JP2526122B2 - Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting - Google Patents

Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting

Info

Publication number
JP2526122B2
JP2526122B2 JP1151278A JP15127889A JP2526122B2 JP 2526122 B2 JP2526122 B2 JP 2526122B2 JP 1151278 A JP1151278 A JP 1151278A JP 15127889 A JP15127889 A JP 15127889A JP 2526122 B2 JP2526122 B2 JP 2526122B2
Authority
JP
Japan
Prior art keywords
cold
steel sheet
steel
casting
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1151278A
Other languages
Japanese (ja)
Other versions
JPH0317233A (en
Inventor
秀則 白沢
隆房 岩井
良信 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1151278A priority Critical patent/JP2526122B2/en
Publication of JPH0317233A publication Critical patent/JPH0317233A/en
Application granted granted Critical
Publication of JP2526122B2 publication Critical patent/JP2526122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ストリツプキヤステイングによる深絞り成
形用冷延鋼板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a cold-rolled steel sheet for deep drawing by strip casting.

従来の技術 自動車のドア、オイルパン等の成形に用いられる鋼板
には、深絞り成形性に極めてすぐれることが要求され
る。従来、かかる鋼板は、完全凝固した連続鋳造鋳片を
切断し、冷却した後に、1200℃程度の温度に加熱保持し
た均熱炉に装入して均熱し、熱間圧延して熱延コイルと
し、更に、酸洗後、冷間圧延を施し、焼鈍することによ
つて、製造されている。
2. Description of the Related Art Steel sheets used for forming automobile doors, oil pans, etc. are required to have excellent deep drawability. Conventionally, such a steel sheet is obtained by cutting a completely solidified continuously cast slab, cooling it, and then charging it in a soaking furnace heated and held at a temperature of about 1200 ° C to soak it and hot-roll it into a hot-rolled coil. Further, it is manufactured by further performing pickling, cold rolling and annealing.

しかし、最近、鋳片の表面性状の改良が進展するにつ
れて、工程の省略による省エネルギーが検討され、鋳造
ままスラブを再加熱することなく、連続的に熱間圧延す
る技術や、更には、鋳造ままで熱延鋼板と同等の板厚の
鋳片を製造する技術が開発されるに至つている。特に、
後者の技術は、ストリツプキヤステイングと呼ばれてお
り、冷延鋼板の製造プロセスにおいて、格段の省工程を
可能とするものであるので、今後、一層の技術発展が期
待されている。しかしながら、この技術には、冷間圧
延、焼鈍後、鋼板の深絞り成形性が従来の方法による鋼
板に比べて、著しく劣る問題がある。
However, recently, as the improvement of the surface property of the slab has progressed, energy saving by omitting the process has been studied, and a technique of continuously hot rolling without reheating the slab as cast, or even as cast. Has developed a technology for producing a slab having a plate thickness equivalent to that of a hot rolled steel plate. In particular,
The latter technique is called strip casting, and it enables significant reduction of steps in the manufacturing process of cold-rolled steel sheet, so that further technological development is expected in the future. However, this technique has a problem that after cold rolling and annealing, the deep drawing formability of the steel sheet is significantly inferior to that of the conventional steel sheet.

ところで、極低C鋼にTiを添加してなる鋼を従来の方
式に従つて冷延鋼板とする場合に、鋼中のCをtiやNb等
にて固定した熱延コイルを得、これを冷間圧延し、再結
晶焼鈍することによつて、極めてすぐれた深絞り性を付
与することができることは、既によく知られている。ま
た、鋼中のCをTiやNb等にて固定させて後、フエライト
域圧延を施し、更に、再結晶焼鈍を施すことによつて、
熱延鋼板の深絞り成形性を向上させることができること
も、既に知られている。
By the way, when a steel obtained by adding Ti to an ultra-low C steel is used as a cold-rolled steel sheet according to the conventional method, a hot-rolled coil in which C in the steel is fixed by ti or Nb is obtained. It is already well known that cold rolling and recrystallization annealing can impart extremely excellent deep drawability. Further, by fixing C in the steel with Ti, Nb, etc., and then performing ferrite area rolling, and further performing recrystallization annealing,
It is already known that the deep drawing formability of a hot rolled steel sheet can be improved.

通常、熱延コイルの状態にて鋼中のCを固定するに
は、コイルをある程度高温、例えば、700℃程度で巻取
る方法が採用されており、フエライト圧延前の状態にて
鋼中のCを固定するには、ラフバー鋼片を800〜900℃の
温度に長時間保持する方法が採用されている。従つて、
ストリツプキヤステイングによる薄肉鋳片を冷間圧延
し、焼鈍して、冷延鋼板を製造すれば、それが深絞り成
形性に非常に劣るのは、薄肉鋳片の状態で鋼中に固溶し
ているCが比較的多量に存在することが一つの原因であ
るとみられる。
Usually, in order to fix C in steel in the state of hot rolled coil, a method of winding the coil at a high temperature to some extent, for example, about 700 ° C. is adopted, and C in steel before the ferrite rolling is adopted. In order to fix, the method of holding the rough bar billet at a temperature of 800 to 900 ℃ for a long time is adopted. Therefore,
If cold-rolled steel sheet is manufactured by cold-rolling and annealing a thin-walled slab by strip casting, it is very inferior in deep drawing formability because the thin-walled slab is solidified in the steel. It seems that one of the causes is the presence of a relatively large amount of dissolved C.

上記は、以下に示す従来の技術からも理解される。例
えば、特開昭61−96031号公報には、薄鋳帯を用いるプ
レス加工冷延鋼板の製造において、急冷鋳帯では、C、
N及びSの固定が不可能であるため、それらの合計量を
規制して、r値の向上を図つており、また、特開昭61−
133324号公報には、薄鋳片によつて成形性にすぐれる薄
鋼板を製造する方法において、鋳造後の巻取温度を高
め、又は鋳造後の鋳片を加熱して、析出物の凝集度を高
めることによつて、鋼板を延性を高めることを記載して
いる。
The above can also be understood from the conventional techniques described below. For example, in Japanese Patent Laid-Open No. 61-96031, in the production of a cold-rolled steel sheet for press working using a thin casting strip, in the case of a quenching casting strip, C,
Since it is impossible to fix N and S, the total amount of N and S is regulated to improve the r value.
No. 133324 discloses a method for producing a thin steel sheet having excellent formability by using a thin slab, increasing the winding temperature after casting, or heating the slab after casting, and the degree of aggregation of precipitates. It is described that the ductility of the steel sheet is increased by increasing the.

他方、特開昭59−43823号公報や特開昭59−43825号公
報には、急冷した薄鋳片の鋼中のCをNb、Ti等にて固定
することなく、冷間圧延し、焼鈍しても、高いr値を得
ることができることが記載されている。
On the other hand, in JP-A-59-43823 and JP-A-59-43825, C in the steel of a rapidly cast thin cast piece is cold-rolled and annealed without being fixed by Nb, Ti or the like. However, it is described that a high r value can be obtained.

発明が解決しようとする課題 しかし、上述したように、鋳片の固溶Cの固定を目的
とする加熱や、鋳片の冷却過程における所定温度での一
定時間の保持は、近年の製造工程の簡略化や省エネルギ
ー化に逆行するものであり、延いては、製造費用の上昇
をもたらすから、薄鋳片をその製造ままにて、固溶Cを
十分固定する方が望ましい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, as described above, heating for the purpose of fixing the solid solution C of the slab and holding for a certain period of time at a predetermined temperature in the cooling process of the slab are performed in recent manufacturing processes. This is contrary to simplification and energy saving, and eventually leads to an increase in manufacturing cost. Therefore, it is desirable to sufficiently fix the solid solution C while the thin cast piece is manufactured.

本発明者らは、上述したような技術的背景の下に、薄
鋳片の化学成分及び鋳造後の冷却を適正に制御すること
によつて、鋳片が常温まで冷却される過程で鋼の固溶C
をTiにて十分に固定し得ることを見出して、本発明に至
つたものである。
Under the technical background as described above, the inventors of the present invention, by appropriately controlling the chemical composition of the thin slab and the cooling after casting, in the process of cooling the slab to room temperature, Solid solution C
The present invention has been made by finding that Ti can be sufficiently fixed with Ti.

即ち、本発明は、薄鋳片を製造ままにて固溶Cを固定
し、これを冷間圧延して、深絞り成形用冷延鋼板を製造
する方法を提供することを目的とする。
That is, an object of the present invention is to provide a method for producing a cold rolled steel sheet for deep drawing by fixing solid solution C in the as-manufactured thin cast piece and cold rolling it.

