JPS63119910A - Continuous casting and rolling method for steel containing silicon - Google Patents

Continuous casting and rolling method for steel containing silicon

Info

Publication number
JPS63119910A
JPS63119910A JP26708686A JP26708686A JPS63119910A JP S63119910 A JPS63119910 A JP S63119910A JP 26708686 A JP26708686 A JP 26708686A JP 26708686 A JP26708686 A JP 26708686A JP S63119910 A JPS63119910 A JP S63119910A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
temp
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26708686A
Other languages
Japanese (ja)
Inventor
Shinobu Miyahara
忍 宮原
Masayuki Nakada
正之 中田
Hideaki Tenma
天満 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26708686A priority Critical patent/JPS63119910A/en
Publication of JPS63119910A publication Critical patent/JPS63119910A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the high quality hot coil without any modification by drawing a steel containing silicon from a continuous casting machine at a speed being near to the critical drawing speed and hot rolling the steel by specifying a temp. range and a cumulative draft after cutting. CONSTITUTION:A steel containing 4-7wt% silicon is drawn from a continuous casting machine at a speed being 70-100% of the critical drawing speed allowed by the length of the casting machine and then is cut. A high temp. billet is subjected to a temp. equalization treatment, is inserted into a hot rolling mill at a mean temp. >=1,050 deg.C and a min. temp. >=1,000 deg.C, is rolled with a cumulative draft of >=95% to obtain a hot coil whose final product thickness is <=2mm. In this method, a temp. of the rolled billet is always kept >=900 deg.C and the billet has small deformation resistance and generation of intergranular cracks when rolling forces are loaded is evaded.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、4乃至7重量%のシリコン(Si)を含有
し、熱間脆化しやすく圧延しにくい高Si鋼を連続鋳造
した後、直接熱間圧延する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] This invention is a method of continuously casting high-Si steel that contains 4 to 7% by weight of silicon (Si) and is easily hot-embrittled and difficult to roll. The present invention relates to a hot rolling method.

[従来の技術] SL含有量が4乃至7重量%(以下、単に%と略す)で
、炭素(C)含有量が低い低C高5in4は、凝固過程
で粗大結晶粒を形成しやすい。このため、この鋼種は、
熱間で脆化し、連続鋳造時の微小の外的付加歪み(熱応
力、バルジング応力又は矯正力等による歪み)により、
鋳片の表面及び内部に粒界割れが発生しやすい。また、
熱間圧延時に、圧延外力を受けて鋳片に粒界割れが発生
することがある。
[Prior Art] Low C height 5in4, which has a SL content of 4 to 7% by weight (hereinafter simply abbreviated as %) and a low carbon (C) content, tends to form coarse crystal grains during the solidification process. Therefore, this steel type
It becomes brittle in hot conditions, and due to minute externally added strain (strain due to thermal stress, bulging stress, or straightening force, etc.) during continuous casting,
Intergranular cracks are likely to occur on the surface and inside of the slab. Also,
During hot rolling, intergranular cracks may occur in slabs due to external rolling forces.

この発明は、かかる事情に鑑みてなされたものであって
、熱間脆化しやすく圧延しにくい高Si鋼を、連続鋳造
した後、直接熱間圧延することができ、鋳片の表面手入
れをすることなく、高品質のホットコイルを高効率で製
造することができるシリコンを含有する鋼の連続鋳造圧
延方法を提供することを目的とする。
This invention was made in view of the above circumstances, and it is possible to continuously cast high-Si steel, which is easily hot-embrittled and difficult to roll, and then directly hot-roll it, and to take care of the surface of the slab. An object of the present invention is to provide a method for continuous casting and rolling of silicon-containing steel that can produce high-quality hot coils with high efficiency.

[問題点を解決するための手段] この発明に係るシリコンを含有する鋼の連続鋳造圧延方
法は、4乃至7重量96のシリコンを含をする鋼を連続
鋳造機により鋳造し次いで圧延する方法において、連続
鋳造機の機長から許容される限界引き抜き速度の70乃
至100%の速度で鋳片を引抜き、切断後の鋳片を熱間
圧延機に搬送し、鋳片の平均温度が1050℃以上、最
低温度が1000℃以上の状態で鋳片を熱間圧延機に挿
入し、累積圧下率が95%以上で最終製品板厚が2■以
下になるように圧延することを特徴とする。
[Means for Solving the Problems] The method for continuous casting and rolling of silicon-containing steel according to the present invention is a method in which silicon-containing steel having a weight of 4 to 7 weight 96 is cast by a continuous casting machine, and then rolled. , the slab is pulled out at a speed of 70 to 100% of the limit drawing speed allowed by the machine length of the continuous casting machine, the slab after cutting is transported to a hot rolling mill, and the average temperature of the slab is 1050 ° C. or higher, The cast slab is inserted into a hot rolling machine at a minimum temperature of 1000° C. or higher, and rolled so that the cumulative reduction ratio is 95% or higher and the final product thickness is 2 mm or less.

[作用] この発明によれば、鋳型から出た鋳片は、例えば、水冷
却された後保熱されて、鋳片の温度が均一化すると共に
、その表面温度が上昇(復熱)する。この場合に、機長
から決まる限界引抜き速度の70乃至100%の高速度
で鋳片を引抜くので、切断後の鋳片は高温を保持してい
る。そして、平均温度が1050℃以上、最低温度が1
000℃以上で、鋳片の熱間圧延を開始すれば、累積圧
下率が95%以上で最終製品板厚が2mm以下の熱間圧
延工程において、被圧延材は常に900℃以上を保持す
ることができる。このため、この被圧延材は上記温度域
では加工性が優れており、かつ変形抵抗も小さく、圧延
力が印加された場合の粒界割れの発生が回避される。
[Function] According to the present invention, the slab discharged from the mold is, for example, water-cooled and then heat-retained, so that the temperature of the slab becomes uniform and its surface temperature increases (recuperation). In this case, the slab is pulled out at a high speed of 70 to 100% of the limit drawing speed determined by the machine length, so the slab maintains a high temperature after cutting. The average temperature is 1050℃ or higher, and the minimum temperature is 1
If hot rolling of a slab is started at 000°C or higher, the temperature of the rolled material must always be maintained at 900°C or higher during the hot rolling process where the cumulative reduction rate is 95% or higher and the final product thickness is 2mm or less. I can do it. Therefore, this rolled material has excellent workability in the above-mentioned temperature range, has low deformation resistance, and avoids occurrence of intergranular cracks when rolling force is applied.

[実施例〕 以下、添附の図面を参照してこの発明の実施例について
説明する。第1図は横軸に平均冷却速度と試験温度をと
り、縦軸に結晶粒径をとって、冷却速度と結晶粒径との
関係及び結晶粒径と割れが発生する境界温度との関係を
示すグラフ図である。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Figure 1 plots the average cooling rate and test temperature on the horizontal axis, and the grain size on the vertical axis, and shows the relationship between the cooling rate and grain size, and the relationship between grain size and the boundary temperature at which cracking occurs. FIG.

このデータは、厚さが150乃至300■の鋳片につい
て、小型実験炉で溶解凝固試験を実施し、更に、凝固後
の鋳片から引張り試験片を採取して高温引張り試験を実
施して得たものである。第2図は高Si[連続鋳造鋳片
のフェライト結晶粒分布を示す鋳片断面図である。高S
i鋼においては、凝固時にフェライト結晶粒が形成され
るが、鋳塊の表面1は冷却速度が早くチル晶組織になっ
ている。この鋳片の内部2は、表面1から軸心部3に向
けて延びた柱状晶組織になっており、軸心部3には、等
軸品が形成されている。このように、結晶粒径は鋳片の
表面に沿う方向についての粒径(短径)と、鋳片表面に
垂直方向についての粒径(長径)とがある。第1図にお
いて、左図の実線はこの長径についてその粒径と平均冷
却速度との関係を示したものであり、破線は短径につい
てその粒径と平均冷却速度との関係を示すものである。
This data was obtained by conducting melting and solidification tests on slabs with a thickness of 150 to 300 mm in a small experimental furnace, and then performing high-temperature tensile tests on tensile test pieces taken from the slabs after solidification. It is something that FIG. 2 is a cross-sectional view of a high-Si continuous cast slab showing the ferrite grain distribution. High S
In steel i, ferrite crystal grains are formed during solidification, but the surface 1 of the ingot has a chill crystal structure due to the rapid cooling rate. The interior 2 of this slab has a columnar crystal structure extending from the surface 1 toward the axial center 3, and the axial center 3 is equiaxed. As described above, the crystal grain size includes a grain size (minor axis) in the direction along the surface of the slab and a grain size (long axis) in the direction perpendicular to the slab surface. In Figure 1, the solid line on the left shows the relationship between the particle size and the average cooling rate for the major axis, and the broken line shows the relationship between the particle size and the average cooling rate for the minor axis. .

この第1図から明らかなように、長径の粒径と平均冷却
速度との間には、強い相関関係が存在する。
As is clear from FIG. 1, there is a strong correlation between the major diameter particle size and the average cooling rate.

第1図の右図は、この凝固して得られた鋳片から採取し
た引張り試験片について、単純加熱引張り条件で、歪み
速度が10−3/秒、歪み量が10%の定歪み付加試験
を実施し、試験後、試験片を顕微鏡観察して粒界割れの
発生情況を調査した結果を示す。この図において、実線
は粒界割れが発生する限界を示し、同一結晶粒径であれ
ば、試験温度がこの実線より低い場合に、また、同一試
験温度であれば、結晶粒径がこの実線より大きい場合に
、粒界割れが発生する。つまり、図中、斜線領域であれ
ば、粒界割れが発生しない。
The right diagram in Figure 1 shows a constant strain application test at a strain rate of 10-3/sec and a strain amount of 10% under simple heating tensile conditions on a tensile test piece taken from the slab obtained by solidification. After the test, the specimen was observed under a microscope to investigate the occurrence of intergranular cracking.The results are shown below. In this figure, the solid line indicates the limit at which grain boundary cracking occurs; if the grain size is the same, the test temperature is lower than this solid line, and if the test temperature is the same, the grain size is lower than this solid line. If it is large, intergranular cracking will occur. That is, in the shaded area in the figure, intergranular cracking does not occur.

第1図の左図かられかるように、鋳片の軸心部3におけ
る冷却速度(0,1℃/秒)においては結晶粒径が30
+a■(A点)であり、鋳片の表面1における冷却速度
(3℃/秒)においては結晶粒径が10ml1(B点)
である。そして、このような結晶粒径を持つ鋳片におい
て、割れ発生限界温度は第1図の右図におけるa点及び
b点であり、夫々、1100℃及び600℃に対応する
。従って、粒界割れを防止するためには、連続鋳造機の
鋳片凝固過程において、鋳片の表面の平均冷却速度を3
℃/秒以上に保持すると共に、表面温度を600℃以上
に保持することが必要である。
As can be seen from the left diagram in Fig. 1, at the cooling rate (0.1°C/sec) at the axial center 3 of the slab, the crystal grain size is 30°C.
+a (point A), and at the cooling rate (3°C/sec) on surface 1 of the slab, the crystal grain size is 10ml1 (point B)
It is. In a slab having such a grain size, the critical temperatures for cracking are points a and b in the right diagram of FIG. 1, which correspond to 1100°C and 600°C, respectively. Therefore, in order to prevent intergranular cracking, the average cooling rate of the surface of the slab should be increased by 3.
It is necessary to maintain the surface temperature at 600° C./second or higher and at the same time to maintain the surface temperature at 600° C. or higher.

このように鋳片表層部の冷却速度を高めるためには鋳型
内における鋳片の冷却速度を高めることが必要であり、
例えば、鋳型の肉厚を薄くするとか、低融点高粘性のパ
ウダを使用するとか、鋳型のオシレーション振動態様を
調節するとかの手段が考えられる。また、高速引抜き又
は二次冷却水の調節等によって、鋳片の冷却速度を所定
の範囲に調節することもできる。
In this way, in order to increase the cooling rate of the surface layer of the slab, it is necessary to increase the cooling rate of the slab in the mold.
For example, possible measures include reducing the wall thickness of the mold, using powder with a low melting point and high viscosity, or adjusting the oscillation mode of the mold. Furthermore, the cooling rate of the slab can be adjusted within a predetermined range by high-speed drawing or adjustment of secondary cooling water.

一方、高Si鋼の高温酸化試験によれば、鋳片の温度が
1200℃を超えると、スケールが溶融し、鋳片の表面
に結晶粒界浸潤が生じ、粒界割れが促進される。このた
め、鋳片の表面温度は1200℃以下に保持することが
必要である。
On the other hand, according to a high-temperature oxidation test of high-Si steel, when the temperature of the slab exceeds 1200°C, scale melts, grain boundary infiltration occurs on the surface of the slab, and intergranular cracking is promoted. For this reason, it is necessary to maintain the surface temperature of the slab at 1200°C or less.

第3図は、平均、変形抵抗σと、引張り温度との関係を
示すグラフ図である。このグラフは、高Si鋼、オース
テナイト系ステンレス鋼及び普通鋼について、高温で高
速引張り試験を実施し、得られた応カー歪み曲線から平
均変形抵抗σを求め、この変形抵抗を引張り温度(試験
温度)に対して図示したものである。この図から明らか
なように、高Si鋼は、900℃以上の比較的高温では
変形抵抗が低く、圧延しやすいが、900℃より低くな
ると、変形抵抗が著しく増大し、急激に圧延しにくくな
る。従って、圧延過程においては、鋳片の温度を900
℃以上に保持することが必要である。このため、累積圧
下率が95%以上、最終製品の厚さが2fflI11以
下の圧延の場合には、圧延開始時の鋳片平均温度が10
50℃以上、鋳片最低温度が1000℃以上であること
が必要である。
FIG. 3 is a graph showing the relationship between the average deformation resistance σ and the tensile temperature. This graph shows that high-speed tensile tests are conducted at high temperatures on high-Si steel, austenitic stainless steel, and ordinary steel, and the average deformation resistance σ is determined from the obtained stress strain curves. ). As is clear from this figure, high-Si steel has low deformation resistance and is easy to roll at relatively high temperatures of 900°C or higher, but at temperatures lower than 900°C, its deformation resistance increases significantly and it suddenly becomes difficult to roll. . Therefore, during the rolling process, the temperature of the slab should be kept at 900°C.
It is necessary to maintain the temperature above ℃. Therefore, in the case of rolling where the cumulative reduction ratio is 95% or more and the thickness of the final product is 2fflI11 or less, the average temperature of the slab at the start of rolling is 10%.
It is necessary that the minimum temperature of the slab is 50°C or higher and the minimum temperature of the slab is 1000°C or higher.

なお、鋳片の頭部(トップ部)及び後部(ボトム部)並
びに、鋳片の側端部(コーナ一部)は、放熱されやすい
ので、通常、鋳片の中央部等に比して温度が50乃至1
00℃低い。しかし、この温度差が100℃を超えると
、この低温部分に圧延疵が発生するので、温度差は10
0℃以下に保持することが必要である。このため、必要
に応じて、連続鋳造機内又はこの連続鋳造機から圧延機
までの搬送経路において、鋳片を断熱若しくは保熱する
断熱保熱装置又は鋳片をガス若しくは電気等により加熱
する加熱手段を設置する。
Note that the head (top part) and rear part (bottom part) of the slab, as well as the side edges (parts of the corners) of the slab, are more susceptible to heat dissipation, so the temperature is usually lower than that of the central part of the slab. is 50 to 1
00℃ low. However, if this temperature difference exceeds 100°C, rolling defects will occur in this low temperature area, so the temperature difference will be 100°C.
It is necessary to maintain the temperature below 0°C. Therefore, if necessary, an adiabatic heat-retaining device that insulates or retains the slab, or a heating means that heats the slab using gas or electricity, etc. is installed in the continuous casting machine or on the conveyance route from the continuous casting machine to the rolling mill. Set up.

このような条件で、連続鋳造した後、鋳片を熱間圧延機
に搬送して直接熱間圧延すると、圧延されつつある鋳片
は、鋳片の表面から内部に向けて温度勾配を有しており
、鋳片内部の温度が表面より高い。このため、鋳片の軸
心部のほうが表面側よりも圧下されやすく、従って、通
常の再加熱圧延材に比して、直接熱間圧延材の場合は軸
心部の結晶粒の微細化が促進される。
Under these conditions, after continuous casting, if the slab is conveyed to a hot rolling mill and hot rolled directly, the slab being rolled will have a temperature gradient from the surface to the inside of the slab. The temperature inside the slab is higher than the surface. For this reason, the axial center of the slab is more easily rolled down than the surface side, and therefore, compared to normal reheat-rolled material, directly hot-rolled material has smaller crystal grains in the axial center. promoted.

