JPH0218936B2 - - Google Patents

Info

Publication number
JPH0218936B2
JPH0218936B2 JP57047100A JP4710082A JPH0218936B2 JP H0218936 B2 JPH0218936 B2 JP H0218936B2 JP 57047100 A JP57047100 A JP 57047100A JP 4710082 A JP4710082 A JP 4710082A JP H0218936 B2 JPH0218936 B2 JP H0218936B2
Authority
JP
Japan
Prior art keywords
slab
temperature
continuous casting
cooling zone
unsolidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57047100A
Other languages
Japanese (ja)
Other versions
JPS58167064A (en
Inventor
Masayuki Hanmyo
Tsutomu Wada
Seigo Kuwano
Osamu Terada
Masaru Ishikawa
Tatsuo Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4710082A priority Critical patent/JPS58167064A/en
Publication of JPS58167064A publication Critical patent/JPS58167064A/en
Publication of JPH0218936B2 publication Critical patent/JPH0218936B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鋼の連続鋳造方法、特に、高温鋳
片を得ることができる鋼の連続鋳造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for continuous casting of steel, and particularly to a method for continuous casting of steel capable of obtaining high-temperature slabs.

[従来の技術] 湾曲型連続鋳造設備における鋳片の鋳造態様の
概要を第1図を参照しながら説明する。
[Prior Art] An overview of the method of casting slabs in curved continuous casting equipment will be explained with reference to FIG.

取鍋1からタンデイツシユ2に注入された溶鋼
3は、タンデイツシユ2から鋳型4に注入され
る。鋳型4に注入された溶鋼3は、鋳型4の下部
から多数の鋳片案内ロール5によつて2次冷却帯
8を湾曲されつつ案内される。この後、鋳片6
は、次第に水平に矯正され、完全に凝固した鋳片
6は、切断装置7によつて所定長さに切断され、
次工程に搬送される。
Molten steel 3 injected from the ladle 1 into the tundish 2 is injected from the tundish 2 into the mold 4. The molten steel 3 injected into the mold 4 is guided from the lower part of the mold 4 through a secondary cooling zone 8 while being curved by a large number of slab guide rolls 5 . After this, slab 6
is gradually straightened horizontally, and the completely solidified slab 6 is cut into a predetermined length by a cutting device 7.
Transported to the next process.

[発明が解決しようとする課題] ところで、従来切断機7によつて所定長さに切
断された鋳片は、一旦常温まで冷却された後疵取
り等が行われ、この後加熱炉によつて再加熱さ
れ、次工程の圧延ラインに搬送されるのが一般的
であつた。その際、熱延前の鋳片温度が900℃以
下になるとAlN(窒化アルミ)の析出がおこり、
良好な冷延板材質が得られなくなるため熱延前に
鋳片を再加熱して1050℃程度の温度に所定時間維
持してAlNの再固溶を行わしめる必要があつた。
[Problems to be Solved by the Invention] By the way, the cast slab cut into a predetermined length by the conventional cutting machine 7 is once cooled to room temperature and then subjected to flaw removal, etc. After that, it is heated in a heating furnace. Generally, it was reheated and transported to the rolling line for the next process. At that time, if the temperature of the slab before hot rolling falls below 900℃, precipitation of AlN (aluminum nitride) will occur.
Since it is no longer possible to obtain a good cold-rolled sheet material, it was necessary to reheat the slab before hot rolling and maintain it at a temperature of about 1050°C for a predetermined period of time to redissolve AlN into solid solution.

第2図に従来の連続鋳造方法により鋳片を鋳造
した場合の鋳片の表面温度の変化を示す。
FIG. 2 shows the change in surface temperature of a slab when the slab is cast by a conventional continuous casting method.

上記方法により鋳片を鋳造した場合には、切断
直後の900℃以上の高温鋳片を常温まで冷却する
ための冷却設備および疵取り等が行われた鋳片を
再加熱するための加熱炉が必要となるので、多額
の設備費を要するとともに多大のエネルギーロス
にもなつていた。
When casting slabs using the above method, cooling equipment is required to cool the hot slabs of 900°C or higher to room temperature immediately after cutting, and a heating furnace is required to reheat the slabs after removing defects. This required a large amount of equipment costs and resulted in a large amount of energy loss.

そこで、近年、鋳造方法の種々の改善により鋳
片の疵取りが不要となつたこと等の理由により、
上記設備費の削減および省エネルギー等を目的と
して、切断直後の高温鋳片を常温に冷却すること
なく、そのまゝ直接、圧延ラインに搬送する、所
謂、ホツトダイレクトローリング(HDR)が一
部試みられている。この一例が特公昭56−21330
号公報に開示されている。
In recent years, various improvements in casting methods have made it unnecessary to remove defects from cast slabs.
For the purpose of reducing the above equipment costs and saving energy, some attempts have been made to use so-called hot direct rolling (HDR), in which hot slabs immediately after being cut are transported directly to the rolling line without being cooled to room temperature. ing. An example of this is the Special Public Interest Publication No. 56-21330.
It is disclosed in the publication No.

[課題を解決するための手段] この発明は、上記ホツトダイレクトローリング
を実施するために必要な高温鋳片を得ることがで
きる連続鋳造方法を提供するものであつて、鋳型
を用いて鋼を鋳造し、凝固シエルが形成された未
凝固鋳片を2次冷却帯にそつて湾曲させながら案
内し、次いで、前記湾曲未凝固鋳片を水平方向に
矯正しながらその凝固を完了させ、凝固が完了し
た鋳片を水平状態において所定長さに切断し搬送
する鋼の連続鋳造方法において、前記2次冷却帯
の上部において、前記未凝固鋳片を2〜10分間、
鋳片の表面温度が600〜850℃になるまで冷却し
て、凝固シエルの剛性を高め、この後、前記上部
2次冷却帯を通過した前記冷却完了後の未凝固鋳
片の表面温度を900℃以上に復熱させ、次いで、
復熱後の鋳片の表面温度を10分間以上継続して維
持し、これによつて、析出したAlNを再固溶さ
せることに特徴を有するものである。
[Means for Solving the Problems] The present invention provides a continuous casting method capable of obtaining high-temperature slabs necessary for carrying out the above-mentioned hot direct rolling, in which steel is cast using a mold. Then, the unsolidified slab in which the solidified shell has been formed is guided while being curved along the secondary cooling zone, and then, the solidification is completed while straightening the curved unsolidified slab in the horizontal direction, and the solidification is completed. In a continuous steel casting method, the unsolidified slab is cut into predetermined lengths in a horizontal state and transported, in which the unsolidified slab is placed in the upper part of the secondary cooling zone for 2 to 10 minutes.
The surface temperature of the slab is cooled to 600 to 850°C to increase the rigidity of the solidified shell, and then the surface temperature of the unsolidified slab that has passed through the upper secondary cooling zone after completion of cooling is reduced to 900°C. Reheat to above ℃, then
This method is characterized in that the surface temperature of the slab after reheating is maintained continuously for 10 minutes or more, thereby re-dissolving the precipitated AlN into solid solution.

本発明を更に説明すると以下のようになる。ホ
ツトダイレクトローリングを実施して良好な品質
の冷延深絞り用鋼板を能率的に生産するには下記
の2条件を同時に満足させねばならない。
The present invention will be further explained as follows. In order to efficiently produce cold-rolled deep-drawn steel sheets of good quality by performing hot direct rolling, the following two conditions must be satisfied at the same time.

(A) 熱間圧延直前の鋳片内では冷延深絞り性を保
証し得る程度のAlNの固溶量を確保すること、 (B) 連続鋳造及び熱間圧延を操業及び品質面で支
障なく実施し得る鋳片温度条件を確保するこ
と。
(A) Ensure that the amount of AlN in solid solution is sufficient to guarantee cold-rolling deep drawability in the slab immediately before hot rolling, (B) Continuous casting and hot rolling can be carried out without any problems in terms of operation and quality. Ensure workable slab temperature conditions.

上記(A)の条件についての対応策としては次の2
点が考えられる。
The following two measures are taken to deal with the condition in (A) above.
There are several possible points.

(i) 連続鋳造のモールドから熱間圧延開始までの
間で900℃を切る領域を鋳片内に作らないこと、 (ii) 連続鋳造工程で900℃を切る領域が鋳片内に
存在する場合には、当領域を鋳片自身が保有す
る潜熱及び顕熱により900℃以上に復熱させ、
かつ、これを10分間以上保持することにより一
旦析出したAlNの再固溶を実用上支障ないレ
ベルまで促進させること。
(i) There is no area in the slab where the temperature drops below 900℃ between the continuous casting mold and the start of hot rolling. (ii) If there is an area in the slab where the temperature drops below 900℃ during the continuous casting process. To do this, the area is reheated to over 900℃ using the latent heat and sensible heat possessed by the slab itself.
In addition, by holding this for 10 minutes or more, the re-solid solution of the AlN that has precipitated is promoted to a level that does not cause any practical problems.

上記(B)の条件に関しては、先づ熱間圧延を操
業・品質面で、支障なく実施するためには熱間圧
延開始直前の鋳片保有熱を最大確保する事が重要
である。このためには連続鋳造機長を最大限に利
用した高速鋳造を実施し、連続鋳造機出口での鋳
片温度を十分高めておくと同時に切断および搬送
時間を極力短時間に保持し、かつ全工程を通じて
の断熱強化をはかることが必要である。
Regarding the above condition (B), first of all, in order to carry out hot rolling without any problems in terms of operation and quality, it is important to secure the maximum amount of heat retained in the slab immediately before the start of hot rolling. To achieve this, we will perform high-speed casting by maximizing the length of the continuous casting machine, keep the temperature of the slab at the outlet of the continuous casting machine sufficiently high, and at the same time keep cutting and conveyance times as short as possible, and It is necessary to strengthen insulation through

この際上記(A)−(i)の条件を満足させるには、連
続鋳造機内の2次冷却は必然的に弱冷却を指向す
ることとなり、凝固時間が長くなる結果、連続鋳
造機の機長を長くせねばならない。その状況を第
3図aと第4図aに示す。
In this case, in order to satisfy the conditions (A)-(i) above, the secondary cooling in the continuous casting machine must be directed to weak cooling, which lengthens the solidification time and reduces the machine length of the continuous casting machine. It has to be made longer. The situation is shown in Figures 3a and 4a.

ここで第3図aは厚み220mmの鋳片を2.2m/
minの速さで且つ鋳片表面温度が900℃以下にな
らないように引抜いた場合の鋳片温度変化を示し
たものである。ここで、鋳片の表面温度とは、鋳
片の幅方向中央部の表面温度である(以下同様)。
この結果クレータエンド(凝固完了点)はメニス
カスより50mのところである。一方、第4図aは
同じく厚み220mmの鋳片を同じ2.2m/minの速さ
で初期強冷却し鋳片表面を一旦700℃程度まで下
げた例であるが、この場合のクレーターエンドの
位置はメニスカスより42mであり、第3図aの弱
冷却の場合と比べて8mも短くなつている。即
ち、鋳片の表面温度を一度も900℃を切らないよ
うにするには連続鋳造機の機長を長くする必要が
あり、このことは、設備費の高騰を招くことにな
る。
Here, Figure 3 a shows a slab of 220 mm thick at 2.2 m/
This figure shows the change in temperature of the slab when the slab is pulled out at a speed of min. min and the slab surface temperature does not fall below 900°C. Here, the surface temperature of the slab is the surface temperature of the central portion of the slab in the width direction (the same applies hereinafter).
As a result, the crater end (solidification completion point) is 50 m from the meniscus. On the other hand, Figure 4a shows an example in which a slab with a thickness of 220 mm was initially strongly cooled at the same speed of 2.2 m/min, and the slab surface was once lowered to about 700°C. is 42 m from the meniscus, which is 8 m shorter than in the weak cooling case shown in Figure 3a. That is, in order to prevent the surface temperature of the slab from falling below 900°C, it is necessary to increase the length of the continuous casting machine, which leads to a rise in equipment costs.

また、機長を延長させずに表面温度を900℃以
上に保つための他の方法としては、鋳造速度を
1.8m/min程度に下げれば良いが、その結果、
生産能力が約20%低下し、かつホツト・ダイレク
ト・ローリングの場合は、熱間圧延機の生産能力
低下をもたらすことになる。
Another method to maintain the surface temperature above 900℃ without extending the machine length is to increase the casting speed.
It would be fine to lower it to about 1.8m/min, but as a result,
The production capacity will be reduced by about 20%, and in the case of hot direct rolling, the production capacity of the hot rolling mill will be reduced.

更に連続鋳造の操業・品質面を考慮すると、第
3図aの場合、高速弱冷鋳造時に致命的な問題が
生じる。即ち、第3図bに示したように、鋳片の
表面温度がモールド直下から連鋳機出口まで900
℃以上を維持しているため、凝固中の鋳片は溶鋼
静圧によりふくれやすくなつている。これをバル
ジング現象と称している。特に、シエル厚みが比
較的薄い2次冷却帯では、ロール間バルジングに
伴なう凝固界面歪が発生し、とりわけ曲げ及び矯
正域では界面歪が急増し、当該鋼種のシエルの臨
界割れ発生歪レベルを確実に超え、この結果、鋳
片断面に多数の内部割れを発生させることとな
り、ひいては、特にシエル厚みの薄い上部2次冷
却帯での鋳片の縦割れは、場合により、ブレーク
アウト事故等の操業上致命的なトラブルを発生さ
せる。
Furthermore, considering the operational and quality aspects of continuous casting, in the case of FIG. 3a, a fatal problem occurs during high-speed weak cooling casting. In other words, as shown in Figure 3b, the surface temperature of the slab is 900°C from just below the mold to the outlet of the continuous casting machine.
Because the temperature is maintained above ℃, the solidified slab tends to swell due to the static pressure of the molten steel. This is called a bulging phenomenon. In particular, in the secondary cooling zone where the shell thickness is relatively thin, solidification interface strain occurs due to inter-roll bulging, and especially in the bending and straightening areas, the interface strain increases rapidly, reaching the critical cracking strain level of the shell of the steel type. As a result, many internal cracks occur in the cross section of the slab, and vertical cracks in the slab, especially in the upper secondary cooling zone where the shell thickness is thin, may cause breakout accidents, etc. cause fatal troubles in the operation.

本発明は(A)−(i)の対応策を満足させる連鋳操業
及び設備条件が極めて厳しいことを勘案してなさ
れたものであり、その骨子は、(A)−(ii)の対応策を
実現することにより、比較的容易に操業・品質上
問題ない高速鋳造を可能ならしめ、且つ、連鋳機
の後半部に鋳片を囲む様にロール間に配置した断
熱体により、比較的凝固が進んだ鋳片軸芯部溶鋼
の有する潜熱及び顕熱を最大限利用して、鋳片表
層域の急速な復熱を計り、これによつて、連鋳機
前半の強冷却で鋳片表層域所定範囲に析出した
AlNを実用上支障のない程度まで再固溶させる
ことにある。
The present invention was made in consideration of the extremely severe continuous casting operation and equipment conditions that satisfy the countermeasures in (A)-(i), and the gist thereof is the countermeasures in (A)-(ii). By realizing this, it is possible to perform high-speed casting with relatively ease and without any problems in terms of operation and quality.In addition, the heat insulator placed between the rolls in the rear half of the continuous casting machine to surround the slab allows for relatively low solidification. By making maximum use of the latent heat and sensible heat of the molten steel in the axial core of the slab, which has undergone rapid heating, the surface layer of the slab is rapidly recuperated by strong cooling in the first half of the continuous casting machine. Precipitated in a predetermined range
The goal is to re-dissolve AlN in solid solution to a level that does not pose a practical problem.

即ち第4図aに示したように、モールド直下の
上部2次冷却帯で鋳片の表面温度を速やかに850
℃以下600℃以上の範囲に降下させ、それを2〜
10分間継続維持させ、シエルの剛性を十分確保さ
せつつ凝固を促進させ、然る後、連鋳機後半部の
保熱帯で鋳片表層部を復熱させ、鋳片の表面温度
を900℃以上で10分間以上保持させることにより、
当初850℃以下に降下した鋳片断面の表層を含む
過冷域に析出したAlNを再固溶させる。前記思
想下で鋳造された鋳片の凝固界面歪プロフイルを
第4図bに示したが、初期強冷却のためシエルの
剛性及び厚みが増加し、その両者の相乗効果によ
り歪レベルは、第3図bに示した弱冷高速鋳造の
場合と比較して50〜70%迄低減され、内部割れ等
の鋳造欠陥や操業トラブルを発生させる虞れはな
くなつた。なお、上部2次冷却帯の鋳片の表面温
度の下限値を600℃と限定したのは、これ以下、
の温度では、鋳片コーナー部で曲げや矯正による
表面割れが発生し、高速鋳造を実施する際に鋳片
の無疵化を保証できなくなるからである。
In other words, as shown in Figure 4a, the surface temperature of the slab is quickly reduced to 850°C in the upper secondary cooling zone directly below the mold.
℃ or less and 600℃ or more, and then
This is maintained continuously for 10 minutes to promote solidification while ensuring sufficient rigidity of the shell.Then, the surface layer of the slab is reheated in the heating zone in the latter half of the continuous casting machine, and the surface temperature of the slab is raised to over 900℃. By holding it for more than 10 minutes,
The AlN precipitated in the supercooled region, including the surface layer of the cross section of the slab, which initially dropped to below 850℃, is re-dissolved. The solidification interface strain profile of the slab cast under the above concept is shown in Figure 4b. Due to the strong initial cooling, the stiffness and thickness of the shell increase, and due to the synergistic effect of the two, the strain level reaches the 3rd level. This has been reduced by 50 to 70% compared to the case of weak-cooling high-speed casting shown in Figure b, and there is no longer any risk of occurrence of casting defects such as internal cracks or operational troubles. The lower limit of the surface temperature of the slab in the upper secondary cooling zone is limited to 600℃ because below this value,
This is because, at a temperature of , surface cracks occur at the corners of the slab due to bending and straightening, and it is no longer possible to guarantee that the slab will be free of defects when performing high-speed casting.

一方、上限値を850℃と限定したのは、モール
ド直下の2次冷却帯域の歪レベルを安定してその
臨界値以下に保持するために必須の条件であるか
らである。
On the other hand, the upper limit was limited to 850°C because this is an essential condition for stably maintaining the strain level in the secondary cooling zone directly below the mold below its critical value.

また、600〜850℃で2〜10分間の保持時間を限
定した理由は、以下の通りである。即ち、モール
ド直下2次冷却帯域において600〜850℃内の保持
時間が2分未満であると、凝固シエルの剛性が不
十分であり、内部ワレが発生する危険が増す。一
方、10分を超える保持時間では凝固が進行し過ぎ
るため、後続帯(断熱帯)における十分かつ長時
間の復熱を確保できなくなるからである。
Moreover, the reason why the holding time was limited to 2 to 10 minutes at 600 to 850°C is as follows. That is, if the holding time at 600 to 850° C. in the secondary cooling zone immediately below the mold is less than 2 minutes, the rigidity of the solidified shell will be insufficient and the risk of internal cracking will increase. On the other hand, if the holding time exceeds 10 minutes, solidification progresses too much, making it impossible to ensure sufficient and long-term heat recovery in the trailing zone (insulation zone).

[実施例] 次にこの発明の実施例について説明する。長辺
寸法1250mm、短辺寸法220mmの水冷鋳型を有する
湾曲形連続鋳造設備によつて、鋳造速度2.2m/
minで軟鋼鋳片を鋳造した。使用した連続鋳造設
備は、機長40mで鋳型直下より10mの範囲に冷却
能力がきわめて優れたミスト冷却ノズルからなる
2次冷却帯が設けられ、残り30mには断熱装置が
設置されているものである。
[Example] Next, an example of the present invention will be described. Curved continuous casting equipment with a water-cooled mold with long side dimensions of 1250 mm and short side dimensions of 220 mm allows a casting speed of 2.2 m/min.
A mild steel slab was cast at min. The continuous casting equipment used has a machine length of 40 m and is equipped with a secondary cooling zone consisting of a mist cooling nozzle with extremely high cooling capacity within a 10 m range directly below the mold, and a heat insulating device installed in the remaining 30 m. .

上記2次冷却帯を約5分間で通過した未凝固鋳
片の温度は800℃であつた。その後、約5分間で
未凝固鋳片の表面温度は、復熱により、約950℃
まで昇温した。この後、鋳片の表面温度は、断熱
装置によつて復熱後の温度に約10分間維持され、
凝固が完了した鋳片は連続鋳造設備を出た。次い
で、切断装置によつて鋳片を所定長さに切断し、
これをローラーテーブルによつて圧延設備まで搬
送した。鋳片切断時においても鋳片の温度低下を
防止するために断熱装置を鋳片周囲に施したとこ
ろ切断完了時においても鋳片温度は、復熱時の温
度にほぼ維持できた。ローラーテーブルによつて
切断後の鋳片を圧延設備するまで搬送する過程で
鋳片温度は若干低下したが、圧延開始直前の鋳片
の表面温度は、約900℃であつたので圧延に何ら
支障は来たさなかつた。なお、圧延開始直前の鋳
片温度が900℃未満となつても、この時間が1分
間以下ならば圧延に支障は来たさない。第3図
に、このときの鋳片表面温度変化を示す。
The temperature of the unsolidified slab that passed through the secondary cooling zone for about 5 minutes was 800°C. After that, in about 5 minutes, the surface temperature of the unsolidified slab rose to about 950℃ due to reheating.
The temperature rose to . After this, the surface temperature of the slab is maintained at the temperature after reheating for about 10 minutes by a heat insulating device.
Once solidified, the slab leaves the continuous casting facility. Next, the slab is cut into a predetermined length using a cutting device,
This was conveyed to a rolling facility by a roller table. In order to prevent the temperature of the slab from decreasing even when cutting the slab, a heat insulating device was installed around the slab, and even when cutting was completed, the temperature of the slab could be maintained almost at the temperature at the time of reheating. The temperature of the slab decreased slightly during the process of conveying the cut slab to the rolling equipment using the roller table, but the surface temperature of the slab immediately before rolling started was approximately 900°C, so there was no problem with rolling. It never came. Note that even if the temperature of the slab immediately before the start of rolling falls below 900°C, no problem will arise in rolling as long as this time is 1 minute or less. FIG. 3 shows the temperature change on the slab surface at this time.

圧延開始直前の鋳片のAlNを調べたところ、
実用上支障ない程度にまで再固溶していることが
確認された。また、圧延後薄板に圧延し、焼鈍後
の組織を調べたところ、均一な展伸粒となつてい
ることが確認された。
When we examined the AlN of the slab just before rolling started, we found that
It was confirmed that the solid solution had been re-dissolved to the extent that there was no practical problem. Further, when the rolled material was rolled into a thin plate and the structure after annealing was examined, it was confirmed that the material had uniformly expanded grains.

[発明の効果] 以上説明したように、この発明によれば、鋳片
を再加熱することなく、AlNの再固溶が図れ、
安定した鋳片品質及び操業条件を維持しつつ高能
率のホツトダイレクトローリングを実施すること
が可能となり、その消費熱エネルギーも従来
270000〜30000Kcal/Tであつたものがほとんど
いらなくなつたというきわめて有用な効果がもた
らされる。
[Effects of the Invention] As explained above, according to the present invention, AlN can be solid-dissolved again without reheating the slab.
It is now possible to perform highly efficient hot direct rolling while maintaining stable slab quality and operating conditions, and the heat energy consumption is also lower than that of conventional methods.
A very useful effect is brought about in that the amount of 270,000 to 30,000 Kcal/T is almost no longer needed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の連続鋳造方法を示す説明図、
第2図は、従来の連続鋳造方法により鋳造した鋳
片表面の温度変化を示す図、第3図は、厚み220
mmの鋳片を2.2m/minの鋳造速度で引抜き、且
つ表面温度が900℃以下とならないように弱冷却
を行つた場合の鋳片表面の温度変化を示すグラフ
であり、第3a図は、メニスカスよりの距離と鋳
片温度及びクレーターエンド(凝固完了点)との
関係を示す図、第3b図は、メニスカスからの距
離と凝固界面歪及び内部割れ発生の臨界歪との関
係を示す図、第4図は厚み220mmの鋳片を鋳造速
度2.2m/minで2次冷却帯上部を強冷却した場
合の計算例を示す図で、第4a図は、メニスカス
からの距離と鋳片温度及びクレーターエンド(凝
固完了点)との関係を示す図、第4b図は、メニ
スカスからの距離と凝固界面歪及び内部割れ発生
の臨界歪との関係を示す図である。図面におい
て、 1……取鍋、2……タンデイツシユ、3……溶
鋼、4……鋳型、5……鋳片案内ロール、6……
鋳片、7……切断装置、8……2次冷却帯。
FIG. 1 is an explanatory diagram showing a conventional continuous casting method;
Figure 2 shows the temperature change on the surface of the slab cast by the conventional continuous casting method, and Figure 3 shows the temperature change on the surface of the slab cast by the conventional continuous casting method.
Fig. 3a is a graph showing the temperature change on the surface of a slab when a slab of mm in diameter is drawn at a casting speed of 2.2 m/min and weakly cooled so that the surface temperature does not fall below 900°C. Figure 3b is a diagram showing the relationship between the distance from the meniscus, slab temperature, and crater end (solidification completion point), and Figure 3b is a diagram showing the relationship between the distance from the meniscus, solidification interface strain, and critical strain for internal crack generation. Figure 4 is a diagram showing an example of calculation when the upper part of the secondary cooling zone is strongly cooled for a slab with a thickness of 220 mm at a casting speed of 2.2 m/min, and Figure 4a shows the distance from the meniscus, slab temperature, and crater. Figure 4b, which is a diagram showing the relationship with the end (solidification completion point), is a diagram showing the relationship between the distance from the meniscus, the solidification interface strain, and the critical strain for internal crack generation. In the drawings, 1... ladle, 2... tundish, 3... molten steel, 4... mold, 5... slab guide roll, 6...
Slab, 7... Cutting device, 8... Secondary cooling zone.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳型を用いて鋼を鋳造し、凝固シエルが形成
された未凝固鋳片を2次冷却帯にそつて湾曲させ
ながら案内し、次いで、前記湾曲未凝固鋳片を水
平方向に矯正しながらその凝固を完了させ、凝固
が完了した鋳片を水平状態において所定長さに切
断し搬送する鋼の連続鋳造方法において、前記2
次冷却帯の上部において、前記未凝固鋳片を2〜
10分間、鋳片の表面温度が600〜850℃になるまで
冷却して、凝固シエルの剛性を高め、この後、前
記上部2次冷却帯を通過した前記冷却完了後の未
凝固鋳片の表面温度を900℃以上に復熱させ、次
いで、復熱後の鋳片の表面温度を10分間以上継続
して維持し、これによつて、析出したAlNを再
固溶させることを特徴とする、鋼の連続鋳造方
法。
1. Casting steel using a mold, guiding the unsolidified slab with a solidified shell while curving it along a secondary cooling zone, and then straightening the curved unsolidified slab in the horizontal direction. In a continuous steel casting method, the solidification is completed, and the solidified slab is cut into a predetermined length in a horizontal state and transported.
In the upper part of the next cooling zone, the unsolidified slab is
Cool the slab for 10 minutes until the surface temperature reaches 600 to 850°C to increase the rigidity of the solidified shell, and then cool the surface of the unsolidified slab after passing through the upper secondary cooling zone. The temperature is reheated to 900°C or higher, and then the surface temperature of the slab after reheating is maintained continuously for 10 minutes or more, thereby re-dissolving the precipitated AlN into solid solution. Continuous casting method for steel.
JP4710082A 1982-03-26 1982-03-26 Continuous casting method of steel Granted JPS58167064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4710082A JPS58167064A (en) 1982-03-26 1982-03-26 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4710082A JPS58167064A (en) 1982-03-26 1982-03-26 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS58167064A JPS58167064A (en) 1983-10-03
JPH0218936B2 true JPH0218936B2 (en) 1990-04-27

Family

ID=12765753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4710082A Granted JPS58167064A (en) 1982-03-26 1982-03-26 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS58167064A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224054A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPS58224055A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPS6146360A (en) * 1984-08-10 1986-03-06 Nippon Steel Corp Continuous casting method
JPS6167549A (en) * 1984-09-11 1986-04-07 Nippon Kokan Kk <Nkk> Direct hot rolling method in continuous casting
JPS62156056A (en) * 1985-12-27 1987-07-11 Kawasaki Steel Corp Continuous casting method for low alloy steel
BE1003164A6 (en) * 1989-04-13 1991-12-17 Centre Rech Metallurgique METHOD AND DEVICE FOR COOLING A CONTINUOUSLY CAST METAL PRODUCT.
JPH0712199U (en) * 1993-08-03 1995-02-28 上田 敏昭 Parallel rotary impeller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566704A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot width-gauge control rolling method for cast slab of middle and low carbon steel
JPS5633104A (en) * 1979-08-23 1981-04-03 Nippon Steel Corp Feeding method for cast slab to hot rolling pass
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019795Y2 (en) * 1979-01-18 1985-06-14 新日本製鐵株式会社 Heat retention device in continuous casting equipment
JPS601877Y2 (en) * 1979-01-22 1985-01-19 新日本製鐵株式会社 Continuous casting equipment transfer table heat retention device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566704A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot width-gauge control rolling method for cast slab of middle and low carbon steel
JPS5633104A (en) * 1979-08-23 1981-04-03 Nippon Steel Corp Feeding method for cast slab to hot rolling pass
JPS57187150A (en) * 1981-05-12 1982-11-17 Nippon Steel Corp Secondary cooling installation for continuous casting

Also Published As

Publication number Publication date
JPS58167064A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
CN106552831A (en) A kind of manufacture method of Thin Specs hot-strip
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
JP4055440B2 (en) Direct-rolling method for continuous cast slabs
KR100304759B1 (en) Continuous casting equipment operation method
JPH0218936B2 (en)
JPS6167549A (en) Direct hot rolling method in continuous casting
JP2001191158A (en) Continuous casting method of steel
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JP3296374B2 (en) Descaling method during hot rolling of austenitic stainless steel
JP3149763B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2531156B2 (en) Continuous casting method for steel containing silicon
CA1110822A (en) Continuous casting
JP2006181583A (en) Method for producing continuously cast slab
JP7355285B1 (en) Continuous steel casting method
JP2001018040A (en) Manufacture of continuously cast slab
JPH0515904A (en) Method for rolling cast slab just after solidification
JP2022189395A (en) Method for continuous casting of slab
JP3358137B2 (en) Method for producing thin slab slab containing Cu and Sn and steel sheet containing Cu and Sn
JPH11239804A (en) Manufacture of hot coil
JP3389451B2 (en) Continuous casting method of unidirectional electromagnetic steel slab
JPH09291311A (en) Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property
JPS6213248A (en) Continuous casting machine
JP2004025272A (en) Continuously cast slab and method of producing steel sheet using the same