JPS6219483B2 - - Google Patents

Info

Publication number
JPS6219483B2
JPS6219483B2 JP5119683A JP5119683A JPS6219483B2 JP S6219483 B2 JPS6219483 B2 JP S6219483B2 JP 5119683 A JP5119683 A JP 5119683A JP 5119683 A JP5119683 A JP 5119683A JP S6219483 B2 JPS6219483 B2 JP S6219483B2
Authority
JP
Japan
Prior art keywords
cooling
phase
steel
duplex stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5119683A
Other languages
Japanese (ja)
Other versions
JPS59177320A (en
Inventor
Masayuki Ono
Shuichi Nakatsubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5119683A priority Critical patent/JPS59177320A/en
Publication of JPS59177320A publication Critical patent/JPS59177320A/en
Publication of JPS6219483B2 publication Critical patent/JPS6219483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、二相系ステンレス鋼の線材の製造方
法に関する。 約60%のオーステナイト組織と約40%のフエラ
イト組織とからなる二相系ステンレス鋼は、溶接
棒にしたとき不純物感受性が低く広い範囲の材料
の溶接に適用できるから、クラツド鋼板製造のた
めの溶接や、肉盛り補修などに好んで使用されて
いる。AWS(アメリカ溶接協会)の規格による
ER312鋼は、その代表である。 しかしこの材料には、鋼塊から線材製品に至る
過程でしばしばワレが生じ、以後の加工に支障を
きたしやすいという難点がある。 本発明者らは、二相系ステンレス鋼線材の製造
を、高い良品歩留りをもつて実現することを意図
して研究し、上記のワレが硬くて脆いσ相の析出
に起因することを確認し、その析出を回避する条
件を確立して本発明に至つた。 本発明の二相系ステンレス鋼線材の製造方法
は、二相系ステンレス鋼の鋼塊を分塊圧延した
後、鋼片の表面における冷却速度が5℃/min以
上となる条件下に550℃以下の温度まで急冷し、
その後に線材圧延を行なうことを特徴とする。 上記の冷却条件の確立に至る過程を説明すれ
ば、まず本発明者らは二相系ステンレス鋼の鋼塊
(ascast状態および分塊のための加熱後)につい
て検査し、欠陥が皆無であることをたしかめた。 次に分塊圧延後の鋼片に対して、異なる条件の
冷却を行なつたところ、徐冷または空冷した鋼片
にはワレがみられ、一方、水冷したものにはみら
れなかつた。 各鋼片の横断面についてσの分布をしらべたと
ころ、水冷材は全くσ相がなく、空冷材は表層約
10mmに、また徐冷材は表層約20mmにσ相があり、
どちらも中心部にはσ相が認められなかつた。 この状況を第1図ないし第3図に示す。各図は
分塊圧延後の鋼片の横断面における分塊圧延機の
鋼片の横断面における、冷却法とフエライト組織
の比率とをグラフにあらわすとともに、横断面の
組織を模式的に示したものであつて、第1図は徐
冷、第2図は空冷、そして第3図は水冷の場合で
ある。フエライト組織が少ないということは、そ
の程度に応じてσ相への変態が起つたことを意味
する。 各鋼片とも、ワレの深さとσ相の存在する層の
厚さとはほぼ一致しており、ワレがσ相の析出に
よりもたらされたことは、ワレ部のミクロ組織と
EPMA試験、およびワレ破面のSEM試験、
EPMA試験によつても裏付けられた。 急冷したものにσ相の析出がない事実は、冷却
条件の重要性を示すことにほかならないが、相対
的に冷却が速い表層部にσ相が発生し、冷却が遅
い中心部に発生しないことは、分塊圧延の際に与
えられる加工歪みの大小がσ相の発生に大きく寄
与していることをも意味する。そのほか、分塊圧
延のための加熱温度が高いほど、σ相の析出がお
そいことがわかつた。 σ相が発生した表層部にワレが生じたことは、
σ変態は体積収縮を伴ない、鋼片表面に引張応力
が働らき、脆弱なσ相部分で割れるものと理解さ
れる。この理解が正しいことは、鋼片横断面のミ
クロ試験のほか、表面残留応力の測定の結果(空
冷材表面では引張応力があり、水冷材表面では逆
に圧縮応力がはたらいていること)から実証され
た。 σ相の析出は、950℃から550℃の間で起り得る
から、鋼片の急冷は、550℃以下の温度に達する
まで行なうべきである。 以上の知見を要約すると、第4図および第5図
に示すようになる。すなわち、分塊圧延後の鋼片
の中心部の冷却曲線とσ相析出ノーズとの関係は
第4図に、また表層部のそれは第5図にそれぞれ
示すとおりであつて、鋼片の加熱温度が低いとき
はσ相析出ノーズは鎖線の位置に移り、さらに加
工歪みが加わると第5図の破線の位置に進出す
る。すると、冷却速度のおそい場合は、σ相が析
出してワレをひきおこす。 これを免れる条件が、前記した、鋼片の表層部
において5℃/min以上の冷却速度の急冷にほか
ならない。このような急冷は、分塊圧延後の鋼片
を水冷することによつて、容易に実現できる。 本発明を適用できる二相系ステンレス鋼の代表
的なものは、前掲のER312鋼であつて、その合金
組成はつぎのとおりである。 C:0.15%以下、 Si:1.0%以下、 Mn:2.0%以下、 Ni:8〜10%、 Cr:28〜32%、 残部はFeおよび不純物 上述のようにして用意した鋼片の線材圧延は、
当業者に既知の技術に従い、必要に応じてグライ
ンダーによるキズ取りなどの処理を行なつてから
実施すればよい。 σ相の生成を防止する上で、鋼片は高温に加熱
して線材圧延にかけることが好ましく、たとえば
1300℃×30分間のソーキングが適当である。 圧延時の条件により材料温度が低下し、σ相の
析出するおそれがある場合は、ハンドバーナーな
どによる補助加熱を行なうとよい。 また、線材圧延によつて得たコイルは、徐冷さ
れるとσ相生成の心配がある。経験によれば、通
常の空冷でとくに問題はないが、フアンまたはブ
ロアによる強制冷却を行なえば確実である。 実施例 下記の合金組成(重量%、残部Fe)をもつ二
相系ステンレス鋼の鋼塊を分塊圧延して、110mm
角の鋼片とした。
The present invention relates to a method for manufacturing a duplex stainless steel wire. Duplex stainless steel, which consists of about 60% austenite structure and about 40% ferrite structure, has low impurity sensitivity when made into a welding rod and can be applied to welding a wide range of materials, so it is suitable for welding for the production of clad steel sheets. It is often used for overlay repair, etc. Based on AWS (American Welding Society) standards
ER312 steel is a typical example. However, this material has the disadvantage that it often cracks during the process from steel ingot to wire rod product, which tends to hinder subsequent processing. The present inventors conducted research with the intention of realizing the production of duplex stainless steel wire rods with a high yield of non-defective products, and confirmed that the cracks described above are caused by the precipitation of the hard and brittle σ phase. The present invention was achieved by establishing conditions for avoiding the precipitation. The method for producing a duplex stainless steel wire rod of the present invention involves blooming a duplex stainless steel ingot, and then under conditions such that the cooling rate on the surface of the steel billet is 5°C/min or more to 550°C or less. rapidly cooled to a temperature of
The method is characterized in that wire rod rolling is performed thereafter. To explain the process leading to the establishment of the above cooling conditions, the present inventors first inspected a duplex stainless steel ingot (in the ascast state and after heating for blooming) and found that there were no defects. I asked. Next, when the steel slabs after blooming were cooled under different conditions, cracks were observed in the slowly cooled or air-cooled steel slabs, while no cracks were observed in the water-cooled ones. When we examined the distribution of σ in the cross section of each steel slab, we found that the water-cooled material had no σ phase at all, while the air-cooled material had a surface layer of approximately
10 mm, and the slowly cooled material has a σ phase in the surface layer of about 20 mm.
In both cases, no σ phase was observed in the center. This situation is shown in Figures 1 to 3. Each figure graphically represents the cooling method and the ratio of ferrite structure in the cross section of the steel billet after blooming and rolling in the blooming mill, and also schematically shows the structure of the cross section. Fig. 1 shows the case of slow cooling, Fig. 2 shows the case of air cooling, and Fig. 3 shows the case of water cooling. A small amount of ferrite structure means that transformation to the σ phase has occurred depending on the degree of ferrite structure. For each steel piece, the depth of the crack and the thickness of the layer where the σ phase exists are almost the same, and the fact that the crack was caused by the precipitation of the σ phase is confirmed by the microstructure of the crack.
EPMA test and SEM test of cracked fracture surface,
This was also supported by the EPMA test. The fact that the σ phase does not precipitate in the rapidly cooled material shows the importance of the cooling conditions, but the σ phase occurs in the surface layer where cooling is relatively fast and does not occur in the center where cooling is slow. This also means that the magnitude of processing strain applied during blooming greatly contributes to the generation of the σ phase. In addition, it was found that the higher the heating temperature for blooming, the slower the precipitation of the σ phase. The fact that cracks occurred in the surface layer where the σ phase occurred is
It is understood that the σ transformation accompanies volumetric contraction, and tensile stress acts on the surface of the steel piece, causing it to crack at the brittle σ phase portion. The correctness of this understanding has been demonstrated not only by micro-examination of the cross-section of the steel bill, but also by the results of surface residual stress measurements (tensile stress exists on the surface of the air-cooled material, while compressive stress acts on the surface of the water-cooled material). It was done. Precipitation of the σ phase can occur between 950°C and 550°C, so quenching of the steel billet should be carried out until a temperature of 550°C or less is reached. The above findings can be summarized as shown in FIGS. 4 and 5. In other words, the relationship between the cooling curve of the central part of the slab after blooming and the σ phase precipitation nose is shown in Figure 4, and that of the surface layer is shown in Figure 5. When is low, the σ phase precipitation nose moves to the position indicated by the chain line, and when processing strain is further applied, it advances to the position indicated by the broken line in FIG. Then, if the cooling rate is slow, the σ phase will precipitate and cause cracking. The only condition to avoid this is the above-mentioned rapid cooling at a cooling rate of 5° C./min or more in the surface layer of the steel piece. Such rapid cooling can be easily achieved by water-cooling the steel billet after blooming and rolling. A typical duplex stainless steel to which the present invention can be applied is the above-mentioned ER312 steel, whose alloy composition is as follows. C: 0.15% or less, Si: 1.0% or less, Mn: 2.0% or less, Ni: 8 to 10%, Cr: 28 to 32%, the balance being Fe and impurities.The wire rod rolling of the steel billet prepared as described above ,
According to techniques known to those skilled in the art, the process may be carried out after performing a process such as removing scratches using a grinder, if necessary. In order to prevent the formation of the σ phase, it is preferable to heat the steel billet to a high temperature and subject it to wire rolling.
Soaking at 1300℃ for 30 minutes is appropriate. If the temperature of the material decreases due to rolling conditions and there is a risk of precipitation of the σ phase, it is advisable to perform auxiliary heating using a hand burner or the like. In addition, there is a concern that a coil obtained by wire rolling may generate a σ phase when slowly cooled. According to experience, there are no particular problems with normal air cooling, but forced cooling with a fan or blower is more reliable. Example A duplex stainless steel ingot with the following alloy composition (wt%, balance Fe) was bloomed into a 110 mm
It was made into a square piece of steel.

【表】 これを1300℃×30分間のソーキングを行なつて
から、直径50mmの線材に圧延した。 分塊圧延後の鋼片の冷却条件を種々変化させ
て、鋼片の表層部におけるσ相の生成状況をしら
べ、圧延時のワレを記録した。結果はつぎのとお
りである。
[Table] This was soaked at 1300°C for 30 minutes and then rolled into a wire rod with a diameter of 50 mm. The cooling conditions of the steel slab after blooming rolling were varied, and the formation of σ phase in the surface layer of the steel slab was investigated, and cracks during rolling were recorded. The results are as follows.

【表】 この結果から、鋼片の冷却を、表面において5
℃/min以上の急冷により550℃以下の温度まで
到達するように行なうべきことが確認される。
[Table] From this result, it can be seen that the cooling of the steel billet is
It is confirmed that rapid cooling at a rate of ℃/min or more should be performed to reach a temperature of 550℃ or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、二相系ステンレス鋼の
分塊圧延後の鋼片の横断面における、冷却法とフ
エライト組織の比率との関係を示した、グラフお
よび横式的な断面図であつて、第1図は徐冷、第
2図は空冷、そして第3図は水冷の場合をそれぞ
れ示す。第4図および第5図は、鋼片の冷却曲線
とσ相析出ノーズとの関係を示すグラフであつ
て、第4図は鋼片中心部を、また第5図は表層部
を対象としたものである。
Figures 1 to 3 are graphs and horizontal cross-sectional views showing the relationship between the cooling method and the ratio of ferrite structure in the cross section of a billet of duplex stainless steel after blooming. FIG. 1 shows the case of slow cooling, FIG. 2 shows the case of air cooling, and FIG. 3 shows the case of water cooling. Figures 4 and 5 are graphs showing the relationship between the cooling curve of a steel slab and the σ phase precipitation nose, with Figure 4 targeting the center of the slab and Figure 5 targeting the surface layer. It is something.

Claims (1)

【特許請求の範囲】 1 二相系ステンレス鋼の鋼塊を分塊圧延した
後、鋼片の表面における冷却速度が5℃/min以
上となる条件下に550℃以下の温度まで急冷し、
その後に線材圧延を行なうことを特徴とする二相
系ステンレス鋼線材の製造方法。 2 二相系ステンレス鋼が、C:0.15%以下、
Si:1.0%以下、Mn:2.0%以下、Ni:8〜10%お
よびCr:28〜32%を含有し、残部がFeおよび不
純物からなる合金組成を有する特許請求の範囲第
1項の製造方法。
[Claims] 1. After blooming a duplex stainless steel ingot, rapidly cooling it to a temperature of 550°C or less under conditions such that the cooling rate on the surface of the steel ingot is 5°C/min or more,
A method for producing a duplex stainless steel wire rod, which comprises subsequently performing wire rod rolling. 2 The duplex stainless steel has C: 0.15% or less,
The manufacturing method according to claim 1, having an alloy composition containing Si: 1.0% or less, Mn: 2.0% or less, Ni: 8 to 10%, and Cr: 28 to 32%, with the balance consisting of Fe and impurities. .
JP5119683A 1983-03-26 1983-03-26 Manufacture of two-phase stainless steel wire rod Granted JPS59177320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119683A JPS59177320A (en) 1983-03-26 1983-03-26 Manufacture of two-phase stainless steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119683A JPS59177320A (en) 1983-03-26 1983-03-26 Manufacture of two-phase stainless steel wire rod

Publications (2)

Publication Number Publication Date
JPS59177320A JPS59177320A (en) 1984-10-08
JPS6219483B2 true JPS6219483B2 (en) 1987-04-28

Family

ID=12880125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119683A Granted JPS59177320A (en) 1983-03-26 1983-03-26 Manufacture of two-phase stainless steel wire rod

Country Status (1)

Country Link
JP (1) JPS59177320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762462A1 (en) 2005-09-08 2007-03-14 NSK Ltd. Steering apparatus
CN114904914A (en) * 2022-06-16 2022-08-16 浙江青山钢铁有限公司 Rolling method of duplex stainless steel wire rod
CN114932146A (en) * 2022-06-30 2022-08-23 浙江青山钢铁有限公司 Rolling method of super duplex stainless steel wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872113B (en) * 2020-06-09 2022-07-22 江苏省沙钢钢铁研究院有限公司 Medium-high carbon steel hot-rolled wire rod and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762462A1 (en) 2005-09-08 2007-03-14 NSK Ltd. Steering apparatus
CN114904914A (en) * 2022-06-16 2022-08-16 浙江青山钢铁有限公司 Rolling method of duplex stainless steel wire rod
CN114932146A (en) * 2022-06-30 2022-08-23 浙江青山钢铁有限公司 Rolling method of super duplex stainless steel wire

Also Published As

Publication number Publication date
JPS59177320A (en) 1984-10-08

Similar Documents

Publication Publication Date Title
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JPS6219483B2 (en)
CA1131054A (en) Process of rolling iron-silicon strip material
JP3945238B2 (en) Steel plate manufacturing method
JPH07251265A (en) Method for scarfing cast steel slab
JPH0365001B2 (en)
JP2006206949A (en) METHOD FOR MANUFACTURING Ni ALLOY
JPS601926B2 (en) Method for producing steel material with uniform internal quality
JP3399838B2 (en) Manufacturing method of hot rolled alloy material
JPH06306464A (en) Production of hot rolled austenitic stainless steel plate
JPH0534404B2 (en)
JP3574656B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JP5440931B2 (en) Nickel material and manufacturing method thereof
KR19980050643A (en) Hot rolling method of high alloy austenitic heat resistant stainless steel
JP4696341B2 (en) Manufacturing method of thin steel sheet with excellent surface properties
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming
JPS6155571B2 (en)
JP4993327B2 (en) Ni-base alloy hot-rolling slab and manufacturing method thereof
JPS62205252A (en) Hot-working method for high ni-fe alloy
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPH0631395A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH0310689B2 (en)
JP3474629B2 (en) Method of manufacturing hot rolled ultra-high silicon electromagnetic steel sheet
JP2705411B2 (en) Manufacturing method of high toughness ferritic stainless steel strip
JPH06299300A (en) Ferritic stainless steel wire rod and its production