次に、この発明にて規定した条件により連続鋳造熱間圧
延した実施例鋳片の品質について、比較例鋳片と共に説
明する。第4図に示すように、取MIOからタンディツ
シュ11内に注入された溶鋼は、鋳型12により冷却さ
れて凝固殻が形成され、内部に未凝固溶鋼を有する鋳片
はロール帯13により案内されつつ水冷却される。この
鋳片は断熱装置14及び保温カバー15により断熱保温
されて均熱された後、切断機16により切断される。切
断後の鋳片は、エツジヒータ17によりそのコーナ一部
が加熱されて更に均熱化された後、熱間圧延機の圧延ス
タンド18により圧延される。
Next, the quality of the example slabs that were continuously cast and hot rolled under the conditions specified in the present invention will be explained together with the comparative example slabs. As shown in FIG. 4, the molten steel injected into the tundish 11 from the MIO is cooled by the mold 12 to form a solidified shell, and the slab containing unsolidified molten steel inside is guided by the roll band 13. Water cooled. This slab is heat-insulated and uniformly heated by a heat insulating device 14 and a heat insulating cover 15, and then cut by a cutting machine 16. After the cut slab is partially heated by an edge heater 17 and further uniformized, it is rolled by a rolling stand 18 of a hot rolling mill.

鋳片は、次いで、加熱装置19により加熱された後、更
に圧延スタンド18により圧延され、コイラ20に巻き
取られる。
The slab is then heated by a heating device 19, further rolled by a rolling stand 18, and wound around a coiler 20.

第5図はこの連続鋳造熱間圧延工程における鋳片表面の
温度履歴を示す。実施例は、この発明にて規定した条件
を全て満足するものであり、比較例1は搬送過程におい
て鋳片表面温度が1050℃未満に低下し、比較例2は
1200℃を超えたものである。また、比較例3は圧延
直前まで比較例1と同一の温度履歴を経由した後、加熱
して鋳片の温度を1050℃以上に高めたものであり、
比較例4は連続鋳造機内片を一旦冷却し、次いで再加熱
して熱間圧延したものである。
FIG. 5 shows the temperature history of the slab surface during this continuous casting hot rolling process. The examples satisfy all the conditions specified in this invention; in Comparative Example 1, the slab surface temperature decreased to less than 1050°C during the conveyance process, and in Comparative Example 2, it exceeded 1200°C. . In addition, in Comparative Example 3, the slab underwent the same temperature history as Comparative Example 1 until immediately before rolling, and then was heated to raise the temperature of the slab to 1050°C or higher.
In Comparative Example 4, the piece inside the continuous casting machine was once cooled, then reheated and hot rolled.

これらの鋳片を累積圧下率が95%以上で最終製品板厚
が約2Hになるように圧延した。その結果、得られたホ
ットコイルの表面品質及び内部品質並びに表面及び内部
の結晶粒径は下記第1表の如くである。
These slabs were rolled at a cumulative reduction rate of 95% or more and a final product thickness of about 2H. As a result, the surface quality, internal quality, and crystal grain size on the surface and inside of the obtained hot coil are as shown in Table 1 below.

第1表 但し、表面品質はコイルを温間で酸洗した後目視観察し
たものであり、内部品質はコイル断面の偏折割れを調べ
たものである。このように、この発明の実施例による場
合は、軸心部でも平均結晶粒径が100μm以下であり
、ホットコイルの表面品質及び内部品質は共に優れてい
る。他方、比較例1乃至4は平均粒径が大きいとともに
、表面品質又は内部品質が低下している。
Table 1. However, the surface quality was visually observed after the coil was pickled in a warm environment, and the internal quality was determined by examining polarization cracks in the cross section of the coil. As described above, in the case of the embodiment of the present invention, the average crystal grain size is 100 μm or less even in the axial center, and both the surface quality and internal quality of the hot coil are excellent. On the other hand, Comparative Examples 1 to 4 have large average particle diameters and have poor surface quality or internal quality.

[発明の効果〕 この発明によれば、表面及び内部品質の良好な鋳片を得
ることができ、無手入れで高品質のホットコイルを低コ
ストで製造することができる。
[Effects of the Invention] According to the present invention, a cast slab with good surface and internal quality can be obtained, and a high-quality hot coil can be manufactured without maintenance at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶粒径と平均冷却速度との関係及び結晶粒径
と割れ発生頻度との関係を示すグラフ図、第2図はフェ
ライト結晶分布を示す鋳片断面図、第3図は変形抵抗と
引っ張り温度との関係を示すグラフ図、第4図は連続鋳
造熱間圧延工程を示す模式図、第5図はこの発明の実施
例により鋳造圧延した場合の温度パターンを比較例と共
に示すグラフ図である。
Figure 1 is a graph showing the relationship between grain size and average cooling rate and the relationship between grain size and cracking frequency, Figure 2 is a cross-sectional view of a slab showing ferrite crystal distribution, and Figure 3 is deformation resistance. FIG. 4 is a schematic diagram showing the continuous casting hot rolling process, and FIG. 5 is a graph diagram showing the temperature pattern when casting and rolling is performed according to an embodiment of the present invention together with a comparative example. It is.

Claims (1)

【特許請求の範囲】[Claims] 4乃至7重量%のシリコンを含有する鋼を連続鋳造機に
より鋳造し次いで圧延する方法において、連続鋳造機の
機長から許容される限界引き抜き速度の70乃至100
%の速度で鋳片を引抜き、切断後の鋳片を熱間圧延機に
搬送し、鋳片の平均温度が1050℃以上、最低温度が
1000℃以上の状態で鋳片を熱間圧延機に挿入し、累
積圧下率が95%以上で最終製品板厚が2mm以下にな
るように圧延することを特徴とするシリコンを含有する
鋼の連続鋳造圧延方法。
In a method in which steel containing 4 to 7% by weight of silicon is cast by a continuous casting machine and then rolled, the maximum drawing speed of 70 to 100% is allowed by the machine length of the continuous casting machine.
The slab is pulled out at a speed of 100%, and the cut slab is transported to a hot rolling machine.The slab is transferred to a hot rolling machine with an average temperature of 1050°C or higher and a minimum temperature of 1000°C or higher. A method for continuous casting and rolling of silicon-containing steel, characterized by rolling the steel so that the thickness of the final product is 2 mm or less at a cumulative reduction rate of 95% or more.
JP26708686A 1986-11-10 1986-11-10 Continuous casting and rolling method for steel containing silicon Pending JPS63119910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26708686A JPS63119910A (en) 1986-11-10 1986-11-10 Continuous casting and rolling method for steel containing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26708686A JPS63119910A (en) 1986-11-10 1986-11-10 Continuous casting and rolling method for steel containing silicon

Publications (1)

Publication Number Publication Date
JPS63119910A true JPS63119910A (en) 1988-05-24

Family

ID=17439844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26708686A Pending JPS63119910A (en) 1986-11-10 1986-11-10 Continuous casting and rolling method for steel containing silicon

Country Status (1)

Country Link
JP (1) JPS63119910A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166923A (en) * 1985-01-18 1986-07-28 Nippon Kokan Kk <Nkk> Manufacture of electrical steel sheet having superior soft magnetic characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166923A (en) * 1985-01-18 1986-07-28 Nippon Kokan Kk <Nkk> Manufacture of electrical steel sheet having superior soft magnetic characteristic

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP3190319B2 (en) Twin roll continuous casting machine
JP2798694B2 (en) Manufacturing method of thin cast slab
JPS63119910A (en) Continuous casting and rolling method for steel containing silicon
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH0565263B2 (en)
JPH0218936B2 (en)
JP2004330252A (en) Continuous casting method for round billet, and round billet
JP2531156B2 (en) Continuous casting method for steel containing silicon
JP3146904B2 (en) Vertical continuous casting method for large section slabs
JP3039369B2 (en) Method for producing Ni-containing steel
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPS63168260A (en) Hot working method for continuously cast billet
JPH04274843A (en) Production of cast billet of high si content steel free from edge crack
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JP4238950B2 (en) Method for producing B-containing austenitic stainless steel continuous casting slab
JP2863013B2 (en) Casting and rolling method for thin slab
JP2004237292A (en) Method of manufacturing continuous casting slab
JP4592974B2 (en) Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet
JPH08280B2 (en) Continuous casting method for steel containing silicon
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof