JPH0365001B2 - - Google Patents

Info

Publication number
JPH0365001B2
JPH0365001B2 JP60005951A JP595185A JPH0365001B2 JP H0365001 B2 JPH0365001 B2 JP H0365001B2 JP 60005951 A JP60005951 A JP 60005951A JP 595185 A JP595185 A JP 595185A JP H0365001 B2 JPH0365001 B2 JP H0365001B2
Authority
JP
Japan
Prior art keywords
rolling
hot
cold
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60005951A
Other languages
Japanese (ja)
Other versions
JPS61166923A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60005951A priority Critical patent/JPS61166923A/en
Publication of JPS61166923A publication Critical patent/JPS61166923A/en
Publication of JPH0365001B2 publication Critical patent/JPH0365001B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は優れた軟磁気特性を有する電磁鋼板を
工業規模で製造する方法に係るものである。 〔従来の技術〕 珪素鋼板は優れた軟磁気特性を有するため、従
来から電力用の磁心として、或は回転機に大量に
使用されてきた。この珪素鋼板において、珪素の
添加量が多い程軟磁気特性は向上し、6.5%でピ
ークを示すことが知られている。 しかしながら、鋼中の珪素含有量が4.0%より
も多くなると伸びが急激に低下するために通常の
冷間圧延が出来ず、高珪素鋼の薄板を工業的に安
定して製造することは従来困難とされていた。 このような高珪素鋼薄板の製造に関して、従来
から幾つかの方法が提案されている。石坂らは熱
間鍛造後の熱間圧延条件を適切に選定することに
より、高珪素鋼の冷間圧延がある程度可能になる
ことを報告している(石坂ら:日本金属学会誌
Vol.30(1966)No.6)。すなわち、彼らは1〜7%
珪素を含有する合金を大気中で高周波溶解し50mm
角のインゴツトにした後、それらを厚さ15mmまで
熱間鍛造し、その試験片の表面を切断して11mm厚
さとした後、1000℃、850℃、750℃でそれぞれ1
mm厚さまで、また750℃で5mm厚さまで恒温熱間
圧延した後600℃で1mm厚さまで、また750℃で5
mm厚さまで恒温熱間圧延した後3mm厚さまで600
℃で恒温熱間圧延し、その後450℃で1mm厚さま
で恒温熱間圧延し、次にそれらのサンプルを酸
洗・冷間圧延して割れの発生の様子を観察するこ
とにより冷間延性におよぼす熱間圧延条件の影響
を調べた。この報告によれば、珪素含有量約4.7
%以下では熱間圧延条件に関係なく冷間圧延可能
であり、珪素含有量5%前後では熱延板の側端部
(耳)をせん断すれば熱間圧延条件に関係なく冷
間圧延可能である。しかしながら、約6%以上の
珪素を含む鋼板では熱間圧延温度によつてその後
の冷間圧延性が異なり、特に珪素含有量6.5%付
近の鋼では600〜750℃で恒温熱間圧延を行なうこ
とにより、冷間で圧延することが可能になると報
告している。 一方、高珪素鋼の薄板を製造する方法として、
このような圧延による方法以外に超急冷凝固法
(通常、冷却速度は105℃/sec以上)と称される
方法も知られている(例えば、特開昭59−16926
号)。この方法に従えば、珪素を4%以上含有す
る高珪素鋼の薄板を製造することが可能であり、
しかも急冷による結晶粒微細化により得られた薄
板をある程度冷間圧延することもできる。 〔発明が解決しようとする問題点〕 しかしながら、石坂らの方法で高珪素鋼の薄板
を工業的に製造するためには、精練後の溶鋼を造
塊法によりインゴツトとし、それらを再加熱後熱
間鍛造し、その後恒温で熱間圧延を施す必要があ
る。 このような製造方法には以下に述べる問題点が
ある。 まず、この方法では、圧延前に熱間鍛造するこ
とが不可欠であり、仮に熱間鍛造を省略すると
1000℃以下での圧延が不可能となる。したがつ
て、この場合の処理は必然的に非連続的にならざ
るを得ず、その結果、製造工程が繁雑になると同
時に製造コストが高くなつてしまう。 さらに、鋳造したインゴツト材を製膜鍛造する
と割れが発生するため、熱間圧延以前に表面調整
を充分に行なわなければならない。事実、石坂ら
は表面調整のため約27%(坂厚15mmから11mmま
で)もの切削を施している。 また、石坂らの方法では冷間加工性を改善する
ために熱間圧延を恒温で行なう必要があるが、そ
のためにはストリツプを圧延の途中段階で再加熱
しなければならず、従来型の連続式熱間圧延機で
は実施することはできない。 このように製造コスト及び歩留りの点から石坂
らの方法を工業規模で実施することは不可能であ
る。 一方、超急冷凝固法は溶融金属をノズルから金
属冷却移動体の表面へ噴出、凝固させるものであ
り、連続的にしかも高い歩留りで金属薄板を製造
することが可能であるが、この場合、得られる薄
板の厚さは高々数100μ程度であり、また幅も約
20〜30cmが限度であるために、用途が限定されて
しまうという難点がある。 〔発明の概要〕 石坂らの方法の要点は、冷間加工性を改善する
ために600〜750℃の温度で恒温熱間圧延すること
にある。しかし、このように低い温度で直ちに圧
延することはできず、熱間圧延の前処理として熱
間鍛造することが必要不可欠であることは既に述
べたとうりである。難加工材を加工あるいは圧延
する際の予備処理として鍛造することはよく知ら
れた方法であるが、鍛造は生産性が低く、得られ
る製品の形状にも制約がある。さらに前述したよ
うに、従来から使用されている連続式熱間圧延機
では恒温熱間圧延を行なうことが不可能であり、
設備の面からの制約も存在する。石坂らの方法が
実用化されなかつた理由も上述した点にあると考
れられる。 本発明者等は高珪素鋼の熱間および冷間加工性
に関して種々の検討を行なつた結果、インゴツト
或は連続鋳造スラブを分塊圧延または粗圧延する
際、適切な熱間圧延条件を選ぶことによつて、そ
の中間熱延材料の結晶粒の微細化が達成され、こ
れにより連続熱間圧延が可能となること、そし
て、その中間熱延材料を引き続いて比較的低温で
連続熱間圧延することにより、冷間圧延に適した
熱延板組織が得られることを見だした。 本発明は上記した知見に基づくもので、C<
0.01wt%、4.0wt%<Si7.0wt%、Mn<0.2wt
%、Sol.Al<2.0wt%、N<0.01wt%、残部鉄及
び不可避不純物から成る高珪素鋼のインゴツト或
は連続鋳造スラブを、圧延を開始する際の材料温
度1050℃以上、圧延中の材料温度1000℃以上、累
積圧下率50%以上、1パス当りの圧下率10%以上
で分塊圧延または粗圧延し、次いで圧延中の材料
温度1000℃以下、パス間時間10秒以内、累積圧下
率30%以上の連続圧延を行ない700℃以下の温度
で巻取つた後、冷間圧延を含む電磁鋼板の製造上
必要な処理を施すことにより電磁鋼板を製造する
ようにしたことを特徴とするものである。 以下に本発明の成分条件及び製造条件の限定理
由及び作用を詳述する。 鋼の組成 C:Cは製品の鉄損を増大させ、磁気時効の主原
因となる有害な元素であり、また加工性を低下
させるため出来るだけ少ない方が望ましい。し
たがつて本発明ではC<0.01wt%と限定した。 Si:Siは前述したように軟磁気特性を改善させる
元素であり、その含有量が6.5wt%をピークと
して軟磁気特性が向上する。本発明ではこれま
で工業的に冷間圧延が不可能とされていたSi>
4.0wt%の範囲を対象とする。一方、Si含有量
が7.0wt%を超えると、製造コストが上昇し、
また磁気特性、特に最大透磁率が劣化すること
が知られている。このため、Siは上限を7.0wt
%とする。 Mn:Mnは鋼中不純物としてのSを固定するた
めに添加される。ただしMn量が増加すると加
工性が劣化すること、さらにMnSが多くなる
と軟磁気特性に対して悪い影響を与えることか
らMn<0.2wt%とした。 Sol.Al:Alは製鋼時脱酸とために添加される。
さらにAlには軟磁気特性を劣化させる固溶N
を固定し、さらに鋼中に固溶することにより電
気抵抗を上昇させることが知らている。また
Alを添加することにより、析出するAlNの大
きさを磁壁の移動に対する抵抗が殆どなくなる
までに粗大化することができる。しかしながら
Alを多量に添加すると加工性が劣化し、さら
にコストも上昇するためSol.Al<2.0wt%と限
定する。 N:Nは前述したように軟磁気特性を劣化させる
ために低い方が望ましい。そこで本発明ではN
<0.01wt%と限定する。 熱間圧延条件 本発明者等は高珪素鋼の熱・冷間圧延性に関す
る種々の検討を行なつた結果、高珪素鋼を冷間圧
延する場合、特定の前組織を形成してやれば冷間
圧延性が改善され、この冷間圧延にとつて好まし
い組織は条件を選ぶことにより連続式熱間圧延に
よつて得ることができること、またこの連続式熱
間圧延を行うためには更にその前組織を微細化し
ておかなければならないとの知見を得た。 このように高珪素鋼を冷間圧延するためには、
まず第一に連続鋳造スラブ或はインゴツトの結晶
粒を微細化し、次に冷間圧延にとつて好ましい組
織を形成させることが必要であり、これらは熱間
における粗圧延(或は分塊圧延)及び仕上げ圧延
の条件を選ぶことにより実施可能であることが判
明した。 以下本発明の製造条件を工程順に詳述する。通
常、高珪素鋼のインゴツト或は連続鋳造スラブの
結晶粒径は数mmから十数mmにも及ぶ。このような
粗大粒のサンプルを石坂らの提唱する600〜750℃
で恒温熱間圧延するとSi量4%においても圧下率
10%以下でサンプル側端部から割れが入り、熱間
圧延不可能であることが判明した。 そこで、このような高珪素鋼の冷間圧延性改善
には、まず熱間圧延の前段階において結晶粒を微
細化し、次に仕上圧延により冷間圧延に適した熱
延板組織を得ることが必要であると考え、まず粗
大粒を圧延(粗圧延または分塊圧延)により微細
化する方法について検討した。粗圧延変化させる
ことのできるパラメータは圧延開始温度、パス・
スケジユール(1パス当りの圧下率・パス間時
間・累積圧下率)及び圧延終了温度である。 検討と結果、高珪素鋼を特定の圧延条件で熱間
圧延することで再結晶を起こさせ、これにより細
粒化可能であることが判明した。すなわち、圧延
中の材料温度1000℃以上で累積圧下率50%以上の
圧下を加えることにより、再結晶を利用した細粒
化が可能である。これを分塊圧延もしくは粗圧延
で実現させるためには、圧延開始温度を1050℃以
上とすれば良い。これは熱間圧延時の再結晶温度
の下限が1000℃付近にあること、更にこれ未満の
温度において再結晶を起こさせるに十分な歪みを
加えると、Si量の高いサンプルでは割れが発生
し、それ以降の圧延ができなくなることによる。 第1図に再結晶挙動に及ぼす圧延開始温度の影
響をSi量との関係において示す。第1図のグラフ
は、第1表に示した化学成分の厚さ250mmの高珪
素鋼連鋳スラブを、900〜1300℃の各温度で2時
間加熱後、直ちに粗圧延を行ない、組織を顕微鏡
で観察した結果得たものである。 なお、圧延は5パスで終了し、目標粗バー板厚
は30mmとした。また圧延終了時の材料温度は加熱
温度からマイナス100℃以内であつた。
[Industrial Field of Application] The present invention relates to a method for producing an electrical steel sheet having excellent soft magnetic properties on an industrial scale. [Prior Art] Since silicon steel sheets have excellent soft magnetic properties, they have been used in large quantities as magnetic cores for electric power or in rotating machines. It is known that in this silicon steel sheet, the soft magnetic properties improve as the amount of silicon added increases, reaching a peak at 6.5%. However, when the silicon content in the steel exceeds 4.0%, the elongation decreases rapidly, making normal cold rolling impossible, and it has been difficult to stably produce thin sheets of high-silicon steel industrially. It was said that Several methods have been proposed in the past for manufacturing such high-silicon steel sheets. Ishizaka et al. have reported that cold rolling of high-silicon steel is possible to some extent by appropriately selecting hot rolling conditions after hot forging (Ishizaka et al.: Journal of the Japan Institute of Metals).
Vol.30 (1966) No.6). That is, they are 1-7%
Silicon-containing alloy is melted by high frequency in the atmosphere to 50mm
After making square ingots, they were hot-forged to a thickness of 15 mm, and the surface of the test piece was cut to a thickness of 11 mm, and then heated at 1000℃, 850℃, and 750℃ for 1 hour each.
After isothermal hot rolling at 750°C to a thickness of 5mm, at 600°C to a thickness of 1mm, and at 750°C to a thickness of 5mm.
After constant temperature hot rolling to 3mm thickness, 600mm
Cold ductility was determined by isothermal hot rolling at ℃, then isothermal hot rolling at 450℃ to a thickness of 1 mm, and then pickling and cold rolling of the samples to observe the occurrence of cracks. The influence of hot rolling conditions was investigated. According to this report, the silicon content is approximately 4.7
% or less, cold rolling is possible regardless of the hot rolling conditions, and when the silicon content is around 5%, cold rolling is possible regardless of the hot rolling conditions by shearing the side edges (edges) of the hot rolled sheet. be. However, for steel sheets containing approximately 6% or more silicon, the subsequent cold rolling properties vary depending on the hot rolling temperature, and in particular, steel with a silicon content of around 6.5% must be hot rolled at a constant temperature of 600 to 750°C. It is reported that this makes it possible to perform cold rolling. On the other hand, as a method for manufacturing thin sheets of high silicon steel,
In addition to the rolling method, a method called ultra-rapid solidification method (usually cooling rate is 10 5 °C/sec or more) is also known (for example, Japanese Patent Application Laid-Open No. 59-16926
issue). According to this method, it is possible to produce a thin plate of high silicon steel containing 4% or more silicon,
Moreover, a thin plate obtained by grain refinement by rapid cooling can be cold-rolled to some extent. [Problems to be solved by the invention] However, in order to industrially manufacture thin plates of high-silicon steel using the method of Ishizaka et al., the molten steel after scouring is made into ingots by the ingot-making method, and the ingots are heated after reheating. It is necessary to perform forging and then hot rolling at a constant temperature. Such a manufacturing method has the following problems. First, in this method, hot forging is essential before rolling, and if hot forging is omitted,
Rolling at temperatures below 1000℃ becomes impossible. Therefore, the processing in this case must necessarily be discontinuous, resulting in a complicated manufacturing process and an increase in manufacturing costs. Furthermore, since cracks occur when the cast ingot material is film-formed and forged, the surface must be sufficiently adjusted before hot rolling. In fact, Ishizaka et al. cut the surface by approximately 27% (from 15 mm to 11 mm thick). In addition, Ishizaka et al.'s method requires hot rolling to be carried out at a constant temperature in order to improve cold workability, but this requires the strip to be reheated in the middle of rolling, which is different from the conventional continuous method. It cannot be carried out on a type hot rolling mill. As described above, it is impossible to implement the method of Ishizaka et al. on an industrial scale from the viewpoint of manufacturing cost and yield. On the other hand, the ultra-rapid solidification method jets molten metal from a nozzle onto the surface of a metal cooling moving body and solidifies it, making it possible to manufacture thin metal sheets continuously and with a high yield. The thickness of the thin plate is approximately several hundred micrometers at most, and the width is approximately
The problem is that the limit is 20 to 30 cm, which limits its uses. [Summary of the Invention] The key point of Ishizaka et al.'s method is to perform isothermal hot rolling at a temperature of 600 to 750°C to improve cold workability. However, as already mentioned, it is not possible to immediately roll the steel at such a low temperature, and hot forging is essential as a pretreatment for hot rolling. Forging is a well-known method as a preliminary treatment when processing or rolling difficult-to-process materials, but forging has low productivity and there are restrictions on the shape of the resulting product. Furthermore, as mentioned above, it is impossible to perform constant temperature hot rolling with conventionally used continuous hot rolling mills.
There are also restrictions in terms of equipment. The reason why Ishizaka et al.'s method was not put into practical use is thought to be due to the above-mentioned points. The present inventors have conducted various studies regarding the hot and cold workability of high-silicon steel, and have determined that appropriate hot rolling conditions should be selected when blooming or rough rolling ingots or continuously cast slabs. In particular, grain refinement of the intermediate hot-rolled material is achieved, thereby making continuous hot rolling possible, and that the intermediate hot-rolled material is subsequently continuously hot-rolled at a relatively low temperature. It has been found that by doing so, a hot-rolled sheet structure suitable for cold rolling can be obtained. The present invention is based on the above-mentioned knowledge, and C<
0.01wt%, 4.0wt%<Si7.0wt%, Mn<0.2wt
%, Sol.Al<2.0wt%, N<0.01wt%, balance iron and unavoidable impurities. Blooming or rough rolling is performed at a material temperature of 1000℃ or higher, a cumulative reduction rate of 50% or more, and a rolling reduction rate of 10% or more per pass, and then the material temperature during rolling is 1000℃ or lower, the interpass time is 10 seconds or less, and the cumulative reduction is performed. The electrical steel sheet is manufactured by performing continuous rolling at a rate of 30% or more and coiling at a temperature of 700°C or less, and then subjecting it to the necessary treatments for manufacturing the electrical steel sheet, including cold rolling. It is something. The reasons and effects of limiting the component conditions and manufacturing conditions of the present invention will be explained in detail below. Steel Composition C: C is a harmful element that increases the iron loss of the product and is the main cause of magnetic aging, and also reduces workability, so it is desirable to have as little as possible. Therefore, in the present invention, C is limited to <0.01wt%. Si: As mentioned above, Si is an element that improves soft magnetic properties, and the soft magnetic properties improve when its content reaches a peak of 6.5 wt%. In the present invention, Si>
The target range is 4.0wt%. On the other hand, when the Si content exceeds 7.0wt%, the manufacturing cost increases,
It is also known that magnetic properties, especially maximum magnetic permeability, deteriorate. For this reason, the upper limit for Si is 7.0wt.
%. Mn: Mn is added to fix S as an impurity in steel. However, if the amount of Mn increases, the workability deteriorates, and if the amount of MnS increases, it will have a negative effect on the soft magnetic properties, so Mn was set to <0.2 wt%. Sol.Al: Al is added for deoxidation during steel manufacturing.
Furthermore, Al contains solute N that degrades soft magnetic properties.
It is known that electrical resistance can be increased by fixing and further dissolving in steel. Also
By adding Al, the size of the precipitated AlN can be made coarser to the point where there is almost no resistance to the movement of the domain walls. however
Adding a large amount of Al deteriorates workability and increases cost, so Sol.Al is limited to <2.0wt%. N: As mentioned above, N deteriorates the soft magnetic properties, so it is desirable that it be lower. Therefore, in the present invention, N
Limited to <0.01wt%. Hot Rolling Conditions The present inventors have conducted various studies on the hot and cold rollability of high silicon steel, and have found that when high silicon steel is cold rolled, if a specific pre-structure is formed, cold rolling will be possible. A structure with improved properties and a structure preferable for this cold rolling can be obtained by continuous hot rolling by selecting the conditions, and in order to carry out this continuous hot rolling, it is necessary to further improve the previous structure. We learned that it is necessary to miniaturize the structure. In order to cold-roll high-silicon steel in this way,
First of all, it is necessary to refine the grains of the continuously cast slab or ingot, and then to form a structure suitable for cold rolling. It has been found that this process can be carried out by selecting the conditions for finish rolling. The manufacturing conditions of the present invention will be explained in detail in the order of the steps below. Usually, the grain size of high silicon steel ingots or continuously cast slabs ranges from several mm to more than ten mm. Samples with such coarse grains are heated to 600 to 750℃ proposed by Ishizaka et al.
When hot rolling is carried out at constant temperature, the rolling reduction rate decreases even with a Si content of 4%.
At 10% or less, cracks appeared from the sample side edges, making hot rolling impossible. Therefore, in order to improve the cold rolling properties of high-silicon steel, it is necessary to first refine the crystal grains in the pre-hot rolling stage and then obtain a hot-rolled sheet structure suitable for cold rolling through finish rolling. Considering this to be necessary, we first investigated a method of refining coarse grains by rolling (rough rolling or blooming rolling). Parameters that can be changed during rough rolling include rolling start temperature, pass and
These are the schedule (reduction rate per pass, time between passes, cumulative reduction rate) and rolling end temperature. As a result of studies, it was found that hot rolling high-silicon steel under specific rolling conditions causes recrystallization, which makes it possible to refine the grain. That is, grain refinement using recrystallization is possible by applying a rolling reduction of 50% or more at a material temperature of 1000°C or higher during rolling. In order to achieve this by blooming rolling or rough rolling, the rolling start temperature may be set to 1050°C or higher. This is because the lower limit of recrystallization temperature during hot rolling is around 1000℃, and if sufficient strain is applied to cause recrystallization at a temperature lower than this, cracks will occur in samples with a high Si content. This is because further rolling is no longer possible. Figure 1 shows the influence of rolling start temperature on recrystallization behavior in relation to Si content. The graph in Figure 1 shows the structure of a continuously cast slab of high silicon steel with a thickness of 250 mm with the chemical composition shown in Table 1, which was heated at various temperatures of 900 to 1300°C for 2 hours, immediately rough rolled, and its structure was examined using a microscope. This was obtained as a result of observation. Note that rolling was completed in 5 passes, and the target rough bar thickness was 30 mm. Moreover, the material temperature at the end of rolling was within -100°C from the heating temperature.

〔実施例〕〔Example〕

以下本発明の実施例を示す。 上掲第1表に示した厚さ250mmの高珪素鋼スラ
ブを連続式熱間圧延機を使用して以下の条件で熱
間圧延した。 加 熱 1100℃×2時間 粗圧延開始温度 1100℃ 圧下率 250mm−30mm(88%) 粗圧延終了温度 1023℃、粗圧延終了後空冷 仕上げ圧延開始温度 800℃ 圧下率 30mm−3mm(90%) 仕上げ圧延終了温度
725℃、仕上げ圧延終了後空冷 巻 取 593℃ 得られた熱延板を650℃で5分間回復焼鈍し、酸
洗後83%冷間圧延した場合(工程A)、熱延後の
鋼板をそのまま酸洗し、83%冷間圧延した場合
(工程B)、熱延後の鋼板を酸洗後50%冷間圧延
し、その後650℃で5分間回復焼鈍を行ない、再
度冷間圧延を行なうことにより累積冷間圧延率を
83%とした場合(工程C)、及び比較のため得ら
れた熱延板を800℃で5分間焼鈍し、冷間圧延し
た場合(工程D)について冷間圧延性及び冷間圧
延できた材料の一部について1000℃で2分間焼鈍
後の磁気特性を第2表に示す。本発明では、いず
れも良好な冷間圧延性が得られていることがわか
る。
Examples of the present invention will be shown below. A high silicon steel slab having a thickness of 250 mm shown in Table 1 above was hot rolled using a continuous hot rolling mill under the following conditions. Heating 1100℃ x 2 hours Rough rolling start temperature 1100℃ Reduction rate 250mm-30mm (88%) Rough rolling end temperature 1023℃, air cooling after rough rolling Finish rolling start temperature 800℃ Reduction rate 30mm-3mm (90%) Finishing Rolling end temperature
725℃, air-cooled coiling after finish rolling 593℃ When the obtained hot-rolled sheet is recovery annealed at 650℃ for 5 minutes, pickled, and then cold-rolled by 83% (process A), the hot-rolled steel sheet is as it is. In the case of pickling and 83% cold rolling (process B), the hot rolled steel plate is pickled and 50% cold rolling, then recovery annealing is performed at 650°C for 5 minutes, and cold rolling is performed again. The cumulative cold rolling rate is
Cold rollability and materials that could be cold rolled in the case of 83% (Process C) and in the case of annealing the hot rolled sheet obtained for comparison at 800°C for 5 minutes and cold rolling (Process D) Table 2 shows the magnetic properties of a part of the material after annealing at 1000°C for 2 minutes. It can be seen that in the present invention, good cold rollability is obtained in all cases.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明方法によれば、従
来困難とされていた高珪素鋼(Si>4.0%)の工
業規模における冷間圧延が可能となる。
As explained above, according to the method of the present invention, it becomes possible to cold-roll high-silicon steel (Si>4.0%) on an industrial scale, which has been considered difficult in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は再結晶挙動に及ぼす圧延開始温度の影
響をSi量との関係において示したグラフ、第2図
は仕上圧延開始温度、累積圧下率と冷間圧延性と
の関係を示すグラフである。
Figure 1 is a graph showing the influence of rolling start temperature on recrystallization behavior in relation to Si content, and Figure 2 is a graph showing the relationship between finish rolling start temperature, cumulative rolling reduction, and cold rollability. .

Claims (1)

【特許請求の範囲】[Claims] 1 C<0.01wt%、4.0wt%<Si7.0wt%、Mn
<0.2wt%、Sol.Al<2.0wt%、N<0.01wt%、残
部鉄及び不可避不純物から成る高珪素鋼のインゴ
ツト或は連続鋳造スラブを、圧延を開始する際の
材料温度1050℃以上、圧延中の材料温度1000℃以
上、累積圧下率50%以上、1パス当りの圧下率10
%以上で分塊圧延または粗圧延し、次いで圧延中
の材料温度1000℃以下、パス間時間10秒以内、累
積圧下率30%以上の連続圧延を行ない700℃以下
の温度で巻取つた後、冷間圧延を含む電磁鋼板の
製造上必要な処理を施すことにより電磁鋼板を製
造することを特徴とする軟磁気特性に優れた電磁
鋼板の製造方法。
1 C<0.01wt%, 4.0wt%<Si7.0wt%, Mn
<0.2wt%, Sol.Al<2.0wt%, N<0.01wt%, balance iron and unavoidable impurities. Material temperature during rolling is 1000℃ or higher, cumulative reduction rate is 50% or more, and rolling reduction rate is 10 per pass.
% or more, followed by continuous rolling at a material temperature of 1000°C or less during rolling, an interpass time of 10 seconds or less, and a cumulative reduction rate of 30% or more, and then coiling at a temperature of 700°C or less. 1. A method for manufacturing an electrical steel sheet with excellent soft magnetic properties, characterized by manufacturing the electrical steel sheet by subjecting it to treatments necessary for manufacturing the electrical steel sheet, including cold rolling.
JP60005951A 1985-01-18 1985-01-18 Manufacture of electrical steel sheet having superior soft magnetic characteristic Granted JPS61166923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005951A JPS61166923A (en) 1985-01-18 1985-01-18 Manufacture of electrical steel sheet having superior soft magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005951A JPS61166923A (en) 1985-01-18 1985-01-18 Manufacture of electrical steel sheet having superior soft magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS61166923A JPS61166923A (en) 1986-07-28
JPH0365001B2 true JPH0365001B2 (en) 1991-10-09

Family

ID=11625199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005951A Granted JPS61166923A (en) 1985-01-18 1985-01-18 Manufacture of electrical steel sheet having superior soft magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS61166923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294288A (en) * 1986-06-13 1987-12-21 ヤマハ株式会社 Performance data recorder
JPH07100161B2 (en) * 1986-08-20 1995-11-01 日本鋼管株式会社 Method for slabbing of high silicon iron alloy
JP2522255B2 (en) * 1986-08-20 1996-08-07 日本鋼管株式会社 Rolling method for high silicon iron plate
JPS63119910A (en) * 1986-11-10 1988-05-24 Nkk Corp Continuous casting and rolling method for steel containing silicon
JPH07115041B2 (en) * 1987-03-11 1995-12-13 日本鋼管株式会社 Method for manufacturing non-oriented high Si steel sheet
KR930011625B1 (en) * 1990-07-16 1993-12-16 신닛뽄 세이데쓰 가부시끼가이샤 Process for producting ultrahigh silicon electrical thin steel sheet by cold rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same

Also Published As

Publication number Publication date
JPS61166923A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
EP0229846B1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JPH0247524B2 (en) KAKOYONETSUENKOHANNOSEIZOHOHO
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
JPH0365001B2 (en)
JP2001247918A (en) Method for producing high strength thin steel sheet
JP3995822B2 (en) Method for producing high purity ferritic stainless steel sheet with excellent ridging resistance
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP2002206114A (en) Method for manufacturing nonoriented silicon steel sheet
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2716999B2 (en) Manufacturing method of non-oriented electrical steel sheet with high tensile strength and low iron loss
JP2579863B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JPH07113128B2 (en) Method for manufacturing silicon steel sheet
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JP3474628B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JPH0369967B2 (en)
JPS62278227A (en) Manufacture of silicon steel plate
JPH0631395A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH083124B2 (en) Manufacturing method of non-oriented electrical steel sheet with high tensile strength and low iron loss
JP3873352B2 (en) Manufacturing method of hot-rolled steel sheet
JP2735899B2 (en) Method for producing unidirectional silicon steel sheet with uniform magnetic properties
JPH02282420A (en) Production of hot-rolled steel sheet to be worked and thermomechanical treatment of hot-rolled steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees