JP3401785B2 - Cooling method of slab in continuous casting - Google Patents

Cooling method of slab in continuous casting

Info

Publication number
JP3401785B2
JP3401785B2 JP24126099A JP24126099A JP3401785B2 JP 3401785 B2 JP3401785 B2 JP 3401785B2 JP 24126099 A JP24126099 A JP 24126099A JP 24126099 A JP24126099 A JP 24126099A JP 3401785 B2 JP3401785 B2 JP 3401785B2
Authority
JP
Japan
Prior art keywords
slab
cooling
center
water
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24126099A
Other languages
Japanese (ja)
Other versions
JP2001062550A (en
Inventor
敦嗣 平田
章裕 山中
繁 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24126099A priority Critical patent/JP3401785B2/en
Publication of JP2001062550A publication Critical patent/JP2001062550A/en
Application granted granted Critical
Publication of JP3401785B2 publication Critical patent/JP3401785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素鋼、低合金
鋼、高低合金鋼、ステンレス鋼など種々の鋼のブルーム
またはビレット(以下鋳片という)の連続鋳造において、
鋳片の中心部に発生するセンターポロシティもしくは中
心偏析を低減することが可能な鋳片の冷却方法に関す
る。
TECHNICAL FIELD The present invention relates to continuous casting of blooms or billets (hereinafter referred to as cast pieces) of various steels such as carbon steel, low alloy steel, high and low alloy steel, and stainless steel,
The present invention relates to a method for cooling a slab capable of reducing center porosity or center segregation generated at the center of the slab.

【0002】[0002]

【従来の技術】継目無鋼管は、マンネスマン法、ユジー
ンセジュルネ法により圧延または鍛造工程をへて製造さ
れるが、連続鋳造鋳片にセンターポロシティもしくは中
心偏析が存在すると、鋳片の内質部が管の内表面となる
ため、その程度が大きいと製造された管内表面に疵が発
生し、品質上の欠陥となりやすい。
2. Description of the Related Art A seamless steel pipe is manufactured by a Mannesmann method or a Eugene Sejournet method by a rolling or forging process. However, when center porosity or center segregation is present in a continuously cast slab, the internal part of the slab is present. Is the inner surface of the pipe, and if the degree is large, the manufactured inner surface of the pipe is flawed, which is likely to be a quality defect.

【0003】連続鋳造鋳片のセンターポロシティ、中心偏析
の軽減方法としては、鋳片冷却の際の熱収縮を利用する
二次冷却方法が、既にいくつか提案されている。例え
ば、残溶湯プールの鋳込み方向最先端位置より手前2〜1
5mの位置からプール先端位置まで鋳込み方向に沿って、
鋳片の液芯核の凝固の進行に伴い、鋳片表面をその凝固
収縮による体積収縮量相当量以上を逐次強制冷却して鋳
片凝固殻を収縮せしめ、鋳片断面を減面して鋳造し、中
心偏析を低減する方法(特開昭62-61764号公報)が提案さ
れている。
[0003] As a method of reducing center porosity and center segregation of a continuously cast slab, some secondary cooling methods that utilize heat shrinkage during slab cooling have already been proposed. For example, 2 to 1 in front of the most distal position in the casting direction of the residual molten metal pool
Along the casting direction from the 5m position to the pool tip position,
As the liquid core nucleus of the slab progresses to solidify, the slab surface is forcibly cooled by an amount equivalent to or more than the volume shrinkage due to the solidification shrinkage to shrink the solidified shell of the slab, and the cross section of the slab is reduced for casting. However, a method for reducing center segregation (Japanese Patent Laid-Open No. 62-61764) has been proposed.

【0004】また、残溶湯プールの鋳込み方向最先端位置よ
り手前2〜15mの位置からプール先端位置まで鋳込み方向
に沿う鋳片表面温度を、鋳片の液芯核の凝固の進行に合
わせて、鋼のA3変態温度もしくはAC3変態の開始温度TA
以上で、次式に示す有効鋳片表面温度TV以下の温度に逐
次強制冷却して鋳片凝固殻を収縮せしめ、鋳片断面を減
面して鋳造し、中心偏析を低減する方法(特公平3-46217
号公報)が提案されている。 TV=Ta+(TN−Ta)×0.3 ただし、TN:ピンチロールを出た後の自然放冷による鋳
片表面温度、Ta:凝固収縮量を補償するに必要な凝固殻
平均冷却を得る鋳片表面温度
[0004] Further, the slab surface temperature along the casting direction from a position 2 to 15 m before the most distal position in the casting direction of the residual molten metal pool to the tip of the pool is adjusted according to the progress of solidification of the liquid core of the slab. A 3 transformation temperature of steel or A C 3 transformation start temperature T A
As described above, the method for reducing the center segregation by forcibly cooling to a temperature below the effective cast surface temperature T V shown in the following formula to shrink the solidified shell of the cast, reduce the cross section of the cast, and cast to reduce the center segregation Fairness 3-46217
Issue). T V = Ta + (T N −Ta) × 0.3 where T N is the surface temperature of the slab by natural cooling after leaving the pinch roll, and Ta is the average cooling of the solidified shell required to compensate for the amount of solidification shrinkage. Slab surface temperature

【0005】残溶湯プールの鋳込み方向最先端位置より手前
2〜15mの位置からプール先端位置まで鋳込み方向に沿っ
て鋳片の残溶鋼の凝固進行に伴う凝固収縮による体積収
縮量相当量以上を、鋳片表面の逐次冷却による凝固殻の
収縮荷より補う連続鋳造方法において、前記逐次冷却を
行う位置より手前に鋳片凝固加熱装置を設置し、鋳片凝
固殻の平均温度を高くしその後に逐次冷却を行って鋳片
断面を減面して鋳造し、中心偏析を低減する方法(特開
昭63-30161号公報)が提案されている。
[0005] The casting position of the residual molten metal pool is in front of the most distal position
From the position of 2 to 15 m to the pool tip position, the volume contraction amount equivalent to or more than the volumetric shrinkage due to solidification shrinkage accompanying the solidification progress of the residual molten steel of the slab along the casting direction is supplemented by the shrinkage load of the solidified shell due to successive cooling of the slab surface In the continuous casting method, a slab solidification heating device is installed in front of the position where the sequential cooling is performed, and the average temperature of the solidified slab of the slab is increased, and then the slab is cast by reducing the cross section of the slab by sequentially cooling. A method for reducing center segregation (Japanese Patent Laid-Open No. 63-30161) has been proposed.

【0006】残溶湯プールの鋳込み方向最先端位置より手前
2〜15mの位置からプール先端位置までの鋳片表面を、鋳
込み方向に沿って、鋳片の液芯核の凝固の進行に伴い、
その凝固収縮による体積収縮量相当量以上の冷却量で逐
次強制冷却して鋳片凝固殻を収縮せしめ、鋳片断面を減
面して鋳造する際に、鋳込み方向の残溶湯プール最先端
を検知し、該検知に基づいて鋳片の凝固収縮量および表
面収縮を補償すべき表面温度を計算し、該温度となるよ
うに水冷帯長さ、冷却水量および冷却パターンを調節し
て鋳造し、中心偏析を低減する方法(特開昭63-165053号
公報)が提案されている。
[0006] In front of the most distal position of the residual molten metal pool in the casting direction
The slab surface from the position of 2 to 15 m to the pool tip position, along the casting direction, as the solidification of the liquid core of the slab progresses,
Detects the leading edge of the residual molten metal pool in the casting direction when the casting solidified shell is shrunk by successive forced cooling with a cooling amount equal to or more than the volumetric shrinkage amount due to the solidification shrinkage to reduce the cross section of the slab and casting. Then, based on the detection, the solidification shrinkage amount of the slab and the surface temperature at which the surface shrinkage should be compensated are calculated, casting is performed by adjusting the water cooling zone length, the cooling water amount and the cooling pattern so as to reach the temperature. A method of reducing segregation (Japanese Patent Laid-Open No. 63-165053) has been proposed.

【0007】連続鋳造用鋳型より引き抜いた円形状鋳片に対
し、該鋳片の凝固完了点に至るまでの少なくとも5mの領
域にわたって強制冷却を施し、該鋳片の表面温度を連続
的に低下させ復熱を防止しつつ鋳造し、好適な円もしく
はそれに近い断面形状を得る方法(特開平1-118351号公
報)が提案されている。
[0007] For a circular slab drawn from a continuous casting mold, forced cooling is performed over a region of at least 5 m until the solidification completion point of the slab, and the surface temperature of the slab is continuously lowered. There has been proposed a method (Japanese Patent Laid-Open No. 1-118351) in which casting is performed while preventing reheat and a suitable circle or a cross-sectional shape close thereto is obtained.

【0008】連続鋳造鋳片の核が柔らかい凝固相の状態にあ
るときに、この柔らかい核と該核の周りの既に凝固した
殻との間の熱収支の差によって上記の核が上記の殻によ
り常に圧縮される効果が生ずるように鋳片を強制冷却、
例えば、1時間当たりかつ鋳片1m3当たりの平均流量が8
〜15m3で実施する方法(特開平2-15856号公報)が提案さ
れている。
[0008] When the core of the continuously cast slab is in the state of the soft solidification phase, the difference in heat balance between the soft core and the already solidified shell around the core causes the core to be separated by the shell. Forced cooling of the slab so that it will always be compressed
For example, the average flow rate per hour and 1 m 3 of slab is 8
A method (Japanese Patent Application Laid-Open No. 2-15856) for carrying out the treatment at -15 m 3 has been proposed.

【0009】鋳片中心部の固相率が0.1ないし0.3になった時
点で水量密度25〜100[リットル/(min.・m2)]の水冷却に
よる鋳片の表面冷却を開始し、鋳片中心部の固相率が0.
8以上になるまで上記の水量密度による水冷却を継続
し、センターポロシティを低減する方法(特許第2856068
号)が提案されている。
[0009] When the solid fraction at the center of the slab becomes 0.1 to 0.3, the surface cooling of the slab is started by water cooling with a water amount density of 25 to 100 [liter / (min. · M 2 )]. The solid fraction at the center of one side is 0.
A method to reduce the center porosity by continuing the water cooling with the above water density until it becomes 8 or more (Patent No. 2856068).
No.) is proposed.

【0010】鋳造中の鋳片中心部の固相率が0.1ないし0.3に
なったときに、該鋳片の短辺面側に対する水冷却を開始
し、鋳片中心部の固相率が0.8以上になるまで水冷却を
継続し、中心偏析を低減する方法(特開平6-335760号公
報)が提案されている。
[0010] When the solid fraction of the slab center during casting becomes 0.1 to 0.3, water cooling is started on the short side surface side of the slab, and the solid fraction of the slab center is 0.8 or more. A method has been proposed in which water cooling is continued until the temperature reaches 0 to reduce center segregation (JP-A-6-335760).

【0011】径または厚みが250mm以上の鋳片を鋳造する際
に、鋳型の直下に設けた前段スプレー帯と下流側の凝固
が完了する手前に設けた凝固末期用の後段スプレー帯の
2つの区域で行う二次冷却において、鋳片中心部の固相
率が0.5以上0.65以下の領域から0.8以上となるまでの間
を水量密度25〜100[リットル/(min.・m2)]の水冷却を継
続し、中心偏析を低減する方法(特開平8-19843号公報)
が提案されている。
[0011] When casting a slab having a diameter or thickness of 250 mm or more, the former stage spray zone provided immediately below the mold and the latter stage spray zone for the final stage of solidification provided before completion of solidification on the downstream side
In the secondary cooling performed in two zones, the water amount density is 25 to 100 [liter / (min. ・ M 2 )] from the region where the solid fraction in the center of the slab is 0.5 to 0.65 to 0.8 or more. To continue water cooling and reduce center segregation (JP-A-8-19843)
Is proposed.

【0012】径または厚みが261mm以下の鋳片中心部の固相
率が0.2〜0.8の時点で、比水量0.1〜0.41kg・steelの水
冷却による鋳片の表面冷却を開始し、完全凝固するまで
前記比水量による水冷却を継続し、センターポロシティ
を低減する方法(特開平8-332556号公報)が提案されてい
る。
[0012] When the solid fraction of the slab center portion having a diameter or thickness of 261 mm or less is 0.2 to 0.8, surface cooling of the slab is started by water cooling with a specific water content of 0.1 to 0.41 kg · steel and complete solidification Up to now, there has been proposed a method (Japanese Patent Laid-Open No. 8-332556) for continuing the water cooling with the specific water amount to reduce the center porosity.

【0013】[0013]

【発明が解決しようとする課題】上記の鋳片表面を冷却
して鋳片に収縮を与え、センターポロシティおよび中心
偏析を低減する既に開示されている方法は、更に検討す
べき下記の問題点がある。 (1) 上記の既に開示されている方法では、センターポ
ロシティおよび中心偏析の低減効果を発揮する適正条件
の幅が非常に狭く、鋳造速度によってこの適正条件を表
すと±100mm/min.程度であり、実生産に用いようとする
とピンチロール回転速度測定誤差の外乱によって、適正
条件を容易に外れてしまう。したがって、適正範囲を増
大させる必要がある。 (2) 上記(1)で述べたように適正範囲が非常に狭いた
め、冷却開始および終了位置を的確に制御する必要があ
る。 (3) 上記の既に開示されている方法では、冷却媒体の
散布状態等について開示されていない。しかしながら、
センターポロシティおよび中心偏析が低減する効果を発
揮するためには、冷却範囲内において均一に冷却しなけ
ればなければならない。また、均一な冷却がなされない
場合は、鋼種によっては熱応力によって鋳片の曲がりが
発生し、実生産に適さないということもある。 (4) 上記の既に開示されている方法は、確かに中心偏
析の低減効果はある。しかしながら、鋼種によっては更
に低減しなければ、継目無鋼管製造時に内面疵が発生す
る場合がある。
The previously disclosed method of cooling the surface of the slab and shrinking the slab to reduce center porosity and center segregation has the following problems to be further studied. is there. (1) In the method already disclosed above, the range of appropriate conditions for exhibiting the effect of reducing center porosity and center segregation is extremely narrow, and when this appropriate condition is expressed by the casting speed, it is about ± 100 mm / min. However, when it is used in actual production, the appropriate conditions are easily deviated due to the disturbance of the pinch roll rotation speed measurement error. Therefore, it is necessary to increase the appropriate range. (2) Since the appropriate range is very narrow as described in (1) above, it is necessary to precisely control the cooling start and end positions. (3) The previously disclosed method does not disclose the spraying state of the cooling medium. However,
In order to exert the effect of reducing center porosity and center segregation, cooling must be performed uniformly within the cooling range. Further, if the cooling is not performed uniformly, the slab may be bent due to thermal stress depending on the type of steel, which is not suitable for actual production. (4) The above-disclosed method certainly has the effect of reducing center segregation. However, depending on the type of steel, internal flaws may occur during the production of seamless steel pipe unless further reduced.

【0014】本発明の目的は、上記従来技術の問題点を解消
し、炭素鋼、低合金鋼、高低合金鋼、ステンレス鋼など
種々の鋼の連続鋳造において、鋳片の中心部に発生する
センターポロシティもしくは中心偏析を低減することが
可能な鋳片の冷却方法を提供することにある。
[0014] An object of the present invention is to solve the problems of the above-mentioned conventional techniques, and in the continuous casting of various steels such as carbon steel, low-alloy steel, high-low alloy steel, and stainless steel, a center generated in the center of the slab. It is an object of the present invention to provide a method for cooling a slab capable of reducing porosity or center segregation.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく種々試験検討を重ね、下記のような知見
を得た。 (1) センターポロシティおよび中心偏析の低減効果を
発揮する適正範囲を増大するには、凝固末期強制冷却
の水量密度を大きくしてより鋳片表面を冷却する、小
さい水量密度にて凝固末期強制冷却を開始した後、鋳込
み下流側へいくほど水量密度を増大させる、という二つ
の手段が有効である。 (2) 凝固末期強制冷却開始および終了位置を制御する
には、固定された凝固末期強制冷却帯を用い、偏析を考
慮した凝固計算により最終凝固位置を求め、鋳造速度を
調整するのが最も簡便であり、実生産に適する。 (3) 凝固末期強制冷却帯で冷却水の均一散布を実現す
るには、フラットスプレーの場合幅方向を鋳込み方向と
同一とするのが有効である。また、フルコーンノズルを
適用することも有効である。 (4) 更に中心偏析を低減するには、凝固末期強制冷却
の前に鋳片中心部の溶鋼を物理的に撹拌し、予めある程
度偏析を分散させておくのが有効である。
Means for Solving the Problems The inventors of the present invention have conducted various tests and examinations in order to achieve the above object, and have obtained the following findings. (1) In order to increase the appropriate range for exerting the effect of reducing center porosity and center segregation, increase the water content density of the final solidification forced cooling to cool the surface of the slab more, and use the smaller water content density for the final solidification forced cooling. After starting, the two means of increasing the water density toward the downstream side of casting are effective. (2) To control the start and end positions of forced cooling at the end of solidification, it is simplest to use a fixed forced cooling zone at the end of solidification, determine the final solidification position by solidification calculation considering segregation, and adjust the casting speed. And is suitable for actual production. (3) In the case of flat spraying, it is effective to make the width direction the same as the casting direction in order to achieve uniform spraying of cooling water in the forced cooling zone at the end of solidification. It is also effective to apply a full cone nozzle. (4) In order to further reduce the center segregation, it is effective to physically stir the molten steel in the center of the slab and to disperse the segregation to some extent in advance before the final solidification forced cooling.

【0016】本発明の鋳片の冷却方法は、鋼のブルーム
またはビレットの連続鋳造において、残溶湯プールの鋳
込み方向最先端より手前0.1〜2.0m位置もしくは
鋳片中心部の固相率が0.1〜0.8の位置から鋳片中
心部の固相率が0.99以上となるまで、凝固末期強制
冷却帯で鋳片表面水量密度を10〜300リットル
/(min.・m 2 )とし、かつ、水量密度を下流側に
なるほど増加させて水冷却することを特徴とする。
The method for cooling a slab according to the present invention is, in continuous casting of a steel bloom or billet, a solid fraction at a position 0.1 to 2.0 m before the leading end of the residual molten metal pool in the casting direction or at the center of the slab. From the position of 0.1 to 0.8 until the solid fraction in the center of the slab becomes 0.99 or more, and the water amount density on the surface of the slab in the forced cooling zone at the final stage of solidification is 10 to 300 liters.
/(Min.·m 2 ) and the water density to the downstream side
It is characterized by increasing the water temperature and cooling it with water.

【0017】鋼のブルームまたはビレットの連続鋳造に
おいて、残溶湯プールの鋳込み方向最先端より手前0.
1〜2.0m位置もしくは鋳片中心部の固相率が0.1
〜0.8の位置から鋳片中心部の固相率が0.99以上
となるまで、凝固末期強制冷却帯での鋳片表面の水量密
度を10〜300リットル/(min.・m 2 )とし、
かつ、凝固末期強制冷却帯を2以上に分割し、各冷却帯
長さを0.2〜5.8mとし、各冷却帯の水量密度を下
流側になるほど増加させて水冷却することを特徴とす
る。
For continuous casting of steel blooms or billets
In addition, the remaining molten metal pool should be in front of the leading edge of the casting direction.
The solid fraction at the position of 1 to 2.0 m or the center of the slab is 0.1
The solid fraction of the center of the slab is 0.99 or more from the position of ~ 0.8
Until the end of solidification, the amount of water on the surface of the slab in the forced cooling zone at the end of solidification
The degree is 10 to 300 liters / (min. · M 2 ),
Further, the forced cooling zone at the final stage of solidification is divided into two or more, each cooling zone length is set to 0.2 to 5.8 m , and water cooling is performed by increasing the water amount density of each cooling zone toward the downstream side. To do.

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【発明の実施の形態】図1は、本発明に係る連続鋳造に
よる鋳片の製造工程の一例を示す模式図である。タンデ
ィッシュ1から連続鋳造用鋳型2に注入された溶鋼3は、
鋳型2内において冷却され、凝固シェルが外側に形成さ
れる。この鋳型2から引き抜かれた鋳片4は、スプレー冷
却帯5を経てピンチロール帯6に入り、スプレー冷却され
る。その後鋳片4は、電磁撹拌装置7を経て凝固末期強制
冷却帯8において強制冷却される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing an example of a process for producing a cast slab by continuous casting according to the present invention. Molten steel 3 injected into the continuous casting mold 2 from the tundish 1 is
It is cooled in the mold 2 and a solidified shell is formed on the outside. The slab 4 pulled out from the mold 2 enters the pinch roll band 6 through the spray cooling band 5 and is spray cooled. Thereafter, the slab 4 is forcedly cooled in the final solidification forced cooling zone 8 via the electromagnetic stirrer 7.

【0029】凝固末期強制冷却帯における鋳片の強制冷却
は、残溶鋼プールの鋳込み方向最先端より手前0.1〜2.0
mの位置もしくは鋳片中心部の固相率が0.1〜0.8の位置
から開始する必要がある。これは、残溶鋼プールの鋳込
み方向最先端より手前2.0mを超えもしくは鋳片中心部の
固相率が0.1未満では、強制冷却開始が早すぎて実際に
鋳片中心部の収縮代が大きくなる時に表面の収縮代を大
きく保てなくなるために、鋳片中心部の内質改善効果が
発揮できなくなるからである。また、残溶鋼プールの鋳
込み方向再先端より手前0.1m未満の位置もしくは鋳片中
心部の固相率が0.8を超える位置では、最終凝固位置に
近すぎて鋳片中心部の内質改善効果を発揮する時間がな
いためである。
[0029] The forced cooling of the slab in the forced cooling zone at the final stage of solidification is performed by 0.1 to 2.0 before the leading end in the casting direction of the residual molten steel pool.
It is necessary to start from the position m or the position where the solid fraction at the center of the slab is 0.1 to 0.8. This is because the forced cooling start is too early and the shrinkage allowance of the slab center actually increases if the solid fraction of the slab center is less than 2.0m or more than 2.0m in front of the casting direction of the residual molten steel pool. This is because the shrinkage margin of the surface cannot be kept large and the inner quality improvement effect at the center of the slab cannot be exhibited. Further, at a position of less than 0.1 m before the re-tip in the casting direction of the residual molten steel pool or at a position where the solid fraction of the slab center exceeds 0.8, it is too close to the final solidification position to improve the internal quality of the slab center. This is because there is no time to show it.

【0030】凝固末期強制冷却帯における鋳片の強制冷却終
了は、鋳片中心部の固相率が0.99以上となる位置とする
必要がある。これは、鋳片中心部の固相率が0.99未満の
位置で強制冷却を終了すると、完全に凝固しないうちに
強制冷却が終了するため、鋳片表面の復熱により中心部
に引張り応力が働き、逆に鋳片中心部の内質を悪化させ
てしまうからである。
[0030] The forced cooling of the slab in the forced cooling zone at the end of solidification needs to be finished at a position where the solid fraction of the central portion of the slab is 0.99 or more. This is because if the forced cooling is finished at the position where the solid fraction of the slab center is less than 0.99, the forced cooling is finished before it is completely solidified. This is because, on the contrary, the inner quality of the central portion of the slab is deteriorated.

【0031】図2は、1%Cr鋼を直径200mmのビレットに連続鋳
造する際、凝固末期強制冷却帯長さ5m、水量密度100リ
ットル/min.・m2、300リットル/min.・m2、鋳造速度2.1
〜2.8m/min.の条件で連続鋳造した場合のセンターポロ
シティ直径と鋳造速度との関係を調査したものである。
センターポロシティ≦5mmが継目無鋼管製造時に内面疵
にならないために必要である。
[0031] Fig. 2 shows that when 1% Cr steel is continuously cast into a billet having a diameter of 200 mm, the length of the forced cooling zone at the end of solidification is 5 m, the water amount density is 100 liters / min.m 2 , 300 liters / min.m 2 , Casting speed 2.1
The relationship between the center porosity diameter and the casting speed in the case of continuous casting under the condition of 2.8 m / min.
Center porosity ≤ 5 mm is necessary to prevent internal flaws during seamless steel pipe manufacturing.

【0032】凝固末期強制冷却帯における水量密度が100リ
ットル/min.・m2未満の場合には、図2に示すように、セ
ンターポロシティ≦5mmとするには鋳造速度を<±0.1m/
min.に制御しなければならない。これは、ピンチロール
による鋳造速度測定誤差範囲内であり、実生産において
鋳造速度の制御が不可能である。制御可能な鋳造速度範
囲は、≧±0.1m/min.である。水量密度の増加は、鋳造
速度の適正範囲を広げ、≧±0.1m/min.となるため、実
生産において鋳造速度の制御が可能となる。水量密度の
上限を300リットル/min.・m2としたのは、水量密度が30
0リットル/min.・m2を超えると鋳片表面が過冷却とな
り、鋳片の曲がり等の問題が発生するためである。
[0032] When water density in the coagulation end forced cooling zone is less than 100 l / min. · M 2, as shown in FIG. 2, the casting speed and center porosity ≦ 5 mm is <± 0.1 m /
Must be controlled to min. This is within the error range of the casting speed measurement by the pinch roll, and it is impossible to control the casting speed in actual production. The controllable casting speed range is ≧ ± 0.1 m / min. The increase of the water amount density expands the proper range of the casting speed and becomes ≧ ± 0.1 m / min. Therefore, the casting speed can be controlled in the actual production. The upper limit of the water density 300 l / min. · M 2 and was of the water flow rate is 30
This is because if it exceeds 0 liter / min.m 2 , the surface of the slab will be overcooled and problems such as bending of the slab will occur.

【0033】図3は、1%Cr鋼を直径200mmのビレットに連続鋳
造する際、凝固末期強制冷却帯長さ5m、鋳造速度2.43m/
min.の鋳造条件で、水量密度を30リットル/min.・m2、1
00リットル/min.・m2、170リットル/min.・m2と変化さ
せた場合のメニスカスからの距離と鋳片中心部の冷却速
度と表皮の冷却速度との関係を調査したものである。水
量密度の増加によって、鋳造速度の適正範囲が広がるこ
とがわかる。
[0033] FIG. 3 is a diagram illustrating a case where 1% Cr steel is continuously cast into a billet having a diameter of 200 mm, the length of the forced cooling zone at the end of solidification is 5 m, and the casting speed is 2.43 m /
Under the casting conditions of min., the water density is 30 liters / min. ・ m 2 , 1
The relationship between the distance from the meniscus, the cooling rate at the center of the slab, and the cooling rate of the skin when changing from 00 liter / min.m 2 to 170 liter / min.m 2 was investigated. It can be seen that the appropriate range of casting speed is expanded by increasing the water density.

【0034】鋳片の内質改善効果の発現には、表皮の冷却速
度、すなわち収縮密度が鋳片中心部の冷却速度、すなわ
ち収縮密度を超えることが必要条件である。図3に示す
ように、水量密度≧100リットル/min.・m2とすることに
よつて、表皮の冷却速度>鋳片中心部の冷却速度が実現
されており、鋳片の内質改善効果の発現が裏付けられて
いる。
[0034] In order to develop the effect of improving the internal quality of the slab, it is a necessary condition that the cooling rate of the skin, that is, the shrinkage density, exceeds the cooling rate of the slab center, that is, the shrinkage density. As shown in FIG. 3, Yotsute to a water density ≧ 100 liters / min. · M 2, the cooling rate of the cooling rate> billet center of the skin are achieved, the slab inner quality improving effect The expression is confirmed.

【0035】図4は、1%Cr鋼を直径200mmのビレットに連続鋳
造する際、凝固末期強制冷却帯長さ5m、水量密度100リ
ットル/min.・m2、170リットル/min.・m2、凝固末期強
制冷却帯長さ3.5mの水量密度を、前段0.8mを65リットル
/min.・m2、後段2.7mを170リットル/min.・m2、鋳造速
度1.9〜2.9m/min.の条件で連続鋳造した場合のセンター
ポロシティ直径と鋳造速度との関係を調査したものであ
る。センターポロシティ≦5mmが継目無鋼管製造時に内
面疵にならないための必要レベルである。
[0035] FIG. 4 shows that when 1% Cr steel is continuously cast into a billet having a diameter of 200 mm, the length of the forced cooling zone at the end of solidification is 5 m, the water density is 100 liters / min.m 2 , 170 liters / min.m 2 In the final stage of solidification, the water volume density of the forced cooling zone length 3.5m, the first 0.8m 65 liters
/ min. ・ m 2 , the latter 2.7m was 170 liters / min. ・ m 2 , and the relationship between the center porosity diameter and the casting speed when continuously cast at the casting speed of 1.9 to 2.9 m / min. Is. Center porosity ≤ 5 mm is a necessary level to prevent internal flaws during seamless steel pipe manufacturing.

【0036】図4に示すように、凝固末期強制冷却帯の水量
密度は、鋳込み方向の後方になるほど増加させると、や
はり鋳造速度の適正範囲を増大させることが可能とな
る。これは、冷却速度が低下してきたところで、更に強
制冷却を施すことによって、鋳片表皮において大きい冷
却速度を維持することが可能となるためである。
[0036] As shown in Fig. 4, when the water amount density of the final solidification forced cooling zone is increased toward the rear in the casting direction, it is also possible to increase the appropriate range of the casting speed. This is because it is possible to maintain a high cooling rate in the surface of the cast slab by further performing forced cooling when the cooling rate has decreased.

【0037】このことは、1%Cr鋼を直径200mmのビレットに
連続鋳造する際、凝固末期冷却帯長さ3.5mの前段0.8mを
65リットル/min.・m2、後段2.7mを170リットル/min.・m
2、鋳造速度2.10m/min.、2.75m/min.の条件で連続鋳造
した場合のメニスカスからの距離と鋳片中心部の冷却速
度と表皮の冷却速度との関係を調査した図5からも明ら
かである。
[0037] This means that 1% Cr steel is used as a billet with a diameter of 200 mm.
When continuously casting, the front stage 0.8m with 3.5m length of cooling zone at the end of solidification
65 l / min.m2, 2.7 liters in the latter stage is 170 liters / min.m
2, Casting speed 2.10m / min., 2.75m / min. Continuous casting
Distance from the meniscus and cooling speed of the center of the slab
The relationship between the temperature and the cooling rate of the epidermis was also investigated.
It is.

【0038】分割した凝固末期強制冷却帯長さの最低値を0.
2m、水量密度の最低値を10リットル/min.・m2としたの
は、これ以上であれば、表皮の冷却速度>鋳片中心部の
冷却速度が実現可能となるからである。
[0038] The minimum value of the divided final solidification forced cooling zone length is 0.
The reason why the minimum value of the water amount density is 2 liters and 10 liters / min.m 2 is that if it is more than this, the cooling rate of the skin> the cooling rate of the central portion of the slab can be realized.

【0039】凝固末期強制冷却帯の直前から鋳型下端の間の
いずれかの位置には、電磁撹拌を鋳込み方向もしくは鋳
込み方向と直角方向に実施することによって、予めある
程度中心偏析を分散させると、図6に示すように、継目
無鋼管の内面疵発生率を低減することができる。
[0039] At any position between immediately before the forced cooling zone at the end of solidification and between the lower end of the mold, electromagnetic stirring is performed in the casting direction or in a direction perpendicular to the casting direction to disperse the center segregation to some extent in advance. As shown in 6, it is possible to reduce the occurrence rate of inner surface flaws in the seamless steel pipe.

【0040】径または厚みが320mm以下の鋳片の場合は、伝
熱抵抗が小さいため鋳片中心部の内質改善効果がより大
きい。
[0040] In the case of a slab having a diameter or a thickness of 320 mm or less, the heat transfer resistance is small, so that the effect of improving the inner quality of the slab center portion is greater.

【0041】凝固末期強制冷却帯の長さは、6mを超えると鋳
片の過冷却が発生し、鋼種によっては曲がりが発生して
実生産には適さない。したがって、凝固末期強制冷却帯
の総長さは6m以下であることが望ましい。
[0041] If the length of the forced cooling zone at the end of solidification exceeds 6 m, supercooling of the slab occurs, and bending occurs depending on the steel type, which is not suitable for actual production. Therefore, it is desirable that the total length of the forced cooling zone in the final stage of solidification is 6 m or less.

【0042】凝固末期強制冷却帯での冷却は、エアーミスト
スプレーにより行うと、水冷却に比較して大きい冷却能
が得られるため、より望ましい。
[0042] Cooling in the forced cooling zone at the final stage of solidification is more preferable if it is carried out by an air mist sprayer because a larger cooling capacity can be obtained as compared with water cooling.

【0043】凝固末期強制冷却帯のスプレーノズルとして
は、フラットタイプを適用する場合、図7に示すよう
に、ノズル71のスプレー幅方向を鋳片72の矢印で示す鋳
込み方向とすることによって、より均一な冷却が可能と
なる。これによって、内質改善効果の安定化を図ること
ができ、さらに鋳片の曲がりの発生も抑制することがで
きる。フルコーンタイプを適用した場合は、冷却のより
均一化が図られるため、さらに望ましい内質改善効果が
得られる。
When the flat type is used as the spray nozzle for the forced cooling zone in the final stage of solidification, as shown in FIG. 7, the spray width direction of the nozzle 71 is set to the casting direction indicated by the arrow of the cast piece 72, so that Uniform cooling is possible. As a result, it is possible to stabilize the effect of improving the internal quality, and it is also possible to suppress the occurrence of bending of the slab. When the full cone type is applied, more uniform cooling is achieved, so a more desirable internal quality improvement effect is obtained.

【0044】凝固末期強制冷却帯入側の鋳片表面温度は、85
0℃以上であることが必要である。850℃未満では、既に
凝固が進行しており、内質改善効果の発現は見られな
い。凝固末期強制冷却帯出側の鋳片表面温度は、700℃
以下にしなければならない。これは、この程度の冷却を
しなければ、鋳片表皮の冷却速度が鋳片中心部の冷却速
度を上回ることができないからである。
[0044] The surface temperature of the slab on the inlet side of the forced cooling zone at the end of solidification is 85
It must be 0 ° C or higher. Below 850 ° C, coagulation has already progressed, and no improvement in the internal quality is observed. The surface temperature of the slab on the exit side of the forced cooling zone at the end of solidification is 700 ° C.
Must be: This is because the cooling rate of the surface of the slab cannot exceed the cooling rate of the central portion of the slab without such cooling.

【0045】丸ビレットの残溶鋼プールの鋳込み方向最先端
位置を求めるには 、一般的な下記式(1)の円柱座標熱伝
導微分方程式を解き、偏析を考慮した丸ビレット鋳片の
中心部固相率が0.99となる時間を求めると、鋳造速度か
ら残溶鋼プールの鋳込み方向最先端位置が求まる。した
がって、鋳造速度の調整を行うことによって、図8に示
すように、適正範囲冷却が得られる的中率が100%とな
り、内質改善効果が安定する。
[0045] In order to obtain the casting cutting edge position of the residual molten steel pool of the round billet, the general cylindrical differential equation for heat conduction in the following equation (1) is solved, and the central portion of the round billet slab considering segregation is solved. When the time at which the phase ratio reaches 0.99 is obtained, the most advanced position of the residual molten steel pool in the casting direction can be obtained from the casting speed. Therefore, by adjusting the casting speed, as shown in FIG. 8, the hit rate at which the proper range cooling is obtained becomes 100%, and the effect of improving the internal quality is stabilized.

【0046】[0046]

【数1】 [Equation 1]

【0047】鋳型内電磁撹拌の併用は、等軸晶率が上昇して
中心偏析の分散が可能となるため、さらに内質改善効果
が認められる。
The combined use of electromagnetic stirring in the mold increases the equiaxed crystal ratio and enables dispersion of center segregation, so that an effect of improving the internal quality is further recognized.

【0048】溶鋼の鋳込み終了は、定常部と同一の一定速度
で行うことによって、最終鋳込みの非定常鋳片において
も良好な品質を確保することができる。
[0048] By terminating the casting of the molten steel at the same constant speed as the steady portion, good quality can be ensured even in the unsteady cast piece in the final casting.

【0049】[0049]

【実施例】図1に示す構造に等しい湾曲半径10mの円
弧湾曲型連続鋳造機を用い、凝固末期強制冷却帯をメニ
スから27.5mから34.5mの位置に設置し、
断面円形の直径200mmの連続鋳造用鋳型により丸ビ
レット鋳片を鋳造した。鋳造鋼種は、表1に示す化学成
分の低炭素鋼、鋳造速度は2.0〜2.7m/mi
n.、鋳型直後の二次冷却帯の比水量は0.05〜0.
8リットル/kg・steelとした。鋳造条件を表
2、表3に、鋳造結果を表4に示す。また、得られた丸
ビレット鋳片は、継目無鋼管の製造に用い、継目無鋼管
内面疵の発生率を調査した。その結果を表4に示す。
EXAMPLES Using an arc curved type continuous casting machine of equal curvature radius 10m to the structure shown in FIG. 1, installed coagulation end forced cooling zone from 27.5m from Meni <br/> scan mosquito scan the position of 34.5m Then
A round billet slab was cast by a continuous casting mold having a circular cross section and a diameter of 200 mm. The casting steel type is a low carbon steel having the chemical composition shown in Table 1, and the casting speed is 2.0 to 2.7 m / mi.
n. , The specific water content of the secondary cooling zone immediately after the mold is 0.05 to 0.
It was 8 liters / kg · steel. The casting conditions are shown in Tables 2 and 3, and the casting results are shown in Table 4. Moreover, the obtained round billet slab was used for manufacturing a seamless steel pipe, and the occurrence rate of inner surface flaws in the seamless steel pipe was investigated. The results are shown in Table 4.

【0050】なお、表2、表3中のVcは鋳造速度、中心fsは中
心固相率、Lpは残溶湯プールの鋳込み方向最先端よりの
距離を示す。また、表4中のセンターポロシティ面積分
率(%)は、ビレット横断面マクロサンプルから測定され
る(ポロシティ面積)/(鋳片面積)×100により求めた。ま
た、中心偏析度C/C0は、ビレット横断面マクロサンプル
の1/4部分と中心部分より採取した直径5mmのドリルサン
プルより[C]分析を実施し、(中心部C濃度)/(1/4部C濃
度)により求めた。継目無鋼管内面疵の発生率は、目視
および超音波探傷試験を実施し、(内面疵発生本数)/(製
管本数)×100により求めた。
[0050] In Tables 2 and 3, Vc represents the casting speed, center fs represents the central solid fraction, and Lp represents the distance from the front end in the casting direction of the residual molten metal pool. Further, the center porosity area fraction (%) in Table 4 was determined by (porosity area) / (cast piece area) × 100 measured from the billet cross-section macro sample. The center segregation degree C / C 0 was determined by [C] analysis of 1/4 part of the billet cross-section macro sample and a drill sample with a diameter of 5 mm taken from the center part, (center C concentration) / (1 / 4 part C concentration). The occurrence rate of inner surface flaws in the seamless steel pipe was obtained by performing visual inspection and ultrasonic flaw detection test, and calculating (number of inner surface flaws) / (number of pipes manufactured) × 100.

【0051】[0051]

【表1】 【table 1】

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】表2〜表4に示すように、実施例は、強
制冷却帯の分割を実施しており、前段2mで水量密度5
0リットル/(min.・m2)、後段3mで水量密度
150リットル/(min.・m2)とした。実施例
においては、良好な鋳片品質が得られている。参考例1
は、強制冷却開始位置、強制冷却終了位置、強制冷却帯
長さ、水量密度が充分で、良好な鋳片品質が得られてい
る。参考は、強制冷却帯直前に電磁撹拌装置を設置
し、電磁撹拌を実施したもので、中心偏析度に著しい改
善が認められる。参考は、冷却方法としてエアーミ
ストスプレーを用いたもので、良好な鋳片品質が得られ
ている。
[0055] As shown in Tables 2 to 4, the actual Example 1 is carried out the division of the forced cooling zone, water density 5 at the front stage 2m
0 l / (min. · M 2) , and a water flow rate 150 l later 3m / (min. · M 2 ). Example 1
In No. 3 , good slab quality was obtained. Reference example 1
Is the forced cooling start position, forced cooling end position, forced cooling zone
The length and water density are sufficient and good slab quality is obtained.
It In Reference Example 2 , an electromagnetic stirrer was installed immediately before the forced cooling zone and the electromagnetic stirrer was carried out, and a remarkable improvement in the center segregation degree is recognized. In Reference Example 3 , air mist spray was used as the cooling method, and good slab quality was obtained.

【0056】参考は、スプレーノズルとしてフルコ
ーンタイプを用いたもので、良好な鋳片品質が得られて
いる。参考は、前記(1)式の凝固計算により残溶
鋼プールの鋳込み方向最先端位置を予測し、鋳造速度の
調整を行ったもので、内質改善効果の安定化とともに、
当然ながら良好な鋳片品質が得られている。参考
は、鋳型内電磁撹拌を実施したもので、中心偏析度の改
善が認められる。参考は、鋳込み終了を定常部と同
一の一定速度引き抜きを実施したもので、最終鋳片にお
いても良好な鋳片品質が得られている。
[0056]referenceAn exampleFourIs a spray nozzle
It is a type that uses a slab type to obtain good slab quality.
There is.referenceAn example5Is the residual solution by the solidification calculation of the above formula (1)
Predicting the foremost position in the casting direction of the steel pool,
It has been adjusted, and along with stabilizing the effect of improving the internal quality,
Naturally, good slab quality has been obtained.referenceAn example6
Is the result of electromagnetic stirring in the mold.
Goodness is recognized.referenceAn example7Is the same as the steady part when pouring is completed.
It was drawn at one constant speed, and
Even if it is, good slab quality is obtained.

【0057】これに対し、比較例1は、冷却開始位置が残溶
鋼プールの鋳込み方向最先端位置から0.05mと遅いた
め、既にセンターポロシティおよび中心偏析が生成して
いるため、内質改善効果が認められず、継目無鋼管に内
面疵発生率が高くなっている。比較例2は、冷却終了位
置が早く、鋳片表皮の復熱による膨張のために鋳片中心
部に引張り応力が生じ、センターポロシティおよび中心
偏析ともに悪化している。当然ながら継目無鋼管の内面
疵発生率も非常に高くなっている。
[0057] On the other hand, in Comparative Example 1, the cooling start position was as slow as 0.05 m from the foremost position in the casting direction of the residual molten steel pool, and therefore center porosity and center segregation had already occurred, so the internal quality improvement effect was Not observed, and the rate of occurrence of internal flaws is high in seamless steel pipes. In Comparative Example 2, the cooling end position is early, tensile stress is generated in the center of the slab due to expansion of the slab skin due to reheat, and both center porosity and center segregation are deteriorated. Naturally, the rate of occurrence of internal flaws in seamless steel pipes is also very high.

【0058】比較例3は、強制冷却帯が7mと長いために鋳片
が過冷却されて曲がりが生じ、製品とならなかった。比
較例4は、強制冷却帯の水量密度が90リットル/(min.・m
2)と小さいため、内質改善効果が認められない。比較例
5は、強制冷却帯の水量密度が400リットル/(min.・m2)
と大きすぎるため、鋳片が過冷却されて曲がりが生じ、
製品とならなかった。
[0058] Comparative Example 3 is a slab because the forced cooling zone is as long as 7 m.
Was overcooled and bent, and it did not become a product. ratio
In Comparative Example 4, the water volume density in the forced cooling zone is 90 liters / (min.m
2), The effect of improving the internal quality is not recognized. Comparative example
5 has a water volume density of 400 liters / (min.2)
Since it is too large, the slab is overcooled and bends,
It did not become a product.

【0059】[0059]

【発明の効果】本発明の連続鋳造における鋳片の冷却方
法は、炭素鋼、低合金鋼、高低合金鋼、ステンレス鋼な
ど種々の鋼片の連続鋳造において、鋼片の中心部に発生
するセンターポロシティまたは中心偏析を低減すること
ができ、鋼片を素材とする継目無鋼管の内面疵の発生を
抑制することができる。
The method of cooling a slab in continuous casting according to the present invention is a center of the slab in the continuous casting of various steel slabs such as carbon steel, low alloy steel, high low alloy steel, and stainless steel. Porosity or center segregation can be reduced, and generation of inner surface flaws in a seamless steel pipe made of a steel slab can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた連続鋳造設備の概要を示す模式
図である。
FIG. 1 is a schematic diagram showing an outline of continuous casting equipment used in Examples.

【図2】凝固末期強制冷却帯での水量密度と鋳造速度と
センターポロシティ直径との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the water content density, the casting speed, and the center porosity diameter in the final solidification forced cooling zone.

【図3】メニスカスからの距離と鋼片中心および表皮の
冷却速度と水量密度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the distance from the meniscus, the cooling rate of the steel slab center and the skin, and the water amount density.

【図4】水量密度と鋳造速度とセンターポロシティ直径
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship among water amount density, casting speed, and center porosity diameter.

【図5】メニスカスからの距離と鋼片中心および表皮の
冷却速度と水量密度との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the distance from the meniscus, the cooling rate of the steel slab center and the skin, and the water amount density.

【図6】凝固末期強制冷却帯直前での電磁撹拌の有無と
継目無鋼管の内面疵発生率との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the presence or absence of electromagnetic stirring immediately before the forced cooling zone in the final stage of solidification and the occurrence rate of inner surface flaws in the seamless steel pipe.

【図7】フラットスプレーの幅方向を鋳込み方向と同一
とした場合の模式図で、(a)図は側面図、(b)図は平面図
である。
7A and 7B are schematic views in the case where the width direction of the flat spray is the same as the casting direction, FIG. 7A is a side view, and FIG. 7B is a plan view.

【図8】残溶湯プールの鋳込み方向最先端位置推定によ
る鋳造速度制御実施の有無と適正範囲的中率との関係を
示すグラフである。
FIG. 8 is a graph showing the relationship between the presence or absence of execution of casting speed control by estimating the most distal position of the remaining molten metal pool in the casting direction and the appropriate ratio accuracy.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 鋳型 3 溶鋼 4、72 鋳片 5 スプレー冷却帯 6 ピンチロール帯 7 電磁撹拌装置 8 凝固末期強制冷却帯 71 ノズル 1 tundish 2 molds 3 Molten steel 4,72 slab 5 Spray cooling zone 6 pinch roll belt 7 Electromagnetic stirrer 8 Final solidification forced cooling zone 71 nozzles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−332556(JP,A) 特開 平11−216551(JP,A) 特開 平11−192539(JP,A) 特開 昭59−159257(JP,A) 特開 昭60−245718(JP,A) 特開 平9−314289(JP,A) 特開 平8−19843(JP,A) 特開 昭63−165053(JP,A) 特開 平7−1096(JP,A) 特開 平8−150451(JP,A) 特開 平6−335760(JP,A) 特開 平10−128510(JP,A) 特開 平2−15856(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/124 B22D 11/22 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-8-332556 (JP, A) JP-A-11-216551 (JP, A) JP-A-11-192539 (JP, A) JP-A-59- 159257 (JP, A) JP 60-245718 (JP, A) JP 9-314289 (JP, A) JP 8-19843 (JP, A) JP 63-165053 (JP, A) JP-A-7-1096 (JP, A) JP-A-8-150451 (JP, A) JP-A-6-335760 (JP, A) JP-A-10-128510 (JP, A) JP-A-2-15856 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 11/124 B22D 11/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼のブルームまたはビレット連続鋳造に
おいて、残溶湯プールの鋳込み方向最先端より手前0.
1〜2.0mの位置から鋳片中心部の固相率が0.99
以上となるまで、凝固末期強制冷却帯での鋳片表面の水
量密度を10〜300リットル/(min.・m 2 )と
し、かつ、水量密度を下流側になるほど増加させて水冷
却することを特徴とする連続鋳造における鋳片の冷却方
法。
1. Continuous bloom or billet casting of steel
In addition, the remaining molten metal pool should be in front of the leading edge of the casting direction.
From 1 to 2.0 m, the solid fraction of the slab center is 0.99.
Until the above, water on the surface of the slab in the forced cooling zone at the end of solidification
Volume density of 10 to 300 liters / (min. · M 2 )
And, and increases as comprising a water amount density on the downstream side of water-cooled
Slab method of cooling in continuous casting characterized by the retirement.
【請求項2】 鋼のブルームまたはビレット連続鋳造に
おいて、鋳片中心部の固相率が0.1〜0.8の位置か
ら鋳片中心部の固相率が0.99以上となるまで、凝固
末期強制冷却帯での鋳片表面の水量密度を10〜300
リットル/(min.・m 2 )とし、かつ、水量密度を
下流側になるほど増加させて水冷却することを特徴とす
る連続鋳造における鋳片の冷却方法。
2. Continuous blooming or billet casting of steel
The solid fraction at the center of the slab is 0.1 to 0.8
Solidification until the solid fraction of the center of the slab becomes 0.99 or more
The water content density on the surface of the slab in the final forced cooling zone is set to 10 to 300.
Liters / (min. · M 2) and was, and, to characterized in that the water amount density is increased as will downstream water cooling
Cooling method of communicating cast in connection cast piece that.
【請求項3】 鋼のブルームまたはビレット連続鋳造に
おいて、残溶湯プールの鋳込み方向最先端より手前0.
1〜2.0mの位置から鋳片中心部の固相率が0.99
以上となるまで、凝固末期強制冷却帯で鋳片表面の水量
密度を10〜300リットル/(min.・m 2 )と
し、かつ、凝固末期強制冷却帯を2以上に分割して各冷
却帯長さを0.2〜5.8mとし、各冷却帯の水量密度
を下流側になるほど増加させて水冷却することを特徴と
る連続鋳造における鋳片の冷却方法。
3. For continuous casting of steel blooms or billets.
In addition, the remaining molten metal pool should be in front of the leading edge of the casting direction.
From 1 to 2.0 m, the solid fraction of the slab center is 0.99.
Until the above, the amount of water on the surface of the slab in the forced cooling zone at the end of solidification
Density of 10 to 300 liters / (min. · M 2 )
In addition, the end solidification forced cooling zone is divided into two or more to make each cooling zone length 0.2 to 5.8 m, and water cooling is performed by increasing the water amount density of each cooling zone toward the downstream side. method of cooling the slab in continuous casting it <br/> characterized.
【請求項4】 鋼のブルームまたはビレット連続鋳造に
おいて、鋳片中心部の固相率が0.1〜0.8の位置か
ら鋳片中心部の固相率が0.99以上となるまで、凝固
末期強制冷却帯で鋳片表面の水量密度を10〜300リ
ットル/(min.・m 2 )とし、かつ、凝固末期強制
冷却帯を2以上に分割して各冷却帯長さを0.2〜5.
8mとし、各冷却帯の水量密度を下流側になるほど増加
させて水冷却することを特徴とする連続鋳造における鋳
片の冷却方法。
4. Continuous casting of bloom or billet of steel
The solid fraction at the center of the slab is 0.1 to 0.8
Solidification until the solid fraction of the center of the slab becomes 0.99 or more
In the final forced cooling zone, the water content density on the surface of the slab is adjusted to 10 to 300 liters.
Tull / (min. · M 2 ), and the final solidification forced cooling zone is divided into two or more, and the length of each cooling zone is 0.2 to 5.
And 8m, slab method of cooling in continuous casting you characterized in that the water density of the cooling zone is increased as will downstream water cooling.
JP24126099A 1999-08-27 1999-08-27 Cooling method of slab in continuous casting Expired - Fee Related JP3401785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24126099A JP3401785B2 (en) 1999-08-27 1999-08-27 Cooling method of slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24126099A JP3401785B2 (en) 1999-08-27 1999-08-27 Cooling method of slab in continuous casting

Publications (2)

Publication Number Publication Date
JP2001062550A JP2001062550A (en) 2001-03-13
JP3401785B2 true JP3401785B2 (en) 2003-04-28

Family

ID=17071612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24126099A Expired - Fee Related JP3401785B2 (en) 1999-08-27 1999-08-27 Cooling method of slab in continuous casting

Country Status (1)

Country Link
JP (1) JP3401785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001480A1 (en) 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet
JP2011088184A (en) * 2009-10-22 2011-05-06 Sumitomo Metal Ind Ltd Continuous casting method for alloy steel
CN105642853A (en) * 2016-01-28 2016-06-08 北京科技大学 Cooling treatment method for continuous casting billet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008733B1 (en) 2006-03-28 2013-11-06 Nippon Steel & Sumitomo Metal Corporation Process for producing seamless pipe
DE102008032970A1 (en) 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft A method of cooling a strand emerging from a continuous casting mold
JP5962206B2 (en) * 2012-05-23 2016-08-03 Jfeスチール株式会社 Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP6634908B2 (en) * 2016-03-18 2020-01-22 日本製鉄株式会社 Continuous casting method
US11759851B2 (en) 2019-04-02 2023-09-19 Jfe Steel Corporation Method for continuously casting steel
CN114096362A (en) * 2019-07-11 2022-02-25 杰富意钢铁株式会社 Secondary cooling method and apparatus for continuously cast slab

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001480A1 (en) 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet
US7909086B2 (en) 2007-06-28 2011-03-22 Sumitomo Metal Industries, Ltd. Method for continuously casting billet with small cross section
JP2011088184A (en) * 2009-10-22 2011-05-06 Sumitomo Metal Ind Ltd Continuous casting method for alloy steel
CN105642853A (en) * 2016-01-28 2016-06-08 北京科技大学 Cooling treatment method for continuous casting billet

Also Published As

Publication number Publication date
JP2001062550A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP5145791B2 (en) Continuous casting method for small section billet
JP6115735B2 (en) Steel continuous casting method
US11759851B2 (en) Method for continuously casting steel
JP3401785B2 (en) Cooling method of slab in continuous casting
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP3511973B2 (en) Continuous casting method
JPH08238550A (en) Method for continuously casting steel
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JP3620494B2 (en) Method for continuous casting of steel blooms and billets
JP3405490B2 (en) Method for improving slab quality in continuous casting
JP2004330252A (en) Continuous casting method for round billet, and round billet
JP2982622B2 (en) Cooling method of slab in continuous casting
JP3271574B2 (en) Continuous casting method of billet slab
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JP3395674B2 (en) Continuous casting method
JP3356100B2 (en) Continuous casting method
JPS62263855A (en) Method for continuous casting having little center segregation
JPH10156495A (en) Method for continuously casting round cross sectional cast billet
JP3275828B2 (en) Continuous casting method
JP4023366B2 (en) Billet slab continuous casting method
JP3147803B2 (en) Continuous casting method
JPH0760424A (en) Continuous casting method
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3401785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees