JP7355285B1 - Continuous steel casting method - Google Patents

Continuous steel casting method Download PDF

Info

Publication number
JP7355285B1
JP7355285B1 JP2023538740A JP2023538740A JP7355285B1 JP 7355285 B1 JP7355285 B1 JP 7355285B1 JP 2023538740 A JP2023538740 A JP 2023538740A JP 2023538740 A JP2023538740 A JP 2023538740A JP 7355285 B1 JP7355285 B1 JP 7355285B1
Authority
JP
Japan
Prior art keywords
slab
section
continuous casting
center
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023538740A
Other languages
Japanese (ja)
Other versions
JPWO2023190018A1 (en
JPWO2023190018A5 (en
Inventor
則親 荒牧
脩平 入江
章敏 松井
広和 杉原
佑介 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/011463 external-priority patent/WO2023190018A1/en
Application granted granted Critical
Publication of JP7355285B1 publication Critical patent/JP7355285B1/en
Publication of JPWO2023190018A1 publication Critical patent/JPWO2023190018A1/ja
Publication of JPWO2023190018A5 publication Critical patent/JPWO2023190018A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

鋳片内に発生する中心偏析を効果的に低減できる鋼の連続鋳造方法を提案する。連続鋳造機内の鋳片引抜き方向に沿って、鋳片幅方向の最終凝固部での厚み方向に沿った固相率の平均値が0.8以下である始点から、前記鋳片幅方向の最終凝固部での厚み方向に沿った固相率の平均値が前記始点での固相率よりも大きくかつ1.0以下である終点までの範囲を第1区間とするとき、この第1区間内における鋳片表面積当たりの水量密度を、50~2000L/(m2×min)以下の範囲内で、鋳片の冷却を行うことを特徴とする、鋼の連続鋳造方法。We propose a continuous casting method for steel that can effectively reduce center segregation that occurs in slabs. Along the slab drawing direction in the continuous casting machine, from the starting point where the average value of the solid fraction along the thickness direction at the final solidification part in the slab width direction is 0.8 or less, When the first section is the range up to the end point where the average value of the solid fraction along the thickness direction in the solidified part is larger than the solid fraction at the starting point and 1.0 or less, within this first section A continuous casting method for steel, characterized in that the slab is cooled at a water density per slab surface area of 50 to 2000 L/(m2×min) or less.

Description

本発明は、鋼の連続鋳造方法に関し、特に鋳片内に発生する中心偏析の低減に有効な鋼の連続鋳造方法について提案する。 The present invention relates to a continuous casting method for steel, and particularly proposes a continuous casting method for steel that is effective in reducing center segregation occurring in slabs.

一般に、鋼の凝固過程では、炭素や燐、硫黄、マンガンなどの溶質元素が、凝固時の再分配によって未凝固の液相側に濃化され、その結果として、デンドライト樹間には、ミクロ偏析が形成されることが知られている。 Generally, during the solidification process of steel, solute elements such as carbon, phosphorus, sulfur, and manganese are concentrated in the unsolidified liquid phase by redistribution during solidification, and as a result, micro-segregation occurs between dendrite trees. is known to be formed.

また、連続鋳造機による鋼の鋳造時、凝固しつつある連続鋳造鋳片(以降、単に「鋳片」ともいう)は、凝固収縮や熱収縮、連続鋳造機のロール間で発生する凝固シェルのバルジングなどによって、鋳片の厚み中心部に空隙が形成されたり、負圧が生じたりすることがある。そのために該鋳片の厚み中心部には溶鋼が吸引されることとなる。しかし、凝固末期の未凝固層には十分な量の溶鋼が存在しないために、上述した溶質元素が濃縮したデンドライト樹間の溶鋼が厚み中心部に吸引されて移動し、そこで凝固するようになる。このようにして形成された鋳片厚み中心部の偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べると格段に高い値となる。この現象は、一般に「マクロ偏析」と呼ばれており、その存在部位から「中心偏析」とも呼ばれる。 In addition, when casting steel using a continuous casting machine, the continuously cast slab (hereinafter also simply referred to as "slab") that is solidifying is affected by solidification shrinkage, heat shrinkage, and the formation of solidified shells that occur between the rolls of the continuous casting machine. Due to bulging, etc., voids may be formed in the center of the thickness of the slab, or negative pressure may occur. Therefore, molten steel is drawn into the center of the thickness of the slab. However, since there is not a sufficient amount of molten steel in the unsolidified layer at the final stage of solidification, the molten steel between the dendrite trees, where the solute elements are concentrated, is attracted to the center of the thickness and solidifies there. . In the thus formed segregation spot at the center of the thickness of the slab, the concentration of solute elements is much higher than the initial concentration of molten steel. This phenomenon is generally called "macro segregation" and is also called "central segregation" due to its location.

鋳片の前記中心偏析は、鋼材の品質、たとえば原油や天然ガスなどの輸送用ラインパイプ材の品質を著しく低下させることになる。そうした鋼材の品質低下は、例えば、腐食反応により鋼内部に侵入した水素が、中心偏析部で生成したマンガン硫化物(MnS)やニオブ炭化物(NbC)などの周りに拡散して集積し、その内圧に起因した割れを発生させることによって引き起こされるものである。また、こうした中心偏析部は、高い濃度の溶質元素により硬質化しているので、上記割れはさらに周囲に伝播して拡張する。この割れが水素誘起割れ(HIC:Hydrogen Induced Cracking)と呼ばれているものである。したがって、鋳片の厚み中心部の中心偏析を低減させることは、鋼製品の品質向上を図る上で、極めて重要である。 The center segregation of the slab significantly reduces the quality of steel materials, for example, the quality of line pipe materials for transportation of crude oil, natural gas, etc. Such quality deterioration of steel materials is caused by, for example, hydrogen penetrating into the steel due to a corrosion reaction, which diffuses and accumulates around manganese sulfide (MnS) and niobium carbide (NbC) generated in the central segregation area, resulting in an increase in the internal pressure. This is caused by the occurrence of cracks caused by Moreover, since such a central segregation part is hardened by a high concentration of solute elements, the crack further propagates and expands to the periphery. This cracking is called hydrogen induced cracking (HIC). Therefore, reducing center segregation at the center of the thickness of a slab is extremely important in improving the quality of steel products.

従来、連続鋳造工程から圧延工程に至るまでの間における、鋳片の中心偏析の低減や無害化の技術が多数提案されている。例えば、特許文献1及び特許文献2には、連続鋳造機内において、未凝固層を有する凝固末期の鋳片を、鋳片支持ロールによって凝固収縮量と熱収縮量との和に相当する程度の圧下量で徐々に圧下しながら鋳造する技術が提案されている。この技術は、軽圧下法と呼ばれているものである。こうした軽圧下法では、鋳造方向に並んだ複数対の鋳片支持ロールを用いて鋳片を引き抜く際に、凝固収縮量と熱収縮量との和に見合った圧下量で鋳片を徐々に圧下して未凝固層の体積を減少させることにより、鋳片中心部における空隙及び負圧部の形成を防止するようにしている。このような機構(軽圧下法)の採用により、デンドライト樹間の濃化溶鋼が、デンドライト樹間から鋳片の厚み中心部に吸引されることを防止し、鋳片内に発生する中心偏析を軽減するのである。 Conventionally, many techniques have been proposed for reducing the center segregation of slabs and rendering them harmless during the process from the continuous casting process to the rolling process. For example, in Patent Document 1 and Patent Document 2, in a continuous casting machine, a slab at the final stage of solidification having an unsolidified layer is reduced by a slab support roll to an extent equivalent to the sum of the amount of solidification shrinkage and the amount of heat shrinkage. A technique has been proposed in which the material is cast while being gradually reduced. This technique is called the light reduction method. In this light reduction method, when the slab is pulled out using multiple pairs of slab support rolls lined up in the casting direction, the slab is gradually rolled down by a reduction amount commensurate with the sum of the amount of solidification shrinkage and the amount of heat shrinkage. By reducing the volume of the unsolidified layer, the formation of voids and negative pressure areas at the center of the slab is prevented. By adopting such a mechanism (light reduction method), the concentrated molten steel between the dendrite trees is prevented from being sucked from the dendrite trees to the center of the thickness of the slab, and the center segregation that occurs within the slab is prevented. It reduces it.

また、厚み中心部のデンドライト組織の形態と中心偏析との間には、密接な関係があることが知られている。例えば、特許文献3には、連続鋳造機の二次冷却帯の鋳込み方向における特定位置の比水量を0.5L/kg-steel以上に設定することで、凝固組織の微細化及び等軸晶化を促進し、中心偏析を低減する技術が提案されている。さらに、特許文献4では、圧下条件及び冷却条件を適切に調整して、鋳片厚み中心部のデンドライト1次アーム間隔を1.6mm以下とすることで、中心偏析を低減する技術を提案している。 Furthermore, it is known that there is a close relationship between the morphology of the dendrite structure at the center of the thickness and center segregation. For example, Patent Document 3 discloses that by setting the specific water amount at a specific position in the casting direction of the secondary cooling zone of a continuous casting machine to 0.5 L/kg-steel or more, the solidification structure is refined and the equiaxed crystallization is achieved. Techniques have been proposed to promote this and reduce center segregation. Furthermore, Patent Document 4 proposes a technique for reducing center segregation by appropriately adjusting rolling conditions and cooling conditions to make the primary dendrite arm spacing at the center of slab thickness 1.6 mm or less. There is.

一方、鋳片の表面割れを防止することを目的とする技術ではあるが、特許文献5では、連続鋳造機内での鋳片の温度制御の手法として、鋳片表面を加熱昇温する技術を提案している。この特許文献5に提案の技術では、連続鋳造機の矯正帯内で鋳片表層を平均30℃/min以上で昇温することにより、鋳片矯正時の表面割れを防止している。 On the other hand, although this technology aims to prevent surface cracks in slabs, Patent Document 5 proposes a technique for heating the surface of slabs to increase the temperature as a method for controlling the temperature of slabs in a continuous casting machine. are doing. The technique proposed in Patent Document 5 prevents surface cracking during straightening of the slab by heating the surface layer of the slab at an average rate of 30° C./min or more within the straightening zone of the continuous casting machine.

特開平08-132203号公報Japanese Patent Application Publication No. 08-132203 特開平08-192256号公報Japanese Patent Application Publication No. 08-192256 特開平08-224650号公報Japanese Patent Application Publication No. 08-224650 特開2016-28827号公報JP2016-28827A 特開2008-100249号公報Japanese Patent Application Publication No. 2008-100249

特許文献1及び特許文献2に記載の発明では、軽圧下法を採用することにより中心偏析を低減できるとしている。しかしながら、これらの技術では、近年のラインパイプなどの鋼管に求められているような品質レベルになるまでその中心偏析を低減させる方法としては十分ではない。 The inventions described in Patent Document 1 and Patent Document 2 state that center segregation can be reduced by employing a light reduction method. However, these techniques are not sufficient as methods for reducing center segregation to the level of quality required for steel pipes such as line pipes in recent years.

また、特許文献3及び特許文献4に記載の発明では、軽圧下法を採用することに加えて、二次冷却条件を調整することにより、凝固組織を微細化し中心偏析を低減させることとしている。しかしながら、ラインパイプ材などの鋼管に求められている偏析低減のレベルは年々高まっており、将来的に要求されるような偏析度のレベルにまで低減させるにはなお不十分である。また、さらなる偏析低減のためには、例えば、最適な軽圧下条件で鋼を連続鋳造することが考えられるが、特許文献3及び特許文献4の方法では、中心偏析を現状以上に低減させることは困難である。 Furthermore, in the inventions described in Patent Document 3 and Patent Document 4, in addition to adopting the light reduction method, the secondary cooling conditions are adjusted to refine the solidified structure and reduce center segregation. However, the level of segregation reduction required for steel pipes such as line pipe materials is increasing year by year, and it is still insufficient to reduce the degree of segregation to the level that will be required in the future. Further, in order to further reduce segregation, it is possible to continuously cast steel under optimal light reduction conditions, but the methods of Patent Documents 3 and 4 do not allow center segregation to be reduced beyond the current level. Have difficulty.

また、特許文献5の鋳片加熱装置は、連続鋳造機内での設置スペースが限られているので、局所加熱手法としては活用できるものの、鋳片全体を一様な温度にコントロールするには至らない。 In addition, since the installation space in the continuous casting machine is limited, the slab heating device of Patent Document 5 can be used as a local heating method, but it cannot control the temperature of the entire slab to be uniform. .

本発明は、従来技術が抱えている前述した問題点に鑑みて開発された方法であり、その目的とすることころは、鋳片内に発生する中心偏析を効果的に低減できる新たな鋼の連続鋳造方法を提案することにある。 The present invention is a method developed in view of the above-mentioned problems faced by the conventional technology, and its purpose is to develop a new steel that can effectively reduce the center segregation that occurs in slabs. The objective is to propose a continuous casting method.

そこで、発明者らは、従来技術が抱えている上述した課題を解決すべく鋭意検討を行った。その結果、鋼の連続鋳造における鋳片の冷却工程において、その鋳片を、特定の区間について、好ましい水量密度で冷却すれば、鋳片内の中心偏析を大幅に低減できることを見出し本発明を開発するに至った。 Therefore, the inventors conducted intensive studies to solve the above-mentioned problems faced by the prior art. As a result, they discovered that in the cooling process of slabs in continuous steel casting, if the slabs are cooled in specific sections with a preferred water flow density, center segregation within the slabs can be significantly reduced, and the present invention was developed. I ended up doing it.

本発明は、上記知見に基づきなされたものであり、その要旨構成は以下のとおりである。
連続鋳造機内の鋳片引抜き方向に沿って、鋳片幅方向の最終凝固部での厚み方向に沿った固相率の平均値が0.8以下である始点から、前記鋳片幅方向の最終凝固部での厚み方向に沿った固相率の平均値が前記始点での固相率よりも大きくかつ1.0以下である終点までの範囲を第1区間とするとき、この第1区間内における鋳片表面積当たりの水量密度を、50L/(m×min)以上2000L/(m×min)以下の範囲内で、鋳片の冷却を行うことを特徴とする、鋼の連続鋳造方法。
The present invention has been made based on the above findings, and the gist and structure thereof are as follows.
Along the slab drawing direction in the continuous casting machine, from the starting point where the average value of the solid fraction along the thickness direction at the final solidified part in the slab width direction is 0.8 or less, When the first section is defined as the range up to the end point where the average value of the solid phase percentage along the thickness direction in the solidified part is larger than the solid phase percentage at the starting point and 1.0 or less, within this first section A continuous casting method for steel, characterized in that the slab is cooled at a water density per slab surface area of 50 L/(m 2 × min) or more and 2000 L/(m 2 × min) or less. .

上記本発明はまた、下記のような実施形態を採用することがより好ましい態様となる。
(1)前記終点での幅方向の固相率の平均値が1.0以下である、前記第1区間よりも下流に位置する区間を第2区間とするとき、この第2区間における、鋳片表面積当たりの水量密度を50L/(m×min)以上300L/(m×min)以下の範囲内にて鋳片の冷却を行うこと、
(2)少なくとも、前記第1区間の終了時点から第2区間通過の間においては、鋳片の表面温度が200℃以下である核沸騰状態を維持しながら鋳造し、凝固末期における鋳片厚み中心付近の温度勾配を1.7~3.5K/mmとすること、
(3)前記第1区間及び第2区間は、連続鋳造機内での水平方向セグメント、もしくは垂直方向セグメントに限定する領域内に設置すること、
(4)前記第1区間及び第2区間において、軽圧下を付与し、0.3~2.0mm/minの圧下速度で、鋳片長辺面を圧下すること、
(5)複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることにより、鋳片長辺面を2~20mmのバルジング総量でバルジングさせ、その後、複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させて鋳片を軽圧下すること。
It is also a more preferable aspect of the present invention to employ the following embodiments.
(1) When a second section is defined as a section located downstream of the first section in which the average value of the solid fraction in the width direction at the end point is 1.0 or less, Cooling the slab within the range of water flow density per surface area of 50 L/(m 2 × min) to 300 L/(m 2 × min);
(2) At least from the end of the first section to the passage through the second section, the slab is cast while maintaining a nucleate boiling state where the surface temperature is 200°C or less, and the thickness of the slab at the final stage of solidification is The temperature gradient in the vicinity should be 1.7 to 3.5 K/mm,
(3) The first section and the second section are installed within an area limited to a horizontal segment or a vertical segment within the continuous casting machine;
(4) applying a light reduction in the first section and the second section, and rolling down the long side surface of the slab at a reduction rate of 0.3 to 2.0 mm/min;
(5) By increasing the roll opening degree of the plurality of pairs of slab support rolls in stages toward the downstream side in the casting direction, the long sides of the slab are bulged with a total bulging amount of 2 to 20 mm, and then The opening degree of the slab support rolls is gradually reduced toward the downstream side in the casting direction to lightly reduce the slab.

上述した要旨構成からなる本発明に係る鋼の連続鋳造方法を採用することにより、連続鋳片の効果的な冷却を行うことができるようになり、連続鋳造鋳片内で発生することが予想される中心偏析や内部割れを低減させることができるようになる。 By adopting the continuous casting method for steel according to the present invention having the above-mentioned main structure, it becomes possible to effectively cool the continuous slab, which is expected to occur in the continuously cast slab. This makes it possible to reduce center segregation and internal cracks.

本発明に係る鋼の連続鋳造方法を実施するのに有効な連続鋳造機の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a continuous casting machine that is effective for carrying out the continuous steel casting method according to the present invention. 鋳片幅方向の最終凝固位置を説明する図である。It is a figure explaining the final solidification position in the slab width direction. 鋳片引抜き方向に垂直な面で切断した鋳片の横断面図である。FIG. 3 is a cross-sectional view of the slab cut along a plane perpendicular to the slab drawing direction. 実験1における、鋳片厚み中心付近の温度勾配と偏析粒個数との関係を示すグラフである。2 is a graph showing the relationship between the temperature gradient near the center of slab thickness and the number of segregated grains in Experiment 1. 実験2における、水量密度と鋳片厚み中心付近の温度勾配との関係を示すグラフである。3 is a graph showing the relationship between the water flow density and the temperature gradient near the center of slab thickness in Experiment 2. 実験3における、水量密度と温度降下時間との関係を示すグラフである。3 is a graph showing the relationship between water volume density and temperature drop time in Experiment 3. 実験4における、強冷却開始時での固相率平均値と鋳片厚み中心付近の温度勾配との関係を示すグラフである。3 is a graph showing the relationship between the average value of the solid fraction at the start of strong cooling and the temperature gradient near the center of slab thickness in Experiment 4. 強冷却と軽圧下時の圧下速度が偏析度に与える影響を示すグラフである。It is a graph showing the influence of reduction speed during strong cooling and light reduction on the degree of segregation.

以下、図面を参照しながら、本発明の好ましい実施形態について説明する。ただし、本発明の範囲は図示例に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the illustrated example.

図1は、本発明に係る鋼の連続鋳造方法の実施に有効な連続鋳造機の一例を示す概略図である。図1に例示する連続鋳造機11は、垂直曲げ型の連続鋳造機の例である。なお、本発明では、垂直曲げ型に代えて、湾曲型や完全垂直型の連続鋳造機を用いることもできる。 FIG. 1 is a schematic diagram showing an example of a continuous casting machine that is effective for carrying out the continuous steel casting method according to the present invention. The continuous casting machine 11 illustrated in FIG. 1 is an example of a vertical bending type continuous casting machine. In addition, in the present invention, a curved type or completely vertical type continuous casting machine can also be used instead of the vertical bending type.

図1に示す連続鋳造機11は、鋳型13、タンディッシュ14、複数対の鋳片支持ロール16、及び複数のスプレーノズル17などを備えるものである。この図に示すとおり、鋳片18は、鋳片引き抜き方向D1に引き抜かれる。また、この図においては、鋳片引き抜き方向D1に沿うタンディッシュ14側を上流側とし、鋳片18が引き抜かれていく先の側を下流側として以下説明する。 The continuous casting machine 11 shown in FIG. 1 includes a mold 13, a tundish 14, a plurality of pairs of slab support rolls 16, a plurality of spray nozzles 17, and the like. As shown in this figure, the slab 18 is pulled out in the slab drawing direction D1. In addition, in this figure, the tundish 14 side along the slab drawing direction D1 will be referred to as the upstream side, and the side from which the slab 18 is pulled out will be referred to as the downstream side in the following description.

タンディッシュ14は、鋳型13の上方に配設されており、溶鋼12を鋳型13に供給するためのものである。このタンディッシュ14内には、取鍋(図示せず)から供給される溶鋼12が貯留されている。そのために、タンディッシュ14の底部には、溶鋼12の流量を調整するためのスライディングノズル(図示せず)が設置されており、このスライディングノズルの下面には浸漬ノズル15が設置されている。 The tundish 14 is disposed above the mold 13 and is used to supply molten steel 12 to the mold 13. Molten steel 12 supplied from a ladle (not shown) is stored in this tundish 14. To this end, a sliding nozzle (not shown) for adjusting the flow rate of the molten steel 12 is installed at the bottom of the tundish 14, and an immersion nozzle 15 is installed at the bottom of this sliding nozzle.

連続鋳造用鋳型13は、タンディッシュ14の下方に設置されており、この鋳型13内にはタンディッシュ14から溶鋼12が浸漬ノズル15を介して注入される。注入された溶鋼12は、鋳型13にて冷却(一次冷却)され、これによって、鋳片18の外殻形状が形成される。 A continuous casting mold 13 is installed below a tundish 14 , and molten steel 12 is injected into the mold 13 from the tundish 14 through an immersion nozzle 15 . The injected molten steel 12 is cooled (primary cooling) in the mold 13, thereby forming the outer shell shape of the slab 18.

図1に示すとおり、複数対の鋳片支持ロール16が鋳片引抜き方向D1に沿って鋳片18を両側から支持するように配設されている。この複数対からなる鋳片支持ロール16は、例えば、サポートロール対、ガイドロール対及びピンチロール対からなる複数対の支持ロールで構成されている。また、この図に示すように、鋳片支持ロール16は複数対が集まって1つのセグメント20を形成している。 As shown in FIG. 1, a plurality of pairs of slab support rolls 16 are arranged so as to support the slab 18 from both sides along the slab drawing direction D1. The plurality of pairs of slab support rolls 16 are composed of a plurality of pairs of support rolls, for example, a pair of support rolls, a pair of guide rolls, and a pair of pinch rolls. Further, as shown in this figure, a plurality of pairs of slab support rolls 16 are assembled to form one segment 20.

複数のスプレーノズル17は、鋳片引抜き方向D1に沿って隣り合う鋳片支持ロール16の間に配設される。これらのスプレーノズル17は、鋳片18に向けて冷却水を噴射し、鋳片18を二次冷却するためのノズルである。このスプレーノズル17としては、水スプレーノズル(一流体スプレーノズル)やエアーミストスプレーノズル(二流体スプレーノズル)などのノズルを用いることができる。 The plurality of spray nozzles 17 are arranged between adjacent slab support rolls 16 along the slab drawing direction D1. These spray nozzles 17 are nozzles for secondary cooling of the slab 18 by spraying cooling water toward the slab 18 . As the spray nozzle 17, a nozzle such as a water spray nozzle (one-fluid spray nozzle) or an air mist spray nozzle (two-fluid spray nozzle) can be used.

鋳片18は、複数のスプレーノズル17から噴霧される冷却水(二次冷却水)によって、鋳片引抜き方向D1に沿って引き抜かれながら冷却される。なお、図1には、鋳片18内の溶鋼の未凝固部18aを斜線で示した。また、図1中には、未凝固部18aが無くなり凝固完了した凝固完了位置を、符号18bを付して示した。 The slab 18 is cooled by cooling water (secondary cooling water) sprayed from the plurality of spray nozzles 17 while being pulled out along the slab drawing direction D1. In addition, in FIG. 1, the unsolidified portion 18a of molten steel in the slab 18 is shown with diagonal lines. Further, in FIG. 1, the solidification completion position where the unsolidified portion 18a is eliminated and solidification is completed is indicated by the reference numeral 18b.

この連続鋳造機11の下流側の部分は、鋳片18を軽圧下する軽圧下帯19となっている。この軽圧下帯19には、複数対の鋳片支持ロール16で構成されるセグメント20a,20bが、複数設けられている。この軽圧下帯19の複数の鋳片支持ロール16は、各ロール対の鋳片18の厚み方向のロール間隔が鋳片引抜き方向D1に向かって徐々に狭くなるように配置されており、これにより、軽圧下帯19を通過する鋳片18を軽圧下するのである。なお、図1中の符号22は、軽圧下帯19の領域内に設けられる下部矯正位置を示している。 The downstream portion of the continuous casting machine 11 is a light rolling zone 19 that lightly rolls down the slab 18. This light reduction band 19 is provided with a plurality of segments 20a and 20b each of which is constituted by a plurality of pairs of slab support rolls 16. The plurality of slab support rolls 16 of this light reduction band 19 are arranged so that the roll interval in the thickness direction of the slab 18 of each roll pair gradually narrows toward the slab drawing direction D1. , the slab 18 passing through the light rolling zone 19 is lightly rolled down. Note that the reference numeral 22 in FIG. 1 indicates a lower correction position provided within the area of the light compression zone 19.

前述した連続鋳造機11の下流側の部分にはまた、鋳片18を水平方向に運ぶ水平帯の領域A1となっている。なお、図1では、鋳片支持ロール16で構成される各セグメントのうち、水平帯の領域A1に存在するセグメントを符号20a、水平帯の領域A1よりも上流側にあるセグメントを符号20bとして示している。 In the downstream part of the continuous casting machine 11 described above, there is also a horizontal band region A1 that transports the slab 18 in the horizontal direction. In addition, in FIG. 1, among the segments constituted by the slab support roll 16, the segment existing in the horizontal band area A1 is shown as 20a, and the segment located upstream of the horizontal band area A1 is shown as 20b. ing.

前記の水平帯の領域A1よりも下流側には、完全に凝固した鋳片18を搬送するための複数の搬送ロール21が設けられている。その搬送ロール21の上方には、鋳片18を所定の長さに切断する鋳片切断機(図示せず)が配設される。 A plurality of conveyor rolls 21 for conveying the completely solidified slab 18 are provided downstream of the horizontal band area A1. A slab cutting machine (not shown) that cuts the slab 18 into a predetermined length is disposed above the conveyance roll 21 .

本発明においては、前記連続鋳造機11の鋳片引抜き方向D1に沿った区間について、鋳片幅方向での固相率が一番低い幅方向最終凝固部での厚み方向に沿った固相率の平均値が0.8以下とくには0.1以上0.8以下の範囲内である始点から、前記鋳片幅方向で固相率の一番低い幅方向最終凝固部の厚み方向に沿った固相率の平均値が前記始点での固相率の平均値よりも大きく、かつ1.0以下の範囲内である終点までの区間を第1区間と定める。 In the present invention, in the section along the slab drawing direction D1 of the continuous casting machine 11, the solid phase rate along the thickness direction in the final solidified part in the width direction has the lowest solid phase rate in the width direction of the slab. From the starting point where the average value of is within the range of 0.8 or less, particularly 0.1 or more and 0.8 or less, The section up to the end point in which the average value of the solid phase ratio is larger than the average value of the solid phase ratio at the starting point and within the range of 1.0 or less is defined as the first section.

ここで、固相率とは、凝固の進行状況を表す指標であり、固相率は0~1.0の範囲で表され、固相率=0(ゼロ)が未凝固を表しており、固相率=1.0が完全凝固を表している。 Here, the solid phase ratio is an index representing the progress of solidification, and the solid phase ratio is expressed in the range of 0 to 1.0, with solid phase ratio = 0 (zero) representing non-solidification, A solid phase ratio of 1.0 represents complete solidification.

なお、本発明において、前記第1区間に続く区間を第2区間とし、この第2区間とは、第1区間にて冷却した表面温度状態(核沸騰状態)を中心固相率が1.0になるまで補完する区間である。 In the present invention, a section following the first section is referred to as a second section, and this second section refers to a state where the surface temperature state (nucleate boiling state) cooled in the first section has a central solid fraction of 1.0. This is the interval that is complemented until .

本発明に係る鋼の連続鋳造方法では、前記第1区間内において、水スプレーノズルから噴射される水スプレーによって鋳片の冷却を行うが、このとき鋳片表面積当たりの水量密度を50L/(m×min)以上2000L/(m×min)以下の範囲内とする。このような冷却を行うことにより、鋳片厚み中心部の温度勾配が大幅に大きくなり、鋳片厚み中央部の凝固組織を微細化して、中心偏析を効率よく低減することができるのである。ここで、第1区間内において、鋳片表面積当たりの水量密度を50L/(m×min)以上2000L/(m×min)以下の範囲内として、冷却水によって鋳片を冷却することを「強冷却」と称す。In the continuous steel casting method according to the present invention, the slab is cooled by water spray sprayed from a water spray nozzle in the first section, and at this time, the water density per slab surface area is set to 50 L/(m 2 × min) or more and 2000 L/(m 2 × min) or less. By performing such cooling, the temperature gradient at the center of the thickness of the slab is greatly increased, the solidification structure at the center of the thickness of the slab is refined, and center segregation can be efficiently reduced. Here, in the first section, the slab is cooled with cooling water, with the water density per slab surface area being within the range of 50 L/(m 2 × min) to 2000 L/(m 2 × min). This is called "strong cooling."

以下、鋳片幅方向で固相率の一番低い幅方向最終凝固部の厚み方向について、図2及び図3を用いて説明する。 Hereinafter, the thickness direction of the final solidified portion in the width direction where the solid phase ratio is lowest in the width direction of the slab will be explained using FIGS. 2 and 3.

図2は、鋳片幅方向で固相率の一番低い幅方向最終凝固部位置をC1としたときの図である。図2は、鋳片18の上面及び下面を鋳片支持ロール16によって支持した場合の、鋳片18の平面図を示している。図2において、「後←→前」の方向は鋳片引抜き方向D1に対応しており、「右←→左」の方向は鋳片18の幅方向D2に対応している。鋳片幅方向で固相率の一番低い幅方向最終凝固部の位置C1は、鋳片18の幅方向の中央部寄りの位置において鋳片引抜き方向D1に沿った位置にある。 FIG. 2 is a diagram where C1 is the position of the final solidified part in the width direction where the solid phase ratio is lowest in the width direction of the slab. FIG. 2 shows a plan view of the slab 18 when the upper and lower surfaces of the slab 18 are supported by slab support rolls 16. In FIG. 2, the direction "rear←→front" corresponds to the slab drawing direction D1, and the direction "right←→left" corresponds to the width direction D2 of the slab 18. The position C1 of the final solidified portion in the width direction where the solid fraction is lowest in the width direction of the slab is located along the slab drawing direction D1 at a position near the center of the slab 18 in the width direction.

図3は、鋳片引抜き方向D1に垂直な面で切断した鋳片18の横断面図である。図3において、「左←→右」の方向は鋳片18の幅方向D2に対応しており、「上←→下」の方向は鋳片18の厚み方向D3に対応している。鋳片幅方向で固相率の一番低い幅方向最終凝固部の厚み方向の位置C2は、鋳片18の横断面において、C1での厚み方向D3に平行な位置であり、図3中に破線で示した。 FIG. 3 is a cross-sectional view of the slab 18 cut along a plane perpendicular to the slab drawing direction D1. In FIG. 3, the direction “left←→right” corresponds to the width direction D2 of the slab 18, and the direction “top←→bottom” corresponds to the thickness direction D3 of the slab 18. The position C2 in the thickness direction of the final solidified part in the width direction with the lowest solid phase ratio in the width direction of the slab is a position parallel to the thickness direction D3 at C1 in the cross section of the slab 18, and is shown in FIG. Indicated by a broken line.

以下の説明において、水スプレーによる鋳片表面からの冷却の熱伝達係数は回帰式を使用し、その他の鋼に関する物性値は、データブックから各温度に対応した物性値を使用し、データのない温度では、その温度を挟む前後の温度でのデータで比例計算を行った値を用いた。 In the following explanation, the heat transfer coefficient for cooling from the slab surface by water spray is calculated using a regression equation, and the physical property values for other steels are calculated using the physical property values corresponding to each temperature from the data book. For temperature, we used a value obtained by performing a proportional calculation using data at temperatures before and after that temperature.

また、以下の説明において、水スプレーによる鋳片表面での熱伝達係数は、例えば、刊行物2(三塚正志、鉄と鋼、Vol.91、2005年、p.685~693、日本鉄鋼協会)や、刊行物3(手嶋俊雄ら、鉄と鋼、Vol.74、1988年、p.1282~1289、日本鉄鋼協会)などに記載されている値を用いた。 In addition, in the following explanation, the heat transfer coefficient on the slab surface due to water spray is, for example, Publication 2 (Masashi Mitsuka, Tetsu to Hagane, Vol. 91, 2005, p. 685-693, Japan Iron and Steel Institute) The values described in Publication 3 (Toshio Teshima et al., Tetsu to Hagane, Vol. 74, 1988, p. 1282-1289, Japan Iron and Steel Institute) were used.

本発明においては、以上のような前提において、非定常伝熱凝固解析を実施することにより、鋳片の断面温度分布を得ることにした。 In the present invention, under the above-mentioned premise, it was decided to obtain the cross-sectional temperature distribution of the slab by performing an unsteady heat transfer solidification analysis.

さらに、鋳片断面の厚み方向で任意に選んだ或る位置の固相率については、任意に選んだ位置の温度と、溶鋼の固相線温度と、溶鋼の液相線温度とを用いて算出することができ、その任意に選んだ位置の温度については、上述した鋳片の断面温度分布を用いて特定した。また、その位置での温度が溶鋼の固相線温度以下のときに固相率は1.0であり、その位置での温度が溶鋼の液相線温度以上のときの固相率は0である。また、その位置での温度が、溶鋼の固相線温度より高く、かつ溶鋼の液相線温度よりも低いときは、固相率が0よりも大きく、かつ1.0よりも小さい値であって、その位置の温度によって決まる。 Furthermore, the solidus ratio at a certain position arbitrarily selected in the thickness direction of the slab cross section is calculated using the temperature at the arbitrarily selected position, the solidus temperature of molten steel, and the liquidus temperature of molten steel. The temperature at the arbitrarily selected position was determined using the above-mentioned cross-sectional temperature distribution of the slab. Also, when the temperature at that location is below the solidus temperature of molten steel, the solidus fraction is 1.0, and when the temperature at that location is above the liquidus temperature of molten steel, the solidus fraction is 0. be. Furthermore, when the temperature at that position is higher than the solidus temperature of molten steel and lower than the liquidus temperature of molten steel, the solidus fraction is greater than 0 and smaller than 1.0. It is determined by the temperature at that location.

そして、このようにして算出した鋳片厚み方向各位置の固相率から、厚み方向に沿った固相率の平均値を求めた。 Then, from the solid fraction at each position in the slab thickness direction calculated in this way, the average value of the solid fraction along the thickness direction was determined.

前述したように、本発明に係る鋼の連続鋳造方法において、前記第1区間内においては、鋳片表面積当たりの水量密度を50L/(m×min)以上2000L/(m×min)以下の範囲内とする。そして、偏析低減の効果をより効率的に得るために、この第1区間内における鋳片表面積当たりの前記水量密度を、より好ましくは300L/(m×min)以上とする。また、発明者らの知見によると、この第1区間内においては、鋳片表面積当たりの水量密度を2000L/(m×min)としたときと、1000L/(m×min)としたときとは、凝固末期の温度勾配、偏析粒個数ともにそれぞれ大きな差がないことが分かった。また、前記水量密度を小さくすれば、必要水量を減らすことでコストを低減できるので、1000L/(m×min)以下とすることが望ましい。As described above, in the continuous casting method for steel according to the present invention, in the first section, the water density per slab surface area is set to 50 L/(m 2 ×min) or more and 2000 L/(m 2 ×min) or less. within the range of In order to more efficiently obtain the effect of reducing segregation, the water density per slab surface area in this first section is more preferably 300 L/(m 2 ×min) or more. Furthermore, according to the findings of the inventors, within this first section, when the water density per slab surface area is 2000L/(m 2 ×min) and when it is 1000L/(m 2 ×min), It was found that there were no significant differences in the temperature gradient at the final stage of solidification or the number of segregated grains. In addition, if the water density is reduced, the required amount of water can be reduced and the cost can be reduced, so it is desirable to set it to 1000 L/(m 2 ×min) or less.

なお、この第1区間の冷却について、鋳片を本発明に適合する前記水量密度で冷却すれば、本発明の効果を得ることができるが、当該水量密度で冷却する距離を長くして本発明の効果を有効に得るという観点からは、始点と終点との固相率平均値の差は0.2以上とすることが好ましく、0.4以上であることがより好ましい。 Regarding cooling in this first section, the effect of the present invention can be obtained if the slab is cooled with the water volume density that is compatible with the present invention. From the viewpoint of effectively obtaining the above effect, it is preferable that the difference in the solid fraction average value between the starting point and the ending point is 0.2 or more, and more preferably 0.4 or more.

次に、前記第1区間の始点は、連続鋳造機内で鋳片を水平方向に搬送する水平帯、または当該水平帯よりも上流側にある湾曲帯のいずれかにあることが好ましい。例えば、第1区間は、連続鋳造機内で鋳片を水平方向に搬送する水平帯の領域A1内とすることが好ましい。その理由は、水平帯の領域内で強冷却すれば、均等に冷却して熱応力の影響を抑えることができるので、鋳片の内部割れを、より発生しにくくすることができるからである。 Next, it is preferable that the starting point of the first section is located either in a horizontal band that horizontally conveys the slab within the continuous casting machine, or in a curved band located upstream of the horizontal band. For example, it is preferable that the first section is within a region A1 of a horizontal band that horizontally conveys slabs in a continuous casting machine. The reason for this is that strong cooling within the horizontal band region allows uniform cooling and suppresses the influence of thermal stress, making it more difficult for internal cracks to occur in the slab.

一方、第1区間の始点を湾曲帯とした場合であっても、本発明の効果は得られるが、温度が低下して矯正不能になったり、表面応力により割れたりする不具合が発生する可能性があるものの、第1区間の始点を湾曲帯内の位置とする場合があっても本発明の許容範囲内である。 On the other hand, even if the starting point of the first section is a curved zone, the effects of the present invention can be obtained, but there is a possibility that problems such as temperature drop and correction becoming impossible or cracking due to surface stress may occur. However, even if the starting point of the first section is located within the curved band, it is within the allowable range of the present invention.

次に、第2区間の冷却については、前記第1区間における鋳片表面積当たりの水量密度よりも小さい鋳片表面積当たりの水量密度で、鋳片の表面温度を200℃以下に保持できる流量とする。その理由は第1区間と同等の水量密度にして冷却すると設備的に高価になる。しかし、このようにすることで設備投資費用を抑止でき、かつ第1区間のみで強冷却する場合と同等の効果を得ることができるからである。また、急激な復熱を抑止して復熱による鋳片の内部割れを防止するという効果を得ることもできる。 Next, regarding the cooling in the second section, the flow rate is set to a flow rate that can maintain the surface temperature of the slab at 200°C or less at a water density per slab surface area that is smaller than the water density per slab surface area in the first section. . The reason for this is that cooling at the same water density as in the first section would result in expensive equipment. However, by doing so, it is possible to suppress equipment investment costs and obtain the same effect as when strong cooling is performed only in the first section. Further, it is possible to obtain the effect of suppressing rapid recuperation and preventing internal cracking of the slab due to reheating.

また、上記効果を得るという観点からは、この第2区間では、鋳片表面積当たりの水量密度を50L/(m×min)以上、300L/(m×min)以下の範囲内として、水スプレーによって鋳片を冷却することが好ましい。In addition, from the viewpoint of obtaining the above effect, in this second section, the water density per slab surface area is set within the range of 50 L/(m 2 × min) or more and 300 L/(m 2 × min) or less. Preferably, the slab is cooled by spraying.

鋳片の表面温度は、上述の非定常伝熱凝固解析によって求めた鋳片の断面温度分布のうち、鋳片の最表面の幅中央位置での温度のことをいう。なお、本発明での表面温度はこの計算値を用いているが、鋳片の表面温度は実測することもできる。表面温度を実測する場合は、例えば、放射温度計や熱電対を用いて鋳片の最表面の温度を表面温度として測定する。 The surface temperature of the slab refers to the temperature at the center of the width of the outermost surface of the slab in the cross-sectional temperature distribution of the slab determined by the above-mentioned unsteady heat transfer solidification analysis. Although this calculated value is used for the surface temperature in the present invention, the surface temperature of the slab can also be actually measured. When actually measuring the surface temperature, the temperature of the outermost surface of the slab is measured as the surface temperature using, for example, a radiation thermometer or a thermocouple.

さらに中心偏析厳格材については、第1区間及び第2区間において、0.3~2.0mm/minの圧下速度で、鋳片長辺面を軽圧下することが好ましい。その理由は、凝固収縮による濃化溶鋼の吸い込みを抑制できるようになるからである。本発明において、強冷却と軽圧下を組み合わせることにより、さらに中心偏析を減少させることも可能である。 Furthermore, for materials with severe center segregation, it is preferable to lightly reduce the long sides of the slab at a reduction rate of 0.3 to 2.0 mm/min in the first section and the second section. The reason for this is that the suction of concentrated molten steel due to solidification shrinkage can be suppressed. In the present invention, it is also possible to further reduce center segregation by combining strong cooling and light reduction.

また、複数対の鋳片支持ロールのロール開度を、矯正点を含まない範囲(上部矯正以降で開始して下部矯正前で終了するようにし、かつ矯正点では開度をフラットとして極力絞り込み変更しない)で下流側に向かって段階的に増加させ、鋳片長辺面を2~20mmのバルジング総量でバルジングさせ、その後、複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させて、短辺熱収縮より圧下しない総量まで軽圧下すれば、さらなる効率の向上が見込まれる。 In addition, the roll opening degrees of the multiple pairs of slab support rolls were changed to a range that does not include the straightening point (starting after the upper straightening and ending before the lower straightening, and narrowing down the opening degree as much as possible by keeping the opening degree flat at the straightening point. (not) stepwise toward the downstream side, bulging the long sides of the slab with a total bulging amount of 2 to 20 mm, and then changing the roll opening of the multiple pairs of slab supporting rolls toward the downstream side in the casting direction. Further improvement in efficiency can be expected by reducing the amount in stages and lightly reducing the amount to a total amount that is less than the short side heat shrinkage.

以下、中心偏析を減少させるための要件、すなわち、中心偏析を減少させるための実施条件について実験した。 Below, an experiment was conducted regarding the requirements for reducing center segregation, that is, the implementation conditions for reducing center segregation.

この実験においては、図1に示した垂直曲げ型の連続鋳造機を用い、中炭素アルミキルド鋼を鋳造した。連続鋳造機の機長は49m、鋳片の厚さは250mm、鋳片の幅は2100mm、二次冷却は、第1区間及び第2区間を除き、エアーミストスプレーを用い、二次冷却の範囲は鋳型直下から連続鋳造機の出口までとした。中炭素アルミキルド鋼の化学成分濃度は、炭素(C)が0.20質量%、ケイ素(Si)が0.25質量%、マンガン(Mn)が1.1質量%、リン(P)が0.01質量%、硫黄(S)が0.002質量%のものを用いた。 In this experiment, a vertical bending type continuous casting machine shown in FIG. 1 was used to cast medium carbon aluminum killed steel. The machine length of the continuous casting machine is 49 m, the thickness of the slab is 250 mm, the width of the slab is 2100 mm, and air mist spray is used for secondary cooling except for the first and second sections, and the range of secondary cooling is The distance was from just below the mold to the exit of the continuous casting machine. The chemical component concentration of medium carbon aluminum killed steel is 0.20% by mass of carbon (C), 0.25% by mass of silicon (Si), 1.1% by mass of manganese (Mn), and 0.0% by mass of phosphorus (P). 01% by mass and 0.002% by mass of sulfur (S) were used.

また、この実験において、鋳片の凝固完了位置及び凝固末期における厚み中心付近の温度勾配は、以下のように定義する。また、鋳片の偏析粒個数、内部割れ長さ及びザクは、以下のように測定したものを用い、偏析度、内部割れ及びザクの評価にそれぞれ用いた。ここで、「ザク」とは、凝固中にデンドライト間の閉ざされた空間に残存し、偏析成分が濃化した溶鋼が凝固時に体積収縮することにより鋳片に空隙として現れたものをいう。 In addition, in this experiment, the temperature gradient near the thickness center at the solidification completion position and the final stage of solidification of the slab is defined as follows. In addition, the number of segregated grains, internal crack length, and roughness of the slab were measured as follows, and used to evaluate the degree of segregation, internal cracks, and roughness, respectively. Here, "zaku" refers to voids that remain in the closed spaces between dendrites during solidification and appear as voids in the slab due to volumetric contraction of molten steel with concentrated segregated components during solidification.

<凝固完了位置>
鋳片の凝固完了位置は、非定常伝熱凝固解析によって算出した。
<Position of solidification completion>
The solidification completion position of the slab was calculated by unsteady heat transfer solidification analysis.

<凝固末期における鋳片厚み中心付近の温度勾配>
凝固末期における鋳片の厚み中心付近の温度勾配は、上述した非定常伝熱凝固解析を用いて算出した。
<Temperature gradient near the center of slab thickness at the final stage of solidification>
The temperature gradient near the thickness center of the slab at the final stage of solidification was calculated using the unsteady heat transfer solidification analysis described above.

この解析において、凝固完了位置から鋳片引き抜き方向D1に1m上流側の鋳片の断面において、鋳片の中心位置から厚み方向に1mmかつ幅方向に10mmの範囲内の領域の平均温度を算出し、次に、凝固完了位置から鋳片引き抜き方向D1に1m上流側の鋳片の断面において、鋳片の中心位置から厚み方向に10mmの位置を中心として、厚み方向に±1mmかつ幅方向に10mmの範囲内の領域の平均温度を算出し、これら2つの平均温度の差を10mmで除したものを、凝固末期における鋳片厚み中心付近の温度勾配(K/mm)とした。 In this analysis, the average temperature of an area within a range of 1 mm in the thickness direction and 10 mm in the width direction from the center position of the slab was calculated in the cross section of the slab 1 m upstream in the slab drawing direction D1 from the solidification completion position. Next, in the cross section of the slab 1 m upstream in the slab drawing direction D1 from the solidification completion position, with a position 10 mm in the thickness direction from the center position of the slab, ±1 mm in the thickness direction and 10 mm in the width direction The average temperature in the area within the range was calculated, and the difference between these two average temperatures was divided by 10 mm, which was taken as the temperature gradient (K/mm) near the center of the thickness of the slab at the final stage of solidification.

<偏析粒個数>
偏析粒個数は以下の方法で測定し、偏析の評価に用いた。
<Number of segregated grains>
The number of segregated grains was measured by the following method and used for evaluation of segregation.

鋳片引抜き方向D1に垂直な鋳片の断面において、幅が15mmで中心部に中心偏析部を含み、幅中央から片側の3重点(短辺側と長辺側との凝固殻が成長して出会った点)までの長さの鋳片試料を採取した。採取した鋳片試料の鋳片引抜き方向D1に垂直な断面を研磨し、例えば、ピクリン酸飽和水溶液などで表面を腐食させて偏析帯を現出させ、その偏析帯の中心から鋳片厚み±7.5mmの範囲を中心偏析部とした。厚み中央付近の偏析帯(凝固完了部付近)の鋳片試料を、鋳片幅方向に小分割した後、電子プローブマイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いて電子ビーム径100μmで鋳片試料のマンガン(Mn)濃度を全面に亘って面分析した。そして、マンガン(Mn)偏析度の分布を求め、Mn偏析度が1.33以上の領域が繋がっているものを1つの偏析粒とした。その偏析粒の数をカウントし、偏析粒の数をサンプルの鋳片幅方向の長さで除したものを偏析粒個数(個/mm)とした。ここで、Mn偏析度とは、偏析部のMn濃度を、厚み中心部から10mm離れた位置におけるMn濃度で除したものである。 In the cross section of the slab perpendicular to the slab drawing direction D1, it has a width of 15 mm, includes a central segregation part in the center, and has a triple point on one side from the center of the width (solidified shells on the short side and long side have grown). A slab sample with a length up to the point where the specimen met was taken. The cross section of the collected slab sample perpendicular to the slab drawing direction D1 is polished, and the surface is corroded with a saturated aqueous solution of picric acid to reveal a segregation zone, and the slab thickness is ±7 from the center of the segregation zone. The range of .5 mm was defined as the central segregation area. A slab sample in the segregation zone near the center of thickness (near the solidified area) was divided into small pieces in the width direction of the slab, and then divided into slabs with an electron beam diameter of 100 μm using an Electron Probe Micro Analyzer (EPMA). The manganese (Mn) concentration of the sample was analyzed over the entire surface. Then, the distribution of manganese (Mn) segregation degree was determined, and those in which regions with Mn segregation degree of 1.33 or more were connected were defined as one segregated grain. The number of segregated grains was counted, and the number of segregated grains divided by the length of the sample in the width direction of the slab was defined as the number of segregated grains (pieces/mm). Here, the Mn segregation degree is the Mn concentration in the segregated portion divided by the Mn concentration at a position 10 mm away from the center of thickness.

<鋳片の内部割れ長さ>
鋳片の内部割れ長さを以下の方法で測定し、内部割れの評価に用いた。
<Internal crack length of slab>
The length of internal cracks in the slab was measured by the following method and used for evaluation of internal cracks.

鋳造後の鋳片において、鋳片引抜き方向D1に垂直な鋳片の断面を観察し、内部割れの鋳片厚み方向に沿った長さを測定した。この内部割れの長さのうち、観察断面内で最大の長さのものを内部割れ長さ(mm)とした。内部割れが確認できなかった場合は、内部割れ長さは0とした。 In the slab after casting, a cross section of the slab perpendicular to the slab drawing direction D1 was observed, and the length of the internal crack along the thickness direction of the slab was measured. Among the lengths of the internal cracks, the maximum length within the observed cross section was defined as the internal crack length (mm). If no internal cracks were confirmed, the internal crack length was set to 0.

<ザク判定>
完全凝固後の鋳片の鋳片引抜き方向D1に垂直な断面をフライス加工後、塩酸エッチングの後に、マクロプリントを採取し、目視の官能検査でザクを確認した。ザクが確認されなかったものを良好(○)とし、製品の品質に影響のない軽微なザクが確認されたものを可(△)と判定した。
<Zaku Judgment>
After milling a cross section perpendicular to the slab drawing direction D1 of the completely solidified slab and etching it with hydrochloric acid, a macro print was taken, and the scratches were confirmed by a visual sensory test. Those in which no cracks were observed were judged as good (◯), and those in which slight bumps were observed that did not affect the quality of the product were judged to be fair (△).

発明者らは、以下のような実験を行い、中心偏析を減らすための条件を検討した。
[実験1]
この実験においては、鋳片の凝固末期における鋳片厚み中心付近の温度勾配と、偏析粒個数とを、上述した方法で算出または測定し、これらの関係を考察した。その結果をプロットしたグラフを図4に示した。図4に示す結果より、凝固末期における鋳片厚み中心付近の温度勾配(K/mm)を大きくすると、偏析粒個数が少なくなって、中心偏析を低減できる傾向のあることが分かった。凝固末期における鋳片厚み中心付近の温度勾配としては1.7~3.5、より好ましくは2.0~3.5である。中心偏析を低減できる理由は、温度勾配を大きくすることによって、鋳片厚み中心部の凝固組織を微細化することができたためであると考えられる。
The inventors conducted the following experiments and investigated conditions for reducing center segregation.
[Experiment 1]
In this experiment, the temperature gradient near the center of the thickness of the slab at the final stage of solidification of the slab and the number of segregated grains were calculated or measured using the method described above, and the relationship between these was considered. A graph plotting the results is shown in FIG. From the results shown in FIG. 4, it was found that increasing the temperature gradient (K/mm) near the center of slab thickness at the end of solidification tends to reduce the number of segregated grains and reduce center segregation. The temperature gradient near the center of slab thickness at the final stage of solidification is 1.7 to 3.5, more preferably 2.0 to 3.5. The reason why center segregation can be reduced is considered to be that by increasing the temperature gradient, the solidified structure at the center of the thickness of the slab could be made finer.

[実験2]
この実験においては、連続鋳造機を用いて鋳片を二次冷却する際に、水スプレーでの鋳片表面積当たりの水量密度の条件を変更して鋳片を製造し、当該水量密度と、鋳片の凝固末期における厚み中心付近の温度勾配との関係を調べた。そして、中心偏析を低減できる鋳片厚み中心部の温度勾配を実現するために最適な水量密度の範囲についても調べた。その結果をプロットしたグラフを図5に示した。
[Experiment 2]
In this experiment, when secondary cooling a slab using a continuous casting machine, slabs were manufactured by changing the conditions of the water amount density per slab surface area in water spray, and the The relationship with the temperature gradient near the center of thickness at the final stage of solidification of the piece was investigated. We also investigated the optimal water flow density range to achieve a temperature gradient at the center of the slab thickness that can reduce center segregation. A graph plotting the results is shown in FIG.

この図5に示す結果より、鋳片表面積当たりの水量密度は50L/(m×min)以上で、鋳片厚み中心部の温度勾配が大幅に大きくなることが分かった。即ち、前記実験1の結果を踏まえれば、鋳片表面積当たりの水量密度を50L/(m×min)以上として冷却することによって、中心偏析を大幅に低減できることが分かる。また、鋳片表面積当たりの水量密度を1000L/(m×min)より大きくしても鋳片厚み中心部の温度勾配は大きくならかった。From the results shown in FIG. 5, it was found that when the water density per slab surface area was 50 L/(m 2 ×min) or more, the temperature gradient at the center of the slab thickness became significantly large. That is, based on the results of Experiment 1, it can be seen that center segregation can be significantly reduced by cooling with a water flow density per slab surface area of 50 L/(m 2 ×min) or more. Further, even when the water density per slab surface area was made larger than 1000 L/(m 2 ×min), the temperature gradient at the center of the slab thickness did not become large.

したがって、第1区間、第2区間で多少の違いはあるものの、効率的な鋳片厚み中心部の温度勾配増大のためには、鋳片表面積当たりの水量密度は2000L/(m×min)以下、好ましくは1000L/(m×min)以下にすることである。また、下限については50L/(m×min)以上、より好ましくは300L/(m×min)以上にすることである。Therefore, although there are some differences between the first section and the second section, in order to efficiently increase the temperature gradient at the center of the slab thickness, the water density per slab surface area is 2000 L/(m 2 × min). Hereinafter, it is preferably 1000 L/(m 2 ×min) or less. Moreover, the lower limit is 50 L/(m 2 ×min) or more, more preferably 300 L/(m 2 ×min) or more.

[実験3]
この実験では、鋳片冷却の効果について検討した。発明者らの知見では、鋳片冷却の効果は、鋳片の表面温度が大きく影響を及ぼしていることが分かった。これは鋳片表面温度により冷却水の沸騰形態が変化するためであると考えられる。鋳片の表面温度が十分に降下していれば、表層での沸騰形態は核沸騰となり、安定的な冷却が実現できる。そこで、連続鋳造機を用いて鋳片を二次冷却する際に、水スプレーでの鋳片表面積当たりの水量密度の条件を変更して、鋳片の表面温度が800℃から300℃まで降下するまでに費やした時間(温度降下時間)を計算し、温度降下時間に及ぼす水量密度の影響を調査した。これらの結果をプロットしたグラフを図6に示す。
[Experiment 3]
In this experiment, the effect of slab cooling was investigated. According to the findings of the inventors, the effect of cooling the slab is greatly influenced by the surface temperature of the slab. This is thought to be because the boiling form of the cooling water changes depending on the surface temperature of the slab. If the surface temperature of the slab is sufficiently lowered, the form of boiling at the surface layer will be nucleate boiling, and stable cooling can be achieved. Therefore, when performing secondary cooling of slabs using a continuous casting machine, we changed the water spray density per slab surface area to reduce the surface temperature of the slabs from 800°C to 300°C. We calculated the time it took for the temperature to drop (temperature drop time) and investigated the effect of water volume density on the temperature drop time. A graph plotting these results is shown in FIG.

この図6に示す結果より、鋳片表面積当たりの水量密度が50L/(m×min)付近で、鋳片の表面温度が800℃から300℃まで降下するまでの温度降下時間は、200秒未満になるので、鋳片表面積当たりの水量密度は50L/(m×min)以上が好ましいことが分かった。また、鋳片表面積当たりの水量密度が2000L/(m×min)より大きい場合には降下時間に大きな変化はなかった。From the results shown in Figure 6, when the water density per slab surface area is around 50 L/(m 2 × min), the temperature drop time for the slab surface temperature to drop from 800°C to 300°C is 200 seconds. Therefore, it was found that the water density per slab surface area is preferably 50 L/(m 2 ×min) or more. Furthermore, when the water density per slab surface area was greater than 2000 L/(m 2 ×min), there was no significant change in the falling time.

したがって、効率的な冷却の観点からは、特に第1区間についての鋳片表面積当たりの水量密度は2000L/(m×min)以下とすることが望ましいことが分かった。Therefore, from the viewpoint of efficient cooling, it was found that it is desirable that the water density per slab surface area, particularly in the first section, be 2000 L/(m 2 ×min) or less.

[実験4]
次に、発明者らは、鋳片厚み中心部の温度勾配を効率的に大きくすることができる強冷却の開始位置についても調査した。連続鋳造機を用いて、強冷却開始時での、鋳片の厚み方向に沿った固相率の平均値の条件を変化させて鋳片を冷却し、強冷却開始時での固相率平均値と、鋳片の凝固末期における厚み中心付近の温度勾配との関係を調べた。鋳片の厚さは250mmであり、強冷却での鋳片表面積当たりの水量密度は300L/(m×min)であり、強冷却は鋳片の完全凝固位置まで継続した。強冷却開始時での固相率平均値と、鋳片の凝固末期における厚み中心付近の温度勾配との関係について、その結果をプロットしたグラフを図7に示す。
[Experiment 4]
Next, the inventors also investigated the starting position of strong cooling that can effectively increase the temperature gradient at the center of the thickness of the slab. Using a continuous casting machine, the slab is cooled by changing the conditions of the average solid fraction along the thickness direction of the slab at the start of intense cooling, and the average solid fraction at the start of intense cooling is The relationship between this value and the temperature gradient near the center of thickness of the slab at the final stage of solidification was investigated. The thickness of the slab was 250 mm, the water density per slab surface area during strong cooling was 300 L/(m 2 ×min), and strong cooling was continued until the slab was completely solidified. FIG. 7 shows a graph plotting the results of the relationship between the average solid fraction at the start of strong cooling and the temperature gradient near the center of thickness at the final stage of solidification of the slab.

図7に示す結果より、強冷却開始時の固相率平均値が小さいほど、鋳片中心部の温度勾配は大きくなる傾向があることが分かった。ただし、強冷却開始時での固相率平均値が0.26における温度勾配は、強冷却開始時での固相率平均値が0.43における温度勾配と大きな変化はなく、固相率平均値が0.8で鋳片中心部の温度勾配は1.7以上であった。したがって、本発明の効果が十分に発揮され、かつ強冷却の設備をよりコンパクトにして設備投資や運転の効率を高めるには強冷却開始時での固相率の平均値は0.4以上であればよいことが分かった。また、強冷却開始時での固相率平均値が0.9よりも大きい場合には、温度勾配は大きくならなかった。 From the results shown in FIG. 7, it was found that the smaller the average value of the solid fraction at the start of strong cooling, the larger the temperature gradient at the center of the slab tends to be. However, the temperature gradient when the solid fraction average value at the start of strong cooling is 0.26 is not significantly different from the temperature gradient when the solid phase fraction average value is 0.43 at the start of strong cooling, and The value was 0.8, and the temperature gradient at the center of the slab was 1.7 or more. Therefore, in order for the effects of the present invention to be fully exhibited, and to make the strong cooling equipment more compact and increase equipment investment and operational efficiency, the average value of the solid fraction at the start of strong cooling must be 0.4 or more. I found out that it's good to have. Further, when the average value of solid fraction at the start of strong cooling was larger than 0.9, the temperature gradient did not become large.

以下、本発明の効果を検証するために行った実施例について説明する。
図1に示した垂直曲げ型の連続鋳造機を用い、中炭素アルミキルド鋼を鋳造した。連続鋳造機の機長は49m、鋳片の厚さは250mm、鋳片の幅は2100mm、二次冷却は、第1区間及び第2区間を除き、エアーミストスプレーを用い、二次冷却の範囲は鋳型直下から連続鋳造機の出口までとした。中炭素アルミキルド鋼の化学成分濃度は、炭素(C)が0.20質量%、ケイ素(Si)が0.25質量%、マンガン(Mn)が1.1質量%、リン(P)が0.01質量%、硫黄(S)が0.002質量%のものを用いた。
Examples carried out to verify the effects of the present invention will be described below.
Medium carbon aluminum killed steel was cast using a vertical bending type continuous casting machine shown in FIG. The machine length of the continuous casting machine is 49 m, the thickness of the slab is 250 mm, the width of the slab is 2100 mm, and air mist spray is used for secondary cooling except for the first and second sections, and the range of secondary cooling is The distance was from just below the mold to the exit of the continuous casting machine. The chemical component concentration of medium carbon aluminum killed steel is 0.20% by mass of carbon (C), 0.25% by mass of silicon (Si), 1.1% by mass of manganese (Mn), and 0.0% by mass of phosphorus (P). 01% by mass and 0.002% by mass of sulfur (S) were used.

[例1]
この実施例においては、「第1区間」における始点での固相率、終点での固相率、鋳片表面積当たりの水量密度(L/(m×min))、第1区間出側表面温度(℃)、および「第2区間」における始点での固相率、終点での固相率、鋳片表面積当たりの水量密度(L/(m×min))、第2区間最高表面温度(℃)について、表1に示すような条件を与えて調べた。
[Example 1]
In this example, the solid phase rate at the starting point in the "first section", the solid phase rate at the end point, the water density per slab surface area (L/(m 2 × min)), the first section outlet surface Temperature (°C), solid phase ratio at the start point in the "second section", solid phase rate at the end point, water density per slab surface area (L/(m 2 × min)), maximum surface temperature in the second section (°C) was investigated under the conditions shown in Table 1.

その結果について、凝固末期の温度勾配(K/mm)、軽圧下条件(圧下速度:0.3~2.0m/min)、バルジング総量(mm)を調べ、これらを表1にまとめて示した。それと共に、偏析度の評価として偏析粒個数(個/mm)を調べ、内部割れの評価として内部割れ長さ(mm)を調べ、これらを表1にまとめて示した。なお、これらの表では、本発明に適合する条件のものを発明例として示し、そうでない条件のものを比較例として示した。以下の表中で、偏析度の評価は、偏析粒個数が1.3個/mm以下を良好として、「◎」印とし、1.3個/mm超え3.5個/mm未満を可として、「○」印とし、3.5個/mm以上を不可として、「×」で評価した。内部割れの評価は、内部割れ長さが1.0mm以下を良好として、「◎」印とし、1.0mm超え10mm未満を可として、「○」印とし、10mm以上を不可として、「×」で評価した。 Regarding the results, the temperature gradient (K/mm) at the final stage of solidification, light reduction conditions (reduction speed: 0.3 to 2.0 m/min), and total bulging amount (mm) were investigated, and these are summarized in Table 1. . At the same time, the number of segregated grains (pieces/mm) was examined as an evaluation of the degree of segregation, and the internal crack length (mm) was examined as an evaluation of internal cracks, and these are summarized in Table 1. In addition, in these tables, those under conditions that are compatible with the present invention are shown as invention examples, and those under conditions that are not compatible are shown as comparative examples. In the table below, the degree of segregation is evaluated when the number of segregated grains is 1.3 particles/mm or less, which is considered good and marked with "◎", and when the number of segregated particles is more than 1.3 particles/mm and less than 3.5 particles/mm, it is considered acceptable. , and 3.5 pieces/mm or more were judged as unacceptable and evaluated as "×". For evaluation of internal cracks, if the length of the internal crack is 1.0 mm or less, it is considered good and marked with "◎", if it is more than 1.0 mm and less than 10 mm, it is marked as "○", and if it is 10 mm or more, it is marked as "x". It was evaluated by

No.1~7およびNo .10~14はいずれも、第1区間の操業で求められる条件のうち本発明に適合する範囲内で操業を実施した例である。その結果、偏析度の評価、内部割れの評価共に良好であった。一方で、比較例として示したNo.8は、第1区間での水量密度が外れた例であり、No.9は始点での固相率が外れた例である。水量密度の低いNo.8では、核沸騰状態も維持できておらず偏析粒個数の評価および内部割れの評価も劣った。また、固相率が外れたNo.9では鋳片中心部の温度勾配は小さくなり偏析粒個数の評価が劣った。 No. 1 to 7 and No. All of Nos. 10 to 14 are examples in which operations were carried out within the range of conditions required for the operation in the first section that are compatible with the present invention. As a result, both the segregation degree and internal crack evaluation were good. On the other hand, No. shown as a comparative example. No. 8 is an example in which the water volume density in the first section is off. 9 is an example in which the solid phase ratio at the starting point is off. No. 1 with low water density. In No. 8, the nucleate boiling state could not be maintained and the evaluation of the number of segregated grains and the evaluation of internal cracks were also poor. In addition, No. 1 whose solid phase ratio was off. In No. 9, the temperature gradient at the center of the slab became small and the evaluation of the number of segregated grains was poor.

Figure 0007355285000001
Figure 0007355285000001

[例2]
この実施例は、本発明における第2区間の処理として求められる条件(鋳片表面積当たりの水量密度(L/(m×min))、第2区間最高表面温度(℃)について検討した。即ち、この例では、上記[例1]の第1区間に求められる条件を前提とした上で、第2区間で求められる条件について検討したものである。その条件および結果について表2にまとめた。各評価は[例1]と同様に行った。この表2から明らかなとおり、No.20~26については本発明条件を満足する一方、No.27、28については、この第2区間で求められている鋳片表面積当たりの水量密度が不足している。そのため、No.27、28は、第1区間で求められている本発明の条件は満足しているものの、偏析度の評価および内部割れの評価とも、No.20~26に比べるとやや劣るという結果になった。
[Example 2]
In this example, the conditions required for the second section treatment in the present invention (water density per slab surface area (L/(m 2 × min)) and the second section maximum surface temperature (°C) were investigated. In this example, the conditions required for the second section were studied based on the conditions required for the first section of [Example 1] above.The conditions and results are summarized in Table 2. Each evaluation was performed in the same manner as in [Example 1].As is clear from Table 2, Nos. 20 to 26 satisfied the conditions of the present invention, while Nos. 27 and 28 were evaluated in this second section. Therefore, although Nos. 27 and 28 satisfy the conditions of the present invention required in the first section, evaluation of segregation degree and internal Both crack evaluations were slightly inferior to Nos. 20 to 26.

Figure 0007355285000002
Figure 0007355285000002

[例3]
この実施例は、凝固末期の鋳片厚み中心部の温度勾配(K/mm)、軽圧下条件として圧下速度(m/min)、バルジング総量(mm)に関して、前述した第1区間、第2区間に求められる条件については本発明に適合することを前提とした例について検討したものである。その条件および結果について表3にまとめた。各評価は[例1]と同様に行った。この表3から明らかなとおり、No.30~37は、いずれも発明例として適合する場合であり、偏析度の評価、内部割れの評価とも概ね良好であった。しかし、No.38、39については第2区間の水量密度が不足するために凝固末期における鋳片厚み中心付近の温度勾配(K/mm)が小となり、また第2区間最高表面温度も高く(>200℃)なった。そのため、No.38、39は、No.30~37と同様の効果までは得られないことが分かった。
[Example 3]
In this example, the temperature gradient (K/mm) at the center of the thickness of the slab at the end of solidification, the reduction rate (m/min) as a light reduction condition, and the total amount of bulging (mm) are determined in the first section and the second section described above. The conditions required for this are studied on the assumption that the conditions are compatible with the present invention. The conditions and results are summarized in Table 3. Each evaluation was performed in the same manner as in [Example 1]. As is clear from Table 3, No. Nos. 30 to 37 are all cases that are suitable as invention examples, and the evaluations of segregation degree and internal cracking were generally good. However, No. Regarding Nos. 38 and 39, the temperature gradient (K/mm) near the center of slab thickness at the end of solidification is small due to insufficient water density in the second section, and the maximum surface temperature in the second section is also high (>200°C). became. Therefore, No. 38 and 39 are No. It was found that the same effect as 30-37 could not be obtained.

Figure 0007355285000003
Figure 0007355285000003

これらの実施例の結果から、本発明では少なくとも第1区間における鋳片表面積当たりの水量密度を所定の範囲内とすることを前提とし、必要に応じ第2区間における鋳片表面積当たりの水量密度をも制御することで、連続鋳造鋳片の効果的な冷却を行うことができることが確かめられた。そして、より望ましくは、凝固末期における鋳片厚み中心付近の温度勾配や前記第1、2区間における軽圧下の条件をも考慮することがより有効となることが判った。 From the results of these examples, the present invention assumes that the water density per slab surface area in at least the first section is within a predetermined range, and the water density per slab surface area in the second section is adjusted as necessary. It was confirmed that continuous casting slabs can be effectively cooled by controlling the It has also been found that it is more desirable to consider the temperature gradient near the center of slab thickness at the final stage of solidification and the conditions of light reduction in the first and second sections.

[例4]
この実施例は、前述した第1区間に求められる冷却条件をより強冷却の範囲とし、第2区間に求められる冷却条件を180L/(m×min)とし、バルジング総量を一定とした。そして、軽圧下条件として圧下速度(m/min)の影響を検討したものである。その条件および結果について表4にまとめ、図8に軽圧下時の圧下速度と偏析度との関係を示した。各評価は[例1]と同様に行った。また、ザクの判定は、ザクが確認されなかったものを良好(○)とし、製品の品質に影響のない軽微なザクが確認されたものを可(△)と判定した。この表4から明らかなとおり、No.41~45、48~52は、いずれも発明例として適合する場合であり、偏析度の評価およびザク判定の評価とも概ね良好であった。しかし、No.40および47については、軽圧下条件として圧下速度が過小のため、偏析粒個数が、No.41~45、48~52より多くなり、軽微なザクが見られた。一方、No.46および53については、軽圧下条件として圧下速度が過大のため、偏析粒個数が、No.41~45、48~52より多くなった。なお、表4の条件で内部割れの発生はなかった。この結果から、図8に示すように、第1区間の冷却条件をより強冷却の範囲とし、軽圧下条件として圧下速度を0.3~2.0m/minとすることで偏析度の評価、内部割れおよびザク判定の評価に優れた鋳片を製造できることが判った。
[Example 4]
In this example, the cooling conditions required for the first section described above were set to a stronger cooling range, the cooling conditions required for the second section were set to 180 L/(m 2 ×min), and the total amount of bulging was kept constant. The influence of rolling speed (m/min) was also investigated as a light rolling condition. The conditions and results are summarized in Table 4, and FIG. 8 shows the relationship between the reduction rate and the degree of segregation during light reduction. Each evaluation was performed in the same manner as in [Example 1]. In addition, for the evaluation of blemishes, those in which no blemishes were observed were evaluated as good (◯), and those in which slight burrs were observed that did not affect the quality of the product were judged to be fair (△). As is clear from Table 4, No. Cases 41 to 45 and 48 to 52 are all suitable as invention examples, and the evaluations of segregation degree and roughness judgment were generally good. However, No. Regarding Nos. 40 and 47, the number of segregated grains was lower than the number of segregated grains because the reduction speed was too low under the light reduction condition. The numbers increased from 41 to 45 and 48 to 52, and slight zaku was observed. On the other hand, No. Regarding No. 46 and No. 53, the number of segregated grains was lower than that of No. 1 because the reduction speed was too high under the light reduction condition. It was more than 41-45 and 48-52. Note that no internal cracking occurred under the conditions shown in Table 4. From this result, as shown in Figure 8, by setting the cooling condition in the first section to a stronger cooling range and setting the rolling speed to 0.3 to 2.0 m/min as a light rolling condition, the degree of segregation can be evaluated. It was found that slabs with excellent internal cracking and roughness evaluation can be produced.

この原因は以下のように考えられる。未凝固域で鋳片の超強冷を適用することにより温度勾配が上昇し、デンドライトの微細化が達成できる。中心偏析をさらに改善するためには、併せて軽圧下を組み合わせること好ましい。ところが、軽圧下が弱すぎる、つまり、圧下速度が過小であると凝固収縮に伴う流動が抑制できずに正偏析を発生させてしまう。加えて、凝固収縮により、ザクが生じるおそれがある。逆に、軽圧下が強すぎる、つまり、圧下速度が速すぎると圧下過多となり濃化溶鋼が逆流し、逆V偏析を発生させてしまい偏析は悪化してしまう。 The reason for this is thought to be as follows. By applying ultra-strong cooling of the slab in the unsolidified region, the temperature gradient increases and dendrite refinement can be achieved. In order to further improve center segregation, it is preferable to combine light reduction. However, if the light reduction is too weak, that is, if the reduction rate is too low, the flow accompanying solidification shrinkage cannot be suppressed, resulting in positive segregation. In addition, solidification and shrinkage may cause cracks. On the other hand, if the light reduction is too strong, that is, if the reduction rate is too fast, the reduction will be excessive and the concentrated molten steel will flow backwards, causing inverted V segregation and worsening the segregation.

Figure 0007355285000004
Figure 0007355285000004

本明細書中で体積の単位「L」は、10-3である。数値の範囲を表す「x~y」は、x以上y以下を表し、境界値を含む。The unit of volume "L" herein is 10 −3 m 3 . “x to y” representing a range of numerical values represents a value greater than or equal to x and less than or equal to y, and includes boundary values.

11 連続鋳造機
12 溶鋼
13 鋳型
14 タンディッシュ
15 浸漬ノズル
16 鋳片支持ロール
17 スプレーノズル
18 鋳片
18a 鋳片内の未凝固部
18b 凝固完了位置
19 軽圧下帯
20 セグメント
20a セグメント
20b セグメント
21 搬送ロール
11 Continuous casting machine 12 Molten steel 13 Mold 14 Tundish 15 Immersion nozzle 16 Slab support roll 17 Spray nozzle 18 Slab 18a Unsolidified portion in slab 18b Solidification completion position 19 Light reduction zone 20 Segment 20a Segment 20b Segment 21 Conveyance roll

Claims (5)

連続鋳造機内の鋳片引抜き方向に沿って、鋳片幅方向で固相率の一番低い幅方向最終凝固部での厚み方向に沿った固相率の平均値が0.8以下である始点から、前記鋳片幅方向で固相率の一番低い幅方向最終凝固部での厚み方向に沿った固相率の平均値が前記始点での固相率よりも大きくかつ1.0以下である終点までの範囲を第1区間とし、前記終点での厚み方向に沿った固相率の平均値が1.0以下である、前記第1区間よりも下流に位置する区間を第2区間とするとき、
前記第1区間内における鋳片表面積当たりの水量密度を、50~2000L/(m×min)の範囲内で、鋳片の冷却を行い、
任意選択的に、前記第2区間における、鋳片表面積当たりの水量密度を50~300L/(m×min)の範囲内にて鋳片の冷却を行う、鋼の連続鋳造方法。
A starting point where the average value of the solid fraction along the thickness direction at the final solidified part in the width direction, where the solid fraction is the lowest in the width direction of the slab, is 0.8 or less along the slab drawing direction in the continuous casting machine. Therefore, the average value of the solid fraction along the thickness direction at the final solidified part in the width direction where the solid fraction is lowest in the width direction of the slab is larger than the solid fraction at the starting point and 1.0 or less. The range up to a certain end point is defined as a first section, and the section located downstream of the first section in which the average solid phase ratio along the thickness direction at the end point is 1.0 or less is defined as a second section. and when,
The slab is cooled at a water density per slab surface area in the first section within a range of 50 to 2000 L/(m 2 × min),
Optionally, a continuous casting method for steel, in which the slab is cooled at a water flow density per slab surface area in the second section within a range of 50 to 300 L/(m 2 ×min).
少なくとも、前記第1区間の終了時点から前記第2区間通過の間においては、鋳片の表面温度が200℃以下である核沸騰状態を維持しながら鋳造し、凝固末期における鋳片厚み中心付近の温度勾配を1.7~3.5K/mmとする、請求項1に記載の鋼の連続鋳造方法。 At least from the end of the first section to the passage through the second section, the slab is cast while maintaining a nucleate boiling state where the surface temperature is 200°C or less, and the slab thickness near the center at the final stage of solidification is maintained. The continuous casting method for steel according to claim 1, wherein the temperature gradient is 1.7 to 3.5 K/mm. 前記第1区間及び前記第2区間は、連続鋳造機内での水平方向セグメント、もしくは垂直方向セグメントに限定する領域内に設置する、請求項1または2に記載の鋼の連続鋳造方法。 The continuous casting method for steel according to claim 1 or 2, wherein the first section and the second section are installed in a region limited to a horizontal segment or a vertical segment in a continuous casting machine. 前記第1区間及び前記第2区間において、軽圧下を付与し、0.3~2.0mm/minの圧下速度で、鋳片長辺面を圧下する、請求項1または2に記載の鋼の連続鋳造方法。 The continuous steel according to claim 1 or 2, wherein in the first section and the second section, a light reduction is applied and the long side surface of the slab is reduced at a reduction rate of 0.3 to 2.0 mm/min. Casting method. 複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることにより、鋳片長辺面を2~20mmのバルジング総量でバルジングさせ、その後、複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させて鋳片を軽圧下する、請求項1または2に記載の鋼の連続鋳造方法。 By increasing the roll opening degree of the plurality of pairs of slab support rolls in stages toward the downstream side in the casting direction, the long sides of the slab are bulged with a total bulging amount of 2 to 20 mm, and then the plurality of pairs of slab support rolls are bulged. The continuous steel casting method according to claim 1 or 2, wherein the roll opening degree of the rolls is gradually reduced toward the downstream side in the casting direction to lightly reduce the slab.
JP2023538740A 2022-03-28 2023-03-23 Continuous steel casting method Active JP7355285B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022051592 2022-03-28
JP2022051592 2022-03-28
PCT/JP2023/011463 WO2023190018A1 (en) 2022-03-28 2023-03-23 Method for continuous casting of steel

Publications (3)

Publication Number Publication Date
JP7355285B1 true JP7355285B1 (en) 2023-10-03
JPWO2023190018A1 JPWO2023190018A1 (en) 2023-10-05
JPWO2023190018A5 JPWO2023190018A5 (en) 2024-03-08

Family

ID=88198264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023538740A Active JP7355285B1 (en) 2022-03-28 2023-03-23 Continuous steel casting method

Country Status (1)

Country Link
JP (1) JP7355285B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155419A (en) 2018-03-13 2019-09-19 日本製鉄株式会社 Continuous casting method for slab
WO2020203715A1 (en) 2019-04-02 2020-10-08 Jfeスチール株式会社 Method for continuous steel casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155419A (en) 2018-03-13 2019-09-19 日本製鉄株式会社 Continuous casting method for slab
WO2020203715A1 (en) 2019-04-02 2020-10-08 Jfeスチール株式会社 Method for continuous steel casting

Also Published As

Publication number Publication date
JPWO2023190018A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP7004086B2 (en) Continuous steel casting method
JP6115735B2 (en) Steel continuous casting method
JP2000042700A (en) Method and basin for water-cooling steel slab
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2002086252A (en) Continous casting method
JPH09285856A (en) Continuous casting method
JP7355285B1 (en) Continuous steel casting method
JP4924104B2 (en) Method for producing high Ni content steel slab
WO2023190018A1 (en) Method for continuous casting of steel
JP4337565B2 (en) Steel slab continuous casting method
JPH038864B2 (en)
JP3401785B2 (en) Cooling method of slab in continuous casting
JP4217847B2 (en) Continuous casting method
JPH08238550A (en) Method for continuously casting steel
JP2018171650A (en) Method for producing steel sheet
JP6788232B2 (en) Continuous steel casting method
JPH05200514A (en) Continuous casting method
RU2779384C1 (en) Method for continuous casting of steel
JPH0218936B2 (en)
JPH0436776B2 (en)
WO2023228796A1 (en) Continuous casting method and continuous casting machine for steel
JP2006181583A (en) Method for producing continuously cast slab
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7355285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150