〜Na 9はいず
れもダイキャスト品のJISADC12(比較材&13
)並みに熱膨張係数が低く、且つ伸びもJIS5052
(比較材Nα11)並みに大きく成形性が良いことがわ
かる。なお、Si量が少ない比較材Na 10は成形加
工性は良好であるものの、熱膨張係数が高い。 「以下余白」 (注2)熱膨張係数は20〜100℃の温度範囲の値で
ある。 去】01λ 第1表に示したNα2のアルミニウム合金を通常の方法
で溶解し、共晶Siの微細化のためにNaを添加した後
、鋳造した。得られた鋳塊を固剤し、420〜560℃
の種々の温度に4時間保持する均質化処理を施した後、
熱間圧延、冷間圧延を行って1.0m■厚の板材とし、
この板材を加熱速度40℃/hrで370℃に2時間保
持し、40℃/hrの冷却速度で冷却する調質処理を行
った。 得られた板材についてSi粒子径及び成形特性(エリク
セン値、限界絞り比)を調査し、これらと均質化温度と
の関係を調べた。その結果を第3表に示す。− 同表より、Si粒子の平均径を4〜15μmにコントロ
ールした本発明材は、比較材よりも成形性に優れている
ことが明らかである。
(Industrial Application Field) The present invention relates to Al2-Si alloy plate materials, which require both strength and formability, such as the chassis of electrical equipment, particularly word processors, personal computers, engineering work stations, etc., and storage disks. The present invention relates to an Al--Si alloy sheet material with excellent formability, which is suitable for applications requiring a low coefficient of thermal expansion due to the relationship between the coefficient of thermal expansion and the method of manufacturing the same. (Prior art and problems to be solved) Conventionally, precision parts such as computer hard disk drives and floppy disk drives have been made of aluminum die-cast products due to their low cost and low thermal expansion.
For example, JISADe12 is often used. However, in recent years, there has been a strong demand for aluminum alloy plate materials in order to reduce weight and further reduce costs by making products thinner. However, when a conventional aluminum alloy plate material, for example, an Al-Mg alloy such as forming alloy (7) JIS5052 or JIS5083, is used for the lid of a disk drive, the thermal expansion coefficient with the base plate of the aluminum alloy die-cast ADC1211 is different. Distortion may occur due to the difference, leading to reading errors. Additionally, the head arm and carriage of a disk drive may also be made from aluminum plates, but conventional aluminum alloys have a high coefficient of thermal expansion, resulting in similar problems. Therefore, there is currently a demand for the development of an aluminum alloy sheet material for forming that has a low coefficient of thermal expansion. The present invention was made to meet the above requirements, and has excellent moldability and a low coefficient of thermal expansion. The object of the present invention is to provide an aluminum alloy plate suitable for parts of electrical equipment such as computers, and to provide a method for manufacturing the same. (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention, in view of the fact that conventional aluminum alloys for forming processing have a high coefficient of thermal expansion,
We conducted extensive research on the adjustment of chemical components and manufacturing conditions for other component systems. As a result, Si is an effective additive element for lowering the coefficient of thermal expansion, and the more the amount of Si is appropriately increased, the lower the coefficient of thermal expansion becomes. However, it has been found that when the amount of Si increases, the rollability during the machining process becomes worse, and the moldability of the product also becomes worse. Therefore, we tried to investigate the cause of the deterioration of rollability and product formability in aluminum alloys containing a relatively large amount of Si, and found that the Si particle size in the final product has a large effect on rollability and formability. As a countermeasure to this problem, we have found that it is possible to control the Si particle size by adjusting the homogenization treatment conditions. That is, the aluminum alloy plate material according to the present invention contains Si: 3 to 15% as an essential alloy component, and further contains Mg:Q, 5 to 5.0%, Cu:O62 to 3.0%, if necessary.
0%, Ni: 0.5-2.0%, Mn: 0.06-1.
0%, Cr: 0.06-0.3%, Zr: 0.06-0
.. 2%, V: 0.06-0.2%, Ti: 0.01-0
.. 1%, B:O,OOl~0.2% and Zn: 0
. Contains one or more of 1 to 2.0%. The purpose of the present invention is to provide an Al2-Si alloy plate material for electrical equipment parts with excellent formability and a low coefficient of thermal expansion, which has a composition in which the balance consists of Al and impurities, and the average diameter of Si particles is 4 to 15 μm. It is something to do. In addition, the method for manufacturing such an aluminum alloy plate material includes homogenizing an aluminum alloy having the above composition at a temperature in the range of 450 to 540°C below the burning temperature, followed by hot rolling, A method for producing an Al-Si alloy sheet material for electrical equipment parts with excellent formability and a low coefficient of thermal expansion, characterized by obtaining a sheet material with a desired thickness by cold rolling and an average diameter of 81 particles of 4 to 15 μm. The main points are as follows. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. Si: Si lowers the coefficient of thermal expansion in proportion to its content,
It is also an element that contributes to increasing strength through precipitation hardening by producing Mg and Si when coexisting with Mg. However, if Si is less than 3%, the effect of lowering the coefficient of thermal expansion is small, and if it exceeds 15%, moldability is insufficient. Therefore, the amount of Si should be within the range of 3 to 15%. In the present invention, it is essential to contain at least Si in the above amount, but one or more of the following elements may be contained as necessary for the purpose of improving the coefficient of thermal expansion and formability. . Mg: As mentioned above, Mg is an element that contributes to increasing strength by coexisting with SL, but if it is less than 0.5%, this effect cannot be obtained, and on the other hand, if it is too much, formability will decrease. . Furthermore, Mg is an element that increases the coefficient of thermal expansion in proportion to its content. Therefore, the amount of Mg is 0.5-5.0%
within the range of Cu: Cu is an element that contributes to increasing strength in proportion to its content, but if it is less than 0.2%, its effect is small, while if it exceeds 3.0%, strength improves but formability decreases. decreases. Further, Cu is effective in lowering the coefficient of thermal expansion. Therefore, the amount of Cu is in the range of 0.2 to 3.0%. Ni: Ni is a very effective element for lowering the coefficient of thermal expansion, but if it is less than 0.5%, its effect will be small, and if it is too much, it will reduce moldability. Therefore, N
The amount of i is in the range of 0.5 to 2.0%. Mn, Cr, Zr, V: Mn, Cr, Zr, and V contribute to making the recrystallized grains finer and increasing the strength, but if the content is too large, giant crystallized substances are generated and formability is deteriorated. lower. Therefore, the Mn content is 0.06 to 1.0%, respectively.
The amount of Cr is 0.06-0.3%, and the amount of Zr is 0.06-0.
2%, and the V amount is in the range of 0.06 to 0.2%. Ti, B: Ti and B are elements that improve formability by refining the crystal grains of the ingot and suppressing the crystallization of coarse Si particles, but if their content is too high, they may cause giant crystallization. This results in the formation of molding products and reduces moldability. Therefore, the amount of Ti is 0.01~0
.. 1%, and the amount of B is in the range of 0.001 to 0.05%. Zn: Zn is an element that improves formability, and has the effect of increasing the coefficient of thermal expansion in proportion to its content. Therefore, the Zn amount is in the range of 0.1 to 2.0%. Note that the unavoidable impurity Fe is 1.0% or less, and other impurities Be, Mo, Co, etc. are each 0.0% or less.
If it is 5% or less, the properties of the plate material of the present invention will not be impaired. In addition, the above-mentioned SL, Mg, Cu, and Zn are dissolved into supersaturated solid solution by solution hardening during heat treatment after forming the desired plate thickness, and the strength is reduced by precipitation hardening during paint baking after forming. It is also an element that contributes to the rise. Next, the manufacturing method of the present invention will be explained. First, an aluminum alloy having the above-mentioned chemical components is melted and cast to create an ingot using a conventional method. At that time, Na or Sr is added to make the eutectic Si fine.
may be added. Subsequently, the ingot is subjected to a homogenization treatment, and this homogenization treatment must be performed at a temperature in the range of 450 to 540° C. below the burning temperature. This treatment is intended to make the casting structure uniform and, in particular, to control the Si particle size. By performing the homogenization treatment in the above temperature range, the Si particle size of the final product can be made to be 4 to 15 μm. Note that the heating holding time is not particularly limited, but is preferably 2 to 12 hours. Next, hot rolling and cold rolling are performed, but these rolling conditions do not need to be particularly limited. Further, rough annealing and intermediate annealing may be performed after hot rolling, and tempering treatment may be performed after cold rolling. The thermal treatment may be performed, for example, at 330 to 440°C as final annealing and then recrystallized to form a zero material, or may be solution-treated at 480 to 550°C and then quenched to form a T4 material. The Si particle size in the final product is controlled by the homogenization treatment conditions as described above, but it can also be done by adding elements such as Ti and B, and the average Si particle size is 4 to 15 μm. do. However, if it is less than 4 μm, the effect of improving moldability by uniformly dispersing it will be small, and if it exceeds 15 μm, the moldability will be extremely deteriorated, so this is not preferred). (Example) Next, an example of the present invention will be shown. Implementation ■ An aluminum alloy having the chemical components shown in Table 1 was melted using a normal method, and Na was added to refine the eutectic Si.
After adding , it was cast to obtain an ingot. This ingot was subjected to a homogenization treatment in which it was held at 510° C. for 4 hours, and then hot rolled and cold rolled to form a plate material of 1.0 m + 11 thickness. Next, this plate material was heated at a heating rate of 40°C/hr for 370°C.
Temperature treatment was carried out by holding at a temperature of 2 hours and cooling at a cooling rate of 40°C/hr. Table 2 shows the mechanical properties and coefficient of thermal expansion of the plate material obtained. As shown in Table 2, all of the present invention materials Nα1 to Na9 are die-cast products JISADC12 (comparative materials & 13
), the coefficient of thermal expansion is as low as that, and the elongation is also JIS5052.
It can be seen that the moldability is as large as that of (comparative material Nα11) and that the moldability is good. Note that although the comparative material Na 10 with a small amount of Si has good moldability, it has a high coefficient of thermal expansion. "Leaving space below" (Note 2) The coefficient of thermal expansion is a value in the temperature range of 20 to 100°C. 01λ Aluminum alloys with Nα2 shown in Table 1 were melted by a conventional method, Na was added to refine the eutectic Si, and then cast. The obtained ingot is solidified and heated to 420-560℃
After homogenization treatment by holding at various temperatures for 4 hours,
Hot rolled and cold rolled into a 1.0m thick plate,
This plate material was heated at 370° C. for 2 hours at a heating rate of 40° C./hr, and then cooled at a cooling rate of 40° C./hr. The Si particle size and forming characteristics (Erichsen value, critical drawing ratio) of the obtained plate material were investigated, and the relationship between these and the homogenization temperature was investigated. The results are shown in Table 3. - From the same table, it is clear that the material of the present invention, in which the average diameter of Si particles is controlled to 4 to 15 μm, has better formability than the comparative material.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、必須成分として
所定量のSiを含有するAl−Si系合金について均質
化処理によってSi粒子径をコントロールするので、成
形性に優れると共に熱膨張係数の低いアルミニウム合金
板材を得ることができる。したがって、コンピューター
等の電気機器部品の軽量化及びコストダウンに寄与する
ところが大きい。 特許出願人   株式会社神戸裏鋼所 代理人弁理士  中  村   尚
(Effects of the Invention) As described in detail above, according to the present invention, the Si particle size of an Al-Si alloy containing a predetermined amount of Si as an essential component is controlled by homogenization treatment, so that it has excellent formability. At the same time, an aluminum alloy plate material with a low coefficient of thermal expansion can be obtained. Therefore, it greatly contributes to reducing the weight and cost of electrical equipment components such as computers. Patent applicant Takashi Nakamura, patent attorney representing Kobe Ura Kosho Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1) 重量%で(以下、同じ)、必須合金成分として
Si:3〜15%を含有し、残部がAl及び不純物から
なる組成を有し、Si粒子の平均径が4〜15μmであ
ることを特徴とする成形性に優れ熱膨張係数の低い電気
機器部品用Al−Si系合金板材。
(1) Contains Si: 3 to 15% as an essential alloy component in terms of weight% (the same applies hereinafter), with the remainder consisting of Al and impurities, and the average diameter of Si particles is 4 to 15 μm. An Al-Si alloy plate material for electrical equipment parts with excellent formability and a low coefficient of thermal expansion.
(2) 前記Al−Si系合金は、更にMg:0.5〜
5.0%、Cu:0.2〜3.0%、Ni:0.5〜2
.0%、Mn:0.06〜1.0%、Cr:0.06〜
0.3%、Zr:0.06〜0.2%、V:0.06〜
0.2%、Ti:0.01〜0.1%、B:0.001
〜0.2%及びZn:0.1〜2.0%のうちの1種又
は2種以上を含有する組成を有する請求項1に記載のA
l−Si系合金板材。
(2) The Al-Si alloy further contains Mg: 0.5 to
5.0%, Cu: 0.2-3.0%, Ni: 0.5-2
.. 0%, Mn: 0.06~1.0%, Cr: 0.06~
0.3%, Zr: 0.06~0.2%, V: 0.06~
0.2%, Ti: 0.01-0.1%, B: 0.001
A according to claim 1, having a composition containing one or more of Zn: 0.2% and Zn: 0.1 to 2.0%.
l-Si alloy plate material.
(3) 請求項1又は2に記載の組成を有するアルミニ
ウム合金につき、その鋳塊をバーニング温度以下の45
0〜540℃の範囲の温度で均質化処理を施し、続いて
熱間圧延、冷間圧延により所望の板厚とし、Si粒子の
平均径が4〜15μmのものを得ることを特徴とする成
形性に優れ熱膨張係数の低い電気機器部品用Al−Si
系合金板材の製造方法。
(3) Regarding the aluminum alloy having the composition according to claim 1 or 2, the ingot is heated to 45% below the burning temperature.
Forming characterized by performing homogenization treatment at a temperature in the range of 0 to 540°C, followed by hot rolling and cold rolling to obtain a desired thickness, and obtaining a sheet with an average diameter of Si particles of 4 to 15 μm. Al-Si for electrical equipment parts with excellent properties and low coefficient of thermal expansion
Method for manufacturing alloy sheet materials.
JP21203688A 1988-08-26 1988-08-26 Al-si alloy plate material having excellent formability and its manufacture Pending JPH0261025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21203688A JPH0261025A (en) 1988-08-26 1988-08-26 Al-si alloy plate material having excellent formability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21203688A JPH0261025A (en) 1988-08-26 1988-08-26 Al-si alloy plate material having excellent formability and its manufacture

Publications (1)

Publication Number Publication Date
JPH0261025A true JPH0261025A (en) 1990-03-01

Family

ID=16615807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21203688A Pending JPH0261025A (en) 1988-08-26 1988-08-26 Al-si alloy plate material having excellent formability and its manufacture

Country Status (1)

Country Link
JP (1) JPH0261025A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857378A1 (en) * 2003-07-10 2005-01-14 Pechiney Aluminium Cast component of an aluminium with a high resistance to flow when subjected to elevated thermal and mechanical stress, notably a cylinder head for an internal combustion engine
WO2006118349A1 (en) * 2005-04-28 2006-11-09 Showa Denko K.K. Clad member and printed-circuit board
JP2006328530A (en) * 2005-04-28 2006-12-07 Showa Denko Kk Clad member and printed-circuit board
JP2007302939A (en) * 2006-05-11 2007-11-22 Showa Denko Kk Clad member and printed-circuit board
DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
JP2013001988A (en) * 2011-06-21 2013-01-07 Josho Gakuen Molding of hypereutectic aluminum-silicon alloy rolled sheet and method for manufacturing the same
US20130105045A1 (en) * 2011-10-28 2013-05-02 Alcoa Inc. HIGH PERFORMANCE AlSiMgCu CASTING ALLOY
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
WO2015152133A1 (en) * 2014-03-31 2015-10-08 日立金属株式会社 Al-Si-Mg SYSTEM ALUMINUM ALLOY FOR CASTING, WHICH HAS EXCELLENT SPECIFIC STIFFNESS, STRENGTH AND DUCTILITY, AND CAST MEMBER FORMED FROM SAME
JP5945361B1 (en) * 2015-03-20 2016-07-05 株式会社神戸製鋼所 Brazing sheet for brazing material and heat exchanger
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
CN112921219A (en) * 2020-12-24 2021-06-08 比亚迪股份有限公司 Aluminum alloy, preparation method thereof and aluminum alloy structural member

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007911A1 (en) * 2003-07-10 2005-01-27 Aluminium Pechiney Moulded al-si-cu aluminium alloy component with high hot-process resistance
FR2857378A1 (en) * 2003-07-10 2005-01-14 Pechiney Aluminium Cast component of an aluminium with a high resistance to flow when subjected to elevated thermal and mechanical stress, notably a cylinder head for an internal combustion engine
WO2006118349A1 (en) * 2005-04-28 2006-11-09 Showa Denko K.K. Clad member and printed-circuit board
JP2006328530A (en) * 2005-04-28 2006-12-07 Showa Denko Kk Clad member and printed-circuit board
EP1874971A1 (en) * 2005-04-28 2008-01-09 Showa Denko K.K. Clad member and printed-circuit board
EP1874971A4 (en) * 2005-04-28 2011-09-07 Showa Denko Kk Clad member and printed-circuit board
JP2007302939A (en) * 2006-05-11 2007-11-22 Showa Denko Kk Clad member and printed-circuit board
DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
JP2013001988A (en) * 2011-06-21 2013-01-07 Josho Gakuen Molding of hypereutectic aluminum-silicon alloy rolled sheet and method for manufacturing the same
US10174409B2 (en) * 2011-10-28 2019-01-08 Alcoa Usa Corp. High performance AlSiMgCu casting alloy
US20130105045A1 (en) * 2011-10-28 2013-05-02 Alcoa Inc. HIGH PERFORMANCE AlSiMgCu CASTING ALLOY
WO2014104037A1 (en) * 2012-12-25 2014-07-03 日本軽金属株式会社 METHOD FOR MANUFACTURING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND IS MINIATURIZED
US9657372B2 (en) 2012-12-25 2017-05-23 Nippon Light Metal Company, Ltd. Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
US10113218B2 (en) 2014-03-31 2018-10-30 Hitachi Metals, Ltd. Cast Al—Si—Mg-based aluminum alloy having excellent specific rigidity, strength and ductility, and cast member and automobile road wheel made thereof
WO2015152133A1 (en) * 2014-03-31 2015-10-08 日立金属株式会社 Al-Si-Mg SYSTEM ALUMINUM ALLOY FOR CASTING, WHICH HAS EXCELLENT SPECIFIC STIFFNESS, STRENGTH AND DUCTILITY, AND CAST MEMBER FORMED FROM SAME
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
JP5945361B1 (en) * 2015-03-20 2016-07-05 株式会社神戸製鋼所 Brazing sheet for brazing material and heat exchanger
WO2016152361A1 (en) * 2015-03-20 2016-09-29 株式会社神戸製鋼所 Brazing filler material and brazing sheet for heat exchangers
US10478925B2 (en) 2015-03-20 2019-11-19 Kobe Steel, Ltd. Brazing filler material and brazing sheet
CN112921219A (en) * 2020-12-24 2021-06-08 比亚迪股份有限公司 Aluminum alloy, preparation method thereof and aluminum alloy structural member
CN112921219B (en) * 2020-12-24 2021-11-12 比亚迪股份有限公司 Aluminum alloy, preparation method thereof and aluminum alloy structural member

Similar Documents

Publication Publication Date Title
JP3314783B2 (en) Low density high strength Al-Li alloy
JP3194742B2 (en) Improved lithium aluminum alloy system
JP3540812B2 (en) Low density and high strength aluminum-lithium alloy with high toughness at high temperature
JPH0127146B2 (en)
JPH07145441A (en) Superplastic aluminum alloy and its production
JP4025632B2 (en) Copper alloy
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
EP0564815B1 (en) High-strength rolled sheet of aluminum alloy and process for producing the same
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
CN115011824A (en) High-strength and high-creep-resistance magnesium alloy and preparation method and application thereof
JPH0547615B2 (en)
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPS634050A (en) Manufacture of aluminum-alloy substrate for magnetic disk
JPH0547616B2 (en)
JPS62297433A (en) Structural al alloy excellent in hardenability
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPS63169353A (en) Aluminum alloy for forming and its production
JPH02298239A (en) Method for rolling al-si series alloy
JPH0256416B2 (en)
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture