JP3620494B2 - Method for continuous casting of steel blooms and billets - Google Patents

Method for continuous casting of steel blooms and billets Download PDF

Info

Publication number
JP3620494B2
JP3620494B2 JP2001316488A JP2001316488A JP3620494B2 JP 3620494 B2 JP3620494 B2 JP 3620494B2 JP 2001316488 A JP2001316488 A JP 2001316488A JP 2001316488 A JP2001316488 A JP 2001316488A JP 3620494 B2 JP3620494 B2 JP 3620494B2
Authority
JP
Japan
Prior art keywords
slab
steel
secondary cooling
center
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001316488A
Other languages
Japanese (ja)
Other versions
JP2003117643A (en
Inventor
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001316488A priority Critical patent/JP3620494B2/en
Publication of JP2003117643A publication Critical patent/JP2003117643A/en
Application granted granted Critical
Publication of JP3620494B2 publication Critical patent/JP3620494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼のブルームおよびビレットの連続鋳造方法に関する。
【0002】
【従来の技術】
連続鋳造された鋳片から、圧延または鍛造工程を経てユジーンセジュルネ法、マンネスマン法などによりシームレス鋼管を製造する工程において、鋳片にセンターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析といった内部欠陥が存在し、その程度が大きい場合には、その鋳片から製造したシームレス鋼管に内面疵が発生し、製品品質上の欠陥となりやすい。
【0003】
鋳片のこれら内部欠陥の発生の防止を目的として、鋳片冷却の際の熱収縮を利用する二次冷却法が知られている。たとえば、特開平7−1096号公報には、鋳片の中心部の固相率が0.1ないし0.3になった時点で水量密度25〜100リットル/(min・m )の水冷却による鋳片の表面冷却を開始し、鋳片の中心部の固相率が0.8以上になるまでこの水量密度による水冷却を継続する鋳片の冷却方法が提案されている。
しかし、鋳片の冷却過程のAr 変態に際し、低炭素鋼や含Cr低合金鋼のようなフェライト相の生成が多い鋼では、上記の公報に開示されたように凝固末期における鋳片の二次冷却を強化すると、かえって、センターキャビティや成分偏析などの内部欠陥の発生が助長される場合がある。
【0004】
【発明が解決しようとする課題】
本発明は、低炭素鋼や含Cr低合金鋼のように、鋳片の冷却過程のAr 変態に際し、フェライト相の生成が多い鋼においても、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析といった内部欠陥の発生を防止することができる鋼のブルームおよびビレットの連続鋳造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の要旨は、下記(1)および(2)に示す連続鋳造方法にある。 (1)鋳片の二次冷却を行う工程が2つの工程からなり、第1の工程では鋳型直下で鋳片の二次冷却を行い、その後の第2の工程では凝固末期近傍において鋳片の二次冷却を行う連続鋳造方法であって、第2の工程で鋳片を二次冷却することによって、厚さ中心部の固相率が0.4である鋳片の位置から、さらに鋳片が冷却されて、厚さ中心部の温度が1200℃となる鋳片の位置までの間における鋳造方向の任意の位置において、鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合が3%以下とする鋼のブルームおよびビレットの連続鋳造方法。
【0006】
(2)C含有率が0.1質量%以下の炭素鋼、またはC含有率が0.2質量%以下、Cr含有率が0.5〜3.0質量%の含Cr低合金鋼の溶鋼を鋳造する上記(1)に記載の鋼のブルームまたはビレットの連続鋳造方法。
【0007】
本発明で規定する「鋳片の二次冷却における第1の工程」とは、鋼のブルームまたはビレットの連続鋳造において、通常、採られている鋳片の二次冷却のことを意味する。すなわち、鋳型出口から抜けた鋳片の内部における凝固殻の厚さを増加させ、鋳片がバルジングすることを防止するための鋳片の二次冷却のことである。その際、通常、鋳型直下で鋳片がバルジングしない程度の水量密度で鋳片の二次冷却がおこなわれる。
【0008】
本発明で規定する「鋳片の二次冷却における第2の工程」とは、第1の工程の後で、とくに凝固末期近傍において、鋳片の二次冷却を再開することを意味する。凝固末期近傍で鋳片の二次冷却を行うことにより、鋳片を積極的に収縮させ、センターキャビティを小さくし、またマクロ偏析、セミマクロ偏析などの成分偏析の発生を抑制する。
【0009】
「鋳片の二次冷却における第1の工程」と「鋳片の二次冷却における第2の工程」との間において、鋳片の二次冷却をいったん中断してもよいし、連続して鋳片の二次冷却をおこなっても構わない。
【0010】
本発明で規定する「固相率」、「鋳片の厚さ中心部の温度」および「鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積Sの割合」は、一般的に用いられる非定常伝熱計算により求めることができる。
【0011】
連続鋳造された鋳片が二次冷却され冷却される過程において、Ar 変態点でオーステナイト相からフェライト相が生成する鋼の場合には、これらの相の結晶構造の違いから、体積膨張が生じる。
【0012】
Cr含有率が多く、C含有率が0.6質量%程度までの通常のシームレス鋼管などに用いられる鋼のブルームおよびビレットの連続鋳造では、鋳片が二次冷却され冷却される過程において、Ar 変態点でオーステナイト相からフェライト相が生成する。このような鋼の連続鋳造に際し、凝固末期に過度の二次冷却を行うと、極端な場合には、凝固完了した凝固殻の全てがAr 変態点に達し、オーステナイト相が全てフェライト相に変態し、大きな体積膨張が生じる。
【0013】
Ar 変態点は通常900℃近傍の温度であり、鋳片の凝固殻がこのような温度で大きな体積膨張を生じ、凝固殻が大きく膨張変形すると、900℃近傍よりも高温で、変形抵抗の小さい鋳片の厚さ中心部近傍の凝固殻に体積膨張による変形が集中する。そのため、未凝固の溶鋼が存在する部分およびセンターキャビティが大きくなる。これは、鋼製のパイプが熱せられ、その外径が熱膨張で大きくなると、その内径も大きくなるのと同じである。未凝固の溶鋼が存在する部分およびセンターキャビティが大きくなると、凝固中のデンドライト樹間に存在するミクロ偏析した溶鋼が流動した後に、大きくなったセンターキャビティに集積し、新たなマクロ偏析、セミマクロ偏析などが生成する。
【0014】
そこで、大きな体積膨張を抑制する方法として、凝固末期における鋳片の二次冷却の際に、Ar 変態点に達する凝固殻の割合を少なくする方法、すなわち、凝固末期の二次冷却を開始する前の鋳片温度をできるだけ高温とする方法も考えられるが、過度に温度を高くすると、凝固末期に鋳片の二次冷却をおこなって、鋳片を収縮させる効果が小さくなる。さらに、連続鋳造機内に鋳片の保温または加熱装置を配置する必要があり、過大な装置となるので現実的な方法ではない。
【0015】
凝固末期における鋳片の二次冷却の際のAr 変態点に達する凝固殻の割合を適度とすることにより、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析の発生を効果的に防止することができる。
【0016】
すなわち、凝固殻が大きな体積膨張を起こしても、凝固完了した凝固殻の割合によっては、センターキャビティの拡大を抑制できる。鋳片の厚さ中心部に十分な未凝固の溶鋼が存在し、かつ未凝固の溶鋼が流動可能な状態であれば、それを取り囲む凝固殻が体積膨張しても、大きくなった分だけ未凝固の溶鋼が鋳造方向の上流側より流入し、体積膨張した部分が未凝固の溶鋼で充満する。
【0017】
また、凝固完了した凝固殻の割合によっては、凝固殻の強度が適正な大きさとなることによって、鋳片の外周側の凝固殻が体積膨張しても、内周側の凝固殻がセンターキャビティの拡大に対する抵抗力となり得る。
【0018】
一方、鋳片の厚さ中心部に十分な未凝固の溶鋼が存在せず、また、未凝固の溶鋼が流動しにくい状態で、さらに、凝固完了した凝固殻の温度が高く、その強度が小さい場合であっても、凝固殻に大きな体積膨張を起こさせずに、かつ、適度な体積膨張をおこさせればよいこと、すなわち下記に示す方法を採れば、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析の発生を効果的に防止することができることがわかった。
【0019】
厚さ中心部の固相率が0.4である鋳片の位置から鋳造方向の下流側の位置では、鋳片の厚さ中心部に十分な未凝固の溶鋼が存在せず、未凝固の溶鋼が流動しにくい状態にある。固相率が0.4以上で、未凝固の溶鋼が流動しにくくなることは、次の試験により確認した。すなわち、種々の化学組成の鋼の鋳造に際し、連続鋳造機内に設けたピンチロールを用いて、厚さ中心部の固相率が種々相違する鋳片を圧下し、鋳造後の鋳片の横断面サンプルを採取した。このサンプルをマクロエッチし、圧下時の成分偏析の濃化した溶鋼の流動状況を調査した。その結果、固相率が0.4以上で、未凝固の溶鋼が流動しにくくなることを確認した。また、鋳造後に厚さ中心部の温度が1200℃となる鋳片の位置より鋳造方向の上流側の位置では、凝固完了した凝固殻の温度が高く、その強度が小さい。
【0020】
本発明の方法では、厚さ中心部の固相率が0.4である鋳片の位置から、さらに鋳片が冷却されて、厚さ中心部の温度が1200℃となる鋳片の位置までの間における鋳造方向の任意の位置において、鋳片横断面における凝固殻の面積S中に占めるAr 変態点以下の部分の面積S の割合を3%以下とするので、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析の発生を効果的に防止することができる。
【0021】
【発明の実施の形態】
図1は、本発明の方法を適用する場合の連続鋳造機の例を示す模式図である。断面形状が円形で直径が200〜300mm程度の丸ビレットの湾曲型連続鋳造機の例を示す。
【0022】
浸漬ノズル1を介して鋳型2内に供給された溶鋼3は、鋳型内で凝固殻4を生成する。凝固殻と未凝固の溶鋼5とで構成される鋳片6は、鋳型を抜けた直後から冷却スプレー7により二次冷却される。第1の工程A1として、鋳型直下から、たとえば、鋳造方向に2m長さの間、鋳片は二次冷却される。二次冷却はいったん中断し、たとえば、第2の工程A2として、メニスカスから30〜36mの範囲の凝固末期の位置において、鋳片は二次冷却される。
【0023】
鋳片の二次冷却は、エアーミストスプレーを用いて行うのが望ましい。効果的な鋳片の二次冷却を行うことができるからである。その際の水量密度(リットル/(min・m ))は、エアーミストを構成する水の水量密度で定義される。
【0024】
本発明の方法では、鋳片の二次冷却を2つの工程に分けて行い、第1の工程では、鋳型直下で鋳片の二次冷却を行うとともに、その後の第2の工程では、凝固末期に鋳片の二次冷却を行う。
【0025】
第1の工程では、鋳片がバルジングしない程度の水量密度で鋳片の二次冷却を行う。その際の水量密度は、鋳片の大きさ、鋳造速度などによって決めればよいが、直径が200〜300mm程度の丸ビレットの場合、100〜300リットル/(min・m )程度が望ましい。
【0026】
第2の工程では、凝固末期近傍の鋳片を適度に二次冷却することにより、鋳片を熱収縮させる。その際、オーステナイト相からフェライト相へ変態する凝固殻の面積を適度に抑制し、凝固殻の体積膨張を適度な膨張に抑制する。その際の水量密度は、鋳片の大きさ、鋳造速度などによって決めればよいが、直径が200〜300mm程度の丸ビレットの場合、50〜300リットル/(min・m
)程度が望ましい。
【0027】
本発明の方法では、厚さ中心部の固相率が0.4である鋳片の位置から、さらに鋳片が冷却されて、厚さ中心部の温度が1200℃となる鋳片の位置までの間における鋳造方向の任意の位置において、鋳片横断面における凝固殻の面積S中に占めるAr 変態点以下の部分の面積S の割合を3%以下とする。
【0028】
鋳片の厚さ中心部に十分な未凝固の溶鋼が存在せず、未凝固の溶鋼が流動しにくい時期から、凝固完了した凝固殻の温度が高く、その強度が小さい時期までの間において、Ar 変態点以下の凝固殻の領域の面積の割合を適正に小さく、すなわち、鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合を3%以下とするので、凝固殻の体積膨張を適度な膨張に抑制しつつ、鋳片を効果的に熱収縮させることができる。そのため、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析の発生を効果的に防止することができる。
【0029】
鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合を3%以下とするための鋳片の二次冷却の方法の例を、具体的に、以下に説明する。
【0030】
鋳片の冷却は、鋳型からの抜熱(一次冷却)、鋳型直下での二次冷却、凝固末期近傍での二次冷却、大気中への輻射放熱、ガイドロールなどとの接触冷却などによりおこなわれる。これらの条件の中で、鋳片の温度を決めるのは、鋳片の二次冷却の程度と鋳造速度である。通常、鋳片の大きさ、品質などから目標の鋳造速度は一定である。したがって、鋳片の温度は、鋳片の二次冷却の程度によって変化することになる。
【0031】
鋼のブルームまたはビレットの鋳造中に、鋳片の二次冷却を変化させた場合、鋳片横断面積に対する外周部にある凝固殻の占める割合が大きいので、通常、鋳片厚さ中心部の温度の変化は小さく、鋳片の外周部近傍の温度が大きく変化する。つまり、鋳片の厚さ中心部近傍の温度をほとんど変えずに、鋳片の外周部近傍の温度を変化させることができる。
【0032】
鋳型直下における第1の工程での鋳片の二次冷却が強い場合、凝固末期近傍の第2の工程での鋳片の冷却によって、鋳片の外周部の温度はさらに低下し、鋳片の外周部の凝固殻のうち、Ar 変態点以下の温度に達する凝固殻の割合が多くなる。その場合には、第1の工程の鋳片の二次冷却における水量密度を低下させ、冷却を弱くすればよい。
【0033】
上記の方法を用いることにより、鋳片の大きさ、鋳造速度などに対応して、鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合が3%以下となる第1の工程および第2の工程の鋳片の二次冷却の具体的な水量密度を予め求めておくことができる。
【0034】
さらに、その際、冷却の第2の工程の入側の位置および出側の位置において、予め鋳片の表面温度を放射温度計などを用いて計測して、標準の表面温度として求めておくことができる。
【0035】
実際の鋳造時には、測定した鋳片の表面温度をプロセスコンピュータに入力し、非定常伝熱計算を実行することにより、凝固殻の温度分布、および鋳片の厚さ中心部の温度の推定を行うことができる。その結果をモニタリングすることで、鋳片の二次冷却の水量密度を調整することにより、より精度よく、鋳片の二次冷却を行うことができる。
【0036】
本発明の方法が対象とする「鋼」は、連続鋳造された鋳片が二次冷却され冷却される過程において、Ar 変態点でオーステナイト相からフェライト相が生成する鋼を意味する。
【0037】
さらに、C含有率が0.1質量%以下の炭素鋼、またはC含有率が0.2質量%以下、Cr含有率が0.5〜3.0質量%の含Cr低合金鋼の溶鋼を鋳造する際に、本発明の方法を適用するのが望ましい。
【0038】
ここで、C含有率が0.1質量%以下の炭素鋼とは、質量%で、C:0.02〜0.1%、Si:0.08〜0.4%、Mn:0.6〜1.6%、Al:0.008〜0.02%を含み、また必要に応じて、Ca:0.008%以下、B:0.003%以下のうちの1種または2種を含み、残部がFeおよび不純物からなる鋼を意味する。C、SiおよびMnは主として鋼の強度確保、Alは主として溶鋼の脱酸のためにそれぞれ添加される。また、Caは非金属介在物の形態制御、Bは鋼の焼入性向上のためにそれぞれ添加される。
【0039】
また、C含有率が0.2質量%以下、Cr含有率が0.5〜3.0質量%の含Cr低合金鋼とは、質量%で、C:0.02〜0.2%、Si:0.08〜0.4%、Mn:0.3〜1.0%、Al:0.008〜0.02%、Cr:0.5〜3.0%を含み、また必要に応じて、Mo:1.0%以下、Ni:1.0%以下、Cu:1.0%以下、Ti:0.2%以下、Nb:0.2%以下、V:0.2%以下、Ca:0.006%以下、B:0.003%以下のうちの1種または2種以上を含み、残部がFeおよび不純物からなる鋼を意味する。C、Si、MnおよびCrは主として鋼の強度、靱性の確保、Alは主として溶鋼の脱酸のためにそれぞれ添加される。また、Mo、Ni、Cu、Ti、NbおよびVは、鋼の強度、靱性などの改善のため、Caは非金属介在物の形態制御、Bは鋼の焼入性向上のためにそれぞれ添加される。
【0040】
上記の炭素鋼および含Cr低合金鋼は、鋳片の冷却過程のAr 変態点において、オーステナイト相から生成するフェライト相が多いので、本発明の方法を適用する効果が著しく、したがって、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析といった内部欠陥の発生を防止する効果が大きい。
【0041】
【実施例】
図1に示す構成の連続鋳造機を用い、表1に示す鋼の溶鋼を鋳造した。これら鋼のAr 変態点を熱分析により測定し、炭素鋼である鋼aは845℃、鋼bは850℃、含Cr低合金鋼である鋼cは880℃であることを確認した。
【0042】
鋼aは、Ar 変態に際し、オーステナイト相からフェライト相が生成する鋼で、鋼bおよび鋼cは、Ar 変態に際し、オーステナイト相からフェライト相が多く生成する鋼である。
【0043】
【表1】

Figure 0003620494
【0044】
鋳片は直径200mmの丸ビレットとし、鋳片の二次冷却の第1の工程は、鋳型直下から鋳造方向に2m長さまでの間とし、第2の工程は、メニスカスから30〜36mの距離の6m長さの範囲とした。二次冷却用の水スプレー装置としてエアーミストスプレーを用い、第1の工程では気水比30、最大の水量密度300リットル/(min・m )とし、また、第2の工程では、気水比50、最大の水量密度500リットル/(min・m )とし、それらの水量密度の範囲内で、それぞれ水量密度を変化させて試験した。
【0045】
第1の工程および第2の工程における水量密度の組み合わせを種々変更することにより、鋳片の厚さ中心部の固相率が0.4になる時期から、鋳片の厚さ中心部の温度が1200℃となる時期までの間における鋳造方向の任意の位置において、鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合(後述する表2のS /S のうちロの値)を変化させて試験した。
【0046】
また、上記のとおり、第1の工程および第2の工程における水量密度の組み合わせを種々変更することにより、鋳片の厚さ中心部の温度が、溶鋼温度になる時期から、鋳片の厚さ中心部の固相率が0.4(含まず)になる時期までの間における鋳造方向の任意の位置において、S /S の値(後述する表2のS/S のうちイの値)、および鋳片の厚さ中心部の温度が、1200℃(含まず)になる時期から、700℃になる時期までの間における鋳造方向の任意の位置において、S /S の値(後述する表2のS /S のうちハの値)を、それぞれ変化させて試験した。
【0047】
その際、鋳片を構成する凝固殻の温度分布および鋳片の厚さ中心部の固相率は、非定常伝熱計算により求めた。この計算の精度がよいことを、鋳片の表面温度の測定、および鋳片の打鋲試験により事前に確認した。
【0048】
この計算に基づいて、鋳片の厚さ中心部の固相率が0.4となる時期から、1200℃となる時期までの間を含め、任意の鋳造時期において、鋳造方向の任意の位置における鋳片横断面の凝固殻の温度分布を求めた。また、凝固殻の温度分布をもとに、凝固殻内のAr 変態点以下の温度となる凝固殻の部分を特定して数値積分することにより、凝固殻内のAr 変態点以下の温度となる部分の面積S を求め、別途求めた凝固殻全体の面積S で除することによって、前述のS /S の値(後述する表2におけるイ、ロ、ハの値)を求めた。
【0049】
図2は、鋳片横断面における凝固殻の温度分布の例を模式的に示す図である。符号B1は、温度がAr 変態点を超える高温の凝固殻、符号B2は、温度がAr 変態点以下の凝固殻、符号5は、未凝固の溶鋼を示す。符号B2の領域の面積がS であり、符号B1およびB2の合計の領域の面積がS である。
【0050】
鋳造速度は、鋼aについては2.5m/min、鋼bについては2.8m/min、鋼cについては2.6m/minをそれぞれ目標の速度としたが、比較例の試験No.21とNo.22を除く、その他の比較例の試験では、第1の工程における水量密度を増加させたので、凝固完了位置をその他の試験と同じ位置とするため、鋳造速度を鋼a、鋼b、鋼cとも、それぞれ0.1m/minだけ目標の速度より速くして鋳造した。なお、凝固完了位置を一定の位置とするのは、鋳片の内部品質を一定の良好な状態を確保するためである。
【0051】
鋳造後、定常の鋳造状態における鋳片の部分から、長さ2mの鋳片を採取し、さらに、0.5m間隔で厚さ50mmの3ケの横断面サンプルを採取し、センターキャビティの状況と成分偏析の状況を調査した。
【0052】
横断面サンプルの軸心部の直径50mm以内で目視観察されるセンターキャビティの大きさと数を調査し、センターキャビティの合計の面積を求め、観察した面積で除してその百分率の値を求め、センターキャビティ面積率So(%)を求めた。3ケの横断面サンプルの調査結果の平均を求め、センターキャビティの生成程度を評価した。
【0053】
また、軸心部近傍で、軸心部を含む直径方向の50mm以内の5ヶ所の位置から、直径4mmのドリル刃で切り屑を採取し、Cの化学分析をおこない、平均した値をC含有率C (質量%)とし、レードルのC含有率C (質量%)で除した比、C /C (−)を成分偏析度として求め、成分偏析を評価した。試験条件および試験結果を表2に示す。
【0054】
【表2】
Figure 0003620494
【0055】
本発明例の試験No.1〜No.6では、C含有率が0.18質量%または0.05質量%の炭素鋼である鋼aまたは鋼bを用い、第1の工程における二次冷却の水量密度を150リットル/(min・m )として弱冷却をおこない、第2の工程における二次冷却の水量密度を50〜300リットル/(min・m )の範囲内で変化させた。いずれも前述のS /S の値(表2のうちのロの値)は0.3〜3%の範囲内で、本発明で規定する範囲内の値であった。前述のS /S の値(表2のうちのハの値)のうち、一部は3%を超える値であった。
【0056】
試験No.1およびNo.2では、センターキャビティ面積率Soは0.05%または0.09%で、Cの成分偏析度C /C は1.11または1.12であった。センターキャビティ面積率、Cの成分偏析度はともに、後述する試験No.3〜No.6に比べて、やや悪かったが、後述する比較例に比べて、良好な結果であった。また、試験No.3〜No.6では、センターキャビティ面積率Soは0.0〜0.04%で、Cの成分偏析度C /C は1.03〜1.10であり、ともに良好な結果であった。
【0057】
本発明例の試験No.7〜No.10では、含Cr低合金鋼である鋼cを用い、第1の工程における二次冷却の水量密度を200リットル/(min・m )として弱冷却をおこない、第2の工程における二次冷却の水量密度を50〜280リットル/(min・m )の範囲内で変化させた。いずれも前述のS/S の値(表2のうちのロの値)は0〜2.9%の範囲内で、本発明で規定する範囲内の値であった。前述のS /S の値(表2のうちのハの値)のうち、一部は3%を超える値であった。
【0058】
試験No.7〜No.10では、センターキャビティ面積率Soは0.0〜0.04%%で、Cの成分偏析度C /C は1.05〜1.08であり、ともに良好な結果であった。
【0059】
比較例の試験No.11〜No.20では、それぞれ本発明例の試験No.1〜No.10に対応させて、第1の工程における二次冷却の水量密度を350リットル/(min・m )または400リットル/(min・m )として強冷却をおこなった。第2の工程における二次冷却の水量密度は、それぞれ本発明例の試験No.1〜No.10と同じとした。いずれも前述のS /S の値(表2のうちのロの値)は3.1〜7.4%の範囲内で、本発明で規定する条件を外れて高い値であった。前述のS /S の値(表2のうちのイまたはハの値)のうち、3%を超えるのはわずかであった。
【0060】
試験No.11〜No.20では、センターキャビティ面積率Soは1.1〜12.3%で、Cの成分偏析度C /C は1.24〜1.53で、いずれも試験No.1〜No.10に比べて悪かった。
【0061】
比較例の試験No.21およびNo.22では、第2の工程における二次冷却をおこなわなかった。センターキャビティ面積率Soは9.5%または8.5%で、Cの成分偏析度C /C は1.44または1.46で、ともに悪かった。
【0062】
【発明の効果】
本発明の方法の適用により、低炭素鋼や含Cr低合金鋼のように、鋳片の冷却過程のAr 変態に際し、フェライト相の生成が多い鋼においても、センターキャビティや、マクロ偏析、セミマクロ偏析などの成分偏析といった内部欠陥の発生を防止することができる。
【図面の簡単な説明】
【図1】本発明の方法を適用する場合の連続鋳造機の例を示す模式図である。
【図2】鋳片横断面における凝固殻の温度分布の例を模式的に示す図である。
【符号の説明】
1:浸漬ノズル 2:鋳型
3:溶鋼 4:凝固殻
5:未凝固の溶鋼 6:鋳片
7:冷却スプレー 8:ガイドロール
9:ピンチロール
A1:第1の工程
A2:第2の工程
B1:温度がAr 変態点を超える高温の凝固殻、
B2:温度がAr 変態点以下の凝固殻[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuous casting of steel bloom and billets.
[0002]
[Prior art]
Internal defects such as center cavities, component segregation such as macro-segregation and semi-macro segregation in the slab in the process of producing seamless steel pipes from continuously cast slabs through the rolling or forging process by the Eugene Sejurune method, Mannesmann method, etc. If there is a large amount of this, the inner surface flaws are likely to occur in the seamless steel pipe manufactured from the slab, which is likely to cause defects in product quality.
[0003]
For the purpose of preventing the occurrence of these internal defects in the slab, a secondary cooling method using heat shrinkage during slab cooling is known. For example, Japanese Patent Laid-Open No. 7-1096 discloses a water density of 25 to 100 liters / (min · m when the solid phase ratio at the center of a slab reaches 0.1 to 0.3.2  The cooling method of the slab has been proposed, in which the surface cooling of the slab is started by water cooling and the water cooling by this water density is continued until the solid phase ratio at the center of the slab becomes 0.8 or more. .
However, Ar during the slab cooling process3  In steels such as low-carbon steels and Cr-containing low alloy steels with a lot of ferrite phase during transformation, if the secondary cooling of the slab at the end of solidification is strengthened as disclosed in the above publication, the center cavity And the occurrence of internal defects such as component segregation may be promoted.
[0004]
[Problems to be solved by the invention]
In the present invention, as in the case of low carbon steel and Cr-containing low alloy steel, Ar during the slab cooling process3  To provide a continuous casting method for steel blooms and billets that can prevent the occurrence of internal defects such as center cavities and component segregation such as macro-segregation and semi-macro segregation even in steels with a lot of ferrite phase during transformation. With the goal.
[0005]
[Means for Solving the Problems]
The gist of the present invention resides in the continuous casting method shown in the following (1) and (2). (1) The secondary cooling process of the slab consists of two processes. In the first process, the secondary cooling of the slab is performed directly under the mold, and in the subsequent second process, the slab is near the end of solidification. A continuous casting method in which secondary cooling is performed, and the slab is further cooled from the position of the slab having a solid phase ratio of 0.4 at the center of the thickness by secondary cooling of the slab in the second step. Is cooled, the area S of the solidified shell in the cross section of the slab at any position in the casting direction up to the position of the slab where the temperature at the center of the thickness becomes 1200 ° C.1  Ar in the inside3  Area S of the portion below the transformation point2  A method for continuous casting of steel bloom and billet with a ratio of 3% or less.
[0006]
(2) Carbon steel having a C content of 0.1% by mass or less, or a molten steel of a Cr-containing low alloy steel having a C content of 0.2% by mass or less and a Cr content of 0.5 to 3.0% by mass A method for continuously casting a steel bloom or billet according to (1) above.
[0007]
The “first step in secondary cooling of a slab” defined in the present invention means secondary cooling of a slab that is usually employed in continuous casting of a steel bloom or billet. That is, it is secondary cooling of the slab in order to increase the thickness of the solidified shell inside the slab exiting from the mold outlet and prevent the slab from bulging. At that time, the secondary cooling of the slab is usually performed at a water density that does not bulge the slab directly under the mold.
[0008]
The “second step in secondary cooling of the slab” defined in the present invention means restarting the secondary cooling of the slab after the first step, particularly in the vicinity of the end of solidification. By performing secondary cooling of the slab near the end of solidification, the slab is actively shrunk, the center cavity is made smaller, and the occurrence of component segregation such as macro-segregation and semi-macro segregation is suppressed.
[0009]
Between the “first step in secondary cooling of the slab” and the “second step in secondary cooling of the slab”, the secondary cooling of the slab may be interrupted once or continuously. Secondary cooling of the slab may be performed.
[0010]
“Solid fraction”, “temperature at the center of the slab thickness” and “area S of the solidified shell in the cross section of the slab” defined in the present invention1  Ar in the inside3  Area S of the portion below the transformation point2The “ratio” can be obtained by a generally used unsteady heat transfer calculation.
[0011]
In the process of continuously cooling and cooling the continuously cast slab, Ar3  In the case of steel in which a ferrite phase is generated from an austenite phase at the transformation point, volume expansion occurs due to the difference in crystal structure of these phases.
[0012]
In continuous casting of steel blooms and billets used in ordinary seamless steel pipes with a high Cr content and a C content of up to about 0.6% by mass, in the process where the slab is secondarily cooled and cooled, Ar3  A ferrite phase is formed from the austenite phase at the transformation point. In the continuous casting of such steel, if excessive secondary cooling is performed at the end of solidification, in an extreme case, all of the solidified shells that have been solidified are Ar.3  The transformation point is reached, and the austenite phase is completely transformed into a ferrite phase, resulting in a large volume expansion.
[0013]
Ar3  The transformation point is usually a temperature in the vicinity of 900 ° C. When the solidified shell of the slab undergoes a large volume expansion at such a temperature, and the solidified shell is greatly expanded and deformed, the casting temperature is higher than that in the vicinity of 900 ° C. Deformation due to volume expansion concentrates on the solidified shell near the thickness center of the piece. Therefore, the portion where the unsolidified molten steel exists and the center cavity become large. This is the same as when the steel pipe is heated and its outer diameter increases due to thermal expansion, its inner diameter also increases. When the part where the unsolidified molten steel exists and the center cavity become large, the microsegregated molten steel that exists between the solidified dendrite trees flows and accumulates in the enlarged center cavity, and new macrosegregation, semi-macrosegregation, etc. Produces.
[0014]
Therefore, as a method of suppressing a large volume expansion, Ar is subjected to secondary cooling of the slab at the end of solidification.3  A method of reducing the ratio of the solidified shell that reaches the transformation point, that is, a method of making the slab temperature as high as possible before starting the secondary cooling at the end of solidification as possible, can be considered. The effect of contracting the slab by performing secondary cooling of the slab is reduced. Furthermore, it is necessary to arrange a slab heat-retaining or heating device in the continuous casting machine, which is not a practical method because it becomes an excessive device.
[0015]
Ar during secondary cooling of the slab at the end of solidification3  By making the ratio of the solidified shell reaching the transformation point moderate, it is possible to effectively prevent the occurrence of component segregation such as center cavity, macro segregation, and semi-macro segregation.
[0016]
That is, even if the solidified shell undergoes a large volume expansion, expansion of the center cavity can be suppressed depending on the ratio of the solidified shell that has been solidified. If there is sufficient unsolidified molten steel in the center of the slab thickness and the unsolidified molten steel is in a flowable state, even if the solidified shell surrounding it expands in volume, Solidified molten steel flows in from the upstream side in the casting direction, and the volume-expanded portion is filled with unsolidified molten steel.
[0017]
In addition, depending on the ratio of the solidified shells that have been solidified, the strength of the solidified shells becomes appropriate, so that even if the solidified shells on the outer peripheral side of the slab expand, Can be a resistance to expansion.
[0018]
On the other hand, there is not enough unsolidified molten steel in the center of the thickness of the slab, and the solidified shell that has been solidified is high and its strength is low, while the unsolidified molten steel is difficult to flow. Even if it is a case, it is only necessary to cause an appropriate volume expansion without causing a large volume expansion in the solidified shell, that is, by adopting the method shown below, a center cavity, macro segregation, semi-macro segregation, etc. It has been found that the occurrence of segregation of components can be effectively prevented.
[0019]
At the position downstream of the casting direction from the position of the slab where the solid phase ratio at the center of the thickness is 0.4, there is not enough unsolidified molten steel in the center of the thickness of the slab, The molten steel is difficult to flow. It was confirmed by the following test that the solid phase ratio was 0.4 or more and the unsolidified molten steel was difficult to flow. That is, when casting steels of various chemical compositions, using a pinch roll provided in a continuous casting machine, the slabs with different solid phase ratios in the central part of the thickness are reduced, and the cross sections of the slabs after casting A sample was taken. This sample was macro-etched to investigate the flow of molten steel with concentrated component segregation during rolling. As a result, it was confirmed that the solid phase ratio was 0.4 or more, and the unsolidified molten steel became difficult to flow. Further, at the position upstream of the slab where the temperature at the center of the thickness becomes 1200 ° C. after casting, the temperature of the solidified shell that has been solidified is high and its strength is small.
[0020]
In the method of the present invention, from the position of the slab where the solid phase ratio at the center of the thickness is 0.4 to the position of the slab where the slab is further cooled and the temperature at the center of the thickness becomes 1200 ° C. Area S of the solidified shell in the cross section of the slab at any position in the casting direction between1Ar in the inside3  Area S of the portion below the transformation point2  Therefore, the occurrence of component segregation such as center cavity, macro segregation, and semi-macro segregation can be effectively prevented.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an example of a continuous casting machine when the method of the present invention is applied. An example of a round billet curved continuous casting machine having a circular cross section and a diameter of about 200 to 300 mm is shown.
[0022]
The molten steel 3 supplied into the mold 2 through the immersion nozzle 1 generates a solidified shell 4 in the mold. The slab 6 composed of the solidified shell and the unsolidified molten steel 5 is secondarily cooled by the cooling spray 7 immediately after passing through the mold. As the first step A1, the slab is secondarily cooled from directly under the mold, for example, for a length of 2 m in the casting direction. The secondary cooling is temporarily interrupted. For example, as the second step A2, the slab is secondarily cooled at the end of solidification range of 30 to 36 m from the meniscus.
[0023]
The secondary cooling of the slab is preferably performed using an air mist spray. This is because effective secondary cooling of the slab can be performed. Water density at that time (liter / (min · m2  )) Is defined by the water density of the water that constitutes the air mist.
[0024]
In the method of the present invention, the secondary cooling of the slab is performed in two steps. In the first step, the secondary cooling of the slab is performed directly under the mold, and in the second step thereafter, the final solidification stage. Secondary cooling of the slab is performed.
[0025]
In the first step, secondary cooling of the slab is performed with a water density that does not bulge the slab. The water density at that time may be determined by the size of the slab, the casting speed, etc., but in the case of a round billet having a diameter of about 200 to 300 mm, it is 100 to 300 liters / (min · m2  ) Degree is desirable.
[0026]
In the second step, the slab is thermally contracted by appropriately secondary cooling the slab near the end of solidification. At that time, the area of the solidified shell that transforms from the austenite phase to the ferrite phase is moderately suppressed, and the volume expansion of the solidified shell is suppressed to an appropriate expansion. The water density at that time may be determined by the size of the slab, the casting speed, etc., but in the case of a round billet having a diameter of about 200 to 300 mm, 50 to 300 liters / (min · m2
) Degree is desirable.
[0027]
In the method of the present invention, from the position of the slab where the solid phase ratio at the center of the thickness is 0.4 to the position of the slab where the slab is further cooled and the temperature at the center of the thickness becomes 1200 ° C. Area S of the solidified shell in the cross section of the slab at any position in the casting direction between1Ar in the inside3  Area S of the portion below the transformation point2  The ratio is set to 3% or less.
[0028]
From the time when there is not enough unsolidified molten steel in the thickness center of the slab and the solidified molten steel is difficult to flow, until the solidified shell temperature after solidification is high and the strength is small, Ar3  The ratio of the area of the solidified shell region below the transformation point is appropriately reduced, that is, the solidified shell area S in the cross section of the slab.1  Ar in the inside3  Area S of the portion below the transformation point2  Therefore, the slab can be effectively thermally contracted while suppressing the volume expansion of the solidified shell to an appropriate expansion. Therefore, generation of component segregation such as a center cavity, macro segregation, and semi-macro segregation can be effectively prevented.
[0029]
Area S of solidified shell in the cross section of slab1  Ar in the inside3  Area S of the portion below the transformation point2  An example of a method for secondary cooling of the slab to make the ratio of 3% or less will be specifically described below.
[0030]
The slab is cooled by removing heat from the mold (primary cooling), secondary cooling just below the mold, secondary cooling near the end of solidification, radiation heat radiation to the atmosphere, contact cooling with a guide roll, etc. It is. Among these conditions, it is the degree of secondary cooling of the slab and the casting speed that determines the temperature of the slab. Usually, the target casting speed is constant from the size and quality of the slab. Accordingly, the temperature of the slab varies depending on the degree of secondary cooling of the slab.
[0031]
When the secondary cooling of the slab is changed during casting of steel bloom or billet, the ratio of the solidified shell at the outer periphery to the slab cross-sectional area is large, so the temperature at the center of the slab thickness is usually Change is small, and the temperature in the vicinity of the outer periphery of the slab changes greatly. That is, the temperature in the vicinity of the outer peripheral portion of the slab can be changed without substantially changing the temperature in the vicinity of the thickness center portion of the slab.
[0032]
When the secondary cooling of the slab in the first step just under the mold is strong, the cooling of the slab in the second step near the end of solidification further reduces the temperature of the outer periphery of the slab, Of the solidified shell on the outer periphery, Ar3  The proportion of solidified shell that reaches a temperature below the transformation point increases. In that case, the water density in the secondary cooling of the slab in the first step may be reduced to weaken the cooling.
[0033]
By using the above method, the area S of the solidified shell in the cross section of the slab corresponding to the size of the slab, the casting speed, etc.1  Ar in the inside3  Area S of the portion below the transformation point2  The specific water amount density of the secondary cooling of the slab in the first step and the second step in which the ratio is 3% or less can be obtained in advance.
[0034]
Further, at that time, the surface temperature of the slab is measured in advance using a radiation thermometer or the like at the entry side position and the exit side position in the second cooling step, and is obtained as a standard surface temperature. Can do.
[0035]
During actual casting, the measured surface temperature of the slab is input to the process computer, and the temperature distribution of the solidified shell and the temperature at the center of the slab thickness are estimated by executing unsteady heat transfer calculation. be able to. By monitoring the result, the secondary cooling of the slab can be performed with higher accuracy by adjusting the water density of the secondary cooling of the slab.
[0036]
The “steel” targeted by the method of the present invention is a process in which Ar is continuously cooled in the process of secondary cooling and cooling.3  It means steel in which ferrite phase forms from austenite phase at the transformation point.
[0037]
Further, a carbon steel having a C content of 0.1% by mass or less, or a molten steel of a Cr-containing low alloy steel having a C content of 0.2% by mass or less and a Cr content of 0.5 to 3.0% by mass. It is desirable to apply the method of the present invention when casting.
[0038]
Here, the carbon steel having a C content of 0.1 mass% or less is mass%, C: 0.02 to 0.1%, Si: 0.08 to 0.4%, Mn: 0.6 -1.6%, Al: 0.008-0.02% included, and, if necessary, Ca: 0.008% or less, B: One or two of 0.003% or less included And the balance means steel consisting of Fe and impurities. C, Si and Mn are mainly added for securing the strength of the steel, and Al is mainly added for deoxidation of the molten steel. Ca is added to control the form of non-metallic inclusions, and B is added to improve the hardenability of the steel.
[0039]
Further, the Cr-containing low alloy steel having a C content of 0.2% by mass or less and a Cr content of 0.5 to 3.0% by mass is expressed by mass%, C: 0.02 to 0.2%, Si: 0.08 to 0.4%, Mn: 0.3 to 1.0%, Al: 0.008 to 0.02%, Cr: 0.5 to 3.0%, and as necessary Mo: 1.0% or less, Ni: 1.0% or less, Cu: 1.0% or less, Ti: 0.2% or less, Nb: 0.2% or less, V: 0.2% or less, It means steel containing one or more of Ca: 0.006% or less and B: 0.003% or less, with the balance being Fe and impurities. C, Si, Mn and Cr are mainly added for securing the strength and toughness of the steel, and Al is mainly added for deoxidation of the molten steel. Mo, Ni, Cu, Ti, Nb and V are added to improve the strength and toughness of the steel, Ca is added to control the form of nonmetallic inclusions, and B is added to improve the hardenability of the steel. The
[0040]
The above carbon steel and Cr-containing low alloy steel are made of Ar during the slab cooling process.3  At the transformation point, there are many ferrite phases generated from the austenite phase, so the effect of applying the method of the present invention is remarkable, and therefore the effect of preventing the occurrence of internal defects such as center cavities and component segregation such as macro-segregation and semi-macro segregation. Is big.
[0041]
【Example】
Using the continuous casting machine having the configuration shown in FIG. 1, molten steel shown in Table 1 was cast. Ar of these steels3  The transformation point was measured by thermal analysis, and it was confirmed that steel a, which is carbon steel, was 845 ° C., steel b was 850 ° C., and steel c, which was a Cr-containing low alloy steel, was 880 ° C.
[0042]
Steel a is Ar3  In the transformation, a steel in which a ferrite phase is generated from an austenite phase.3  It is a steel in which a large amount of ferrite phase is generated from the austenite phase during transformation.
[0043]
[Table 1]
Figure 0003620494
[0044]
The slab is a round billet with a diameter of 200 mm, the first step of secondary cooling of the slab is between 2 m in the casting direction from directly under the mold, and the second step is a distance of 30 to 36 m from the meniscus. The range was 6 m long. An air mist spray is used as a water spray device for secondary cooling. In the first step, the air / water ratio is 30 and the maximum water density is 300 liters / (min · m.2  In the second step, the air / water ratio is 50 and the maximum water density is 500 liters / (min · m).2  ), And the water density was changed within the range of the water density.
[0045]
By variously changing the combination of the water density in the first step and the second step, the temperature at the central portion of the slab thickness from the time when the solid phase ratio at the central portion of the slab becomes 0.4. The area S of the solidified shell in the cross section of the slab at an arbitrary position in the casting direction until the time when the temperature reaches 1200 ° C.1  Ar in the inside3  Area S of the portion below the transformation point2  Ratio (S in Table 2 described later)2  / S1  The value of (b) was changed.
[0046]
In addition, as described above, the thickness of the slab is changed from the time when the temperature of the center portion of the slab reaches the molten steel temperature by variously changing the combination of the water density in the first step and the second step. At an arbitrary position in the casting direction until the time when the solid fraction of the central portion becomes 0.4 (not included), S2  / S1  Value (S in Table 2 described later)2/ S1  S) at an arbitrary position in the casting direction from the time when the temperature of the center portion of the slab becomes 1200 ° C. (not included) to the time when it reaches 700 ° C.2  / S1  Value (S in Table 2 described later)2  / S1  The value of c) was varied and tested.
[0047]
At that time, the temperature distribution of the solidified shell constituting the slab and the solid phase ratio at the center of the thickness of the slab were obtained by unsteady heat transfer calculation. The accuracy of this calculation was confirmed in advance by measuring the surface temperature of the slab and by a slab test.
[0048]
Based on this calculation, at any position in the casting direction at any casting time, including the period from when the solid phase ratio at the center of the slab thickness becomes 0.4 to when it reaches 1200 ° C. The temperature distribution of the solidified shell of the slab cross section was obtained. Based on the temperature distribution of the solidified shell, Ar in the solidified shell3  By identifying and numerically integrating the solidified shell part at a temperature below the transformation point, Ar in the solidified shell is obtained.3  Area S of the portion where the temperature is below the transformation point2  The total area S of the solidified shell obtained separately1  By dividing by S2  / S1  (Values a, b, c in Table 2 to be described later) were obtained.
[0049]
FIG. 2 is a diagram schematically showing an example of the temperature distribution of the solidified shell in the cross section of the slab. Reference B1 indicates that the temperature is Ar3  The high-temperature solidified shell exceeding the transformation point, symbol B2, has a temperature of Ar3  The solidified shell below the transformation point, symbol 5 indicates unsolidified molten steel. The area of the area B2 is S2  And the area of the total area of the symbols B1 and B2 is S1  It is.
[0050]
The casting speeds were 2.5 m / min for steel a, 2.8 m / min for steel b, and 2.6 m / min for steel c, respectively. 21 and no. In the tests of other comparative examples, except for No. 22, the water density in the first step was increased, so that the solidification completion position was the same as the other tests, so the casting speed was steel a, steel b, steel c Both were cast at a speed higher than the target speed by 0.1 m / min. The solidification completion position is set to a constant position in order to ensure a constant and good state of the internal quality of the slab.
[0051]
After casting, a slab with a length of 2 m is taken from the slab part in a steady casting state, and further, three cross-sectional samples with a thickness of 50 mm are taken at intervals of 0.5 m, and the situation of the center cavity The situation of component segregation was investigated.
[0052]
Investigate the size and number of center cavities visually observed within 50 mm in diameter of the axial center of the cross section sample, determine the total area of the center cavities, and divide by the observed area to obtain the percentage value. The cavity area ratio So (%) was determined. The average of the survey results of the three cross-sectional samples was obtained, and the degree of formation of the center cavity was evaluated.
[0053]
In addition, in the vicinity of the shaft center portion, chips were collected from 5 positions within 50 mm in the diameter direction including the shaft center portion with a 4 mm diameter drill blade, subjected to chemical analysis of C, and the average value was contained in C. Rate C1  (Mass%) and C content of the ladle C0  Ratio divided by (mass%), C1  / C0  (-) Was calculated | required as a component segregation degree and the component segregation was evaluated. Test conditions and test results are shown in Table 2.
[0054]
[Table 2]
Figure 0003620494
[0055]
Test no. 1-No. 6, the steel a or steel b, which is carbon steel having a C content of 0.18% by mass or 0.05% by mass, is used, and the secondary cooling water density in the first step is 150 liters / (min · m2  ), And the secondary cooling water density in the second step is 50 to 300 liters / (min · m).2  ) Was changed within the range. Both of the above S2  / S1  (Value in Table 2) was within the range of 0.3 to 3%, and was within the range defined by the present invention. S mentioned above2  / S1  Some of the values (c values in Table 2) exceeded 3%.
[0056]
Test No. 1 and no. 2, the center cavity area ratio So is 0.05% or 0.09%, and the component segregation degree C of C1  / C0  Was 1.11 or 1.12. Both the center cavity area ratio and the component segregation degree of C were tested No. described later. 3-No. Although it was a little worse than 6, it was a favorable result compared with the comparative example mentioned later. In addition, Test No. 3-No. 6, the center cavity area ratio So is 0.0 to 0.04%, and the component segregation degree C of C1  / C0  1.03-1.10, both of which were good results.
[0057]
Test no. 7-No. No. 10, steel c, which is a Cr-containing low alloy steel, is used, and the water density of secondary cooling in the first step is 200 liters / (min · m2  ), And the water density of the secondary cooling in the second step is 50 to 280 liters / (min · m).2  ) Was changed within the range. Both of the above S2/ S1  (Value in Table 2) was in the range of 0 to 2.9%, and was within the range defined by the present invention. S mentioned above2  / S1  Some of the values (c values in Table 2) exceeded 3%.
[0058]
Test No. 7-No. 10, the center cavity area ratio So is 0.0 to 0.04%, and the component segregation degree C of C1  / C0  1.05 to 1.08, both of which were good results.
[0059]
Test No. of the comparative example. 11-No. No. 20, test no. 1-No. 10, the water density of the secondary cooling in the first step is 350 liters / (min · m2  ) Or 400 liters / (min · m2  ) Was subjected to strong cooling. The secondary cooling water density in the second step is the test No. of the present invention. 1-No. The same as 10. Both of the above S2  / S1  The value of (b in Table 2) was within a range of 3.1 to 7.4%, which was a high value outside the conditions defined in the present invention. S mentioned above2  / S1  Only a small percentage of the value (i or c in Table 2) exceeded 3%.
[0060]
Test No. 11-No. 20, the center cavity area ratio So is 1.1 to 12.3%, and the component segregation degree C of C1  / C0  Is 1.24 to 1.53, all of which are test Nos. 1-No. It was bad compared to 10.
[0061]
Test No. of the comparative example. 21 and no. In No. 22, secondary cooling in the second step was not performed. Center cavity area ratio So is 9.5% or 8.5%, C component segregation degree C1  / C0  Was 1.44 or 1.46, both bad.
[0062]
【The invention's effect】
By applying the method of the present invention, Ar in the slab cooling process, such as low carbon steel and Cr-containing low alloy steel.3  During transformation, even in steels with many ferrite phases, internal defects such as center cavities and component segregation such as macro-segregation and semi-macro segregation can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a continuous casting machine when applying the method of the present invention.
FIG. 2 is a diagram schematically showing an example of a temperature distribution of a solidified shell in a cross section of a slab.
[Explanation of symbols]
1: Immersion nozzle 2: Mold
3: Molten steel 4: Solidified shell
5: Unsolidified molten steel 6: Slab
7: Cooling spray 8: Guide roll
9: Pinch roll
A1: First step
A2: Second step
B1: Temperature is Ar3  High-temperature solidified shell exceeding the transformation point,
B2: Temperature is Ar3  Solidified shell below the transformation point

Claims (2)

鋳片の二次冷却を行う工程が2つの工程からなり、第1の工程では鋳型直下で鋳片の二次冷却を行い、その後の第2の工程では凝固末期近傍において鋳片の二次冷却を行う連続鋳造方法であって、第2の工程で鋳片を二次冷却することによって、厚さ中心部の固相率が0.4である鋳片の位置から、さらに鋳片が冷却されて、厚さ中心部の温度が1200℃となる鋳片の位置までの間における鋳造方向の任意の位置において、鋳片横断面における凝固殻の面積S 中に占めるAr 変態点以下の部分の面積S の割合が3%以下とすることを特徴とする鋼のブルームおよびビレットの連続鋳造方法。The secondary cooling process of the slab consists of two processes. In the first process, the secondary cooling of the slab is performed directly under the mold, and in the second process, the secondary cooling of the slab is performed near the end of solidification. In the continuous casting method, the slab is further cooled from the position of the slab where the solid phase ratio at the center of the thickness is 0.4 by secondary cooling of the slab in the second step. The portion below the Ar 3 transformation point in the solidified shell area S 1 in the cross section of the slab at an arbitrary position in the casting direction until the position of the slab where the temperature of the thickness center is 1200 ° C. continuous casting method of steel bloom and billet characterized in that the ratio of the area S 2 of 3% or less. C含有率が0.1質量%以下の炭素鋼、またはC含有率が0.2質量%以下、Cr含有率が0.5〜3.0質量%の含Cr低合金鋼の溶鋼を鋳造することを特徴とする請求項1に記載の鋼のブルームまたはビレットの連続鋳造方法。Casting a carbon steel having a C content of 0.1% by mass or less or a molten steel of a Cr-containing low alloy steel having a C content of 0.2% by mass or less and a Cr content of 0.5 to 3.0% by mass. The method for continuous casting of steel bloom or billet according to claim 1.
JP2001316488A 2001-10-15 2001-10-15 Method for continuous casting of steel blooms and billets Expired - Lifetime JP3620494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316488A JP3620494B2 (en) 2001-10-15 2001-10-15 Method for continuous casting of steel blooms and billets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316488A JP3620494B2 (en) 2001-10-15 2001-10-15 Method for continuous casting of steel blooms and billets

Publications (2)

Publication Number Publication Date
JP2003117643A JP2003117643A (en) 2003-04-23
JP3620494B2 true JP3620494B2 (en) 2005-02-16

Family

ID=19134498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316488A Expired - Lifetime JP3620494B2 (en) 2001-10-15 2001-10-15 Method for continuous casting of steel blooms and billets

Country Status (1)

Country Link
JP (1) JP3620494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110930A1 (en) 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Process for producing seamless pipe
JP5195636B2 (en) * 2009-05-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of continuous cast slab
WO2016114208A1 (en) * 2015-01-15 2016-07-21 新日鐵住金株式会社 Continuous casting method for slab
CN104975233B (en) * 2015-06-11 2016-11-09 攀钢集团成都钢钒有限公司 The production method of ultra-high-strength/tenacity structural alloy steel continuous cast round billets
JP6634908B2 (en) * 2016-03-18 2020-01-22 日本製鉄株式会社 Continuous casting method

Also Published As

Publication number Publication date
JP2003117643A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
US11759851B2 (en) Method for continuously casting steel
JP5686062B2 (en) Steel continuous casting method
JP3620494B2 (en) Method for continuous casting of steel blooms and billets
JP3401785B2 (en) Cooling method of slab in continuous casting
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP5716414B2 (en) Continuous casting equipment for round slabs for seamless steel pipe production
JP6036125B2 (en) Steel continuous casting method
JP2004330252A (en) Continuous casting method for round billet, and round billet
JPH08238550A (en) Method for continuously casting steel
JP3319379B2 (en) Continuous casting method of steel billet
JP3671868B2 (en) Method for casting high Cr steel
JPWO2019203137A1 (en) Continuous casting method for steel
JP2982622B2 (en) Cooling method of slab in continuous casting
JP7273307B2 (en) Steel continuous casting method
JP3362703B2 (en) Continuous casting method
JP2001334353A (en) Method for continuously casting steel
JP3275828B2 (en) Continuous casting method
JP5760746B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe making
JP5790385B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe
JP3395674B2 (en) Continuous casting method
JP2001225156A (en) Continuously cast slab of steel, continuous casting method and method for manufacturing steel products
JPH08132204A (en) Continuous casting method
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JP2001162353A (en) Continuously cast slab and its continuous casting method, and method of manufacturing thick steel plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3620494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350