JPH04254559A - Production of extremely fine wire - Google Patents

Production of extremely fine wire

Info

Publication number
JPH04254559A
JPH04254559A JP3681991A JP3681991A JPH04254559A JP H04254559 A JPH04254559 A JP H04254559A JP 3681991 A JP3681991 A JP 3681991A JP 3681991 A JP3681991 A JP 3681991A JP H04254559 A JPH04254559 A JP H04254559A
Authority
JP
Japan
Prior art keywords
ingot
wire
solidified structure
fine wire
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3681991A
Other languages
Japanese (ja)
Other versions
JP2915596B2 (en
Inventor
Yasuo Akuta
泰夫 芥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3681991A priority Critical patent/JP2915596B2/en
Publication of JPH04254559A publication Critical patent/JPH04254559A/en
Application granted granted Critical
Publication of JP2915596B2 publication Critical patent/JP2915596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide the process for producing the extremely fine wire having an excellent drawing property. CONSTITUTION:Cast ingots 3, 6 of a undirectionally solidified structure 2 or directionally solidified structure 5 having excellent surface quality are used. These cast ingots 3, 6 are hot worked by which the grain boundary cracking is prevented and the blank material for the fine wire having high quality both in and out is produced. Such blank material for the fine wire is subjected to cold drawing, by which the extremely fine wire having the good drawing property is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、伸線性に優れた極細線
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine wire with excellent wire drawability.

【従来の技術とその課題】近年、電子機器の小型化並び
に多機能化に伴って、前記機器に用いられる配電線は益
々細線化し、50μm 以下の極細線から、更には30
μm 以下の超極細線にまで細線化が進んでいる。これ
らの極細線又は超極細線(以下極細線と総称する)は、
例えば銅線の場合は、SCR等の連続鋳造圧延法により
製造した荒引線を、途中に焼鈍処理を施しながら冷間伸
線する方法により製造がなされていた。しかしながら、
前記のSCR法等の連続鋳造圧延法で鋳造される鋳塊は
5000mm2 規模の大型鋳塊の為、極細線に至る迄
の工程が長く、特に少量多品種の合金製極細線を製造す
るような場合はコスト的に見て不利であり、又かかる鋳
塊は表面品質が不良な為、伸線加工の途中に皮剥工程を
入れる必要があり生産性に劣るものであった。
[Background Art and its Problems] In recent years, as electronic devices have become smaller and more multifunctional, the distribution lines used in these devices have become increasingly thinner, ranging from ultra-fine wires of 50 μm or less to even 30 μm or less.
Wire thinning is progressing to ultra-fine wires of μm or less. These ultra-fine wires or ultra-fine wires (hereinafter collectively referred to as ultra-fine wires) are
For example, in the case of copper wire, it has been manufactured by a method of cold drawing a rough drawn wire manufactured by a continuous casting and rolling method such as SCR, while performing an annealing treatment on the way. however,
Since the ingots cast by continuous casting and rolling methods such as the SCR method described above are large ingots on the scale of 5000 mm2, the process to produce ultra-fine wires is long, especially when manufacturing ultra-fine alloy wires in small quantities with a wide variety of products. In this case, it is disadvantageous in terms of cost, and since such ingots have poor surface quality, it is necessary to include a peeling process during wire drawing, resulting in poor productivity.

【0002】このようなことから、20mmφ程度の小
サイズの鋳塊を用いる方法、更にはこの小サイズ鋳塊を
加工性に優れた一方向凝固組織又は方向性凝固組織とな
して、鋳塊から極細線まで一気に冷間加工して途中の焼
鈍処理を省略する方法が提案された。この一方向凝固組
織又は方向性凝固組織の鋳塊は、凝固時の熱抽出を鋳型
を介さず直接製出鋳塊を通して行うようにして製造する
為、表面品質に優れ、従って途中に皮剥工程を要さない
というような利点をも有するものであった。ところが、
前述の一方向凝固組織又は方向性凝固組織の鋳塊を冷間
加工する方法によっても、極細線の径が細くなると断線
が多発して生産性が著しく低下するという問題があった
[0002] For these reasons, a method using a small size ingot of about 20 mmφ, and furthermore, a method using a small size ingot with a unidirectionally solidified structure or a directionally solidified structure with excellent workability, A method was proposed in which cold working is performed all at once down to ultra-fine wires and the intermediate annealing treatment is omitted. Ingots with this unidirectionally solidified structure or directionally solidified structure are produced by performing heat extraction during solidification directly through the produced ingot without going through a mold, so they have excellent surface quality and therefore require a peeling process during the process. It also had the advantage that it was not necessary. However,
Even with the method of cold working an ingot with a unidirectionally solidified structure or a directionally solidified structure described above, there is a problem in that when the diameter of the ultra-fine wire becomes thinner, wire breakage occurs frequently and productivity is significantly reduced.

【0003】0003

【課題を解決するための手段】本発明はかかる状況に鑑
み鋭意研究を行った結果、一方向凝固組織又は方向性凝
固組織の鋳塊を冷間加工していくと結晶粒界に割れが生
じ、この割れが後の極細線への冷間伸線工程で断線の原
因になることを知見し、更に研究を重ねて本発明を完成
するに到ったものである。即ち、本発明は、一方向凝固
組織又は方向性凝固組織の鋳塊を熱間加工して細線用素
材となし、次いで当該細線用素材を冷間伸線加工するこ
とを特徴とする極細線の製造方法である。本発明方法に
おいて、一方向凝固組織とは、図1にその縦断面図を示
したように結晶粒1が鋳塊の長手方向に平行に成長した
ものであり、かかる一方向凝固組織2の鋳塊3は加熱鋳
型連続鋳造法やチョコラルスキー連続鋳造法等の方法に
より製造される。又かかる一方向凝固組織2の鋳塊3を
熱間加工すると一方向凝固組織2は微細な再結晶組織4
に変わるものである。他方、方向性凝固組織とは、図2
にその縦断面図を示したように、結晶粒1が鋳塊の両側
から中心に向けて斜め方向に成長したもので、かかる方
向性凝固組織5の鋳塊6は、鋳型からの熱抽出を最小限
に留め、鋳塊が鋳型から出た後、直ちに鋳塊を直接強制
冷却して得られるもので、通常の横型連続鋳造法等で鋳
型からの冷却を弱め、二次冷却を強めることにより製造
される。この鋳塊6の場合も熱間加工を施すことにより
方向性凝固組織5は微細な再結晶組織4に変化する。本
発明方法において、一方向凝固組織又は方向性凝固組織
の鋳塊を熱間加工する方法としては、圧延,押出し,ス
エージャー,引抜き等の任意の加工法が適用される。又
熱間加工後の細線用素材を極細線に加工する方法として
は、通常の冷間伸線加工法が用いられる。
[Means for Solving the Problems] The present invention has been made as a result of intensive research in view of the above situation. When an ingot with a unidirectionally solidified structure or a directionally solidified structure is cold-worked, cracks occur at grain boundaries. It was discovered that this cracking caused wire breakage during the subsequent cold drawing process into ultra-fine wires, and after further research, the present invention was completed. That is, the present invention provides a method for producing ultra-fine wire, which is characterized in that an ingot with a unidirectionally solidified structure or a directionally solidified structure is hot-processed into a thin wire material, and then the thin wire material is cold-drawn. This is the manufacturing method. In the method of the present invention, the unidirectionally solidified structure is one in which crystal grains 1 grow parallel to the longitudinal direction of the ingot, as shown in the longitudinal cross-sectional view of FIG. The mass 3 is manufactured by a method such as a hot mold continuous casting method or a Czochralski continuous casting method. Furthermore, when the ingot 3 having such a unidirectionally solidified structure 2 is hot-processed, the unidirectionally solidified structure 2 becomes a fine recrystallized structure 4.
This will change to On the other hand, the directionally solidified structure is shown in Figure 2.
As shown in its longitudinal cross-sectional view, the crystal grains 1 grow obliquely from both sides of the ingot toward the center, and the ingot 6 with such a directional solidification structure 5 resists heat extraction from the mold. It is obtained by direct forced cooling of the ingot immediately after it comes out of the mold, and by weakening the cooling from the mold and strengthening the secondary cooling using the normal horizontal continuous casting method etc. Manufactured. In the case of this ingot 6 as well, the directionally solidified structure 5 changes into a fine recrystallized structure 4 by hot working. In the method of the present invention, any method such as rolling, extrusion, swaging, drawing, etc. can be applied as a method for hot working an ingot with a unidirectionally solidified structure or a directionally solidified structure. Further, as a method for processing the hot-worked thin wire material into ultra-fine wire, a normal cold wire drawing method is used.

【0004】0004

【作用】本発明方法では、一方向凝固組織又は方向性凝
固組織の鋳塊を用いるので、表面品質が優れ皮剥等の工
程を入れる必要がなく、又上記一方向凝固組織又は方向
性凝固組織の鋳塊を熱間加工するので、粒界割れを起こ
さずに微細な再結晶組織の細線用素材が得られ、この細
線用素材を冷間伸線加工することにより伸線性に優れた
極細線が製造される。
[Operation] In the method of the present invention, an ingot with a unidirectionally solidified structure or a directionally solidified structure is used, so the surface quality is excellent and there is no need to include a step such as peeling. Since the ingot is hot-processed, a fine wire material with a fine recrystallized structure is obtained without causing intergranular cracking, and by cold drawing this fine wire material, an ultra-fine wire with excellent wire drawability is obtained. Manufactured.

【0005】[0005]

【実施例】以下に本発明を実施例により詳細に説明する
。 実施例1 加熱鋳型連続鋳造法又は横型連続鋳造法によりそれぞれ
一方向凝固組織又は方向性凝固組織の15mmφの無酸
素銅鋳塊を製造し、この鋳塊を溝ロールにより400℃
〜500℃の温度範囲で熱間圧延して6mmφの細線用
素材となした。次に上記細線用素材を適宜焼鈍を入れつ
つ30μm φの極細線に冷間伸線した。 実施例2 実施例1において、無酸素銅に代えて銅に錫を0.6%
添加した銅錫合金を用い、この合金を500℃〜600
℃の温度範囲で熱間圧延した他は実施例1と同じ方法に
より30μm φの極細線を製造した。 比較例1 実施例1又は2にて製造した各々の鋳塊を冷間圧延して
6mmφの細線用素材となした他はそれぞれ実施例1又
は2と同じ方法により30μm φの極細線を製造した
。 比較例2 無酸素銅又は銅錫合金の鋳塊に、横型連続鋳造法により
通常の条件で製造した多結晶鋳塊を用い、鋳塊の圧延加
工を熱間と冷間の両方の方法で行った他はそれぞれ実施
例1又は2と同じ方法により30μm φの極細線を製
造した。このようにして製造した各々の極細線について
、1断線当たりの伸線量を調べた。結果は表面欠陥の計
測結果を併記して表1に示した。尚、方向性凝固組織の
鋳塊の圧延方向は図2に示したのと同じように結晶粒1
の成長方向に対し順方向とした。又表面欠陥は2mmφ
での渦流探傷により計測した。
[Examples] The present invention will be explained in detail below using examples. Example 1 A 15 mm diameter oxygen-free copper ingot with a unidirectionally solidified structure or a directionally solidified structure was produced by a heated mold continuous casting method or a horizontal continuous casting method, respectively, and this ingot was heated at 400°C with a grooved roll.
It was hot rolled in a temperature range of ~500°C to obtain a material for a thin wire with a diameter of 6 mm. Next, the above-mentioned thin wire material was cold-drawn into a 30 μm φ ultra-fine wire with appropriate annealing. Example 2 In Example 1, 0.6% tin was added to copper instead of oxygen-free copper.
Using the added copper-tin alloy, this alloy was heated to 500°C to 600°C.
An ultrafine wire of 30 μm φ was manufactured by the same method as in Example 1 except that the wire was hot rolled in the temperature range of 30 μm. Comparative Example 1 Ultrafine wires of 30 μm φ were manufactured in the same manner as in Example 1 or 2, except that each ingot produced in Example 1 or 2 was cold rolled to obtain a material for a 6 mm φ thin wire. . Comparative Example 2 A polycrystalline ingot produced by a horizontal continuous casting method under normal conditions was used as an ingot of oxygen-free copper or copper-tin alloy, and the ingot was rolled by both hot and cold methods. Other than that, ultrafine wires with a diameter of 30 μm were manufactured by the same method as in Example 1 or 2, respectively. For each of the ultrafine wires produced in this way, the amount of wire drawn per wire breakage was investigated. The results are shown in Table 1 together with the measurement results of surface defects. Note that the rolling direction of the ingot with the directional solidification structure is the same as shown in Fig. 2.
The direction was set in the forward direction with respect to the growth direction of. Also, the surface defect is 2mmφ
It was measured by eddy current flaw detection.

【0006】[0006]

【表1】[Table 1]

【0007】表1より明らかなように、本発明方法品(
No1〜4)は表面欠陥は全く検出されず、又30μm
 φでの伸線性も1断線当たり7kg以上で極めて優れ
たものであった。これに対し、比較方法品のNo5〜8
は表面品質は優れていたものの、鋳塊を冷間圧延した為
、結晶粒間に割れが生じて極細線での伸線性が低下した
。又No9〜12は鋳塊組織が多結晶体であった為、表
面欠陥が発生し、又冷間加工材には粒界割れも存在した
為、伸線性が極端に低下した。上記実施例又は比較例に
おいて、一方向凝固組織鋳塊の方が方向性凝固組織鋳塊
より、又無酸素銅鋳塊の方が銅錫合金よりそれぞれ伸線
性が良好な理由は、前者は表面品質、後者は変形抵抗の
差によるものと考えられる。以上銅及び銅合金について
説明したが、本発明方法はアルミ等の他の金属材料に適
用しても同様の効果が得られるものである。
As is clear from Table 1, the method of the present invention (
No. 1 to 4) had no surface defects detected, and 30 μm
The wire drawability at φ was also extremely excellent, at 7 kg or more per wire breakage. In contrast, comparative method products No. 5 to 8
Although the surface quality was excellent, since the ingot was cold rolled, cracks occurred between the crystal grains, reducing the drawability of ultra-fine wire. Further, in Nos. 9 to 12, the ingot structure was polycrystalline, so surface defects occurred, and intergranular cracks were also present in the cold-worked materials, so the wire drawability was extremely reduced. In the above Examples and Comparative Examples, the reason why the directionally solidified structure ingot has better wire drawability than the directionally solidified structure ingot and the oxygen-free copper ingot has better wire drawability than the copper-tin alloy is that the former has better wire drawability than the directionally solidified structure ingot. The latter is thought to be due to the difference in deformation resistance. Although the above description has been made regarding copper and copper alloys, the method of the present invention can also be applied to other metal materials such as aluminum to obtain similar effects.

【0008】[0008]

【効果】以上述べたように、本発明方法によれば、伸線
性良好な極細線を得られ工業上顕著な効果を奏する。
[Effects] As described above, according to the method of the present invention, an ultrafine wire with good wire drawability can be obtained, and it has a remarkable effect in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法で用いる一方向凝固組織鋳塊の態様
例を示す縦断面図である。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a directionally solidified structure ingot used in the method of the present invention.

【図2】本発明方法で用いる方向性凝固組織鋳塊の態様
例を示す縦断面図である。
FIG. 2 is a longitudinal cross-sectional view showing an embodiment of a directionally solidified structure ingot used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1  結晶粒 2  一方向凝固組織 3  一方向凝固組織の鋳塊 4  微細な再結晶組織 5  方向性凝固組織 6  方向性凝固組織の鋳塊 1 Crystal grain 2 Unidirectional solidification structure 3 Ingot with unidirectional solidification structure 4 Fine recrystallized structure 5 Directional coagulation structure 6 Ingot with directionally solidified structure

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一方向凝固組織又は方向性凝固組織の
鋳塊を熱間加工して細線用素材となし、次いで当該細線
用素材を冷間伸線加工することを特徴とする極細線の製
造方法。
1. Production of ultra-fine wire, characterized by hot working an ingot with a unidirectionally solidified structure or a directionally solidified structure to obtain a thin wire material, and then subjecting the thin wire material to cold wire drawing. Method.
JP3681991A 1991-02-06 1991-02-06 Production method of extra fine wire Expired - Lifetime JP2915596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3681991A JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3681991A JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Publications (2)

Publication Number Publication Date
JPH04254559A true JPH04254559A (en) 1992-09-09
JP2915596B2 JP2915596B2 (en) 1999-07-05

Family

ID=12480369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3681991A Expired - Lifetime JP2915596B2 (en) 1991-02-06 1991-02-06 Production method of extra fine wire

Country Status (1)

Country Link
JP (1) JP2915596B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240949A (en) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp Method of manufacturing for worked billet of high- purity copper having fine crystal grain
WO2002068140A1 (en) * 2001-02-28 2002-09-06 Showa Denko K.K. Plastic-worked member and production method thereof
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor
CN109003743A (en) * 2018-07-25 2018-12-14 王文芳 A kind of production method of the superfine conductor of continuous copper alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240949A (en) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp Method of manufacturing for worked billet of high- purity copper having fine crystal grain
WO2002068140A1 (en) * 2001-02-28 2002-09-06 Showa Denko K.K. Plastic-worked member and production method thereof
JP2007203358A (en) * 2006-02-03 2007-08-16 Usui Kokusai Sangyo Kaisha Ltd High pressure fuel piping for accumulator fuel injection systems, and manufacturing method therefor
CN109003743A (en) * 2018-07-25 2018-12-14 王文芳 A kind of production method of the superfine conductor of continuous copper alloy

Also Published As

Publication number Publication date
JP2915596B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
CN104073689A (en) Aluminum alloy forged material for automobile and method for manufacturing the same
EP3391976A1 (en) Magnesium alloy sheet rolling and preparation method
KR910009976B1 (en) Method for manufacturing tubes
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
EP0093178B1 (en) Production of superplastic aluminum alloy strips
CN110976512A (en) Cold rolling method for TC4 titanium alloy wire
JPH04254559A (en) Production of extremely fine wire
JP3605662B2 (en) Aluminum foil for containers
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
US2260914A (en) Producing copper-base-alloy rod or the like
RU2807260C1 (en) METHOD FOR MANUFACTURING BRONZE RODS “БрХ08”
KR20190078258A (en) Magnesium alloy sheet and method for manufacturing the same
JPH0419298B2 (en)
JPS61140301A (en) Manufacture of round billet for seamless stainless steel pipe by skew rolling
JPS6219483B2 (en)
JP2023002015A (en) Magnesium alloy sheet
JPH10110226A (en) Production of copper or copper alloy
CN117415262A (en) Preparation method and product of TC18 titanium alloy die forging with high ultrasonic flaw detection grade
JP2559120B2 (en) Method for removing oxide scale in wire manufacturing process
JP2610756B2 (en) Method for producing Au-Si alloy brazing filler metal comprising fine crystal grains
JP4364753B2 (en) Aluminum foil for electrolytic capacitor electrode
JP6075386B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JPH08218155A (en) Production of zirconium-copper alloy sheet having fine crystal grain
SU776678A1 (en) Method of producing workpiece from ferrum-nickel-cobalt based alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

EXPY Cancellation because of completion of term