課題を解決するための手段 本発明によるストリツプキヤステイングによる深絞り
成形用冷延鋼板の製造方法は、重量%にて (a) C 0.001〜0.01%、 Mn 0.10〜0.30%、及び N 0.005%以下 を含有すると共に、 (b) Ti 0.02〜0.10%、及び Nb 0.02〜0.05% よりなる群から選ばれる少なくとも1種の元素を重量比
Ti/C≧4.0(式中、Ti=Ti+(48/93)Nb(重量
%)、C=C+(12/14)N(重量%))を満足する
ように含有し、 残部鉄及び不可避的不純物よりなる薄肉の鋳鋼帯を連続
鋳造し、Ar3〜Ar1間の平均冷却速度15℃/秒以下であつ
て、且つ、Ar1点が830℃以下となるように冷却した後、
冷間圧延及び再結晶焼鈍を施すことを特徴とする。
Means for Solving the Problems The method for producing a cold-rolled steel sheet for deep drawing by strip casting according to the present invention is (a) C 0.001 to 0.01%, Mn 0.10 to 0.30%, and N 0.005% by weight. % Or less, and (b) the weight ratio of at least one element selected from the group consisting of Ti 0.02 to 0.10% and Nb 0.02 to 0.05%.
Ti * / C * ≥ 4.0 (in the formula, Ti * = Ti + (48/93) Nb (wt%), C * = C + (12/14) N (wt%)) is contained so that the balance the thin cast steel strip consisting of iron and unavoidable impurities continuous casting, shall apply in Ar 3 to Ar following average cooling rate of 15 ° C. / sec between 1 and was cooled to Ar 1 point is 830 ° C. or less rear,
It is characterized by performing cold rolling and recrystallization annealing.

先ず、本発明を実験事実に基づいて説明する。 First, the present invention will be described based on experimental facts.

C 0.0030%、 Si 0.01%、 Mn 0.22%、 P 0.017%、 S 0.005%、 Al 0.027%、 Ti 0.088%、 N 0.0025% なる化学成分を有し、化学量論的に鋼中のCを十分に固
定し得る量のTiを添加してなる極低C−Ti系鋼を真空溶
製し、隙間8mmの鋼製鋳型の間に鋳造し、これを約1000
℃まで急冷して凝固させた後、種々の冷却速度にて常温
まで冷却した。その後、表裏面の研削によつて、4mm厚
の引張試験片とし、この鋳片に10%の冷間加工を付与
し、更に、170℃で10分間加熱する歪時効処理を施し
た。そして、このようにして得られた試験片降伏点と、
前記冷延ままの試験片の降伏点との差(ΔYP(kgf/m
m2))の程度を鋳片まま鋳片に固溶しているC量の尺度
として評価した。従つて、ΔYPが大きいほど、薄肉鋳片
に固溶しているC量が多いことを示す。一般に、ΔYPが
1kgf/mm2であるときは、固溶C量は、2〜5ppm存在する
といわれる。ΔYPの測定結果を第1図に示す。
C 0.0030%, Si 0.01%, Mn 0.22%, P 0.017%, S 0.005%, Al 0.027%, Ti 0.088%, N 0.0025% have chemical components, and stoichiometrically enough C in steel is contained. An ultra-low C-Ti steel made by adding a fixed amount of Ti was vacuum-melted and cast between steel molds with a gap of 8 mm.
After being rapidly cooled to ℃ and solidified, it was cooled to room temperature at various cooling rates. After that, a 4 mm thick tensile test piece was obtained by grinding the front and back surfaces, the cast piece was given cold working of 10%, and further subjected to strain aging treatment by heating at 170 ° C. for 10 minutes. And the test piece yield point thus obtained,
Difference from the yield point of the as-rolled test piece (ΔYP (kgf / m
The degree of m 2 )) was evaluated as a measure of the amount of C dissolved in the cast piece as a solid solution. Therefore, it is indicated that the larger ΔYP is, the larger the amount of C dissolved in the thin cast piece is. In general, ΔYP is
When it is 1 kgf / mm 2 , the amount of solid solution C is said to be 2 to 5 ppm. The measurement result of ΔYP is shown in FIG.

第1図にみられるように、ΔYPは、約1000℃からの連
続冷却速度に大きく依存しており、連続冷却速度が約20
℃/秒以下のとき、ΔYPは極めて小さい。鋳造後、約10
00℃に急冷した時点では、TiとCとの溶解度積から、Ti
Cは未析出状態であることが推測されるから、約20℃/
秒以下の冷却速度による冷却によつて得られる極めて小
さいΔYPは、約1000℃からの連続冷却過程において、驚
くべきことに、TiCの析出が活発に起こることを示すも
のである。
As can be seen in Fig. 1, ΔYP greatly depends on the continuous cooling rate from about 1000 ° C, and the continuous cooling rate is about 20%.
ΔYP is extremely small at ℃ / sec or less. About 10 after casting
At the time of quenching to 00 ° C, the solubility product of Ti and C
Since C is assumed to be in a non-precipitated state, approximately 20 ° C /
The extremely small ΔYP obtained by cooling with a cooling rate of sub-second or less indicates, surprisingly, that TiC precipitation occurs actively during the continuous cooling process from about 1000 ° C.

即ち、従来、TiとCとの析出反応は、オーステナイト
中よりもフエライト中で促進されることは知られていた
ものの、オーステナイト又はフエライトの高温域で圧下
を加えること等によつて、材料中に転位や変形帯を導入
しないときは、連続冷却過程において、TiとCが析出す
ることはないと理解されていたからである。
That is, although it has been conventionally known that the precipitation reaction of Ti and C is promoted in the ferrite rather than in the austenite, the reduction reaction in the high temperature range of the austenite or the ferrite causes the precipitation reaction in the material. It is understood that Ti and C do not precipitate in the continuous cooling process when dislocations and deformation zones are not introduced.

このようにして、本発明者らは、従来、鋳造後の薄鋳
片を常温近傍まで急冷するときは、TiCの析出が全く認
められなかつたのに対して、鋳造後、約1000℃の温度か
ら比較的遅い連続冷却速度にて冷却することによつて、
TiCの析出が起こり得ることを見出した。約20℃/秒よ
りも大きい冷却速度の場合に、ΔYPが大きいのは、Tic
の析出に必要な高温域において、析出のための十分な時
間が確保されなかつたためであるとみられる。
Thus, the present inventors conventionally, when rapidly cooling the thin slab after casting to near room temperature, while no precipitation of TiC was observed, after casting, the temperature of about 1000 ℃. By cooling at a relatively slow continuous cooling rate from
It has been found that precipitation of TiC can occur. When the cooling rate is higher than about 20 ° C / sec, ΔYP is large because Tic
It is considered that this is because sufficient time for precipitation was not secured in the high temperature region necessary for precipitation of.

次に、本発明者らは、上述したような約1000℃からの
連続冷却過程におけるTiCの析出機構を調べた。即ち、
鋳造後、約1000℃から10℃/秒にて連続冷却した場合、
種々異なる温度において、TiCの析出状況をΔYPによつ
て調べた。結果を第2図に示す。
Next, the present inventors investigated the TiC precipitation mechanism in the continuous cooling process from about 1000 ° C. as described above. That is,
After casting, when continuously cooled at about 1000 ℃ to 10 ℃ / sec,
The precipitation conditions of TiC were investigated by ΔYP at different temperatures. Results are shown in FIG.

第2図において、TiCの析出は、820℃付近から活発と
なり、750℃付近では、析出が殆ど終了して、ΔYPが1kg
f/mm2程度となる。このような温度範囲にてTiCの析出が
急激に進行する理由は、必ずしも明らかではないが、Ar
3点とAr1点とが重要な役割を果たしているとみられる。
即ち、析出現象の大半は、Ar3〜Ar1点の間での挙動であ
ること、及びAr1点が比較的高温であつて、TiCの析出反
応が進行しやすい温度であることが影響しているものと
みられる。しかし、Ar1点が高温であるほど、TiCの析出
が進行するものでもなく、後述するように、Ar1点が800
℃以下であることがTiCの析出を促進するために重要で
ある。
In Fig. 2, the precipitation of TiC became active around 820 ° C, and at around 750 ° C, the precipitation almost finished and ΔYP was 1 kg.
It is about f / mm 2 . The reason why the precipitation of TiC rapidly progresses in such a temperature range is not clear, but Ar
3 points and Ar 1 point seem to play an important role.
That is, most of the precipitation phenomena, it is the behavior between the Ar 3 to Ar 1 point, and shall apply in Ar 1 point is relatively high, and the influence that the deposition reaction of TiC is advanced easy temperature It seems that it is. However, as the Ar 1 point is at high temperatures, nor those TiC precipitation proceeds, as described below, Ar 1 point is 800
It is important that the temperature is below ℃ to accelerate the precipitation of TiC.

本発明は、このような知見に基づいてなされたもので
ある。
The present invention has been made based on such findings.

次に、本発明において用いる鋳片の化学成分について
説明する。
Next, the chemical composition of the slab used in the present invention will be described.

Cは、その添加量が少ないほど、得られる冷延鋼板の
深絞り成形性が向上するが、0.001%よりも少ないとき
は、鋼の溶製が極めて困難であり、一方、0.01%を越え
て添加するときは、多量のTiやNbを添加して、Cを固定
する必要を生じ、製造費用の上昇をもたらす。従つて、
本発明においては、C量は、0.001〜0.01%の範囲とす
る。
The lower the amount of C added, the better the deep-draw formability of the cold-rolled steel sheet obtained, but when it is less than 0.001%, it is extremely difficult to melt the steel, while when it exceeds 0.01%. When added, a large amount of Ti or Nb needs to be added to fix C, resulting in an increase in manufacturing cost. Therefore,
In the present invention, the C content is in the range of 0.001 to 0.01%.

Mnは、鋼の熱間脆性の防止及びAr1点の適正化のため
に、0.10%以上添加されるが、過多に添加するときは、
Ar3点及びAr1点が極端に低くなつて、TiCの析出が抑制
され、鋼の深絞りせい劣化するほか、鋼強度の上昇が過
度となり、延性の劣化を招来するので、0.30%を上限と
する。
Mn is added in an amount of 0.10% or more in order to prevent hot brittleness of steel and to optimize the Ar 1 point.
Since the Ar 3 point and Ar 1 point are extremely low, precipitation of TiC is suppressed, the steel is deteriorated due to deep drawing, and the increase in steel strength becomes excessive, leading to deterioration of ductility, so 0.30% is the upper limit. And

Nは、少ないほど、Ti又はNbが有効にCの固定に利用
されることとなり、他方、0.005%を越えるときは、深
絞り成形性が劣化する。従つて、N量の上限を0.005%
とする。
The smaller the N content, the more effectively Ti or Nb will be used to fix C. On the other hand, when it exceeds 0.005%, the deep drawability deteriorates. Therefore, the upper limit of N amount is 0.005%
And

Ti及びNbは、鋼の固溶Cとの親和力が強く、炭窒化物
の析出のために不可欠の元素である。しかし、いずれの
元素についても、添加量が0.02%よりも少ないときは、
Cの固定に不十分であり、他方、Tiが0.10%を越えると
き、また、Nbが0.05%を越えるときは、それぞれその効
果が飽和し、製造費用の上昇を招く。
Ti and Nb have a strong affinity with the solid solution C of steel and are essential elements for the precipitation of carbonitrides. However, for any element, when the added amount is less than 0.02%,
When C is insufficiently fixed, on the other hand, when Ti exceeds 0.10% and when Nb exceeds 0.05%, the respective effects are saturated, resulting in an increase in manufacturing cost.

特に、本発明によれば、Ti=Ti+(48/93)Nb(重
量%)及びC=C+(12/14)N(重量%)とすると
き、 Ti/C≧4.0 を満足させることによつて、実操業上、鋼中のCを一層
確実に固定することができる。
Particularly, according to the present invention, when Ti * = Ti + (48/93) Nb (weight%) and C * = C + (12/14) N (weight%), Ti * / C * ≧ 4.0 is satisfied. By doing so, C in steel can be more reliably fixed in actual operation.

一般に、鋳片は、必ずしも不純物とはいえない程度の
PやSを含有している。そこで、本発明においては、上
記水準の量のP及びSを含むことは許容されるものと
し、更に、Si、Cr、Mo、Ni及びCuについては、それぞれ
0.1%以下、V0.02%以下、B0.001%以下、Zr、REM、Ca
及びCeについては、それぞれ0.02%以下を含むことも許
容される。
Generally, the cast slab contains P and S that are not necessarily impurities. Therefore, in the present invention, it is allowed to contain P and S in the above-mentioned amounts, and further, regarding Si, Cr, Mo, Ni and Cu, respectively,
0.1% or less, V0.02% or less, B0.001% or less, Zr, REM, Ca
It is also permissible to contain 0.02% or less for Ce and Ce, respectively.

本発明によれば、かかる化学成分を有する薄肉の鋳鋼
帯を連続鋳造し、Ar3〜Ar1間の平均冷却速度15℃/秒以
下であつて、且つ、Ar1点が830℃以下となるように冷却
した後、冷間圧延及び再結晶焼鈍を施すことによつて、
ストリツプキヤステイングにて深絞り成形性にすぐれる
冷延鋼板を得ることができる。
According to the present invention, continuous casting cast steel strip of thin having such chemical components, shall apply in Ar 3 to Ar following average cooling rate of 15 ° C. / sec between 1 and, Ar 1 point is 830 ° C. or less After cooling so that by performing cold rolling and recrystallization annealing,
A cold rolled steel sheet having excellent deep drawing formability can be obtained by strip casting.

本発明においては、薄肉鋳鋼帯の製造後の平均冷却速
度は、前述したように、Ar3〜Ar1間にて、TiCの析出を
活発に行なわせるために、15℃/秒以下とし、更に、Ar
1点は、前述したように、830℃以下とすることが必要で
ある。Ar1点が830℃を越えるときは、TiCの析出が著し
く遅れるとみられるからである。Ar1点は、冷却速度の
ほか、化学成分、オーステナイト組織の状態等によつて
影響される。特に、オーステナイト粒径は、Ar1点に大
きく影響し、オーステナイト状態での強圧延による再結
晶オーステナイトの微細化は、Ar1点を830℃以上に高め
ることがあるので、冷却中、鋳片への加工は、全圧下率
にて概ね、50%以下とするのがよい。変態直前のオース
テナイト粒径は、厳密に示すことは困難であるが、実験
結果を考慮すれば、約100μm以上であることが好まし
い。
In the present invention, the average cooling rate after the production of the thin cast steel strip is, as described above, between Ar 3 and Ar 1 , 15 ° C./sec or less in order to actively perform the precipitation of TiC, and , Ar
As mentioned above, one point is required to be 830 ° C or lower. This is because precipitation of TiC is considered to be significantly delayed when the Ar 1 point exceeds 830 ° C. In addition to the cooling rate, the Ar 1 point is affected by the chemical composition, the state of the austenite structure, etc. In particular, the austenite grain size greatly affects the Ar 1 point, and refining of recrystallized austenite by strong rolling in the austenite state may increase the Ar 1 point to 830 ° C. or higher. It is recommended that the processing of (1) be approximately 50% or less at the total rolling reduction. The austenite grain size immediately before transformation is difficult to indicate exactly, but considering the experimental results, it is preferably about 100 μm or more.

次いで、鋳片は、これをAr1点以下の温度まで冷却し
た後、常温まで放冷してもよく、或いはコイル状に巻取
つてもよい。TiCの析出をできるだけ多くする目的から
は、700℃以上でコイル巻取するのが望ましいが、反
面、このような高温巻取は、後工程である酸洗でのスケ
ール除去を困難にするので、通常、600〜700℃の範囲が
好ましい。
Next, the slab may be cooled to room temperature after cooling it to a temperature of Ar 1 point or lower, or may be wound into a coil. For the purpose of increasing the precipitation of TiC as much as possible, it is desirable to wind the coil at 700 ° C. or higher, but on the other hand, such high temperature winding makes it difficult to remove the scale in the subsequent step of pickling. Generally, the range of 600 to 700 ° C is preferable.

この後、常法に従つて冷間圧延し、再結晶焼鈍すれば
よい。冷間圧延率は、望ましくは、50〜85%である。再
結晶焼鈍は、バツチ焼鈍、連続焼鈍のいずれでもよい
が、バツチ焼鈍では600〜750℃、連続焼鈍では700〜900
℃の範囲の温度に加熱するのが望ましい。
After that, cold rolling and recrystallization annealing may be performed according to a conventional method. The cold rolling rate is preferably 50 to 85%. The recrystallization annealing may be batch annealing or continuous annealing, but 600 to 750 ° C for batch annealing and 700 to 900 for continuous annealing.
It is desirable to heat to a temperature in the range of ° C.

本発明による鋼板は、冷延鋼板のほか、CG、EGめつき
用鋼板の原板としても用いることができる。
The steel sheet according to the present invention can be used not only as a cold-rolled steel sheet but also as an original plate for CG and EG plating steel sheets.

発明の効果 以上のように、本発明の方法によれば、極低C−Ti及
び/又はNbからなる薄肉の鋳鋼帯を連続鋳造し、これを
所定の平均冷却速度にて、且つ、Ar1点が830℃以下とな
るように冷却した後、冷間圧延及び再結晶焼鈍を施すこ
とによつて、ストリツプキヤステイングによつて、深絞
り成形性にすぐれる冷延鋼板を得ることができる。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a thin cast steel strip made of extremely low C-Ti and / or Nb is continuously cast, and this is cast at a predetermined average cooling rate and Ar 1 After cooling so that the point becomes 830 ° C. or less, by cold rolling and recrystallization annealing, by strip casting, it is possible to obtain a cold-rolled steel sheet excellent in deep drawability. it can.

実施例 以下に実施例を挙げて本発明を説明するが、本発明は
これら実施例により何ら限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

第1表に示すように、種々の化学成分を有する鋼を前
述した方法にて溶解し、8mm厚の鋳片に鋳造した。約100
0℃から10℃/秒の平均冷却速度にて常温まで冷却し
た。その後、表裏面の研削によつて、4mm厚鋼板とし、
冷間圧延によつて1mm厚鋼板とした。引き続いて、850℃
で90秒間、連続焼鈍に付し、機械的性質を調べた。結果
を第1表に示す。
As shown in Table 1, steels having various chemical compositions were melted by the above-mentioned method and cast into 8 mm thick slabs. About 100
The sample was cooled to room temperature at an average cooling rate of 0 ° C to 10 ° C / sec. After that, by grinding the front and back surfaces to make a 4 mm thick steel plate,
A 1 mm thick steel plate was obtained by cold rolling. Subsequently, 850 ℃
After 90 seconds of continuous annealing, the mechanical properties were examined. The results are shown in Table 1.

比較鋼2は、鋳造後、900〜700℃の間を平均冷却速度
70℃/秒にて常温まで冷却したものであり、比較鋼3
は、鋳造後、900〜700℃の間を平均冷却速度70℃/秒に
て常温まで冷却し、この後、700℃で3時間、再加熱し
たものである。
Comparative steel 2 has an average cooling rate between 900 and 700 ° C after casting.
Comparative steel 3 which was cooled to room temperature at 70 ° C / sec.
After casting, it was cooled to room temperature between 900 and 700 ° C at an average cooling rate of 70 ° C / sec, and then reheated at 700 ° C for 3 hours.

第1表において、本発明で規定する条件を満足する発
明鋼1、4及び5は、すぐれた伸び及びr値を示す。こ
れに対して、比較鋼2は、上述したように、鋳片を常温
まで急冷したために、冷間圧延時点で鋼中に固溶Cが多
量に残存する結果、r値が極めて低い。しかし、比較鋼
3に示されているように、鋳片を常温まで急冷しても、
700℃で再加熱処理を行なえば、高いr値が得られてい
る。
In Table 1, invention steels 1, 4 and 5 satisfying the conditions specified in the present invention show excellent elongation and r value. On the other hand, in Comparative Steel 2, as described above, since the slab was rapidly cooled to room temperature, a large amount of solute C remained in the steel at the time of cold rolling, resulting in an extremely low r value. However, as shown in Comparative Steel 3, even if the slab is rapidly cooled to room temperature,
A high r-value was obtained by reheating at 700 ° C.

【図面の簡単な説明】[Brief description of drawings]

第1図は、鋳片を鋳造後、約1000℃からの連続冷却速度
とΔYPとの関係を示すグラフ、第2図は、約1000℃から
連続冷却速度10℃/秒にて冷却したときの温度とΔYPと
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the continuous cooling rate from about 1000 ° C. and ΔYP after casting a slab, and FIG. 2 is a graph showing the relationship between continuous cooling rate of about 1000 ° C. and 10 ° C./sec. 6 is a graph showing the relationship between temperature and ΔYP.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 C22C 38/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/14 C22C 38/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%にて (a) C 0.001〜0.01%、 Mn 0.10〜0.30%、及び N 0.005%以下 を含有すると共に、 (b) Ti 0.02〜0.10%、及び Nb 0.02〜0.05% よりなる群から選ばれる少なくとも1種の元素を重量比
Ti/C≧4.0(式中、Ti=Ti+(48/93)Nb(重量
%)、C=C+(12/14)N(重量%))を満足する
ように含有し、 残部鉄及び不可避的不純物よりなる薄肉の鋳鋼帯を連続
鋳造し、Ar3〜Ar1間の平均冷却速度15℃/秒以下であつ
て、且つ、Ar1点が830℃以下となるように冷却した後、
冷間圧延及び再結晶焼鈍を施すことを特徴とするストリ
ツプキヤステイングによる深絞り成形用冷延鋼板の製造
方法。
1. By weight% (a) C 0.001 to 0.01%, Mn 0.10 to 0.30%, and N 0.005% or less, and (b) Ti 0.02 to 0.10% and Nb 0.02 to 0.05%. Weight ratio of at least one element selected from the group
Ti * / C * ≥ 4.0 (in the formula, Ti * = Ti + (48/93) Nb (wt%), C * = C + (12/14) N (wt%)) is contained so that the balance the thin cast steel strip consisting of iron and unavoidable impurities continuous casting, shall apply in Ar 3 to Ar following average cooling rate of 15 ° C. / sec between 1 and was cooled to Ar 1 point is 830 ° C. or less rear,
A method for producing a cold-rolled steel sheet for deep drawing by strip casting, which comprises performing cold rolling and recrystallization annealing.
JP1151278A 1989-06-14 1989-06-14 Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting Expired - Lifetime JP2526122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151278A JP2526122B2 (en) 1989-06-14 1989-06-14 Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151278A JP2526122B2 (en) 1989-06-14 1989-06-14 Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting

Publications (2)

Publication Number Publication Date
JPH0317233A JPH0317233A (en) 1991-01-25
JP2526122B2 true JP2526122B2 (en) 1996-08-21

Family

ID=15515186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151278A Expired - Lifetime JP2526122B2 (en) 1989-06-14 1989-06-14 Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting

Country Status (1)

Country Link
JP (1) JP2526122B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195522A (en) * 2002-12-19 2004-07-15 Nippon Steel Corp Low carbon thin-walled cast steel piece and low carbon steel sheet obtained by twin drum type continuous casting process, and method for manufacturing the same
JP4811334B2 (en) * 2007-04-27 2011-11-09 住友金属工業株式会社 Continuous casting method of steel sheet and hot-dip galvanized steel sheet with excellent surface properties and slab for manufacturing steel sheet

Also Published As

Publication number Publication date
JPH0317233A (en) 1991-01-25

Similar Documents

Publication Publication Date Title
KR102209592B1 (en) Ultra-high strength hot-rolled steel sheet with excellent bending workability and its manufacturing method
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
EP3556894B1 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
RU2751072C1 (en) Method for production of high-strength cold-rolled steel
EP0247264A2 (en) Method for producing a thin casting of Cr-series stainless steel
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH06184637A (en) Production of steel tube for automotive exhaust system
JP2644580B2 (en) Manufacturing method of cold rolled mild steel sheet with excellent deep pattern
KR100363420B1 (en) Manufacturing method of hot annealed cold rolled steel sheet for processing using mini mill process
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JP2532643B2 (en) Method for manufacturing high r-value hot rolled steel sheet by thin cast piece
CN117980524A (en) Ultrahigh-strength cold-rolled steel sheet excellent in hole expansibility and method for producing same
JPH0745696B2 (en) Method for producing hot rolled steel sheet with excellent workability
JPH0768585B2 (en) Method for manufacturing cold rolled steel sheet with excellent deep drawability
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability
JPH11229085A (en) Coating baking hardening type cold rolled steel sheet excellent in aging resistance and its production
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPS6235462B2 (en)
JPH06207223A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and ductility, and production of hot dip galvanized steel sheet