WO2007110930A1 - Process for producing seamless pipe - Google Patents

Process for producing seamless pipe Download PDF

Info

Publication number
WO2007110930A1
WO2007110930A1 PCT/JP2006/306275 JP2006306275W WO2007110930A1 WO 2007110930 A1 WO2007110930 A1 WO 2007110930A1 JP 2006306275 W JP2006306275 W JP 2006306275W WO 2007110930 A1 WO2007110930 A1 WO 2007110930A1
Authority
WO
WIPO (PCT)
Prior art keywords
billet
outer diameter
plug
diameter
rolling
Prior art date
Application number
PCT/JP2006/306275
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Yamanaka
Manabu Adachi
Tomio Yamakawa
Hirotsugu Nakaike
Kazuhiro Shimoda
Toshiro Anraku
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP06730223.2A priority Critical patent/EP2008733B1/en
Priority to PCT/JP2006/306275 priority patent/WO2007110930A1/en
Priority to CN2006800540554A priority patent/CN101410195B/en
Publication of WO2007110930A1 publication Critical patent/WO2007110930A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Definitions

  • the present invention relates to a method for manufacturing a seamless pipe. More specifically, it is produced by a continuous forging process of round pieces that can reduce the axial center cracking that tends to occur at the center of the piece, which is one of the causes of internal flaws in the product, and the forging process described above. It is equipped with a piercing-rolling process that prevents the occurrence of flaws inside the hollow shell and does not cause rolling failure.
  • the present invention relates to a method for manufacturing a seamless pipe that can produce a seamless pipe with less internal flaws.
  • a secondary cooling method for improving the quality of the central portion of a continuous forged piece using heat shrinkage during the cooling of the piece has been disclosed for the purpose of reducing internal defects in the continuous forged piece.
  • Japanese Patent Laid-Open No. 7-1096 when the solid fraction in the central part of the piece reaches 0.1 to 0.3, the water density is 25 to L00LZ (min'm 2 ).
  • the center porosity generated in the central part of the steel piece is reduced by starting the surface cooling of the steel piece by means of, and continuing the cooling of the above water density until the solid phase ratio in the central part of the steel piece reaches 0.8 or more.
  • a method is disclosed.
  • the solid phase ratio means the fraction occupied by the solid phase in the solid-liquid coexisting phase.
  • the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-332556 reduces the center porosity at the center of the flank and prevents the cracking of the axial center portion. In the steel that is produced, axial center cracks may occur. Further, according to the method disclosed in Japanese Patent Laid-Open No.
  • the shrinkage rate of the surface can be made larger than the shrinkage rate of the central part of the flange, and the center porosity or center generated at the central part of the flange is obtained.
  • Force that can reduce segregation As in the method disclosed in Japanese Patent Laid-Open No. 8-332556, in steel that forms a ferrite phase as a primary crystal during solidification, cracking of the axial center may occur. . Therefore, the methods disclosed in both of the above publications have room for further improvement in these respects.
  • Japanese Patent Laid-Open No. 2003-117643 discloses macro segregation, semi-macro segregation by utilizing the shrinkage of the solidified shell on the surface of the slab by cooling the surface of the slab by secondary cooling at the end of solidification. A method for reducing the center cavity is disclosed.
  • axial center cracks may occur, and further improvements are necessary.
  • JP-A-2004-330252 a steel having a C content of 0.1% by mass or less, or a Cr content of 1% by mass or more, and a C content.
  • the secondary cooling is performed immediately after the piece comes out of the bowl shape, and then the piece surface temperature is 950 to 1100 °.
  • We proposed a continuous forging method of round round pieces that continues the secondary cooling at the end of solidification until the center of the piece is completely solidified even when the force at the point of reaching C range is reached.
  • these cooling methods when the diameter of the piece is large, the thermal resistance of the solidified shell increases, so that the cooling effect on the shaft center part and the sufficient crack improvement effect cannot be obtained.
  • the Mannesmann plug mill type pipe manufacturing method which is used as a representative method for producing seamless pipes, sends a solid billet heated to a predetermined temperature to a piercer, and A hollow shell is manufactured by piercing and rolling the shaft center.
  • the hollow shell then becomes a product seamless pipe through a drawing and rolling process using a mandrel mill, reheating, or a direct diameter rolling process using a stretch reducer or sizer mill, and a refining process.
  • a pair of inclined rolls having a barrel shape (barrel shape) or a cone shape in which the roll axis is inclined with respect to the pass line are arranged opposite to each other. is doing. Further, a plug held by a mandrel disposed on the pass line is positioned between these inclined rolls.
  • a cone-shaped inclined roll may be used as the piercer roll.
  • FIG. 1 is a diagram schematically illustrating the arrangement of cone-shaped inclined rolls used in the piercing and rolling process. Further, FIG. 2 is a view for explaining the arrangement of the cone-shaped inclined rolls indicated by arrows AA in FIG.
  • the inclined roll 1 has a gorge portion la having a roll diameter Dg in the middle portion thereof, and an entrance surface lb having a substantially truncated cone shape that is reduced in diameter toward the entrance end portion of the gorge portion la, and toward the exit end surface. And an exit face lc having a substantially frustoconical shape which is expanded in accordance with the shape, and has a cone-like shape as a whole.
  • the inclined roll 1 is arranged symmetrically with respect to the pass line X-X so that the roll axis is at an intersection angle ⁇ . Further, as shown in FIG. 2, the inclined roll 1 is arranged so as to have an inclination angle j8 with respect to the pass line ⁇ - ⁇ . On the other hand, the other inclined rolls 1 not shown in FIG. 2 are also opposed to each other while being inclined in opposite directions at an inclination angle across the pass line XX.
  • each tilt roll 1 can rotate around the roll axis while securing the crossing angle ⁇ and the tilt angle j8, and imparts a swiveling motion to the billet 3.
  • the plug 2 has a bullet-like shape as a whole, and its rear end is supported by the front end of the mandrel bar M, and the rear end of the mandrel bar M is connected to a thrust block device (not shown).
  • the continuous forging material is likely to cause center porosity, the stainless steel containing 5% or more of Cr, which is likely to generate ⁇ ferrite, and the non-ferrous structure such as copper or copper alloy.
  • the non-ferrous structure such as copper or copper alloy.
  • the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 03-13222 places greater emphasis on the squeezing property than the prevention of inner surface flaws at the top of the billet.
  • the method disclosed in Japanese Patent Laid-Open No. 61-3605 can prevent internal flaws occurring in the material to be rolled, there is a risk of causing a rolling failure (hereinafter, also referred to as “misroll”) due to poor penetration. is there.
  • the method disclosed in Japanese Patent Laid-Open No. 2000-140911 cannot sufficiently prevent the generation of internal flaws at the top portion of the billet, similar to the method disclosed in Japanese Patent Laid-Open No. 03-13222.
  • the present invention has been made with the primary aim of preventing the occurrence of internal flaws in the continuous production process and the piercing and rolling process of round pieces in the seamless pipe manufacturing process.
  • the continuous forging process of round slabs that significantly reduces the cracks that cause cracks, and the prevention of misrolls and the occurrence of surface creases in the holo shell when piercing and rolling the fabricated round billets It has a piercing and rolling process that can achieve both effects of For the purpose of providing a seamless pipe manufacturing method that can manufacture high quality products!
  • the present inventor has studied a seamless pipe manufacturing method capable of manufacturing a holo-shell with less internal flaws with high productivity, and obtained the following knowledge (a) to (f), The present invention has been completed.
  • the ferrite phase has a lower strength than the austenite phase, and the C content is 0.1% by mass (hereinafter, “mass%” is also simply referred to as “%”). It is easy for cracks in the shaft center to occur due to the solidification of the bright phase.
  • mass% is also simply referred to as “%”.
  • the axial center cracking occurs, and when the piece diameter exceeds 300 mm immediately, the effect of forced cooling of the piece surface by secondary cooling is effective. Forced cooling that can be reduced simply leads to an increase in axial cracks. Therefore, it is appropriate to perform slow cooling including radiation cooling from the surface of the sepal.
  • the billet outer diameter reduction rate Df (hereinafter also referred to as “plug tip draft rate Df”) means the reduction rate of the billet outer diameter at the plug tip position, as will be described later. It is a value represented by ⁇ (Bd-Rpg) / Bd ⁇ X 100 where the inclined roll gap is Rpg.
  • the present invention has been completed based on the above findings, and the gist of the present invention is a method for producing a seamless pipe having a continuous forging step shown in the following (1), and a circle shown in (2). Sepal and (3) It exists in the manufacturing method of a seamless pipe provided with the piercing-rolling process shown to (7).
  • At least a region within a diameter of 60 mm in the central part of the cross section of the round piece has an equiaxed crystal structure, and the solid part in the central part has a solid fraction of more than 0 and 1.0 or less. It is equipped with a continuous forging process that forges round pieces with a carbon content of 0.1% by mass or less and a cross-sectional diameter of more than 300mm while performing slow cooling at a surface cooling rate of 10 ° CZ or less.
  • a seamless pipe manufacturing method characterized by the above hereinafter, also referred to as “first invention”).
  • a round piece (hereinafter, also referred to as “second invention”) characterized by being within an area of 15 mm or less.
  • a seamless pipe-making method (hereinafter referred to as "third invention"), characterized by comprising a step of piercing and rolling the round piece as described in (2) above without rolling it in pieces. Also noted).
  • a plug is disposed along a path line between a pair of cone-shaped inclined rolls arranged opposite to each other around the path line, and the billet made of round rod pieces as described in (2) above is swung.
  • a roll diameter Dg (mm) of the inclined roll gorge part and a roll diameter Dl (mm) at the position where the billet starts to contact the roll at the inclined roll inlet DgZDl, and the billet Squeezing force The number of billet rotations N to the plug tip
  • the ratio of billet outer diameter reduction ratio Df (%) NZDf satisfies the deviation of the following formulas (1) to (3).
  • a method for producing a seamless pipe wherein the ratio DlZBd between the D1 and the billet outer diameter Bd (mm) satisfies the following expression (4) (hereinafter also referred to as “fourth invention”).
  • Ld is the bite squeezing point force
  • is the tilt angle of the tilt roll (°)
  • Rpg is the tilt roll at the plug tip position.
  • N 2LdZ (7u .Bd'tan iS) (5)
  • a plug having a reeling portion with a length L4 (mm) is provided, and includes a step of piercing and rolling with an inclined roll type piercing and rolling machine, and the plug has an outer diameter d, a radius of curvature R, and an axial length.
  • the seamless pipe manufacturing method (hereinafter referred to as “No. 1”) characterized in that the relationship between Ll, L2 and L3 and the outer diameter Bd of the solid round billet satisfies the deviations of the following equations (7) to (9). Also referred to as “5 inventions”).
  • a tapered cylindrical shaft formed with a taper angle of 2 ⁇ (°) so that the outer diameter increases continuously toward the maximum outer diameter D (mm) at the rear end in the axial direction.
  • a plug that has a reeling part with a length of L4 (mm) and at least the tip rolled part has a tensile strength at 1100 ° C of 50 MPa or more, and is pierced by a tilt roll type piercing and rolling mill.
  • the "center part solid phase ratio” refers to the fraction of the solid phase occupied by the total of the solid phase and the liquid phase in the center part of the sepal.
  • “Slow cooling” means cooling at a slow cooling rate, including radiation cooling from the surface of the blade, and cooling at a surface temperature of 10 ° CZ or less.
  • a cylindrical shape with an axial length L2 (mm) that increases as the outer diameter d increases toward the rear end in the axial direction means that the outer diameter d increases toward the rear end in the axial direction. ° It means a cylindrical shape with an axial length L2 (mm) that increases below.
  • FIG. 1 is a diagram schematically illustrating the arrangement of cone-shaped inclined rolls used for piercing and rolling.
  • FIG. 2 is a view for explaining the arrangement of the cone-shaped inclined rolls indicated by the arrows AA in FIG.
  • FIG. 3 is a diagram showing an example of a plug having a simple shell shape force.
  • FIG. 4 is a diagram showing a plug shape used in the present invention B.
  • FIG. 4 is a diagram showing a plug shape used in the present invention B.
  • FIG. 5 is a diagram schematically illustrating a state in which a billet is pierced and rolled by placing a plug between a pair of inclined rolls opposed to each other around a pass line.
  • Fig. 6 is a diagram schematically showing the solidified structure and axial center crack in the cross-section of the flake, and Fig. 6 (a) shows that the central portion of the flake where the axial crack occurs is filled with equiaxed crystals. Fig. 2 (b) shows the case where the central part is not filled with equiaxed crystals.
  • FIG. 7 schematically shows a longitudinal section of a continuous forging apparatus used in the continuous forging process of the present invention.
  • FIG. 8 is a diagram for explaining the plug lead in the billet piercing and rolling, and the billet outer diameter rolling reduction at the plug tip position.
  • the method for producing a seamless pipe according to the present invention has an equiaxed crystal structure in all regions within a diameter of 60 mm at the center of the cross section of the round rod piece, and the solid phase ratio in the center exceeds zero. 1.
  • the cooling rate of the round rod surface is 10 ° CZ or less in the range of 0 or less, the carbon content is less than 0.1% by mass and the diameter of the rod cross section exceeds 300mm.
  • a method for producing a seamless pipe comprising a continuous forging step of forging a round piece.
  • the present invention is a seamless pipe manufacturing method comprising a step of piercing and rolling round slabs forged by the above-mentioned continuous forging step, without performing ingot rolling. In the following, the method of the present invention will be described in more detail.
  • FIG. 6 is a diagram schematically showing a solidified structure and a shaft center crack in the cross-section of the scissors.
  • the difference in the solidified structure and the axial center crack between the cases (a) and (b) is as follows. Presumed to be caused by the reason. That is, when the central part of the piece reaches the final solidification zone, tensile stress due to thermal stress is generated in the circumferential direction. This tensile stress is greatest at the central part of the steel piece where the temperature difference with the outer periphery of the steel piece is the largest, and when this tensile stress exceeds the strength of the material, radial cracks in the central part of the steel piece, that is, the axial center. Partial cracking occurs.
  • C is an austenite stabilizing element, and it is well known that the C content largely controls the quantity ratio of ferrite and austenite.
  • the axis as described above is caused by the ferrite phase in a piece having a C content of 0.1% or less. It was found that cracks in the core are likely to occur.
  • the present invention is effective even when forging steel pieces using molten steel having a C content of 0.1% or less in steel where shaft center cracks are likely to occur. Assumptions.
  • the cooling rate of the slow cooling is preferably adjusted to 8 ° CZ or less. Moreover, unless heating or heat retention is performed, it is realistic to set a cooling rate of about 4 ° CZ or more under radiation cooling conditions.
  • the cracks in the shaft center part of the flakes slowly cool the surface of the flakes at the end of solidification, specifically when the solid fraction of the central part of the flakes exceeds 0 and 1.0 or less. It can be reduced by increasing the equiaxed crystal region at the center of the cross section.
  • the above slow cooling is in addition, it is preferable that the surface temperature of the flank is in the range of 1050-850 ° C.
  • the width of the equiaxed crystal region can be controlled by changing the position and strength of electromagnetic stirring, the forging temperature, and the like.
  • the forging temperature is important
  • the molten steel temperature in the tundish is preferably low
  • ⁇ T the temperature of the target steel, the liquidus temperature of the target steel
  • is too small, the problem of nozzle clogging will cause the problem of skinning that solidifies the molten steel surface in the mold, so it is preferable to set the value to 20 ° C or higher.
  • the preferred condition when the obtained billet made of round bar is pierced and rolled by the Mannesmann plug mill method is that the roll inclination angle / 3 is 6 to 16 °, and the billet The outer diameter reduction is in the range of 3-7%.
  • FIG. 7 is a diagram schematically showing a longitudinal section of a continuous forging apparatus for realizing the continuous forging process of the present invention.
  • a continuous forging device a curved continuous forging machine for round billet forging was used.
  • the molten steel 23 injected from the tundish 211 through the immersion nozzle 21 into the vertical mold 22 is cooled by a top zone secondary cooling device 27 installed immediately below the vertical mold 22 and While being supported by a single roll 28, a solidified shell 25 is generated and pulled out by a pinch roll 29 to form a flange piece 26.
  • the piece 26 that has produced the solidified shell 25 is cooled by the top zone secondary cooling device, and further cooled by the end-solidification secondary cooling device 210 to be completely solidified.
  • the top zone secondary cooling device 27 is thin in the thickness of the solidified shell 25! In the region, the solid piece 26 is cooled to promote its solidification and prevent deformation due to bulging.
  • the top zone secondary cooling device 27 is composed of an air mist spray with a length of 2 m connected directly below the vertical 22 and the air / water ratio is about 50 (NLZmin—air Z (L / min water)). .
  • the water density can be adjusted to any value within the range of maximum 500LZ (min ⁇ m 2 )!
  • the end-solidification secondary cooling device 210 is composed of a cooling device in which 5 blocks each having a length of 1.2 m are combined, and is installed at a position 30 to 36 m from the meniscus 24. Yes. An air mist spray was also used for this secondary cooling device, and the air / water ratio was fixed at about 30 (NLZmin—Air Z (LZmin—Water)) regardless of the amount of water. The amount of water can be adjusted to any value within the range of maximum water density of 100LZ (min-m 2 ).
  • the central solid fraction and the temperature distribution in the solidified shell 25 of the lug piece 26 were obtained by unsteady heat transfer calculation.
  • this calculation method can represent the exact solidification state of the piece for each forging condition.
  • a saddle type electromagnetic stirring device 212 was installed at a position approximately 200 mm below the meniscus.
  • the magnetic stirring device 212 has a frequency of 4 Hz, a maximum current of 600 A, and a magnetic flux density of 0.6 T (Tesla).
  • T 0.6 T
  • the rotation frequency of the magnetic field was in the range of 3 to 6 Hz.
  • Table 1 shows the test conditions.
  • the cooling rate represents the maximum value (° CZmin) of the cooling rate on the surface of the slab when the solid fraction at the center of the slab exceeds 0 and is 1.0 or less.
  • the diameters of the forged pieces were 310 mm and 360 mm.
  • the degree of equiaxed crystal filling in the center of the cross section of the slab can be changed by changing the molten steel temperature and electromagnetic stirring conditions during forging. It was. Liquid phase of steel
  • the wire temperature was 1520 ° C, and the value of (molten steel temperature – liquidus temperature) was defined as the superheat (° C) of the molten steel in the tundish.
  • a 2 m long piece was taken for internal investigation of the piece, and 10 crossed sample plates were taken at equal intervals in the longitudinal direction, mirror-polished, and then acid-corroded to cause cracks in the axial center and the like.
  • the state of axial crystal formation was investigated.
  • the equiaxed crystal filling condition was evaluated by obtaining the diameter (mm) of the region where the solidified structure is occupied only by the equiaxed crystal structure by a circle at the center of the cross section of the flake, and evaluating the diameter as the equiaxed crystal region diameter. .
  • Table 1 shows the equiaxed crystal region diameter, the axial center crack length, and the number of inner surface defects.
  • the axial crack length is represented by the maximum diameter (mm) of the area where the axial crack is present in all the observed cross-sectional samples, and the number of internal defects is 10 pieces.
  • the average number of occurrences (individual Z pieces – pieces) determined based on the number of internal flaw occurrences investigated for the sample was displayed.
  • Test Nos. A1 to A8 are tests for examples of the present invention that satisfy the conditions specified in the first invention of the present invention A, and test Nos. A9 to A20 indicate at least one of the conditions specified in claim 1. We are not satisfied with this test.
  • test numbers A1 to A8 the secondary cooling at the end of solidification was slowly cooled at a cooling rate of less than 10 ° CZ.
  • the diameter of the equiaxed crystal region at the center of the cross-section of the flake was 60 mm or more, and the crack length of the flake shaft center part was as low as 30 mm or less, indicating good flake properties. .
  • the hollow shells obtained by piercing and rolling round pieces produced by these forging tests showed a low strength of 0.1 (piece Z-round pieces) or less.
  • test numbers A9 to A16 are tests in which the tundish molten steel superheat degree and the stirring intensity of electromagnetic stirring were changed with respect to test numbers A1 to A8.
  • the diameter of the equiaxed crystal region at the center of the cross-section of the flank became less than 60 mm, which did not satisfy the conditions specified in the first invention.
  • Numerous axial cracks of the flakes occur along the crystal grain boundaries of the columnar crystals distributed around the outer periphery of the equiaxed crystal, and the axial cracks have the form shown in Fig. 1 (b). did.
  • the crack length of the axial center part was also significantly longer than that of the inventive examples of test numbers A1 to A8.
  • the number of inner surface flaws generated in the hollow shell obtained by piercing and rolling these round pieces is 15
  • test numbers A9 to A16 Although the number of inner surface flaws generated in the hollow shell obtained by piercing and rolling these round pieces is lower than that of test numbers A9 to A16, it is compared with the present invention examples of test numbers A1 to A8. It became a high value.
  • a plug is arranged along a pass line between a pair of cone-shaped inclined rolls arranged opposite to each other around the pass line, and the billet, which is a round rod single force of the second invention, is swung.
  • a ratio DgZDl of a roll diameter Dg (mm) of the inclined roll gorge portion and a roll diameter Dl (mm) at a position where the billet starts to contact the roll at the inclined roll inlet, and the billet Squeezing force The ratio of the billet rotation number N to the billet outer diameter reduction ratio Df (%) NZDf satisfies any of the above formulas (1) to (3), and D1 and the billet outer diameter Bd (mm).
  • the ratio D1Z Bd satisfies the above formula (4).
  • FIG. 5 is a diagram schematically illustrating a situation in which a billet is pierced and rolled by placing a plug between a pair of inclined rolls arranged to face each other around a pass line.
  • the tilt angle j8 of the tilt roll 1 is set to zero.
  • the gorge portion la of the cone-shaped inclined roll 1 is a position where the inlet surface lb and the outlet surface lc of the inclined roll 1 cross each other, and the gap between the pair of inclined rolls 1 and 1 is the minimum.
  • the roll diameter is Dg (mm).
  • the shape of the inlet surface lb of the inclined roll 1 may be a cross-sectional shape having two or more gradient angles, or may be a curved cross-sectional shape.
  • the inclined roll diameter at the point A where the billet 3 starts to contact the inclined roll inlet surface lb is shown as the inlet roll diameter Dl (mm).
  • the distance in the direction parallel to the pass line X—X (distance in the pass line direction) to the tip position of the same A point force plug 2 is indicated by Ld (mm).
  • the gap between the inclined rolls at the plug tip position is R pg (mm), and the angle between the pass line X—X and the inclined roll inlet face lb is indicated by ⁇ 1.
  • the present inventors produced billets with outer diameters of 70 mm and 60 mm including the center using continuous forged pieces of 0.2% C steel, and pierced and rolled under the conditions shown in Table 2.
  • the line Investigate the occurrence of misrolls such as stagnation defects and the presence of internal flaws
  • the ratio DlZBd force between the inlet roll diameter D1 and the billet outer diameter Bd is less than the range, for example, less than 2.5, the stagnation state of the billet becomes unstable and misrolls occur frequently.
  • the fourth invention is made on the basis of the above-described knowledge.
  • the billet which is also a round-shaped piece of the second invention is used, and any one of the formulas (1) to (3) is used.
  • This is a seamless pipe manufacturing method including a piercing-rolling process that satisfies the condition of formula (4).
  • the entire length including the top portion of the hollow shell is In order to prevent the occurrence of inner surface flaws, a piercing and rolling process that satisfies any of the above formulas (1) to (3) is provided according to the range of the roll diameter ratio DgZDl. Normally, an increase in the roll diameter ratio DgZDl is effective in preventing the occurrence of internal flaws, but the upper limit is limited due to equipment restrictions.
  • the roll diameter ratio DgZDl increases. Since the ratio DlZBd between the inlet roll diameter D1 and the billet outer diameter Bd decreases and misroll tends to occur frequently, the roll diameter ratio DgZDl also has an upper limit, and the upper limit is set to 1.8.
  • the billet outer diameter reduction ratio Df is operated within an appropriate range of 4 to 8%. Therefore, when the ratio NZDf of billet rotation number N and billet outer diameter reduction ratio Df at the time of squeezing is adapted to the deviation of the above formulas (1) to (3), the outer diameter reduction ratio Df is It is also preferable to have a condition of 4 to 8%.
  • the ratio DlZBd of the inlet roll diameter D1 to the billet outer diameter Bd is It is characterized by comprising a piercing and rolling process that satisfies the formula (4). If the value of DlZBd falls below the lower limit, slipping will occur when the billet is swallowed, resulting in an unstable swallowing condition.
  • the upper limit of DlZBd is not defined, but the surface power of the facility is limited, and it is preferably 6.5 or less.
  • the seamless pipe manufacturing method of the fourth invention is directed to the use of a cone-shaped inclined roll.
  • the reason why barrel-shaped inclined rolls are not targeted is that the diameter ratio DgZDl is limited to 1.03 or less for barrel-shaped inclined rolls that are merely different in terms of quality and efficiency. 4) It is difficult to apply to the manufacturing method of the invention.
  • center porosity is easily generated when billet is segregated at the center, continuous forging material, stainless steel containing 5% or more of Cr that is likely to generate ⁇ ferrite, and copper and copper for non-ferrous metals. Even if the material has poor structure, such as an alloy, it has a remarkable effect. The fruit can be demonstrated.
  • Table 5 shows the results of producing a holo-shell by piercing and rolling.
  • the ⁇ mark in the occurrence of internal flaws in Table 5 indicates that the number of internal flaws per unit length lm of the holo seal is 1 or less, and the ⁇ mark per unit length lm of the holo shell.
  • X indicates the case where three or fewer inner surface defects occur, and X indicates the case where more than three inner surface defects occur per unit length lm of the hollow shell.
  • the misroll occurrence rate (%) is indicated by the ratio of the number of rolls generated as a result of piercing and rolling using 20 billets for each roll setting and rolling conditions.
  • test number B1 B5 either of the above formulas (1) to (3) is satisfied according to the roll diameter ratio DgZDl, and the condition of formula (4) is also satisfied. Since it satisfied, it was possible to completely prevent the generation of internal flaws over the entire length of the holoshell where there was no misroll.
  • test numbers B6 to B9 either of the above formulas (1) to (3) or the condition of formula (4) could not be satisfied. A defect occurred.
  • the fifth aspect of the invention is the solid round billet of the outer diameter Bd, which is the round rod piece force of the second aspect of the invention.
  • FIG. 8 is a diagram for explaining the billet outer diameter reduction rate of the plug lead and the plug tip in billet piercing-rolling.
  • the plug lead PL refers to the distance from the position of the roll gorge la of the cone type inclined roll 1 to the tip position of the plug 2 as shown in FIG.
  • RO is the shortest distance between the inclined rolls 1 and 1 at the position of the gorge la.
  • the cylindrical portion having the outer diameter d of the tip rolled portion and the axial length L2 is not necessarily required to have the same diameter in the axial direction, and the cutting and heat treatment are repeated.
  • the tip force in the axial direction of the outer diameter d may also be a tapered columnar shape with a half angle of the taper angle increasing toward the rear end of 4 ° or less.
  • the reeling portion is a portion provided to keep the thickness of the material constant, and the thickness strength is not actively performed here. For this reason, it is preferable that the angle of the reeling section is almost the same as the surface angle on the roll exit side!
  • the tip rolling portion of the plug that requires a predetermined high temperature strength. Therefore, it is effective to divide the plug into a member that uses the tip rolling part and a base material that forms the work part and the reeling part.
  • the scale thickness of the base material is preferably in the range of 200 ⁇ m to 1000 ⁇ m from the viewpoint of the adhesion of the scale and the plug life.
  • a member used for the tip rolling portion a member in which a thickness scale is formed on a base material can be used. By forming a thick scale and covering the surface of the member, heat resistance can be ensured and effective in suppressing melting damage, and the thick scale also exhibits an excellent effect on lubricity during piercing and rolling.
  • Example 1 a billet having an outer diameter of 70 mm including the center portion thereof was cut out from the round piece manufactured with test number A1 of the first invention, and this was pierced and rolled to obtain the seamless of the fifth invention. The effect of the pipe manufacturing method was confirmed.
  • Prepare two-zone plugs with the shape shown in Fig. 3 and plugs with the shape shown in Fig. 4 as the plugs to be used. Are shown in Table 6.
  • the plug number C8 is a two-zone type plug. All plugs were made of 0.5% Cr-l.5% Mo-3.0% W alloy steel.
  • the inclined rolls (main rolls) of the piercing and rolling mill are all set with the entrance surface of the inclined rolls with the outer diameter of the gorge portion set to 410 mm, the inclination angle ⁇ set to 0 °, and the crossing angle ⁇ set to the angles described later.
  • Both the incoming side angle, which is the angle formed by the straight line parallel to the pass line X—X, and the outgoing side angular force, which is the angle formed by the outgoing side of the inclined roll and the straight line parallel to the pass line X—X, are 3.5 °.
  • a cone roll was prepared.
  • the entrance side diameter and the exit side diameter of the inclined rolls were different for each cross angle ⁇ (5 °, 10 °, 15 °) described later.
  • the maximum value of the billet outer diameter rolling reduction Df, in which no inner surface flaws occur is 3 on a piercing mill with an inclined roll cross angle ⁇ of 5 °.
  • the crossing angle is increased, the upper limit of the billet outer diameter reduction ratio Df, in which no internal flaws are generated, can be expanded.
  • Example 2 the billet made of round slabs produced by the continuous forging method of the first invention was subjected to a piercing and rolling test using an actual piercing and rolling machine, so that the seamless pipes of the fifth to seventh inventions were obtained. The effect of this manufacturing method was verified.
  • a piercing and rolling test was conducted to produce a hollow shell having an outer diameter of 325 mm, a wall thickness of 48 mm, and a length of 10000 mm after heating the billet bowl having a steel composition of 2 to 1.5% to 1250 ° C.
  • plugs to be used three types of plugs having the shape shown in Fig. 4 and a two-zone type plug shown in Fig. 3 were prepared. Table 9 shows the dimensions of each part of these plugs.
  • Table 10 and Table 11 show the set dimensions of the shortest distance RO between the inclined rolls, the plug lead PL, and the inclined roll gap Rpg at the plug tip position.
  • the inclined roll of the piercing mill used in the test has an outer diameter of the gorge part of 1400 mm, the crossing angle ⁇ is 20 °, the entrance side angle is 3 °, and the exit side angle is 4 °. Also, the plug tip billet outer diameter reduction ratio Df was changed in 7 steps within the range of 2.0 to 7.0%.
  • the base metal other than the tip rolling part was made of 3.0% Cr-l.0% Ni steel, and its strength was 1100 ° C and 30MPa.
  • the material and physical properties of the tip rolling part are as follows.
  • plug number C9 and C10 members were used in which a scale was formed on a 3.0% Cr-l.0% Ni steel base material.
  • Plug number C11 of the same shape as plug number C11! / The same number for a member made of 0.5% Cr- l.
  • Table 12 shows the measurement results of the material of the tip rolling part of the plug used, the tensile strength of the tip rolling part at 1100 ° C, and the scale thickness of the base metal.
  • the scale treatment at this time was performed in the temperature range of 1000 ° C. to 1100 ° C., and the scale thickness was adjusted by adjusting the treatment time.
  • the plug has a structure in which the tip rolling part can be replaced.
  • plug damage C12-1 with a thicker scale than usual can be used to prevent plug damage. It was possible to suppress the occurrence of internal flaws. However, when the same plug was used and the billet outer diameter reduction ratio Df was 2.0%, plug damage occurred. The reason for this is that the billet propulsive force was reduced and the rolling time was increased by reducing Df. Industrial applicability
  • the seamless pipe manufacturing method of the present invention includes a continuous forging process capable of forging a round piece having a significantly reduced axial center crack of the piece, which is a cause of internal flaws in the hollow shell, and the round It has a piercing and rolling process in which a round billet made of flakes is pierced and rolled to produce a holo-shell, so that both the effects of preventing the occurrence of misroll and preventing the occurrence of flaws on the inner surface of the holo-shell are achieved. It is possible to produce high-quality products with less internal defects based on productivity.
  • the ratio of the billet rotation frequency and the billet outer diameter reduction ratio is adjusted to a suitable range for the round billet according to the ratio between the roll diameter of the roll gorge of the tilt roll and the inlet roll diameter of the tilt roll.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

A process for producing a seamless pipe characterized by including a continuous casting step in which a round billet is cast in which the whole region in a central part having a diameter of at least 60 mm in the cross section is constituted of an isometric crystal structure and which has a carbon content of 0.1 mass% or lower and a diameter in terms of cross-section diameter beyond 300 mm. In the process for seamless-pipe production, the round billet produced in the continuous casting step may be pierced/rolled with a piercer under conditions in which the ratio of the billet rotation speed to the billet outer-diameter draft is a value in a range suitable for the ratio of the gorge part diameter to the inlet diameter in the tilting rolls, thereby giving a seamless pipe reduced in defects in the inner surface. As a piercing plug may be used a plug of a suitable shape which is approximately cylindrical and has a spherical rolling part at the plug tip. Thus, Mannesmann fracture and circumferential-direction shear strain are significantly inhibited and no billet nipping failure occurs at all. This process for seamless-pipe production enables a seamless pipe having even higher inner-surface quality to be produced with exceedingly high productivity.

Description

明 細 書  Specification
継目無管の製造方法  Seamless pipe manufacturing method
技術分野  Technical field
[0001] 本発明は、継目無管の製造方法に関する。さらに詳しくは、製品の内面疵の原因 の一つとなる铸片の中心部に発生しやすい軸心部割れを低減することが可能な丸铸 片の連続铸造工程、および上記の铸造工程により铸造された丸铸片を用い、ホロ一 シェル内面疵の発生を防止し、かつ圧延失敗を引き起こさない穿孔圧延工程を備え The present invention relates to a method for manufacturing a seamless pipe. More specifically, it is produced by a continuous forging process of round pieces that can reduce the axial center cracking that tends to occur at the center of the piece, which is one of the causes of internal flaws in the product, and the forging process described above. It is equipped with a piercing-rolling process that prevents the occurrence of flaws inside the hollow shell and does not cause rolling failure.
、内面疵の少な!/、継目無管を製造できる継目無管の製造方法に関する。 Further, the present invention relates to a method for manufacturing a seamless pipe that can produce a seamless pipe with less internal flaws.
背景技術  Background art
[0002] 連続铸造された铸片から、圧延または鍛造工程を経ずにマンネスマン法などにより 継目無管を製造する工程においては、連続铸造铸片の中心部にフ ライト凝固に特 有の欠陥である軸心部割れが発生しやすい。それゆえ、この铸片をそのまま製管用 ビレットとして使用した場合には、穿孔圧延工程において内面疵の発生を助長し、そ の疵が製品の致命的な欠陥となることが多 、。  [0002] In a process of producing a seamless pipe from a continuously forged piece by the Mannesmann method or the like without going through a rolling or forging process, there is a defect that is unique to the freeze solidification at the center of the continuously forged piece. Some axial center cracks are likely to occur. Therefore, when this piece is used as a billet for pipe making as it is, it tends to generate internal flaws in the piercing and rolling process, and that flaw often becomes a fatal defect of the product.
[0003] 連続铸造铸片の内部欠陥を低減することを目的として、铸片冷却の際の熱収縮を 利用して連続铸造铸片の中心部の品質を向上させる二次冷却法が開示されている 特開平 7— 1096号公報には、铸片の中心部の固相率が 0. 1〜0. 3となった時点 で、水量密度が 25〜: L00LZ (min'm2)の水冷却による铸片の表面冷却を開始し、 铸片の中心部の固相率が 0. 8以上になるまで上記水量密度の冷却を継続すること により、铸片中心部に発生するセンタポロシティを低減する方法が開示されている。こ こで、固相率とは、固 ·液共存相において固相の占める分率を意味する。この先行文 献には、軸心部割れの発生メカニズムや軸心部割れの低減条件が明確に示されて いない。 [0003] A secondary cooling method for improving the quality of the central portion of a continuous forged piece using heat shrinkage during the cooling of the piece has been disclosed for the purpose of reducing internal defects in the continuous forged piece. In Japanese Patent Laid-Open No. 7-1096, when the solid fraction in the central part of the piece reaches 0.1 to 0.3, the water density is 25 to L00LZ (min'm 2 ). The center porosity generated in the central part of the steel piece is reduced by starting the surface cooling of the steel piece by means of, and continuing the cooling of the above water density until the solid phase ratio in the central part of the steel piece reaches 0.8 or more. A method is disclosed. Here, the solid phase ratio means the fraction occupied by the solid phase in the solid-liquid coexisting phase. This prior document does not clearly indicate the mechanism of shaft center cracking or the conditions for reducing shaft center cracking.
[0004] また、冷却水の比水量を制御することにより铸片の冷却を制御し、铸片の内質を改 善する方法力 特開平 8— 332556号公報および特開 2001— 62550号公報に開 示されている。 [0005] 上記の特開平 8— 332556号公報に開示された方法は、铸片中心部のセンタポロ シティを低減し、軸心部割れを防止できる方法である力 凝固時に初晶としてフェライ ト相を生成する鋼においては、軸心部割れが発生する場合がある。また、特開 2001 — 62550号公報に開示された方法によれば、铸片中心部の収縮速度よりも表面の 収縮速度を大きくすることができ、铸片の中心部に発生するセンタポロシティまたは 中心偏析を低減させることができる力 前記特開平 8— 332556号公報に開示された 方法と同様に、凝固時に初晶としてフェライト相を生成する鋼においては、軸心部割 れが発生する場合がある。したがって、上記の両公報に開示された方法は、これらの 点でさらに改善の余地がある。 [0004] Further, a method for controlling the cooling of the flakes by controlling the specific amount of cooling water and improving the quality of the flakes is disclosed in JP-A-8-332556 and JP-A-2001-62550 It is disclosed. [0005] The method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-332556 reduces the center porosity at the center of the flank and prevents the cracking of the axial center portion. In the steel that is produced, axial center cracks may occur. Further, according to the method disclosed in Japanese Patent Laid-Open No. 2001-62550, the shrinkage rate of the surface can be made larger than the shrinkage rate of the central part of the flange, and the center porosity or center generated at the central part of the flange is obtained. Force that can reduce segregation As in the method disclosed in Japanese Patent Laid-Open No. 8-332556, in steel that forms a ferrite phase as a primary crystal during solidification, cracking of the axial center may occur. . Therefore, the methods disclosed in both of the above publications have room for further improvement in these respects.
[0006] 特開 2003— 117643号公報には、凝固末期における二次冷却により铸片の表面 を冷却することにより、铸片表面の凝固シェルの収縮を利用して、マクロ偏析、セミマ クロ偏析、センターキヤビティなどの低減を図る方法が開示されている。しかしながら 、凝固時に初晶としてフェライト相を生成する鋼では、軸心部割れが発生する場合が あり、さらなる改善が必要である。  [0006] Japanese Patent Laid-Open No. 2003-117643 discloses macro segregation, semi-macro segregation by utilizing the shrinkage of the solidified shell on the surface of the slab by cooling the surface of the slab by secondary cooling at the end of solidification. A method for reducing the center cavity is disclosed. However, in steels that produce ferrite phases as primary crystals during solidification, axial center cracks may occur, and further improvements are necessary.
[0007] さらに、本発明者らは、特開 2004— 330252号公報において、 C含有率が 0. 1質 量%以下の鋼、または Cr含有率が 1質量%以上で、かつ、 C含有率が 0. 15質量% 以下の丸铸片を铸造する方法にお!、て、铸片が铸型を出た直後から二次冷却を実 施し、その後に、铸片表面温度が 950〜1100°Cの範囲に達した時点力も铸片の中 心部が完全凝固するまで、該凝固末期二次冷却を継続する丸铸片の連続铸造方法 を提案した。しかし、これらの冷却方法は、铸片の直径が大きい場合、凝固殻の熱抵 抗が増大するため、軸心部に冷却効果が及びにくぐ十分な割れの改善効果を得る ことができない。  [0007] Further, the present inventors disclosed in JP-A-2004-330252, a steel having a C content of 0.1% by mass or less, or a Cr content of 1% by mass or more, and a C content. However, the secondary cooling is performed immediately after the piece comes out of the bowl shape, and then the piece surface temperature is 950 to 1100 °. We proposed a continuous forging method of round round pieces that continues the secondary cooling at the end of solidification until the center of the piece is completely solidified even when the force at the point of reaching C range is reached. However, in these cooling methods, when the diameter of the piece is large, the thermal resistance of the solidified shell increases, so that the cooling effect on the shaft center part and the sufficient crack improvement effect cannot be obtained.
[0008] 一方、継目無管の代表的な製造方法として用いられているマンネスマン プラグミ ル方式の製管法は、所定温度に加熱された中実のビレットをピアサ一に送給して、そ の軸心部を穿孔圧延することによりホロ一シェルを製造する。次いで、ホロ一シェル はマンドレミルによる延伸圧延工程、再加熱、または直接にストレツチレデューサもし くはサイザミルによる定径圧延工程、さらに精整工程を経て製品である継目無管とな る。 [0009] 穿孔圧延工程では、ビレットをパスラインに沿って圧延するため、このパスラインに 対してロール軸心線が傾斜した樽形状 (バレル形状)またはコーン形状からなる一対 の傾斜ロールを対向配置している。さらに、これらの傾斜ロール間にパスライン上に 配されたマンドレルに保持されたプラグを位置させる。 On the other hand, the Mannesmann plug mill type pipe manufacturing method, which is used as a representative method for producing seamless pipes, sends a solid billet heated to a predetermined temperature to a piercer, and A hollow shell is manufactured by piercing and rolling the shaft center. The hollow shell then becomes a product seamless pipe through a drawing and rolling process using a mandrel mill, reheating, or a direct diameter rolling process using a stretch reducer or sizer mill, and a refining process. [0009] In the piercing and rolling process, since the billet is rolled along the pass line, a pair of inclined rolls having a barrel shape (barrel shape) or a cone shape in which the roll axis is inclined with respect to the pass line are arranged opposite to each other. is doing. Further, a plug held by a mandrel disposed on the pass line is positioned between these inclined rolls.
ピアサーロールとしては、コーン形状の傾斜ロールが用いられる場合もある。  As the piercer roll, a cone-shaped inclined roll may be used.
[0010] 図 1は、穿孔圧延工程に用いられるコーン形状の傾斜ロールの配置を模式的に説 明する図である。さらに、図 2は、前記図 1の A— A矢視で示されるコーン形状の傾斜 ロールの配置を説明する図である。  FIG. 1 is a diagram schematically illustrating the arrangement of cone-shaped inclined rolls used in the piercing and rolling process. Further, FIG. 2 is a view for explaining the arrangement of the cone-shaped inclined rolls indicated by arrows AA in FIG.
傾斜ロール 1は、その中間部にロール径 Dgなるゴージ部 laと、このゴージ部 laの 入側端部に向かうにしたがって縮径された略円錐台状をなす入口面 lbおよび出側 端面に向かうにしたがって拡径された略円錐台状をなす出口面 lcとを備え、全体と してコーン型の形状を有する。  The inclined roll 1 has a gorge portion la having a roll diameter Dg in the middle portion thereof, and an entrance surface lb having a substantially truncated cone shape that is reduced in diameter toward the entrance end portion of the gorge portion la, and toward the exit end surface. And an exit face lc having a substantially frustoconical shape which is expanded in accordance with the shape, and has a cone-like shape as a whole.
[0011] この傾斜ロール 1は、パスライン X—Xに対してロール軸心線がそれぞれ交叉角 γ をなすように軸対称に配置されている。さらに、図 2に示すように、傾斜ロール 1はパ スライン Χ—Χに対して傾斜角 j8となるように配置される。一方、図 2に示されない他 方の傾斜ロール 1も、パスライン X— Xを挟んで互いに傾斜角 で逆方向に傾斜させ て対向配置される。  [0011] The inclined roll 1 is arranged symmetrically with respect to the pass line X-X so that the roll axis is at an intersection angle γ. Further, as shown in FIG. 2, the inclined roll 1 is arranged so as to have an inclination angle j8 with respect to the pass line Χ-Χ. On the other hand, the other inclined rolls 1 not shown in FIG. 2 are also opposed to each other while being inclined in opposite directions at an inclination angle across the pass line XX.
[0012] 傾斜ロール 1は、それぞれの駆動装置 4に直接接合される。これにより、各傾斜ロー ル 1は交叉角 γおよび傾斜角 j8を確保しながらロール軸心線を中心に回転でき、ビ レット 3に旋回運動を付与する。  The inclined roll 1 is directly joined to each drive device 4. Thus, each tilt roll 1 can rotate around the roll axis while securing the crossing angle γ and the tilt angle j8, and imparts a swiveling motion to the billet 3.
また、プラグ 2は全体として砲弾形状をなし、その後端部をマンドレルバ一 Mの先端 部に支持され、マンドレルバ一 Mの後端部は図示しないスラストブロック装置に連結 される。  The plug 2 has a bullet-like shape as a whole, and its rear end is supported by the front end of the mandrel bar M, and the rear end of the mandrel bar M is connected to a thrust block device (not shown).
[0013] 上記のように構成されたピアサ一に送給されたビレット 3は、傾斜ロールの間隙を通 過している間に旋回されつつ傾斜ロール 1とプラグ 2により圧延され、ホロ一シェルと なる。  [0013] The billet 3 fed to the piercer configured as described above is rolled by the inclined roll 1 and the plug 2 while being swung while passing through the gap between the inclined rolls. Become.
[0014] この穿孔圧延工程におけるホロ一シェル内面疵の発生のメカニズムを説明する。ビ レットは、傾斜ロールに嚙み込まれてプラグ先端部に到達するまでの間に、一対の傾 斜ロールにより旋回させられながら圧縮カ卩ェされる。このとき、いわゆる「回転鍛造効 果」によって、ビレットの中心部は脆くなり、穿孔されやすい状態になる。この回転鍛 造効果の影響が大き過ぎる場合には、中心部にボイドが発生する。極端な場合には 中心部が破壊されて、放射状の割れ疵が発生する。穿孔圧延前のビレットに軸心内 部割れがない場合でも、上記のような「回転鍛造効果」により発生する中心部ボイド や中心部割れ疵は、穿孔圧延後のホロ一シェルの内面疵となりうる。 [0014] A mechanism of generation of holo-shell inner surface defects in the piercing and rolling process will be described. The billet is swept between the inclined rolls and reaches a tip of the plug until a pair of inclined Compressed while being swirled by an oblique roll. At this time, due to the so-called “rotary forging effect”, the center portion of the billet becomes brittle and is easily perforated. If the effect of this rotational forging effect is too great, a void is generated at the center. In extreme cases, the center is destroyed and radial cracks occur. Even if the billet before piercing and rolling has no internal cracks in the center, the voids and cracks in the center caused by the "rotary forging effect" as described above can become the inner surface of the hollow shell after piercing and rolling. .
[0015] さらにビレットが中心偏析ゃセンタポロシティが生じ易い連続铸造材や、 δフェライ トが発生しやすい 5%以上の Crを含有するステンレス鋼、さらに、非鉄では銅、銅合 金など铸造組織が残存して加工性の悪 ヽ材料の場合に、それが穿孔圧延されるとホ ローシェルの内面疵の発生を助長する。  [0015] Further, if the billet is segregated in the center, the continuous forging material is likely to cause center porosity, the stainless steel containing 5% or more of Cr, which is likely to generate δ ferrite, and the non-ferrous structure such as copper or copper alloy. In the case of a material with poor workability that remains, when it is pierced and rolled, it promotes the generation of inner shell flaws in the hollow shell.
[0016] ところで、穿孔圧延工程におけるホロ一シェルの内面疵の発生を防止するために、 従来力も種々の方法が提案されている。例えば、特開平 03— 13222号公報、特開 昭 61— 3605号公報、特開 2000— 140911号公報には、ビレット外径圧下率、傾斜 ロール開度など、ビレットとプラグと傾斜ロールの幾何学的位置条件を適正化する方 法が開示されている。  [0016] By the way, in order to prevent the occurrence of flaws on the inner surface of the holo-shell in the piercing and rolling process, various methods have been proposed for the conventional force. For example, JP 03-13222, JP 61-3605, 2000-140911, billet, plug and inclined roll geometry such as billet outer diameter reduction rate, inclined roll opening, etc. A method for optimizing target position conditions is disclosed.
[0017] しかし、上記の特開平 03— 13222号公報に開示された方法は、ビレットのトップ部 では内面疵の発生防止よりも嚙み込み性を重視している。特開昭 61— 3605号公報 に開示された方法は、被圧延材に発生する内面疵を防止できるが、嚙み込み不良な どによる圧延失敗 (以降、「ミスロール」ともいう)を引き起こすおそれがある。さらに、 特開 2000— 140911号公報に開示された方法は、特開平 03— 13222号公報に開 示された方法と同様に、ビレットのトップ部での内面疵の発生を十分に防止できない  [0017] However, the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 03-13222 places greater emphasis on the squeezing property than the prevention of inner surface flaws at the top of the billet. Although the method disclosed in Japanese Patent Laid-Open No. 61-3605 can prevent internal flaws occurring in the material to be rolled, there is a risk of causing a rolling failure (hereinafter, also referred to as “misroll”) due to poor penetration. is there. Further, the method disclosed in Japanese Patent Laid-Open No. 2000-140911 cannot sufficiently prevent the generation of internal flaws at the top portion of the billet, similar to the method disclosed in Japanese Patent Laid-Open No. 03-13222.
発明の開示 Disclosure of the invention
[0018] 本発明は、継目無管製造工程の中で、丸铸片の連続铸造工程および穿孔圧延ェ 程において、内面疵の発生を防止することに主眼をおいてなされたものであり、内面 疵の要因となる铸片の軸心部割れを著しく低減させる丸铸片の連続铸造工程と、铸 造された丸ビレットを穿孔圧延するに際してミスロール発生の防止とホロ一シェル内 面疵発生の防止の二つの効果を両立できる穿孔圧延工程を備え、内面疵の少ない 高品質の製品を製造できる継目無管の製造方法を提供することを目的として!、る。 [0018] The present invention has been made with the primary aim of preventing the occurrence of internal flaws in the continuous production process and the piercing and rolling process of round pieces in the seamless pipe manufacturing process. The continuous forging process of round slabs that significantly reduces the cracks that cause cracks, and the prevention of misrolls and the occurrence of surface creases in the holo shell when piercing and rolling the fabricated round billets It has a piercing and rolling process that can achieve both effects of For the purpose of providing a seamless pipe manufacturing method that can manufacture high quality products!
[0019] 本発明者は、内面疵の少ないホロ一シェルを高い生産性のもとに製造できる継目 無管の製造方法を研究し、下記の (a)〜(f)の知見を得て、本発明を完成させた。  [0019] The present inventor has studied a seamless pipe manufacturing method capable of manufacturing a holo-shell with less internal flaws with high productivity, and obtained the following knowledge (a) to (f), The present invention has been completed.
[0020] (a)フェライト相は、オーステナイト相に比べて強度が小さぐ C含有率が 0. 1質量 % (以下、「質量%」を単に「%」とも記す)以下の铸片にお!、てフ ライト相の凝固に 起因する軸心部割れが発生しやすい。また、上記の C含有率を有する铸片では、直 径が大きくなるほど、軸心部割れが発生しやすぐ铸片直径が 300mmを超えると、 二次冷却による铸片表面の強制冷却の効果が低減するだけでなぐ強制冷却は、か えって軸心部割れの拡大をもたらす。それゆえ、铸片表面からの輻射放冷を含む緩 冷却を行うのが適切である。  [0020] (a) The ferrite phase has a lower strength than the austenite phase, and the C content is 0.1% by mass (hereinafter, “mass%” is also simply referred to as “%”). It is easy for cracks in the shaft center to occur due to the solidification of the bright phase. In addition, in the piece having the above-mentioned C content, as the diameter increases, the axial center cracking occurs, and when the piece diameter exceeds 300 mm immediately, the effect of forced cooling of the piece surface by secondary cooling is effective. Forced cooling that can be reduced simply leads to an increase in axial cracks. Therefore, it is appropriate to perform slow cooling including radiation cooling from the surface of the sepal.
[0021] (b)大径の铸片では、凝固末期の中心部固相率力 ^を超え 1. 0以下の範囲におい て、铸片表面を緩冷却するとともに中心部の等軸晶率を増加させることにより、軸心 部割れは低減する。また、铸片直径が 300mmを超える铸片では、横断面中央部の 少なくとも直径 60mm以内の領域を全て等軸晶組織とすることにより、軸心部割れを 、铸片横断面の中心から半径 15mm以内の領域に抑制することができる。  [0021] (b) In the case of a large-diameter piece, the surface of the solid piece is slowly cooled and the equiaxed crystal ratio of the central part is reduced within the range of more than 1.0 and 1.0 or less at the solidification rate at the end of solidification. By increasing it, shaft center cracking is reduced. Also, in the case of a piece having a diameter of more than 300 mm, the center part of the cross section has a radius of 15 mm from the center of the piece cross section by making all regions within a diameter of 60 mm have an equiaxed crystal structure. It is possible to suppress to the area within.
[0022] (c)上記 (b)の方法により铸造された丸铸片は、分塊圧延工程などを経ずにそのま ま穿孔圧延しても、ホロ一シェルの内面疵の発生は抑制される。  [0022] (c) Even if the round flakes produced by the method of (b) above are pierced and rolled without undergoing a bulk rolling process, the occurrence of internal flaws in the holo-shell is suppressed. The
[0023] (d)後述する図 5に示される傾斜ロールゴージ部のロール径 Dgと同ロール入口で のロールへのビレット接触開始位置におけるロール径(以下、「入口ロール径」とも ヽ う) D1との比、すなわち(DgZDl)力 、さい範囲では、傾斜ロールへのビレットの嚙 み込み後プラグ先端に至るまでのビレットの回転回数 Nとビレット外径圧下率 Dfとの 比 (NZDf)の値に拘わらず、内面疵が発生しやすくなる。上記ロール径比(DgZD 1)が大きい範囲では、内面疵の発生を抑制できるが、上記ビレットの回転回数 Nとビ レット外径圧下率 Dfとの比 (N/Dg)が小さいと、ミスロールの発生比率が増加する。 さらに、上記入口ロール径 D1とビレット外径 Bdとの比(DlZBd)力 2. 5未満の小 さい範囲では、ビレットの嚙み込み状態が不安定になりミスロールが多発する傾向が ある。  [0023] (d) The roll diameter Dg of the inclined roll gorge shown in FIG. 5, which will be described later, and the roll diameter at the billet contact start position on the roll at the same roll inlet (hereinafter also referred to as “inlet roll diameter”) D1 Ratio, that is, (DgZDl) force, in the range, the value of the ratio (NZDf) of the billet rotation number N and billet outer diameter reduction ratio Df after the billet is squeezed into the inclined roll to reach the plug tip Regardless, internal flaws are likely to occur. In the range where the roll diameter ratio (DgZD 1) is large, the generation of inner surface flaws can be suppressed. However, if the ratio (N / Dg) between the billet rotation number N and the billet outer diameter reduction ratio Df is small, misroll Incidence rate increases. Furthermore, when the ratio of the inlet roll diameter D1 to the billet outer diameter Bd (DlZBd) is less than 2.5, the stagnation state of the billet tends to be unstable and misrolling tends to occur frequently.
[0024] (e)図 4に示す形状の穿孔圧延用プラグを用いる場合、各部寸法のうち、先端圧延 部の外径 dがビレット外径 Bdの 0. 35倍以下、先端球状面の軸方向長さと円柱状部 分の長さの和 (L1 +L2)が dの 0. 5倍以上で、かつ、曲率半径 Rと円弧回転面で形 成された軸方向長さ L3がパラメータ「(dZ2Bd) / (R/L3)」の値で 0. 046以下を 満たす形状にすると、ビレット外径圧下率 Dfを、小さくしても嚙み込み不良が発生せ ず、マンネスマン破壊と円周方向剪断歪が抑制されて、ホロ一シェル内面疵の発生 を防止できる。 [0024] (e) When using a piercing-rolling plug having the shape shown in FIG. The outer diameter d of the part is 0.35 times or less of the billet outer diameter Bd, the sum of the axial length of the tip spherical surface and the length of the cylindrical part (L1 + L2) is 0.5 times or more of d, and If the shape is such that the axial length L3 formed by the radius of curvature R and the arc rotation plane satisfies the parameter “(dZ2Bd) / (R / L3)” of 0.046 or less, the billet outer diameter reduction ratio Df Even if it is made smaller, no stagnation failure occurs, and Mannesmann fracture and circumferential shear strain are suppressed, and the occurrence of flaws on the inner surface of the holo-shell can be prevented.
[0025] し力しながら、 dを Bdの 0. 12倍未満にすると、先端圧延部が溶損しやすくなつてプ ラグ寿命が低下する。さらに、(L1 +L2)を dの 3倍超にすると、先端圧延部が変形し やすくなるのにカ卩え、プラグの全長が長くなりすぎる。  [0025] If d is set to less than 0.12 times Bd while the force is applied, the rolled end portion is liable to be melted and the plug life is shortened. Furthermore, if (L1 + L2) is more than 3 times d, the rolled end part will be easily deformed, and the total length of the plug will be too long.
また、 Rと L3がパラメータ「(dZ2Bd) / (R/L3)」の値で 0. 020未満となる形状に すると、円周方向剪断歪の発生を十分に抑制できない。  In addition, if R and L3 have a value of less than 0.020 in the parameter “(dZ2Bd) / (R / L3)”, the occurrence of circumferential shear strain cannot be sufficiently suppressed.
ここで、ビレット外径圧下率 Df (以下、「プラグ先端ドラフト率 Df」とも称する)とは、後 述するとおり、プラグ先端位置におけるビレット外径の圧下率を意味し、プラグ先端位 置での傾斜ロール間隙を Rpgとしたとき、 { (Bd-Rpg) /Bd} X 100により表される 値である。  Here, the billet outer diameter reduction rate Df (hereinafter also referred to as “plug tip draft rate Df”) means the reduction rate of the billet outer diameter at the plug tip position, as will be described later. It is a value represented by {(Bd-Rpg) / Bd} X 100 where the inclined roll gap is Rpg.
[0026] (f)プラグ先端圧延部の高温強度を確保して、前記図 4に示す形状のプラグの各部 寸法のうち、先端圧延部の外径 dがビレット外径 Bdの 0. 12倍以下、軸方向長さ (L1 +L2)力 の 0. 5倍以上で、かつ、曲率半径 Rと L3がパラメータ「(dZ2BdZ (RZL 3)」の値で 0. 046以下を満たす形状にすると、ビレット外径圧下率 Dfを、小さくして も嚙み込み不良は発生しな 、。  [0026] (f) Ensuring high-temperature strength of the plug tip rolling portion, out of the dimensions of each part of the plug having the shape shown in Fig. 4, the outer diameter d of the tip rolling portion is 0.12 times or less of the billet outer diameter Bd. If the shape is more than 0.5 times the axial length (L1 + L2) force and the curvature radii R and L3 satisfy the parameter “(dZ2BdZ (RZL 3)” of 0.046 or less, the billet Even if the outer diameter reduction ratio Df is reduced, no stagnation occurs.
[0027] 一方、前記 (e)での説明と同様に、 dを Bdの 0. 06倍未満にすると、先端圧延部の 強化を図っても、熱容量が小さいため溶損しやすくなる。さらに、(L1 +L2)を dの 3 倍超にすると、先端圧延部が変形しやすくなるのに加え、プラグ全体の長さが長くな りすぎる。  [0027] On the other hand, when d is less than 0.06 times Bd, as described in the above (e), even if the tip rolling portion is strengthened, the heat capacity is small, so that it is easy to melt. Furthermore, if (L1 + L2) is more than 3 times d, the rolled end part is likely to be deformed and the entire plug length becomes too long.
また、 Rと L3がパラメータ「(dZ2Bd) / (R/L3)」で 0. 020未満となる形状にする と、円周方向剪断歪の発生を十分に抑制できない。  In addition, if R and L3 have a parameter “(dZ2Bd) / (R / L3)” of less than 0.020, the occurrence of circumferential shear strain cannot be sufficiently suppressed.
[0028] 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1) に示す連続铸造工程を備えた継目無管の製造方法、 (2)に示す丸铸片および (3) 〜(7)に示す穿孔圧延工程を備えた継目無管の製造方法にある。 [0028] The present invention has been completed based on the above findings, and the gist of the present invention is a method for producing a seamless pipe having a continuous forging step shown in the following (1), and a circle shown in (2). Sepal and (3) It exists in the manufacturing method of a seamless pipe provided with the piercing-rolling process shown to (7).
[0029] (1)丸铸片の横断面中央部の少なくとも直径 60mm以内の領域を全て等軸晶組織 とするとともに、中心部固相率が 0を超え 1. 0以下の範囲において丸铸片表面の冷 却速度が 10°CZ分以下の緩冷却を行いながら、炭素含有率が 0. 1質量%以下で 铸片横断面の直径が 300mmを超える丸铸片を铸造する連続铸造工程を備えること を特徴とする継目無管の製造方法 (以下、「第 1発明」とも記す)。 [0029] (1) At least a region within a diameter of 60 mm in the central part of the cross section of the round piece has an equiaxed crystal structure, and the solid part in the central part has a solid fraction of more than 0 and 1.0 or less. It is equipped with a continuous forging process that forges round pieces with a carbon content of 0.1% by mass or less and a cross-sectional diameter of more than 300mm while performing slow cooling at a surface cooling rate of 10 ° CZ or less. A seamless pipe manufacturing method characterized by the above (hereinafter, also referred to as “first invention”).
[0030] (2)前記(1)に記載の連続铸造工程により铸造された丸铸片であって、铸片の中 心部に発生する軸心部割れが、铸片横断面の中心から半径 15mm以内の領域に存 在することを特徴とする丸铸片 (以下、「第 2発明」とも記す)。 [0030] (2) A round rod piece produced by the continuous forging process described in (1) above, wherein an axial center crack generated in the center portion of the rod piece has a radius from the center of the rod cross section. A round piece (hereinafter, also referred to as “second invention”) characterized by being within an area of 15 mm or less.
[0031] (3)前記 (2)に記載の丸铸片を分塊圧延することなく穿孔圧延する工程を備えるこ とを特徴とする継目無管の製管方法 (以下、「第 3発明」とも記す)。 [0031] (3) A seamless pipe-making method (hereinafter referred to as "third invention"), characterized by comprising a step of piercing and rolling the round piece as described in (2) above without rolling it in pieces. Also noted).
[0032] (4)パスライン周りに対向配置された一対のコーン型の傾斜ロールの間にパスライ ンに沿ってプラグを配し、前記(2)に記載の丸铸片からなるビレットを旋回移動させ つつ穿孔圧延する工程を備え、前記傾斜ロールゴージ部のロール径 Dg (mm)と傾 斜ロール入口におけるビレットのロールへの接触開始位置でのロール径 Dl (mm)と の比 DgZDl、および前記ビレットの嚙み込み力 プラグ先端に至るまでのビレット回 転回数 Nとビレットの外径圧下率 Df (%)との比 NZDfが下記(1)〜(3)式の 、ずれ かを満足し、さらに、前記 D1と前記ビレット外径 Bd (mm)との比 DlZBdが下記 (4) 式を満足することを特徴とする継目無管の製造方法 (以下、「第 4発明」とも記す)。 [0032] (4) A plug is disposed along a path line between a pair of cone-shaped inclined rolls arranged opposite to each other around the path line, and the billet made of round rod pieces as described in (2) above is swung. A roll diameter Dg (mm) of the inclined roll gorge part and a roll diameter Dl (mm) at the position where the billet starts to contact the roll at the inclined roll inlet DgZDl, and the billet Squeezing force The number of billet rotations N to the plug tip The ratio of billet outer diameter reduction ratio Df (%) NZDf satisfies the deviation of the following formulas (1) to (3). A method for producing a seamless pipe, wherein the ratio DlZBd between the D1 and the billet outer diameter Bd (mm) satisfies the following expression (4) (hereinafter also referred to as “fourth invention”).
Dg/DK l. 1のとき、  When Dg / DK l. 1
23≤N/ (Df/100)≤40 · · · (1)  23≤N / (Df / 100) ≤40 (1)
1. l≤Dg/DK l. 5のとき、  1. l≤Dg / DK l.
20≤N/ (Df/100)≤44 · · · (2)  20≤N / (Df / 100) ≤44 (2)
1. 5≤Dg/Dl≤l. 8のとき、  1. 5≤Dg / Dl≤l.
20≤N/ (Df/100)≤48 · · · (3)  20≤N / (Df / 100) ≤48 (3)
Dl/Bd≥2. 5 · · · (4)  Dl / Bd≥2.5 (4)
ただし、 Ldをビッレト嚙み込み点力もプラグ先端部までのパスライン方向の距離 (m m)、 βを傾斜ロールの傾斜角(° )、および Rpgをプラグ先端位置での傾斜ロール 間隙 (mm)としたとき、下記の(5)および (6)式の関係が成り立つものとする。 Where Ld is the bite squeezing point force, the distance in the pass line direction to the plug tip (mm), β is the tilt angle of the tilt roll (°), and Rpg is the tilt roll at the plug tip position. When the gap (mm) is assumed, the following relations (5) and (6) are satisfied.
N= 2LdZ ( 7u .Bd'tan iS ) · · · · (5)  N = 2LdZ (7u .Bd'tan iS) (5)
Df = { (Bd-Rpg) /Bd} X 100 · · · (6)  Df = {(Bd-Rpg) / Bd} X 100 (6)
[0033] (5)前記(2)に記載の丸铸片力 なる外径 Bd (mm)の中実丸ビレットを、外径 d(m m)が軸方向にわたり等径または外径 dが軸方向後端に向かうにしたがって増大する 軸方向長さ L2 (mm)の円柱状で、その先端面が曲率半径 r (mm)、軸方向長さ L1 ( mm)の球面状に形成された先端圧延部と、この先端圧延部に連続して外径が軸方 向後端に向かうにしたがって増大するように曲率半径 R (mm)の円弧回転面で形成 された軸方向長さ L3 (mm)のワーク部と、このワーク部に連続して外径が軸方向後 端の最大外径 D (mm)に向力うにしたがって増大するようにテーパ角度 2 Θ (° )で形 成されたテーパ円柱状の軸方向長さ L4 (mm)のリーリング部とを有するプラグを用い 、傾斜ロール式の穿孔圧延機で穿孔圧延する工程を備え、前記プラグの外径 d、曲 率半径 R、軸方向長さ Ll、 L2および L3と中実丸ビレットの外径 Bdとの関係が下記( 7)〜(9)式の 、ずれをも満足することを特徴とする継目無管の製造方法 (以下、「第 5発明」とも記す)。 [0033] (5) The solid round billet having the outer diameter Bd (mm) having the round rod side force as described in (2) above, wherein the outer diameter d (mm) is the same diameter over the axial direction or the outer diameter d is the axial direction. A rolled end with a cylindrical shape with an axial length L2 (mm) that increases toward the rear end, and its tip surface is formed into a spherical shape with a radius of curvature r (mm) and an axial length L1 (mm) Then, the workpiece part having an axial length L3 (mm) formed by an arc rotation surface having a radius of curvature R (mm) so that the outer diameter increases continuously toward the rear end in the axial direction continuously from the tip rolling part. And a tapered cylindrical shaft formed with a taper angle of 2 Θ (°) so that the outer diameter increases continuously toward the maximum outer diameter D (mm) at the rear end in the axial direction. A plug having a reeling portion with a length L4 (mm) is provided, and includes a step of piercing and rolling with an inclined roll type piercing and rolling machine, and the plug has an outer diameter d, a radius of curvature R, and an axial length. The seamless pipe manufacturing method (hereinafter referred to as “No. 1”) characterized in that the relationship between Ll, L2 and L3 and the outer diameter Bd of the solid round billet satisfies the deviations of the following equations (7) to (9). Also referred to as “5 inventions”).
0. 12≤d/Bd≤0. 35 · · · (7)  0. 12≤d / Bd≤0. 35 (7)
0. 020≤ (d/2Bd) / (R/L3)≤0. 046 · · · (8)  0.020≤ (d / 2Bd) / (R / L3) ≤0. 046 (8)
0. 5d≤Ll +L2≤3d · · · (9)  0. 5d≤Ll + L2≤3d (9)
[0034] (6)前記(2)に記載の丸铸片力 なる外径 Bd (mm)の中実丸ビレットを、外径 d(m m)が軸方向にわたり等径または外径 dが軸方向後端に向かうにしたがって増大する 軸方向長さ L2 (mm)の円柱状で、その先端面が曲率半径 r (mm)、軸方向長さ L1 ( mm)の球面状に形成された先端圧延部と、この先端圧延部に連続して外径が軸方 向後端に向かうにしたがって増大するように曲率半径 R (mm)の円弧回転面で形成 された軸方向長さ L3 (mm)のワーク部と、このワーク部に連続して外径が軸方向後 端の最大外径 D (mm)に向力うにしたがって増大するようにテーパ角度 2 Θ (° )で形 成されたテーパ円柱状の軸方向長さ L4 (mm)のリーリング部とを有し、少なくとも前 記先端圧延部の 1100°Cにおける引張強度が 50MPa以上であるプラグを用い、傾 斜ロール式の穿孔圧延機で穿孔圧延する工程を備え、前記プラグの外径 d、曲率半 径 軸方向長さ Ll、 L2および L3と中実丸ビレットの外径 Bdとの関係が下記の(8) 〜( 10)式の 、ずれも満足することを特徴とする継目無管の製造方法 (以下、「第 6発 明」とも記す)。 [0034] (6) The solid round billet having the outer diameter Bd (mm) having the round rod side force as described in (2) above, wherein the outer diameter d (mm) is the same diameter or the outer diameter d is the axial direction. A rolled end with a cylindrical shape with an axial length L2 (mm) that increases toward the rear end, and its tip surface is formed into a spherical shape with a radius of curvature r (mm) and an axial length L1 (mm) Then, the workpiece part having an axial length L3 (mm) formed by an arc rotation surface having a radius of curvature R (mm) so that the outer diameter increases continuously toward the rear end in the axial direction continuously from the tip rolling part. And a tapered cylindrical shaft formed with a taper angle of 2 Θ (°) so that the outer diameter increases continuously toward the maximum outer diameter D (mm) at the rear end in the axial direction. Using a plug that has a reeling part with a length of L4 (mm) and at least the tip rolled part has a tensile strength at 1100 ° C of 50 MPa or more, and is pierced by a tilt roll type piercing and rolling mill. Provided with a step of hole rolling, the outer diameter d of the plug, the half curvature Diameter Axial length Ll, L2 and L3 and solid round billet outer diameter Bd relationship between the following formulas (8) to (10): (Hereafter referred to as “Sixth Invention”).
0. 06≤d/Bd≤0. 12 · · · (10)  0. 06≤d / Bd≤0. 12 (10)
0. 020≤ (d/2Bd) / (R/L3)≤0. 046 · · · (8)  0.020≤ (d / 2Bd) / (R / L3) ≤0. 046 (8)
0. 5d≤Ll +L2≤3d · · · (9)  0. 5d≤Ll + L2≤3d (9)
[0035] (7)上記プラグの先端圧延部が取り替え可能であることを特徴とする前記 (6)に記 載の継目無管の製造方法 (以下、「第 7発明」とも記す)。  [0035] (7) The method for manufacturing a seamless pipe as described in (6) above, wherein the tip rolling portion of the plug is replaceable (hereinafter also referred to as "seventh invention").
[0036] 本発明において、「中心部固相率」とは、铸片中心部において、固相および液相の 総和に対して固相の占める分率をいう。 [0036] In the present invention, the "center part solid phase ratio" refers to the fraction of the solid phase occupied by the total of the solid phase and the liquid phase in the center part of the sepal.
「緩冷却」とは、铸片表面からの輻射放冷などを含めた遅 、冷却速度で冷却するこ とを 、 、、铸片表面の冷却速度が 10°CZ分以下の冷却を意味する。  “Slow cooling” means cooling at a slow cooling rate, including radiation cooling from the surface of the blade, and cooling at a surface temperature of 10 ° CZ or less.
「外径 dが軸方向後端に向かうにしたがって増大する軸方向長さ L2 (mm)の円柱 状」とは、外径 dが軸方向後端に向かうにしたがって好ましくはテーパ角度の半角が 4 ° 以下で増大する軸方向長さ L2 (mm)の円柱状であることを意味する。  “A cylindrical shape with an axial length L2 (mm) that increases as the outer diameter d increases toward the rear end in the axial direction” means that the outer diameter d increases toward the rear end in the axial direction. ° It means a cylindrical shape with an axial length L2 (mm) that increases below.
図面の簡単な説明  Brief Description of Drawings
[0037] 図 1は、穿孔圧延に用いられるコーン形状の傾斜ロールの配置を模式的に説明す る図である。  FIG. 1 is a diagram schematically illustrating the arrangement of cone-shaped inclined rolls used for piercing and rolling.
図 2は、前記図 1の A— A矢視で示されるコーン形状の傾斜ロールの配置を説明す る図である。  FIG. 2 is a view for explaining the arrangement of the cone-shaped inclined rolls indicated by the arrows AA in FIG.
図 3は、単純な砲弾形状力もなるプラグの一例を示す図である。  FIG. 3 is a diagram showing an example of a plug having a simple shell shape force.
図 4は、本発明 Bで用いるプラグ形状を示す図である。  FIG. 4 is a diagram showing a plug shape used in the present invention B. FIG.
図 5は、パスライン周りに対向配置された一対の傾斜ロール間にプラグを配置して ビレットを穿孔圧延する状況を模式的に説明する図である。  FIG. 5 is a diagram schematically illustrating a state in which a billet is pierced and rolled by placing a plug between a pair of inclined rolls opposed to each other around a pass line.
図 6は、铸片横断面の凝固組織および軸心部割れを模式的に示す図であり、同図 (a)は軸心部割れが発生する铸片中心部が等軸晶により充填されている場合を、ま た、同図 (b)は同中心部が等軸晶により充填されていない場合を表す。  Fig. 6 is a diagram schematically showing the solidified structure and axial center crack in the cross-section of the flake, and Fig. 6 (a) shows that the central portion of the flake where the axial crack occurs is filled with equiaxed crystals. Fig. 2 (b) shows the case where the central part is not filled with equiaxed crystals.
図 7は、本発明の連続铸造工程で用いる連続铸造装置の縦断面を模式的に示す 図である。 FIG. 7 schematically shows a longitudinal section of a continuous forging apparatus used in the continuous forging process of the present invention. FIG.
図 8は、ビレットの穿孔圧延におけるプラグリード、およびプラグ先端位置でのビレツ ト外径圧下率を説明する図である。  FIG. 8 is a diagram for explaining the plug lead in the billet piercing and rolling, and the billet outer diameter rolling reduction at the plug tip position.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 1.第 1発明〜第 3発明を実施するための形態 [0038] 1. Modes for carrying out the first to third inventions
1 - 1.第 1発明〜第 3発明の最良の形態  1-1. Best Mode of Inventions 1 to 3
本発明の継目無管の製造方法は、前記のとおり、丸铸片の横断面中央部の少なく とも直径 60mm以内の領域を全て等軸晶組織とするとともに、中心部固相率が 0を超 え 1. 0以下の範囲において丸铸片表面の冷却速度が 10°CZ分以下の緩冷却を行 いながら、炭素含有率が 0. 1質量%以下で铸片横断面の直径が 300mmを超える 丸铸片を铸造する連続铸造工程を備えることを特徴とする継目無管の製造方法であ る。また、上記の連続铸造工程により铸造された丸铸片を分塊圧延することなく穿孔 圧延する工程を備えることを特徴とする継目無管の製管方法である。以下に、本発 明の方法についてさらに詳しく説明する。  As described above, the method for producing a seamless pipe according to the present invention has an equiaxed crystal structure in all regions within a diameter of 60 mm at the center of the cross section of the round rod piece, and the solid phase ratio in the center exceeds zero. 1. 1. While the cooling rate of the round rod surface is 10 ° CZ or less in the range of 0 or less, the carbon content is less than 0.1% by mass and the diameter of the rod cross section exceeds 300mm. A method for producing a seamless pipe, comprising a continuous forging step of forging a round piece. Further, the present invention is a seamless pipe manufacturing method comprising a step of piercing and rolling round slabs forged by the above-mentioned continuous forging step, without performing ingot rolling. In the following, the method of the present invention will be described in more detail.
[0039] 1 - 1 - 1. 铸片の凝固組織と内面疵との関係 [0039] 1-1-1. Relationship between the solidified structure of the piece and the inner surface
铸片およびホロ一シェルを詳細に観察した結果、铸片における軸心部割れと中心 部の等軸晶の分布との間には密接な関係があり、さらに、铸片の凝固組織およびそ れに付随する軸心割れと、穿孔圧延後における内面疵の発生度との間には、重要な 関係の存在することが見出された。  As a result of detailed observation of the flakes and the hollow shell, there is a close relationship between the axial cracks in the flakes and the distribution of equiaxed crystals in the central part. It has been found that there is an important relationship between the axial crack accompanying the cracks and the degree of internal flaws after piercing and rolling.
[0040] 図 6は、铸片横断面の凝固組織および軸心部割れを模式的に示す図であり、同図  [0040] FIG. 6 is a diagram schematically showing a solidified structure and a shaft center crack in the cross-section of the scissors.
(a)は軸心部割れが発生する铸片中心部が等軸晶により充填されている場合を、ま た、同図 (b)は同中心部が等軸晶により充填されていない場合を表す。  (a) shows the case where the center part of the flakes where the axial center crack occurs is filled with equiaxed crystals, and (b) shows the case where the same center part is not filled with equiaxed crystals. To express.
[0041] 同図(a)の場合 (以下、単に「(a)の場合」とも記す)には、軸心部割れの開口部は 大きいが、铸片中心部からの軸心部割れの存在範囲は小さい。一方、同図(b)の場 合 (以下、単に「(b)の場合」とも記す)には、軸心部割れの開口部は小さいが、軸心 部割れは铸片中心部力 広い範囲に存在する。この場合、軸心部割れは柱状晶の 粒界に沿って生成しており、力なり細い毛割れに似た様相を呈している。  [0041] In the case of (a) in the figure (hereinafter also referred to simply as “(a)”), the opening of the axial center crack is large, but the presence of the axial center crack from the center of the rod piece exists. The range is small. On the other hand, in the case of (b) in the figure (hereinafter also referred to simply as “(b)”), the opening of the axial center crack is small, but the axial center crack has a large force at the center of the flank. Exists. In this case, the axial cracks are generated along the grain boundaries of the columnar crystals, and the appearance is similar to that of the fine cracks.
[0042] 上記の(a)の場合と (b)の場合との凝固組織および軸心部割れの相違は、下記の 理由により生じると推察される。すなわち、铸片中心部が最終凝固域に達すると、円 周方向に熱応力による引張り応力が発生する。この引張り応力は、铸片外周部との 温度差の最も大きくなる铸片中心部で最大となり、この引張り応力が材料の強度を上 回ると、铸片中心部において放射状の割れ、すなわち、軸心部割れが発生する。 [0042] The difference in the solidified structure and the axial center crack between the cases (a) and (b) is as follows. Presumed to be caused by the reason. That is, when the central part of the piece reaches the final solidification zone, tensile stress due to thermal stress is generated in the circumferential direction. This tensile stress is greatest at the central part of the steel piece where the temperature difference with the outer periphery of the steel piece is the largest, and when this tensile stress exceeds the strength of the material, radial cracks in the central part of the steel piece, that is, the axial center. Partial cracking occurs.
[0043] 铸片中心部において上記の円周方向応力が発生した時に、铸片中心部が等軸晶 組織、つまり微細な結晶粒により充填されている場合には、応力が分散されやすい。 これに対して、铸片中心部が柱状晶組織である場合には、柱状晶組織は結晶粒が 大きいことから、結晶粒界の面に応力が集中しやすくなり、比較的小さな応力であつ ても、割れが発生する。  [0043] When the circumferential stress is generated in the central part of the crumb, the stress is likely to be dispersed if the central part of the crumb is filled with an equiaxed crystal structure, that is, fine crystal grains. On the other hand, when the central part of the flake has a columnar crystal structure, the columnar crystal structure has large crystal grains, so that stress tends to concentrate on the surface of the crystal grain boundary. Also, cracking occurs.
[0044] 熱応力は、凝固が铸片中心部に進行するほど増大するが、柱状晶領域では、比較 的小さな応力で微細な割れが発生し、応力を開放しながら割れが中心部にまで至る こと力ら、中心部では大きく開口した割れにはならない。一方、等軸晶の領域では、 中心の外周部近傍において発生する低い応力では割れが発生せず、したがって、 熱応力による歪みエネルギーは、開放されずに時間の経過ともに蓄積していく。それ ゆえ、中心部において熱応力が最大となった時に、この応力が材料の強度を大幅に 上回り、割れが発生する。この場合は、蓄積エネルギーが一度に開放されるために 大きく開口した割れとなる。  [0044] The thermal stress increases as solidification progresses to the center of the slab, but in the columnar crystal region, fine cracks occur with relatively small stress, and the cracks reach the center while releasing the stress. As a result, the center does not have a large open crack. On the other hand, in the equiaxed crystal region, cracks do not occur at low stress generated near the outer periphery of the center, and therefore strain energy due to thermal stress is not released and accumulates over time. Therefore, when the thermal stress is maximized at the center, this stress significantly exceeds the strength of the material and cracking occurs. In this case, the stored energy is released at once, resulting in large open cracks.
[0045] また、横断面直径の大きな铸片の場合には、铸片表面をスプレーなどにより強制冷 却すると、その冷却の効果が铸片内部に及ばないだけでなぐ冷却終了時の復熱に より、铸片内部に大きな引張り歪が発生し、さらに大きく開口した軸心部割れを形成 することが判明した。  [0045] Further, in the case of a piece having a large cross-sectional diameter, if the surface of the piece is forcibly cooled by spraying or the like, the cooling effect does not reach the inside of the piece. As a result, it was found that a large tensile strain was generated in the inside of the slab, and an axial center crack with a larger opening was formed.
[0046] さらに、上述のように内部の凝固組織および軸心部割れの形態が相違する丸铸片 を穿孔圧延した場合、ホロ一シェルの内面疵の発生状況が異なることが判明した。つ まり、 (b)の場合のように铸片中心部が等軸晶により充填されて 、な 、場合に比較し て、(a)の場合のように铸片中心部が等軸晶により充填されている場合の方が、ホロ 一シェルの内面疵の発生が著しく低減する。  [0046] Furthermore, it was found that when round round pieces having different internal solidification structures and axial cracks as described above were pierced and rolled, the occurrence of internal flaws in the holo-shell was different. In other words, the central part of the flakes is filled with equiaxed crystals as in (b). Compared to the case, the central part of the flakes is filled with equiaxed crystals as in (a). If this is the case, the generation of internal flaws in the holo shell will be significantly reduced.
[0047] 丸铸片の穿孔圧延工程においては、割れの大きさが微小であっても、(b)のように 割れが铸片中心部力 広範囲に及んでいる場合の方が、内面疵が発生しやすいこと を示している。この事実は、本発明者らにより見出された、従来とは全く異なる新しい 知見である。 [0047] In the piercing-rolling process of round flakes, even if the size of the cracks is very small, as shown in (b), when the cracks are in a wide range of the central force of the flakes, the inner surface flaws Prone to occur Is shown. This fact is a new finding found by the present inventors that is completely different from the conventional one.
[0048] 1 - 1 - 2.第 1発明〜第 3発明の範囲の限定理由および好ましい範囲  [0048] 1-1-2. Reasons for limiting the scope of the first invention to the third invention and preferred ranges
以下に、本発明を前記の範囲に限定した理由、および本発明の好ましい範囲につ いて説明する。  The reason why the present invention is limited to the above range and the preferable range of the present invention will be described below.
[0049] 1)铸片の C含有率 [0049] 1) C content of the piece
Cは、オーステナイト安定化元素であり、 C含有率がフェライトおよびオーステナイト の量比を大きく支配することはよく知られている。一般的に、フェライト相はオーステナ イト相に較べて強度が小さぐ本発明者らの調査によれば、 C含有率が 0. 1%以下の 铸片においてフェライト相に起因する前記のような軸心部割れが発生しやすいことが 判明した。  C is an austenite stabilizing element, and it is well known that the C content largely controls the quantity ratio of ferrite and austenite. In general, according to the present inventors' investigation that the ferrite phase has a lower strength than the austenite phase, the axis as described above is caused by the ferrite phase in a piece having a C content of 0.1% or less. It was found that cracks in the core are likely to occur.
上記の理由により、本発明は、軸心部割れが発生しやすい鋼中 C含有率が 0. 1% 以下の溶鋼を用いて铸片を铸造する場合であっても、効果を発揮することを前提と する。  For the reasons described above, the present invention is effective even when forging steel pieces using molten steel having a C content of 0.1% or less in steel where shaft center cracks are likely to occur. Assumptions.
[0050] 2)铸片のサイズおよび冷却方法  [0050] 2) Size of the piece and cooling method
铸片の直径が大きくなるほど、軸心部割れの発生は増大傾向を示し、铸片直径が 3 OOmmを超えると、铸片表面を強制冷却する二次冷却の効果は低減するのみならず 、力えって軸心部割れの拡大をもたらすことが判明した。したがって、大径の铸片の 場合、凝固末期に二次冷却のような強制冷却を行うことは極力避け、铸片表面から の輻射放冷なども含めて、表面の冷却速度が 10°CZ分以下の緩冷却を行う必要が ある。  As the diameter of the piece increases, the occurrence of axial cracks tends to increase. When the diameter of the piece exceeds 3 OOmm, not only the effect of secondary cooling to forcibly cool the surface of the piece is reduced, but also the force It turned out that it led to the expansion of the axial crack. Therefore, for large-diameter pieces, forced cooling such as secondary cooling at the end of solidification is avoided as much as possible, and the surface cooling rate is 10 ° CZ min including radiation cooling from the piece surface. The following slow cooling is required.
なお、緩冷却の冷却速度は 8°CZ分以下に調整することが好ましい。また、加熱ま たは保熱を行わない限り、輻射放冷条件下において約 4°CZ分以上の冷却速度とす ることが現実的である。  Note that the cooling rate of the slow cooling is preferably adjusted to 8 ° CZ or less. Moreover, unless heating or heat retention is performed, it is realistic to set a cooling rate of about 4 ° CZ or more under radiation cooling conditions.
[0051] 3)緩冷却の位置および等軸晶化の範囲 [0051] 3) Position of slow cooling and range of equiaxed crystallization
铸片の軸心部割れは、凝固末期、具体的には铸片の中心部固相率が 0を超え 1. 0以下の範囲となるときに铸片の表面を緩冷却するとともに、铸片横断面中心部の等 軸晶の領域を増カロさせることにより、低減させることができる。なお、上記の緩冷却は 、铸片表面温度が 1050〜850°Cの範囲において行うことが好ましい。 The cracks in the shaft center part of the flakes slowly cool the surface of the flakes at the end of solidification, specifically when the solid fraction of the central part of the flakes exceeds 0 and 1.0 or less. It can be reduced by increasing the equiaxed crystal region at the center of the cross section. The above slow cooling is In addition, it is preferable that the surface temperature of the flank is in the range of 1050-850 ° C.
[0052] 横断面直径が 300mmを超える铸片では、横断面中央部の少なくとも直径 60mm 以内の領域を全て等軸晶組織にすることにより、軸心部割れを、铸片横断面の中心 力も半径 15mm以内の領域に抑制することができる。そこで、本発明の連続铸造ェ 程においては、铸片の横断面中央部の少なくとも直径 60mm以内の領域を全て等 軸晶組織とするとともに、中心部固相率が 0を超え 1. 0以下の範囲において铸片表 面を緩冷却することとした。なお、中心固相率が 0. 3以上 0. 8以下の範囲において 緩冷却を行うとさらに好まし ヽ。  [0052] For a flake with a cross-sectional diameter of more than 300 mm, by making all regions within 60 mm in diameter at the center of the cross-section into an equiaxed crystal structure, cracks in the axial center part and the central force of the cross-section of the flake also have a radius It can be suppressed to an area within 15 mm. Therefore, in the continuous fabrication process of the present invention, at least the region within the diameter of 60 mm in the central portion of the cross section of the piece has an equiaxed crystal structure, and the solid fraction in the central portion exceeds 0 and is 1.0 or less. It was decided to cool the surface of the piece slowly within the range. It is more preferable to perform slow cooling in the range where the central solid phase ratio is 0.3 or more and 0.8 or less.
[0053] また、等軸晶領域の広さは、電磁攪拌の位置や強度、および铸造温度などを変更 することにより制御できることを見出した。特に、铸造温度は重要であり、タンディッシ ュ内における溶鋼温度は低 、方が好ましく、 Δ T (対象鋼の温度 対象鋼の液相線 温度)は、 70°C以下とすることが好ましい。しかし、 ΔΤが小さすぎると、ノズル閉塞の 問題ゃ铸型内の溶鋼面が凝固する皮張りの問題が発生するので、その値を 20°C以 上とすること力好ましい。  [0053] Further, it has been found that the width of the equiaxed crystal region can be controlled by changing the position and strength of electromagnetic stirring, the forging temperature, and the like. In particular, the forging temperature is important, the molten steel temperature in the tundish is preferably low, and ΔT (the temperature of the target steel, the liquidus temperature of the target steel) is preferably 70 ° C or less. However, if ΔΤ is too small, the problem of nozzle clogging will cause the problem of skinning that solidifies the molten steel surface in the mold, so it is preferable to set the value to 20 ° C or higher.
さらに、種々の試験の結果、上記の铸片を、分塊圧延工程などを経ずに再加熱し て、そのまま穿孔圧延した場合においても、得られたホロ一シェルは、ほとんど内面 疵が発生しないことが明ら力となった。  Furthermore, as a result of various tests, even when the above-mentioned flakes are reheated without going through a block rolling process and pierced and rolled as they are, the obtained holo-shell has almost no internal flaws. It became clear that it became power.
[0054] なお、第 3発明にお 、て、得られた丸铸片からなるビレットをマンネスマン プラグミ ル方式により穿孔圧延する場合の好ましい条件は、ロール傾斜角 /3が 6〜16° 、ビ レット外径圧下率が 3〜7%の範囲である。  [0054] In the third invention, the preferred condition when the obtained billet made of round bar is pierced and rolled by the Mannesmann plug mill method is that the roll inclination angle / 3 is 6 to 16 °, and the billet The outer diameter reduction is in the range of 3-7%.
[0055] 1 - 2.第 1発明〜第 3発明に関する実施例  [0055] 1-2. Examples relating to the first to third inventions
本発明の効果を確認するため、下記の連続铸造試験を行うとともに、得られた丸铸 片を用いて穿孔圧延試験を行い、その結果を評価した。  In order to confirm the effect of the present invention, the following continuous forging test was conducted, and a piercing and rolling test was conducted using the obtained round piece, and the results were evaluated.
[0056] (試験方法)  [0056] (Test method)
図 7は、本発明の連続铸造工程を実現するための連続铸造装置の縦断面を模式 的に示す図である。連続铸造装置として、丸ビレット铸造用の湾曲型連続铸造機を 用 、た。タンディッシュ 211から浸漬ノズル 21を経て铸型 22内に注入された溶鋼 23 は、铸型 22の直下に設置されたトップゾーン二次冷却装置 27により冷却され、サボ 一トロール 28により支持されつつ、凝固シェル 25を生成しながら、ピンチロール 29に より引き抜かれて铸片 26を形成する。凝固シェル 25を生成した铸片 26は、トップゾ ーン二次冷却装置により冷却された後、さらに凝固末期二次冷却装置 210により冷 却されて、完全に凝固する。 FIG. 7 is a diagram schematically showing a longitudinal section of a continuous forging apparatus for realizing the continuous forging process of the present invention. As a continuous forging device, a curved continuous forging machine for round billet forging was used. The molten steel 23 injected from the tundish 211 through the immersion nozzle 21 into the vertical mold 22 is cooled by a top zone secondary cooling device 27 installed immediately below the vertical mold 22 and While being supported by a single roll 28, a solidified shell 25 is generated and pulled out by a pinch roll 29 to form a flange piece 26. The piece 26 that has produced the solidified shell 25 is cooled by the top zone secondary cooling device, and further cooled by the end-solidification secondary cooling device 210 to be completely solidified.
[0057] ここで、トップゾーン二次冷却装置 27は、凝固シェル 25の厚さの薄!、領域にお ヽ て、铸片 26を冷却することによりその凝固を促進し、バルジングによる変形を防止す る作用を有する。トップゾーン二次冷却装置 27は、铸型 22の直下につながる長さ 2 mのエアーミストスプレーで構成されており、気水比は約 50 (NLZmin—空気 Z (L /min 水) )とした。水量密度は最大 500LZ (min · m2)の範囲内にお!/、て任意の 値に調整可能である。 [0057] Here, the top zone secondary cooling device 27 is thin in the thickness of the solidified shell 25! In the region, the solid piece 26 is cooled to promote its solidification and prevent deformation due to bulging. Has the effect of The top zone secondary cooling device 27 is composed of an air mist spray with a length of 2 m connected directly below the vertical 22 and the air / water ratio is about 50 (NLZmin—air Z (L / min water)). . The water density can be adjusted to any value within the range of maximum 500LZ (min · m 2 )!
[0058] 凝固末期二次冷却装置 210は、 1ブロック当たり長さ 1. 2mのブロックを 5ブロック組 み合わせた冷却装置により構成されており、メニスカス 24から 30〜36mの位置に、 設置されている。この二次冷却装置にも、エアーミストスプレーを採用し、気水比は水 量によらず一定の約 30 (NLZmin—空気 Z (LZmin—水))とした。水量は、水量 密度で最大 100LZ (min-m2)の範囲内で任意の値に調整可能である。 [0058] The end-solidification secondary cooling device 210 is composed of a cooling device in which 5 blocks each having a length of 1.2 m are combined, and is installed at a position 30 to 36 m from the meniscus 24. Yes. An air mist spray was also used for this secondary cooling device, and the air / water ratio was fixed at about 30 (NLZmin—Air Z (LZmin—Water)) regardless of the amount of water. The amount of water can be adjusted to any value within the range of maximum water density of 100LZ (min-m 2 ).
铸片 26の中心部固相率と凝固シェル 25内の温度分布は、非定常伝熱計算により 求めた。  The central solid fraction and the temperature distribution in the solidified shell 25 of the lug piece 26 were obtained by unsteady heat transfer calculation.
[0059] この計算結果と、铸片表面の温度測定および鉅打試験の結果とを比較することによ り、上記の計算結果が高い推定精度を有することを事前に確認した。したがい、この 計算手法は、铸造条件毎の铸片の正確な凝固状態を表すことができる。  [0059] By comparing this calculation result with the results of the temperature measurement and the strike test on the surface of the scissors, it was confirmed in advance that the above calculation results had high estimation accuracy. Therefore, this calculation method can represent the exact solidification state of the piece for each forging condition.
また、铸片の等軸晶を安定的に確保するために、メニスカスより約 200mm下方の 位置に、铸型内電磁撹拌装置 212を設置した。電磁攪拌装置 212は、周波数 4Hz、 最大電流は 600Aであり、磁束密度は最大 0. 6T (テスラ)の能力を有する。電磁攪 拌装置 212のコイルに流す電流値を変化させることにより、磁束密度を変化させて、 攪拌強度を変更できる。なお、本铸造試験では、磁場の回転周波数は、 3〜6Hzの 範囲とした。  In addition, in order to ensure stable equiaxed crystals of the slabs, a saddle type electromagnetic stirring device 212 was installed at a position approximately 200 mm below the meniscus. The magnetic stirring device 212 has a frequency of 4 Hz, a maximum current of 600 A, and a magnetic flux density of 0.6 T (Tesla). By changing the value of the current flowing through the coil of the electromagnetic stirring device 212, the magnetic flux density can be changed to change the stirring intensity. In this fabrication test, the rotation frequency of the magnetic field was in the range of 3 to 6 Hz.
[0060] さらに、詳細な試験条件について説明する。铸造試験には、 C : 0. 05〜0. 07%、 Si: 0. 05〜0. 3%、Mn: l. 2〜1. 5%、P : 0. 080〜0. 015%、 S : 0. 001〜0. 0 06 %の成分組成を有する溶鋼を用いた [0060] Further, detailed test conditions will be described. For the forging test, C: 0.05-0.07%, Si: 0.05-0.3%, Mn: l. 2-1.5%, P: 0.080-0.015%, S : 0. 001 to 0.0 Using molten steel with a component composition of 06%
表 1に、各試験条件を示した。  Table 1 shows the test conditions.
[0061] [表 1] [0061] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0062] 同表において、冷却速度とは、铸片の中心部固相率が 0を超え 1. 0以下の範囲に おける铸片表面の冷却速度の最大値 (°CZmin)を表す。 [0062] In the same table, the cooling rate represents the maximum value (° CZmin) of the cooling rate on the surface of the slab when the solid fraction at the center of the slab exceeds 0 and is 1.0 or less.
铸造する铸片の直径は、 310mmおよび 360mmとした。铸片横断面の中心部に おける等軸晶の充填の程度 (等軸晶の存在領域を円により近似した時の直径)は、 铸造時の溶鋼温度および電磁攪拌条件を変更することにより変化させた。鋼の液相 線温度は 1520°Cであり、(溶鋼温度—液相線温度)の値をタンディッシュ内溶鋼の 過熱度 (°C)とした。 The diameters of the forged pieces were 310 mm and 360 mm. The degree of equiaxed crystal filling in the center of the cross section of the slab (diameter when the equiaxed crystal is approximated by a circle) can be changed by changing the molten steel temperature and electromagnetic stirring conditions during forging. It was. Liquid phase of steel The wire temperature was 1520 ° C, and the value of (molten steel temperature – liquidus temperature) was defined as the superheat (° C) of the molten steel in the tundish.
[0063] また、铸造速度およびトップゾーンにおける二次冷却条件を変更することにより、凝 固末期二次冷却領域における铸片表面温度および铸片の中心部固相率の範囲を 調整した。得られた丸铸片 (丸ビレット)から、定常铸造速度領域の部分を切り出し、 铸片の内部調査および穿孔圧延試験に供した。  [0063] Further, by changing the forging speed and the secondary cooling conditions in the top zone, the range of the surface temperature of the flakes and the solid fraction at the central part of the flakes in the secondary cooling region at the end of the solidification phase was adjusted. A portion of the steady forging speed region was cut out from the obtained round piece (round billet) and subjected to an internal investigation of the piece and a piercing and rolling test.
[0064] 铸片の内部調査用に長さ 2mの铸片を採取し、長手方向に等間隔に 10枚の横断 サンプル板を採取して鏡面研磨後、酸腐食して軸心部割れおよび等軸晶の生成状 況を調査した。等軸晶の充填状況は、铸片横断面中央部において、凝固組織が等 軸晶組織のみで占められる領域を円により近似した時の直径 (mm)を求め、等軸晶 領域径として評価した。  [0064] A 2 m long piece was taken for internal investigation of the piece, and 10 crossed sample plates were taken at equal intervals in the longitudinal direction, mirror-polished, and then acid-corroded to cause cracks in the axial center and the like. The state of axial crystal formation was investigated. The equiaxed crystal filling condition was evaluated by obtaining the diameter (mm) of the region where the solidified structure is occupied only by the equiaxed crystal structure by a circle at the center of the cross section of the flake, and evaluating the diameter as the equiaxed crystal region diameter. .
[0065] 穿孔圧延試験用に各铸造条件毎に長さ 6mの铸片を 10本切り出した。これら穿孔 圧延試験用铸片を加熱炉にて 1200°Cに加熱した後、穿孔圧延機 (傾斜ロール式穿 孔圧延機)により、ロール傾斜角 /3 : 8〜16° 、ビレット外径圧下率: 3〜7%の条件 にて穿孔傾斜圧延し、直径 310mmの丸铸片からは、外径 330mmのホロ一シェル を、また、直径 360mmの丸铸片からは、外径 370mmのホロ一シェルを、それぞれ 製造した。このようにして得られたホロ一シェルについて、超音波探傷法により内面疵 を調査した。  [0065] Ten pieces of 6 m long pieces were cut out for each forging condition for the piercing and rolling test. These slabs for piercing and rolling test were heated to 1200 ° C in a heating furnace and then rolled with a piercing and rolling mill (tilted roll type piercing and rolling mill), with a roll inclination angle of 3: 8 to 16 ° and a billet outer diameter reduction rate. : From 3 to 7%, pierced and tilted, rolled from 310 mm diameter round shell, outer shell 330 mm outer diameter, and from 360 mm diameter round shell, outer shell 370 mm outer shell Were manufactured respectively. The inner shell of the hollow shell thus obtained was examined by ultrasonic flaw detection.
[0066] 表 1に、前記の等軸晶領域径、軸心部割れ長さ、および内面疵発生数を併せて示 した。ここで、軸心部割れ長さは、観測した全ての横断面サンプルのうち、軸心部割 れの存在する領域の最大直径 (mm)により表し、内面疵発生数は、 10本の铸片サン プルについて調査した内面疵発生数をもとにして求めた平均発生個数 (個 Z本ー铸 片)により表示した。  [0066] Table 1 shows the equiaxed crystal region diameter, the axial center crack length, and the number of inner surface defects. Here, the axial crack length is represented by the maximum diameter (mm) of the area where the axial crack is present in all the observed cross-sectional samples, and the number of internal defects is 10 pieces. The average number of occurrences (individual Z pieces – pieces) determined based on the number of internal flaw occurrences investigated for the sample was displayed.
[0067] (試験結果)  [0067] (Test results)
試験番号 A1〜A8は、本発明 Aの第 1発明で規定する条件を満足する本発明例に ついての試験であり、試験番号 A9〜A20は、請求項 1で規定する条件の少なくとも 1つを満足しな 、比較例にっ 、ての試験である。  Test Nos. A1 to A8 are tests for examples of the present invention that satisfy the conditions specified in the first invention of the present invention A, and test Nos. A9 to A20 indicate at least one of the conditions specified in claim 1. We are not satisfied with this test.
[0068] 試験番号 A1〜A8は、凝固末期二次冷却を 10°CZ分未満の冷却速度で緩冷却し た結果、铸片横断面中央部の等軸晶領域の直径が 60mm以上であり、铸片軸心部 の割れ長さも 30mm以下と低 、値となっており、良好な铸片性状であった。 [0068] In test numbers A1 to A8, the secondary cooling at the end of solidification was slowly cooled at a cooling rate of less than 10 ° CZ. As a result, the diameter of the equiaxed crystal region at the center of the cross-section of the flake was 60 mm or more, and the crack length of the flake shaft center part was as low as 30 mm or less, indicating good flake properties. .
また、これらの铸造試験により铸造された丸铸片を穿孔圧延して得られたホローシ エルの内面疵は 0. 1 (個 Z本-丸铸片)以下と低力つた。  In addition, the hollow shells obtained by piercing and rolling round pieces produced by these forging tests showed a low strength of 0.1 (piece Z-round pieces) or less.
[0069] これに対して、試験番号 A9〜A16は、試験番号 A1〜A8に対して、タンディッシュ の溶鋼過熱度および電磁攪拌の攪拌強度を変更した試験である。その結果、铸片 横断面中央部の等軸晶領域の直径は 60mm未満となって第 1発明で規定する条件 を満たさなくなった。铸片の軸心部割れが、等軸晶の外周部に分布する柱状晶の結 晶粒界に沿って多数発生し、軸心部割れの形態は、前記図 1 (b)の形態を呈した。ま た、軸心部割れ長さも、試験番号 A1〜A8の本発明例に比較して著しく長くなつた。  [0069] On the other hand, test numbers A9 to A16 are tests in which the tundish molten steel superheat degree and the stirring intensity of electromagnetic stirring were changed with respect to test numbers A1 to A8. As a result, the diameter of the equiaxed crystal region at the center of the cross-section of the flank became less than 60 mm, which did not satisfy the conditions specified in the first invention. Numerous axial cracks of the flakes occur along the crystal grain boundaries of the columnar crystals distributed around the outer periphery of the equiaxed crystal, and the axial cracks have the form shown in Fig. 1 (b). did. In addition, the crack length of the axial center part was also significantly longer than that of the inventive examples of test numbers A1 to A8.
[0070] さらに、これらの丸铸片を穿孔圧延して得られたホロ一シェルの内面疵発生数は 15  [0070] Further, the number of inner surface flaws generated in the hollow shell obtained by piercing and rolling these round pieces is 15
(個 z本一丸铸片)以上の極めて高い値となった。  It was an extremely high value (individual z per piece).
[0071] また、試験番号 A17〜A20では、電磁攪拌の攪拌強度を特に強くし、铸片の中心 部固相率が 0を超えて 1. 0以下の範囲において、凝固末期二次冷却装置によりスプ レーによる強制冷却を行い、 25°CZ分以上の冷却速度にて铸片表面を冷却した。 その結果、铸片の横断面中心部における等軸晶の充填状況は良好となり、軸心部 割れの形態は、前記図 1 (a)に示された形態となったが、強冷却された結果、軸心部 割れが拡大した。  [0071] In addition, in test numbers A17 to A20, the stirring intensity of electromagnetic stirring was particularly increased, and the solid phase fraction in the center part of the sepal exceeded 0 and was 1.0 or less by the end-stage secondary cooling device. Forced cooling with spray was performed, and the surface of the chip was cooled at a cooling rate of 25 ° CZ or more. As a result, the filling condition of equiaxed crystals at the center of the cross section of the flakes was good, and the shape of the axial center crack was the shape shown in Fig. 1 (a), but the result of strong cooling The crack in the shaft center has expanded.
さらに、これらの丸铸片を穿孔圧延して得られたホロ一シェルの内面疵発生数は、 試験番号 A9〜A16に比べれば低下しているものの、試験番号 A1〜A8の本発明例 に比較して高い値となった。  Furthermore, although the number of inner surface flaws generated in the hollow shell obtained by piercing and rolling these round pieces is lower than that of test numbers A9 to A16, it is compared with the present invention examples of test numbers A1 to A8. It became a high value.
[0072] 2.第 4発明を実施するための形態 [0072] 2. Mode for carrying out the fourth invention
2- 1.第 4発明の最良の形態  2- 1. Best Mode for Fourth Invention
第 4発明は、前記のとおり、パスライン周りに対向配置された一対のコーン型の傾斜 ロールの間にパスラインに沿ってプラグを配し、第 2発明の丸铸片力 なるビレットを 旋回移動させつつ穿孔圧延する工程を備え、前記傾斜ロールゴージ部のロール径 Dg (mm)と傾斜ロール入口におけるビレットのロールへの接触開始位置でのロール 径 Dl (mm)との比 DgZDl、および前記ビレットの嚙み込み力 プラグ先端に至るま でのビレット回転回数 Nとビレットの外径圧下率 Df (%)との比 NZDfが前記(1)〜( 3)式のいずれかを満足し、さらに、前記 D1と前記ビレット外径 Bd(mm)との比 D1Z Bdが前記 (4)式を満足することを特徴とする継目無管の製造方法である。以下に、 本発明の方法についてさらに詳しく説明する。 In the fourth invention, as described above, a plug is arranged along a pass line between a pair of cone-shaped inclined rolls arranged opposite to each other around the pass line, and the billet, which is a round rod single force of the second invention, is swung. A ratio DgZDl of a roll diameter Dg (mm) of the inclined roll gorge portion and a roll diameter Dl (mm) at a position where the billet starts to contact the roll at the inclined roll inlet, and the billet Squeezing force The ratio of the billet rotation number N to the billet outer diameter reduction ratio Df (%) NZDf satisfies any of the above formulas (1) to (3), and D1 and the billet outer diameter Bd (mm The ratio D1Z Bd satisfies the above formula (4). Hereinafter, the method of the present invention will be described in more detail.
[0073] 2- 1 - 1.穿孔圧延に影響を及ぼす主要因子の相互関係 [0073] 2- 1-1. Correlation of major factors affecting piercing and rolling
ミスロールの発生防止と、ホロ一シェルのトップ部の温度低下による内面疵の発生 の防止と、トップ部を含む全長に亘り過大な回転鍛造効果による内面疵の発生の防 止とを!、ずれも満足させる方法を検討した結果、ビレットが傾斜ロールと接触を開始 する位置での入口ロール径と傾斜ロールゴージ部のロール径との比、およびビレット の嚙み込み力もプラグ先端位置に至るまでのビレット回転回数とビレットの外径圧下 率との比が極めて重要な因子であることが見出された。  Prevent misroll occurrence, prevent internal flaws due to temperature drop at the top of the hollow shell, and prevent internal flaws due to excessive rotary forging over the entire length including the top! As a result of investigating how to satisfy, the ratio of the inlet roll diameter to the roll diameter of the inclined roll gorge at the position where the billet starts to contact the inclined roll, and the billet rotation until the billet squeezing force reaches the plug tip position. It was found that the ratio of the number of times to the outer diameter reduction rate of the billet was a very important factor.
[0074] 図 5は、パスライン周りに対向配置された一対の傾斜ロールの間にプラグを配してビ レットを穿孔圧延する状況を模式的に説明する図である。同図では、傾斜ロール 1の 傾斜角度 j8がゼロの状態で設定されている。コーン型の傾斜ロール 1のゴージ部 la は、傾斜ロール 1の入口面 lbと出口面 lcとが交叉する位置であり、一対の傾斜ロー ル 1、 1の間隙が最小となる位置である。ロールゴージ部 laではロール径 Dg (mm)と なる。傾斜ロール 1の入口面 lbの形状は、 2段以上の勾配角度を持つ断面形状であ つてもよく、また曲線の断面形状であってもよい。  FIG. 5 is a diagram schematically illustrating a situation in which a billet is pierced and rolled by placing a plug between a pair of inclined rolls arranged to face each other around a pass line. In the figure, the tilt angle j8 of the tilt roll 1 is set to zero. The gorge portion la of the cone-shaped inclined roll 1 is a position where the inlet surface lb and the outlet surface lc of the inclined roll 1 cross each other, and the gap between the pair of inclined rolls 1 and 1 is the minimum. In the roll gorge part la, the roll diameter is Dg (mm). The shape of the inlet surface lb of the inclined roll 1 may be a cross-sectional shape having two or more gradient angles, or may be a curved cross-sectional shape.
[0075] さらに、図 5に示す幾何学二次元平面おいて、ビレット 3が傾斜ロール入口面 lbと 接触を開始する A点での傾斜ロール径を入口ロール径 Dl (mm)として示す。また、 同じ A点力 プラグ 2の先端部位置までのパスライン X—Xに平行な方向の距離 (パス ライン方向の距離)を Ld (mm)で示す。このプラグ先端位置での傾斜ロール間隙を R pg (mm)とし、パスライン X—Xと傾斜ロール入口面 lbとがなす角度を θ 1で示す。  Further, in the geometric two-dimensional plane shown in FIG. 5, the inclined roll diameter at the point A where the billet 3 starts to contact the inclined roll inlet surface lb is shown as the inlet roll diameter Dl (mm). The distance in the direction parallel to the pass line X—X (distance in the pass line direction) to the tip position of the same A point force plug 2 is indicated by Ld (mm). The gap between the inclined rolls at the plug tip position is R pg (mm), and the angle between the pass line X—X and the inclined roll inlet face lb is indicated by θ 1.
[0076] 次に、ビレット 3の外径を Bd (mm)とし、傾斜ロールの傾斜角を j8 (° )とする場合に 、嚙み込み力 プラグ先端に至るまでのビレット回転回数 Nおよびビレットの外径圧 下率 Dfは、前記(5)および (6)式により表すことができる。  [0076] Next, when the outer diameter of the billet 3 is Bd (mm) and the inclination angle of the inclined roll is j8 (°), the squeezing force N the number of billet rotations up to the plug tip and the billet The outer diameter reduction rate Df can be expressed by the above equations (5) and (6).
そこで、本発明者らは、材質が 0. 2%C鋼の連続铸造铸片を用いて、その中心部 を含む外径 70mmと 60mmのビレットを作製して、表 2に示す条件で穿孔圧延を行 い、嚙み込み不良などのミスロール発生状況と内面疵の発生有無について調査した Accordingly, the present inventors produced billets with outer diameters of 70 mm and 60 mm including the center using continuous forged pieces of 0.2% C steel, and pierced and rolled under the conditions shown in Table 2. The line Investigate the occurrence of misrolls such as stagnation defects and the presence of internal flaws
[0077] さらに、上記の関係式力 算出されるプラグ先端位置でのビレット外径圧下率 Df、 ビレットの嚙み込み力 プラグ先端位置に至るまでのビレット回転回数 N、およびロー ル形状を種々変更して、穿孔圧延試験を実施した。ロールゴージ部のロール径 Dgと ロールへのビレット接触開始位置でのロール径 D1との比 DgZDl (以下、単に「ロー ル径比 DgZDl」とも記す)、およびビレットの嚙み込み力 プラグ先端に至るまでの ビレット回転回数 Nとプラグ先端位置でのビレット外径圧下率 Dfとの比 NZDf (以下 、単に「ビレット回転回数 Nとビレット外径圧下率 Dfとの比 NZDf」とも記す)との関係 、さらに、傾斜ロール入口におけるビレットのロールへの接触開始位置でのロール径 D1 (以下、単に「入口ロール径 D1Jとも記す)とビレット外径 Bdとの比 DlZBdの関 係を表 3に示す。 [0077] Further, the above-mentioned relational force is calculated, and the billet outer diameter reduction ratio Df at the plug tip position, billet squeezing force, the number of billet rotations N up to the plug tip position, and various roll shapes are changed. Then, a piercing and rolling test was performed. Ratio of roll diameter Dg of roll gorge to roll diameter D1 at the billet contact start position to roll DgZDl (hereinafter also simply referred to as “roll diameter ratio DgZDl”) and billet squeezing force Up to plug tip The relationship between the billet rotation number N and the billet outer diameter reduction rate Df at the plug tip position NZDf (hereinafter simply referred to as “the ratio of billet rotation number N and billet outer diameter reduction rate Df NZDf”), and Table 3 shows the relationship of the ratio DlZBd between the roll diameter D1 (hereinafter simply referred to as “inlet roll diameter D1J”) and the billet outer diameter Bd at the position where the billet starts to contact the roll at the inclined roll inlet.
[0078] [表 2] 表 2  [0078] [Table 2] Table 2
Figure imgf000021_0001
Figure imgf000021_0001
[0079] [表 3] 表 3 [0079] [Table 3] Table 3
Figure imgf000022_0001
Figure imgf000022_0001
[0080] 表 3における評価では、〇印は、ホロ一シェルの全長に亘つて内面疵の発生がなく 、ミスロールも発生しなかった場合を示している。參印は、ホロ一シェルに内面疵が発 生した場合を示している。 X印は、穿孔圧延 20本の内 3本を超えてミスロールが発生 した場合を、▲印は、穿孔圧延 20本の内 2〜3本がミスロールとなった場合を、△印 は、穿孔圧延 20本の内 1本にミスロールが発生した場合を示して 、る。 [0080] In the evaluation in Table 3, the circles indicate the case where no inner surface flaws occurred and no misroll occurred over the entire length of the holo shell. The thumbprint indicates the case where an internal flaw occurs on the holo shell. X indicates when 3 of 20 piercing rolls have misrolled, ▲ indicates when 2 to 3 of 20 piercing rolls are misrolled, and △ indicates piercing and rolling. This shows the case where a misroll occurs in one of the twenty.
[0081] 表 3に示す結果から、次のことが分かり、発明の効果を確認できた。すなわち、ロー ル径比 Dg/Dlが小さい範囲では、ビレット回転回数 Nとビレット外径圧下率 Dfとの 比 NZDfが小さい場合であっても、大きい場合であっても、内面疵が発生しやすい。 ロール径比 DgZDlが大きい範囲では、内面疵の発生を抑制できるが、ビレット回転 回数 Nとビレット外径圧下率 Dfとの比 N/Dfが小さレ、と、ミスロールの発生比率が増 加する。  [0081] From the results shown in Table 3, the following were found and the effects of the invention could be confirmed. In other words, in the range where the roll diameter ratio Dg / Dl is small, the ratio of the billet rotation number N to the billet outer diameter reduction ratio Df is likely to cause internal flaws even when the ratio NZDf is small or large. . In the range where the roll diameter ratio DgZDl is large, the generation of inner surface flaws can be suppressed, but the ratio N / Df between the billet rotation number N and the billet outer diameter reduction ratio Df is small, and the misroll occurrence ratio increases.
さらに、入口ロール径 D1とビレット外径 Bdとの比 DlZBd力 、さい範囲、例えば 2. 5未満になると、ビレットの嚙み込み状態が不安定になりミスロールが多発する。  Furthermore, if the ratio DlZBd force between the inlet roll diameter D1 and the billet outer diameter Bd is less than the range, for example, less than 2.5, the stagnation state of the billet becomes unstable and misrolls occur frequently.
[0082] 第 4発明は、上述した知見に基づいてなされたものであり、前記のとおり、第 2発明 の丸铸片カもなるビレットを用い、(1)〜(3)式のいずれかを満足し、さらに、(4)式の 条件を満足する穿孔圧延工程を備える継目無管の製造方法である。 [0082] The fourth invention is made on the basis of the above-described knowledge. As described above, the billet which is also a round-shaped piece of the second invention is used, and any one of the formulas (1) to (3) is used. This is a seamless pipe manufacturing method including a piercing-rolling process that satisfies the condition of formula (4).
[0083] 2— 1 2.第 4発明の好適範囲の限定理由 [0083] 2—1 2. Reason for limiting the preferred range of the fourth invention
第 4発明の継目無管の製造方法では、ホロ一シェルのトップ部を含む全長にわたつ て、内面疵の発生を防止するため、ロール径比 DgZDlの範囲に応じて、前記(1) 〜(3)式のいずれかを満足する穿孔圧延工程を備える。通常、ロール径比 DgZDl の値が大きくなると、内面疵の発生防止には有効であるが、その上限は設備的な制 約から制限される。 In the seamless pipe manufacturing method of the fourth invention, the entire length including the top portion of the hollow shell is In order to prevent the occurrence of inner surface flaws, a piercing and rolling process that satisfies any of the above formulas (1) to (3) is provided according to the range of the roll diameter ratio DgZDl. Normally, an increase in the roll diameter ratio DgZDl is effective in preventing the occurrence of internal flaws, but the upper limit is limited due to equipment restrictions.
[0084] 例えば、ロールゴージ部のロール径 Dgが大きくなると、設備規模も大きくなり、設備 コストが増加する。一方、傾斜ロールの入口ロール径 D1が小さくなると、圧延入側の 軸受け強度が小さくなるなどの設備的な問題が生じると同時に、前記表 3に示すよう に、ロール径比 DgZDlが大きくなるにしたがって、入口ロール径 D1とビレット外径 B dとの比 DlZBdが小さくなり、これにともないミスロールが多発する傾向になるので、 ロール径比 DgZDlにも上限があり、その上限を 1. 8とした。  [0084] For example, when the roll diameter Dg of the roll gorge portion is increased, the facility scale is also increased, and the facility cost is increased. On the other hand, when the inlet roll diameter D1 of the inclined roll is reduced, there are equipment problems such as reduced bearing strength on the rolling entry side. At the same time, as shown in Table 3, the roll diameter ratio DgZDl increases. Since the ratio DlZBd between the inlet roll diameter D1 and the billet outer diameter Bd decreases and misroll tends to occur frequently, the roll diameter ratio DgZDl also has an upper limit, and the upper limit is set to 1.8.
[0085] 実機ミルでの穿孔圧延では、ビレットの外径圧下率 Dfは 4〜8%を適正範囲として 操業している。したがって、嚙み込み時のビレット回転回数 Nとビレットの外径圧下率 Dfとの比 NZDfを前記(1)〜(3)式の 、ずれかに適合させる場合に、外径圧下率 D fが 4〜8%である条件も具備させるのが好ましい。  [0085] In piercing and rolling in an actual mill, the billet outer diameter reduction ratio Df is operated within an appropriate range of 4 to 8%. Therefore, when the ratio NZDf of billet rotation number N and billet outer diameter reduction ratio Df at the time of squeezing is adapted to the deviation of the above formulas (1) to (3), the outer diameter reduction ratio Df is It is also preferable to have a condition of 4 to 8%.
[0086] さらに、第 4発明の継目無管の製造方法では、ビレットの嚙み込み不良等のミス口 ールを防止するために、入口ロール径 D1とビレット外径 Bdとの比 DlZBdが下記(4 )式を満足する穿孔圧延工程を備えることを特徴としている。 DlZBdの値が下限値 未満になると、ビレットの嚙み込み時にスリップなどを生じて不安定な嚙み込み状態 になる。本発明では、 DlZBdの上限を定めていないが、設備的な面力 制限され、 6. 5以下とするのが好ましい。  [0086] Further, in the seamless pipe manufacturing method of the fourth invention, the ratio DlZBd of the inlet roll diameter D1 to the billet outer diameter Bd is It is characterized by comprising a piercing and rolling process that satisfies the formula (4). If the value of DlZBd falls below the lower limit, slipping will occur when the billet is swallowed, resulting in an unstable swallowing condition. In the present invention, the upper limit of DlZBd is not defined, but the surface power of the facility is limited, and it is preferably 6.5 or less.
Dl/Bd≥2. 5 · · · (4)  Dl / Bd≥2.5 (4)
[0087] 第 4発明の継目無管の製造方法では、コーン形状の傾斜ロールの使用を対象とし ている。バレル形状の傾斜ロールを対象としないのは、単に品質面、能率面で差が あるだけでなぐバレル形状の傾斜ロールではロール径比 DgZDlが 1. 03以下と制 限され、技術的にも第 4発明の製造方法に適用するのが困難であることによる。  [0087] The seamless pipe manufacturing method of the fourth invention is directed to the use of a cone-shaped inclined roll. The reason why barrel-shaped inclined rolls are not targeted is that the diameter ratio DgZDl is limited to 1.03 or less for barrel-shaped inclined rolls that are merely different in terms of quality and efficiency. 4) It is difficult to apply to the manufacturing method of the invention.
[0088] 第 4発明の製造方法では、ビレットが中心偏析ゃセンタポロシティが生じ易 、連続 铸造材や、 δフェライトが生じ易い 5%以上の Crを含有するステンレス鋼、さらに非 鉄では銅、銅合金など铸造組織が残存して加工性の悪い材料であっても、顕著な効 果を発揮することができる。 [0088] In the manufacturing method of the fourth invention, center porosity is easily generated when billet is segregated at the center, continuous forging material, stainless steel containing 5% or more of Cr that is likely to generate δ ferrite, and copper and copper for non-ferrous metals. Even if the material has poor structure, such as an alloy, it has a remarkable effect. The fruit can be demonstrated.
[0089] 2- 2.第 4発明に関する実施例  [0089] 2- 2. Examples relating to the fourth invention
第 4発明の効果を確認するため、穿孔圧延を行ってホロ一シェルを製造し、その結 果を調査した。  In order to confirm the effect of the fourth invention, a hollow shell was manufactured by piercing and rolling, and the results were investigated.
[0090] 前記図 1および図 2に示す構成の穿孔圧延機を用い、第 1発明の試験番号 A1の 試験で得られた丸铸片および試験番号 A5の試験で得られた丸铸片力 なるビレット を用い、表 4に示す条件で穿孔圧延試験を実施した。なお、鋼組成は C : 0. 05〜0. 07%、 Si: 0. 05〜0. 3%、 Mn: l. 2〜1. 5%であり、丸铸片の外径はそれぞれ、 3 10mmおよび 360mmである。  [0090] Using the piercing-rolling machine having the configuration shown in Fig. 1 and Fig. 2, the round bar obtained in the test No. A1 of the first invention and the round bar obtained in the test No. A5 Using a billet, a piercing and rolling test was conducted under the conditions shown in Table 4. The steel composition is C: 0.05 to 0.07%, Si: 0.05 to 0.3%, Mn: l. 2 to 1.5%, and the outer diameter of each round piece is 3 10mm and 360mm.
[0091] [表 4] 表 4  [0091] [Table 4] Table 4
Figure imgf000024_0001
Figure imgf000024_0001
[0092] 穿孔圧延によりホロ一シェルを製造した結果を表 5に示す。表 5の内面疵発生状況 における◎印は、ホロ一シヱルの単位長さ lm当たりに内面疵の個数が 1個以下であ る場合を、また、〇印はホロ一シェルの単位長さ lm当たりに内面疵が 3個以下発生 した場合を、そして X印はホロ一シェルの単位長さ lm当たりに内面疵が 3個を超え て発生した場合を、それぞれ示している。ミスロール発生率(%)は、各ロールの設定 および圧延条件で 20本のビレットを用いて穿孔圧延を行った結果、発生した本数の 比率により表示している。 [0092] Table 5 shows the results of producing a holo-shell by piercing and rolling. The ◎ mark in the occurrence of internal flaws in Table 5 indicates that the number of internal flaws per unit length lm of the holo seal is 1 or less, and the 〇 mark per unit length lm of the holo shell. X indicates the case where three or fewer inner surface defects occur, and X indicates the case where more than three inner surface defects occur per unit length lm of the hollow shell. The misroll occurrence rate (%) is indicated by the ratio of the number of rolls generated as a result of piercing and rolling using 20 billets for each roll setting and rolling conditions.
[0093] [表 5]
Figure imgf000025_0001
表 5に示す結果によれば、試験番号 B1 B5では、ロール径比 DgZDlの値に応 じて、前記(1)〜(3)式のいずれかを満足すると同時に、(4)式の条件も満たしてい るので、ミスロールの発生がなぐホロ シェルの全長に亘つて内面疵の発生を完全 に防止できた。 [0095] 一方、試験番号 B6〜B9では、前記(1)〜(3)式のいずれか、または(4)式の条件 を満足させることができなかったため、ホロ一シェルの内面疵または嚙み込み不良が 発生した。
[0093] [Table 5]
Figure imgf000025_0001
According to the results shown in Table 5, in test number B1 B5, either of the above formulas (1) to (3) is satisfied according to the roll diameter ratio DgZDl, and the condition of formula (4) is also satisfied. Since it satisfied, it was possible to completely prevent the generation of internal flaws over the entire length of the holoshell where there was no misroll. [0095] On the other hand, in test numbers B6 to B9, either of the above formulas (1) to (3) or the condition of formula (4) could not be satisfied. A defect occurred.
[0096] 3.第 5発明〜第 7発明を実施するための形態  [0096] 3. Modes for carrying out the fifth to seventh inventions
3- 1.第 5発明〜第 7発明の最良の形態  3- 1. Best Mode of Fifth Invention to Seventh Invention
第 5発明は、前記のとおり、第 2発明の丸铸片力 なる外径 Bdの中実丸ビレットを、 外径 dが軸方向にわたり等径または外径 dが軸方向後端に向かうにしたがって増大 する軸方向長さ L2の円柱状で、その先端面が曲率半径!:、軸方向長さ L1の球面状 に形成された先端圧延部と、この先端圧延部に連続して外径が軸方向後端に向かう にしたがって増大するように曲率半径 Rの円弧回転面で形成された軸方向長さ L3の ワーク部と、このワーク部に連続して外径が軸方向後端の最大外径 Dに向力うにした 力 Sつて増大するように形成されたテーパ円柱状の軸方向長さ L4のリーリング部とを有 するプラグを用い、傾斜ロール式の穿孔圧延機で穿孔圧延する工程を備え、前記プ ラグの外径 d、曲率半径 R、軸方向長さ Ll、 L2および L3と中実丸ビレットの外径 Bd との関係が前記(7)〜(9)式の 、ずれをも満足する継目無管の製造方法である。  As described above, the fifth aspect of the invention is the solid round billet of the outer diameter Bd, which is the round rod piece force of the second aspect of the invention. Increasing axial length L2 in the shape of a cylinder, the tip surface of which has a radius of curvature !: A tip-rolled section formed into a spherical shape with an axial length L1, and an outer diameter that is continuous with the tip-rolled section. A workpiece part with an axial length L3 formed by a circular arc rotating surface with a radius of curvature R so as to increase toward the rear end in the direction, and the maximum outer diameter at the rear end in the axial direction. The process of piercing and rolling with a tilting roll type piercing and rolling machine using a plug having a tapered cylindrical axial length L4 and a reeling part formed so as to increase with force S against D The outer diameter d of the plug, radius of curvature R, axial length Ll, L2 and L3 and the outside of the solid round billet Wherein the relation between bd (7) to (9), a method of manufacturing a seamless pipe which satisfies even the deviation.
[0097] ここで、前記先端圧延部の 1100°Cにおける引張強度が 50MPa以上のプラグを用 いる場合は、前記(7)式に替えて、前記(10)を満足する継目無管の製造方法である 。以下に、第 5発明〜第 7発明の方法についてさらに詳細に説明する。  [0097] Here, in the case where a plug having a tensile strength at 1100 ° C of the tip rolled portion of 50 MPa or more is used, a method for producing a seamless pipe satisfying the above (10) instead of the above formula (7) Is. Hereinafter, the methods of the fifth to seventh inventions will be described in more detail.
[0098] 図 8は、ビレットの穿孔圧延におけるプラグリードおよびプラグ先端のビレット外径圧 下率を説明する図である。本発明の説明において、プラグリード PLは、図 8に示すよ うに、コーン型傾斜ロール 1のロールゴージ laの位置からプラグ 2の先端位置までの 距離をいう。なお、同図中の ROは、ゴージ laの位置における傾斜ロール 1および 1 間の最短距離である。  FIG. 8 is a diagram for explaining the billet outer diameter reduction rate of the plug lead and the plug tip in billet piercing-rolling. In the description of the present invention, the plug lead PL refers to the distance from the position of the roll gorge la of the cone type inclined roll 1 to the tip position of the plug 2 as shown in FIG. In the figure, RO is the shortest distance between the inclined rolls 1 and 1 at the position of the gorge la.
[0099] したがって、図 8において、プラグをプラグリード PLが小さくなるように設定すると、 それにともなって前記(6)式で定義される値は大きくなることから、上述の通り、プラグ リードを小さく設定した場合をプラグ先端におけるビレット外径圧下率を大きく設定し た場合と言 ヽ換えることができる。  Accordingly, in FIG. 8, when the plug is set so that the plug lead PL becomes small, the value defined by the above equation (6) becomes large accordingly, so that the plug lead is set small as described above. This can be rephrased as a case where the billet outer diameter reduction rate at the plug tip is set large.
[0100] 本発明者らは、本発明の効果を奏するためには、前記 (e)および (f)にて示した各 条件を満足させることが好ましいことを説明したが、さらに、下記の条件を満たすこと がー層好ましい。 [0100] In order to achieve the effects of the present invention, the present inventors have described each of the above (e) and (f). Although it has been described that it is preferable to satisfy the conditions, it is more preferable that the following conditions are satisfied.
[0101] 前記第 5発明および第 6発明において、先端圧延部の外径 d、軸方向長さ L2の円 柱状部分は、必ずしも軸方向にわたり等径である必要はなぐ改削と熱処理を繰り返 して再使用することを考慮し、外径 dの軸方向の先端力も後端に向かうにしたがって 増大するテーパ角度の半角が 4°以下のテーパ円柱状としてもよい。  [0101] In the fifth and sixth inventions, the cylindrical portion having the outer diameter d of the tip rolled portion and the axial length L2 is not necessarily required to have the same diameter in the axial direction, and the cutting and heat treatment are repeated. In consideration of reuse, the tip force in the axial direction of the outer diameter d may also be a tapered columnar shape with a half angle of the taper angle increasing toward the rear end of 4 ° or less.
[0102] さらに、リーリング部は材料の肉厚を一定にするために設けられた部位であり、ここ では積極的に肉厚力卩ェを行わない。このため、リーリング部の角度は、ロール出側の 面角とほぼ同じにするのが好まし!/、。  [0102] Furthermore, the reeling portion is a portion provided to keep the thickness of the material constant, and the thickness strength is not actively performed here. For this reason, it is preferable that the angle of the reeling section is almost the same as the surface angle on the roll exit side!
また、所定の高温強度を必要とするのは、プラグの先端圧延部である。このため、プ ラグを先端圧延部に用いる部材と、ワーク部およびリーリング部を構成する母材とに 分割するのが有効である。  Further, it is the tip rolling portion of the plug that requires a predetermined high temperature strength. Therefore, it is effective to divide the plug into a member that uses the tip rolling part and a base material that forms the work part and the reeling part.
[0103] 通常、プラグの母材としては 0. 5%Cr- l. 5%Ni—3. 0%W系鋼を用いるのが好 ましい。また、先端圧延部に用いる部材としては W、 Moを含有した高強度鋼、 Nb- 10%W- 2. 5%Zrの Nb合金、または、 Mo— 0. 5%Ti— 0. 08%Zrの Mo合金を 用いるのが好ましい。これらは、充分に要求される高温強度を満足することができる 力 である。この場合に、母材のスケール厚さは、スケールの密着性やプラグ寿命の 観点から、 200 μ m〜1000 μ mの範囲とするのが好ましい。  [0103] Normally, it is preferable to use 0.5% Cr-l.5% Ni—3.0% W steel as the plug base metal. In addition, high strength steel containing W and Mo, Nb-10% W-2.5% Zr Nb alloy, or Mo—0.5% Ti—0.08% Zr It is preferable to use a Mo alloy. These are the forces that can satisfy the required high temperature strength. In this case, the scale thickness of the base material is preferably in the range of 200 μm to 1000 μm from the viewpoint of the adhesion of the scale and the plug life.
[0104] さらに、先端圧延部に用いる部材として、母材に厚スケールを形成させた部材を使 用することもできる。厚スケールを形成し部材表面を被覆することによって、耐熱性が 確保でき溶損の抑制に有効であるとともに、厚スケールは穿孔圧延時での潤滑性に も優れた作用を発揮する。  [0104] Further, as a member used for the tip rolling portion, a member in which a thickness scale is formed on a base material can be used. By forming a thick scale and covering the surface of the member, heat resistance can be ensured and effective in suppressing melting damage, and the thick scale also exhibits an excellent effect on lubricity during piercing and rolling.
[0105] 3- 2.第 5発明〜第 7発明に関する実施例  [0105] 3- 2. Examples relating to the fifth to seventh inventions
(実施例 1)  (Example 1)
実施例 1では、第 1発明の試験番号 A1で製造された丸铸片から、その中心部を含 む外径 70mmのビレットを削り出してこれを穿孔圧延することにより、第 5発明の継目 無管の製造方法の効果を確認した。使用するプラグとして前記図 3に示す形状の 2ゾ ーン型プラグと、前記図 4に示す形状のプラグを準備し、それらのプラグ各部の寸法 を表 6に示した。ここで、プラグ番号 C8は 2ゾーン型プラグとした。いずれのプラグも、 材質は 0. 5%Cr- l. 5%Mo- 3. 0%W系の合金鋼とした。 In Example 1, a billet having an outer diameter of 70 mm including the center portion thereof was cut out from the round piece manufactured with test number A1 of the first invention, and this was pierced and rolled to obtain the seamless of the fifth invention. The effect of the pipe manufacturing method was confirmed. Prepare two-zone plugs with the shape shown in Fig. 3 and plugs with the shape shown in Fig. 4 as the plugs to be used. Are shown in Table 6. Here, the plug number C8 is a two-zone type plug. All plugs were made of 0.5% Cr-l.5% Mo-3.0% W alloy steel.
[表 6] [Table 6]
Figure imgf000028_0001
穿孔圧延機の傾斜ロール(主ロール)は、いずれもゴージ部の外径が 410mm、傾 斜角 βを 0°、交叉角 γを後述する各角度に設定した状態で、傾斜ロールの入側面と パスライン X— Xに平行な直線とがなす角度である入側面角と、傾斜ロールの出側面 とパスライン X—Xに平行な直線とがなす角度である出側面角力 ともに 3. 5°のコー ン型ロールを準備した。傾斜ロールの入側径と出側径は、後述する交叉角 γ (5°、 1 0°、15° )毎に異なる径にした。
Figure imgf000028_0001
The inclined rolls (main rolls) of the piercing and rolling mill are all set with the entrance surface of the inclined rolls with the outer diameter of the gorge portion set to 410 mm, the inclination angle β set to 0 °, and the crossing angle γ set to the angles described later. Both the incoming side angle, which is the angle formed by the straight line parallel to the pass line X—X, and the outgoing side angular force, which is the angle formed by the outgoing side of the inclined roll and the straight line parallel to the pass line X—X, are 3.5 °. A cone roll was prepared. The entrance side diameter and the exit side diameter of the inclined rolls were different for each cross angle γ (5 °, 10 °, 15 °) described later.
[0108] 上述のプラグと傾斜ロールを図 5に示されるとおり穿孔圧延機に取り付け、第 1発明 の連続铸造工程により製造された丸铸片から、その中心部を含む外径 70mm、長さ 700mm, C : 0. 05〜0. 07%、 Si: 0. 05〜0. 3%、 Mn: l. 2〜1. 5%の鋼組成を 有するビレットを 1250°Cに加熱後、外径 75mm、肉厚 6mm、長さ 2100mmのホロ 一シェルを製造する穿孔圧延試験を行った。  [0108] The above-mentioned plug and inclined roll are attached to a piercing and rolling machine as shown in Fig. 5, and from the round rod piece manufactured by the continuous forging process of the first invention, the outer diameter including its center part is 70mm and the length is 700mm. , C: 0.05 ~ 0.07%, Si: 0.05 ~ 0.3%, Mn: l. 2 ~ 1.5% steel billet after heating to 1250 ° C, outer diameter 75mm A piercing and rolling test was conducted to manufacture a hollow shell having a thickness of 6 mm and a length of 2100 mm.
[0109] 穿孔圧延試験の際、主ロールの傾斜角 13は全て 10° とし、コーン型傾斜ロールの 交叉角 γはそれぞれ 5°、 10°および 15° とした。また、プラグ先端ビレット外径圧下 率 Dfは、 3%、 4%、 5%、 6%および 7%の 5段階に変化させた。表 7に、その時の傾 斜ロール間の最短距離 RO、プラグリード PL、およびプラグ先端位置での傾斜ロール 間隙 Rpgの設定寸法を示す。また、その試験結果を表 8に示す。  [0109] In the piercing and rolling test, the inclination angles 13 of the main rolls were all 10 °, and the cross angles γ of the cone-type inclined rolls were 5 °, 10 °, and 15 °, respectively. In addition, the plug tip billet outer diameter reduction ratio Df was changed in 5 steps of 3%, 4%, 5%, 6% and 7%. Table 7 shows the set dimensions of the shortest distance RO between the inclined rolls, the plug lead PL, and the inclined roll gap Rpg at the plug tip position. The test results are shown in Table 8.
[0110] [表 7] [0110] [Table 7]
表 7
Figure imgf000030_0001
Table 7
Figure imgf000030_0001
(注) RO PLおよび Rpgの単位は である。 (Note) The unit of RO PL and Rpg is.
Figure imgf000031_0001
第 5発明で規定する条件を満たすプラグ番号 C1 C4のプラグを用いた場合には 、プラグ先端位置でのビレット外径圧下率 Dfを 3%と低くしても、嚙み込み不良は全く 起こらず、内面疵が全くないか、または疵の極くわずかな良質のホロ一シェルが得ら れている。
Figure imgf000031_0001
When plugs with plug numbers C1 and C4 that satisfy the conditions specified in the fifth invention are used, even if the billet outer diameter reduction rate Df at the plug tip position is reduced to 3%, there is no stagnation failure. A good quality holo-shell that does not occur, has no internal defects, or has very little defects.
これに対して、第 5発明で規定する条件を満たさないプラグ番号 C5、 C6および 2ゾ ーン型のプラグ番号 C8のプラグを用いた場合には、ビレット外径圧下率 Dfが 3%に おいて、いずれも嚙み込み不良となった。また、第 5発明で規定する条件を満たさな V、プラグ番号 C7のプラグを用いた場合には、プラグ先端部が溶損した。  On the other hand, when plugs C5, C6 and 2-zone type plug number C8 that do not satisfy the conditions specified in the fifth invention are used, the billet outer diameter reduction ratio Df is 3%. In both cases, the stagnation was poor. In addition, when the plug of V and plug number C7 that did not satisfy the conditions specified in the fifth invention was used, the tip of the plug was melted.
[0113] 第 5発明で規定する条件を満たすプラグを用いた場合、傾斜ロールの交叉角 γが 5°の穿孔圧延機では、内面疵が全く発生しないビレット外径圧下率 Dfの最大値は 3 %であり、交叉角を大きくすると内面疵が全く発生しないビレット外径圧下率 Dfの上 限を拡大することができる。  [0113] When a plug satisfying the conditions specified in the fifth invention is used, the maximum value of the billet outer diameter rolling reduction Df, in which no inner surface flaws occur, is 3 on a piercing mill with an inclined roll cross angle γ of 5 °. When the crossing angle is increased, the upper limit of the billet outer diameter reduction ratio Df, in which no internal flaws are generated, can be expanded.
これに対して、第 5発明で規定する条件を満たさないプラグを用いた場合は、内面 疵の発生を完全に抑制することはできな力つた。  On the other hand, when plugs that did not satisfy the conditions specified in the fifth invention were used, the generation of internal flaws could not be completely suppressed.
[0114] (実施例 2)  [0114] (Example 2)
実施例 2では、第 1発明の連続铸造方法により製造された丸铸片力 なるビレットを 実機の穿孔圧延機を用いて穿孔圧延試験することにより、第 5発明〜第 7発明の継 目無管の製造方法の効果を検証した。  In Example 2, the billet made of round slabs produced by the continuous forging method of the first invention was subjected to a piercing and rolling test using an actual piercing and rolling machine, so that the seamless pipes of the fifth to seventh inventions were obtained. The effect of this manufacturing method was verified.
第 1発明の試験番号 A1で製造された丸铸片カもなる外径 310mm、長さ 5600mm 、 C : 0. 05〜0. 07%、 Si: 0. 05〜0. 3%、 Mn: l. 2〜1. 5%の鋼組成を有するビ レツ卜を 1250oCにカロ熱後、外径 325mm、肉厚 48mm、長さ 10000mmのホローシ エルを製造する穿孔圧延試験を行った。 The outer diameter of 310 mm, length of 5600 mm, C: 0.05 to 0.07%, Si: 0.05 to 0.3%, Mn: l A piercing and rolling test was conducted to produce a hollow shell having an outer diameter of 325 mm, a wall thickness of 48 mm, and a length of 10000 mm after heating the billet bowl having a steel composition of 2 to 1.5% to 1250 ° C.
[0115] 使用するプラグとして、前記図 4に示す形状の 3種類のプラグおよび図 3に示す 2ゾ ーン型プラグを準備した。それらプラグの各部の寸法を表 9に示した。  [0115] As plugs to be used, three types of plugs having the shape shown in Fig. 4 and a two-zone type plug shown in Fig. 3 were prepared. Table 9 shows the dimensions of each part of these plugs.
[0116] [表 9]
Figure imgf000033_0001
[0116] [Table 9]
Figure imgf000033_0001
[0117] また、表 10および表 11に、傾斜ロール間の最短距離 RO、プラグリード PL、および プラグ先端位置での傾斜ロール間隙 Rpgの設定寸法を示す。 [0117] Table 10 and Table 11 show the set dimensions of the shortest distance RO between the inclined rolls, the plug lead PL, and the inclined roll gap Rpg at the plug tip position.
[0118] [表 10] S tsollI [0118] [Table 10] S tsollI
プラグ先端ビレツト外 下率 (%)
Figure imgf000034_0001
Out-of-plug billet drop rate (%)
Figure imgf000034_0001
(注) R0、 PLおよび Rpgの単位は (mm) である。 (Note) The unit of R0, PL and Rpg is (mm).
表 1 1 Table 1 1
Figure imgf000035_0001
Figure imgf000035_0001
(注) R0、 PLおよび Rpgの単位は (mm) である。  (Note) The unit of R0, PL and Rpg is (mm).
[0120] 試験に用いた穿孔圧延機の傾斜ロールは、ゴージ部の外径が 1400mmであり、交 叉角 γは 20° 、入側面角は 3° 、そして出側面角は 4° である。また、プラグ先端ビ レット外径圧下率 Dfは、 2. 0〜7. 0%の範囲で 7段階に変化させた。 [0120] The inclined roll of the piercing mill used in the test has an outer diameter of the gorge part of 1400 mm, the crossing angle γ is 20 °, the entrance side angle is 3 °, and the exit side angle is 4 °. Also, the plug tip billet outer diameter reduction ratio Df was changed in 7 steps within the range of 2.0 to 7.0%.
[0121] いずれのプラグも、先端圧延部以外の母材は 3. 0%Cr- l. 0%Ni系鋼として、そ の強度は 1100°Cの引張強度で 30MPaのものを用いた。また、先端圧延部の材質 および物性などについては下記のとおりとした。プラグ番号 C9および C10について は、 3. 0%Cr- l. 0%Ni鋼母材にスケールを形成させた部材を用いた。プラグ番号 C11と同形状のプラグ番号 C11 1につ!/、ては、 0. 5%Cr- l. 5%Mo— 3. 0%W 系合金鋼にスケールを形成させた部材を、同番号 C— 11— 2については、 Nb—10 . 0%W- 2. 5%Zrの Nb合金を、また、プラグ番号 12と同形状のプラグ番号 C12— 1については、 0. 5%Cr—l . 5%Mo- 3. 0%W系合金鋼にスケールを形成させた 部材を、そして、同番号 12— 2については、 Mo— 0. 5%Ti-0. 08%Zrの Mo合金 を、それぞれ用いた。  [0121] For each plug, the base metal other than the tip rolling part was made of 3.0% Cr-l.0% Ni steel, and its strength was 1100 ° C and 30MPa. The material and physical properties of the tip rolling part are as follows. For plug numbers C9 and C10, members were used in which a scale was formed on a 3.0% Cr-l.0% Ni steel base material. Plug number C11 of the same shape as plug number C11! /, The same number for a member made of 0.5% Cr- l. 5% Mo—3.0% W alloy steel with scale formed For C-11-2, Nb-10.0% W-2.5% Zr Nb alloy, and for plug number C12-1 with the same shape as plug number 12, 0.5% Cr-1 5% Mo- 3.0% W-based alloy steel, and for the same number 12-2, Mo—0.5% Ti-0.08% Zr Mo alloy, Each was used.
[0122] 使用したプラグの先端圧延部の材質、先端圧延部の 1100°Cにおける引張強度お よび母材のスケール厚さの測定結果を表 12に示す。このときのスケール処理は 100 0°C〜1100°Cの温度範囲で行 ヽ、スケール厚さは処理時間を調整することにより調 整した。また、プラグの構造は、先端圧延部を取り替え可能な構造とした。  [0122] Table 12 shows the measurement results of the material of the tip rolling part of the plug used, the tensile strength of the tip rolling part at 1100 ° C, and the scale thickness of the base metal. The scale treatment at this time was performed in the temperature range of 1000 ° C. to 1100 ° C., and the scale thickness was adjusted by adjusting the treatment time. Further, the plug has a structure in which the tip rolling part can be replaced.
[0123] [表 12]
Figure imgf000036_0001
表 12の結果から、下記のことがわかる。第 5発明で規定する条件を満たすプラグ番 号 C9のプラグを用いた場合は、ビレット外径圧下率 Dfが 2. 5%のときのビレットの嚙 み込みが不良気味ではあるものの、圧延は可能であり、内面疵の発生を抑制するこ とができた。これに対して、プラグ番号 C10の従来の 2ゾーン型プラグを用いた場合 は、 Dfを 4. 0%以下として圧延することは不可能であり、内面疵の発生を抑制するこ とはできなかった。
[0123] [Table 12]
Figure imgf000036_0001
From the results in Table 12, we can see that: When plug No. C9 satisfying the conditions specified in the fifth invention is used, rolling is possible although billet penetration is poor when billet outer diameter reduction ratio Df is 2.5%. Therefore, it was possible to suppress the occurrence of internal flaws. In contrast, when using a conventional two-zone plug with plug number C10 However, it was impossible to roll with Df of 4.0% or less, and the occurrence of internal flaws could not be suppressed.
[0125] 第 6発明で規定する条件を満たすプラグ番号 C11— 2および C12— 2のプラグを用 いた場合は、ビレット外径圧下率 Dfが 2. 5%以下での穿孔圧延を安定して行うこと が可能であり、内面疵の発生を抑制することができた。これに対して、プラグ先端圧 延部の 1100° における引張強度が第 6発明で規定する条件を満たさず、スケール 厚さも通常の厚さしか有しな 、プラグ番号 C11 1のプラグを用いた場合は、プラグ の溶損をきたし、内面疵の発生を抑制することができな力つた。  [0125] When plugs with plug numbers C11-2 and C12-2 satisfying the conditions specified in the sixth invention are used, piercing and rolling is stably performed with a billet outer diameter reduction ratio Df of 2.5% or less. It was possible to suppress the occurrence of internal flaws. In contrast, when the plug number C111 is used, the tensile strength at 1100 ° of the plug tip rolled part does not satisfy the conditions specified in the sixth invention, and the scale thickness is only normal. However, this caused damage to the plug and could not suppress the generation of internal flaws.
[0126] プラグ先端圧延部の引張強度が 50MPaに満たないものの、通常よりも厚いスケー ルを形成させたプラグ番号 C12— 1のプラグを用いた場合は、プラグの溶損を抑制 することができ、内面疵の発生を抑制することができた。ただし、同プラグを用いてビ レット外径圧下率 Dfを 2. 0%とした場合は、プラグの溶損を生じた。この理由は、 Df を小さくしたことにより、ビレットの推進力が低下し、圧延時間が長くなつたことによる。 産業上の利用可能性  [0126] Although the tensile strength of the plug tip rolled part is less than 50 MPa, plug damage C12-1 with a thicker scale than usual can be used to prevent plug damage. It was possible to suppress the occurrence of internal flaws. However, when the same plug was used and the billet outer diameter reduction ratio Df was 2.0%, plug damage occurred. The reason for this is that the billet propulsive force was reduced and the rolling time was increased by reducing Df. Industrial applicability
[0127] 本発明の継目無管の製造方法は、ホロ一シェルの内面疵発生の要因となる铸片の 軸心部割れを著しく低減させた丸铸片を铸造できる連続铸造工程と、前記丸铸片か らなる丸ビレットを穿孔圧延してホロ一シェルを製造する穿孔圧延工程とを備えるの で、ミスロール発生の防止とホロ一シェル内面疵発生の防止の二つの効果を両立さ せ、高い生産性のもとに内面疵の少ない高品質の製品を製造することができる。 [0127] The seamless pipe manufacturing method of the present invention includes a continuous forging process capable of forging a round piece having a significantly reduced axial center crack of the piece, which is a cause of internal flaws in the hollow shell, and the round It has a piercing and rolling process in which a round billet made of flakes is pierced and rolled to produce a holo-shell, so that both the effects of preventing the occurrence of misroll and preventing the occurrence of flaws on the inner surface of the holo-shell are achieved. It is possible to produce high-quality products with less internal defects based on productivity.
[0128] とくに、上記丸ビレットを、傾斜ロールのロールゴージ部のロール径と傾斜ロールの 入口ロール径との比に応じて、ビレット回転回数とビレット外径圧下率との比を好適範 囲に調整した条件下で穿孔圧延することにより、さらに内面疵の少ない継目無管をミ スロールすることなく製造することができる。また、穿孔プラグとして略円柱状で先端 面が球面状のプラグ先端圧延部を有する好適形状のプラグを使用することにより、ビ レットの嚙み込み不良を全く生じさせることなぐ一段と高い内面品質を有する継目無 管を製造することができる。したがって、本発明の方法は、内面品質の良好な継目無 管を高 、生産性のもとに製造できる方法として広範に利用できる。 [0128] In particular, the ratio of the billet rotation frequency and the billet outer diameter reduction ratio is adjusted to a suitable range for the round billet according to the ratio between the roll diameter of the roll gorge of the tilt roll and the inlet roll diameter of the tilt roll. By piercing and rolling under the above-described conditions, a seamless pipe with fewer inner surface defects can be produced without being misrolled. In addition, by using a plug having a substantially cylindrical shape and a plug tip rolling portion having a spherical tip end surface as a perforated plug, the inner surface quality is further improved without causing any stagnation of the billet. Seamless pipes can be manufactured. Therefore, the method of the present invention can be widely used as a method capable of producing a seamless pipe with good inner surface quality with high productivity.

Claims

請求の範囲 The scope of the claims
[1] 丸铸片の横断面中央部の少なくとも直径 60mm以内の領域を全て等軸晶組織と するとともに、中心部固相率力^を超え 1. 0以下の範囲において丸铸片表面の冷却 速度が 10°CZ分以下の緩冷却を行いながら、炭素含有率が 0. 1質量%以下で铸 片横断面の直径が 300mmを超える丸铸片を铸造する連続铸造工程を備えることを 特徴とする継目無管の製造方法。  [1] At least the region within 60mm in diameter at the center of the cross-section of the round piece has an equiaxed crystal structure, and the surface of the round piece is cooled in the range of more than 1.0 and less than 1.0. It is equipped with a continuous forging process that forges round rods with a carbon content of 0.1% by mass or less and a cross-sectional diameter of more than 300mm while performing slow cooling at a speed of 10 ° CZ or less. A seamless pipe manufacturing method.
[2] 請求項 1に記載の連続铸造工程により铸造された丸铸片であって、铸片の中心部 に発生する軸心部割れが、铸片横断面の中心から半径 15mm以内の領域に存在す ることを特徴とする丸铸片。 [2] In the round piece manufactured by the continuous forging process according to claim 1, the axial center crack generated at the center of the piece is in a region within a radius of 15 mm from the center of the cross section of the piece. A round splinter characterized by its existence.
[3] 請求項 2に記載の丸铸片を分塊圧延することなく穿孔圧延する工程を備えることを 特徴とする継目無管の製造方法。 [3] A method for producing a seamless pipe, comprising a step of piercing and rolling the round piece according to claim 2 without subjecting it to partial rolling.
[4] ノ スライン周りに対向配置された一対のコーン型の傾斜ロールの間にパスラインに 沿ってプラグを配し、前記(2)に記載の丸铸片力 なるビレットを旋回移動させつつ 穿孔圧延する工程を備え、前記傾斜ロールゴージ部のロール径 Dg (mm)と傾斜口 ール入口におけるビレットのロールへの接触開始位置でのロール径 Dl (mm)との比 DgZDl、および前記ビレットの嚙み込み力 プラグ先端に至るまでのビレット回転 回数 Nとビレットの外径圧下率 Df (%)との比 NZDfが下記(1)〜(3)式の!/、ずれか を満足し、さらに、前記 D1と前記ビレット外径 Bd (mm)との比 DlZBdが下記 (4)式 を満足することを特徴とする継目無管の製造方法 (以下、「第 4発明」とも記す)。 [4] A plug is arranged along a pass line between a pair of cone-shaped inclined rolls arranged opposite to each other around the nose line, and the billet as described in (2) above is rotated while being swung. A roll diameter Dg (mm) of the inclined roll gorge part and a roll diameter Dl (mm) at a position where the billet starts to contact the roll at the inclined roll inlet DgZDl, and the billet radius Bending force Number of billet rotations up to plug tip N and billet outer diameter reduction ratio Df (%) NZDf satisfies the following formulas (1) to (3)! A method of manufacturing a seamless pipe, wherein the ratio DlZBd between the D1 and the billet outer diameter Bd (mm) satisfies the following formula (4) (hereinafter also referred to as “fourth invention”).
Dg/DK l. 1のとき、  When Dg / DK l. 1
23≤N/ (Df/100)≤40 · · · (1)  23≤N / (Df / 100) ≤40 (1)
1. l≤Dg/DK l. 5のとき、  1. l≤Dg / DK l.
20≤N/ (Df/100)≤44 · · · (2)  20≤N / (Df / 100) ≤44 (2)
1. 5≤Dg/Dl≤l. 8のとき、  1. 5≤Dg / Dl≤l.
20≤N/ (Df/100)≤48 · · · (3)  20≤N / (Df / 100) ≤48 (3)
Dl/Bd≥2. 5 · · · (4)  Dl / Bd≥2.5 (4)
ただし、 Ldをビッレト嚙み込み点力もプラグ先端部までのパスライン方向の距離 (m m)、 βを傾斜ロールの傾斜角(° )、および Rpgをプラグ先端位置での傾斜ロール 間隙 (mm)としたとき、下記の(5)および (6)式の関係が成り立つものとする。 Where Ld is the bite squeezing point force, the distance in the pass line direction to the plug tip (mm), β is the tilt angle of the tilt roll (°), and Rpg is the tilt roll at the plug tip position. When the gap (mm) is assumed, the following relations (5) and (6) are satisfied.
N= 2LdZ ( 7u .Bd'tan iS ) · · · · (5)  N = 2LdZ (7u .Bd'tan iS) (5)
Df = { (Bd-Rpg) /Bd} X 100 · · · (6)  Df = {(Bd-Rpg) / Bd} X 100 (6)
[5] 請求項 2に記載の丸铸片カもなる外径 Bd (mm)の中実丸ビレットを、外径 d(mm) が軸方向にわたり等径または外径 dが軸方向後端に向かうにしたがって増大する軸 方向長さ L2 (mm)の円柱状で、その先端面が曲率半径 r (mm)、軸方向長さ LI (m m)の球面状に形成された先端圧延部と、この先端圧延部に連続して外径が軸方向 後端に向かうにしたがって増大するように曲率半径 R (mm)の円弧回転面で形成さ れた軸方向長さ L3 (mm)のワーク部と、このワーク部に連続して外径が軸方向後端 の最大外径 D (mm)に向力うにしたがって増大するようにテーパ角度 2 θ (° )で形成 されたテーパ円柱状の軸方向長さ L4 (mm)のリーリング部とを有するプラグを用い、 傾斜ロール式の穿孔圧延機で穿孔圧延する工程を備え、前記プラグの外径 d、曲率 半径 軸方向長さ Ll、 L2および L3と中実丸ビレットの外径 Bdとの関係が下記(7) 〜(9)式の 、ずれをも満足することを特徴とする継目無管の製造方法。 [5] The solid round billet of the outer diameter Bd (mm), which also serves as the round flange piece according to claim 2, has an outer diameter d (mm) that is the same diameter over the axial direction or an outer diameter d that is at the rear end in the axial direction. A tip rolling section that has a cylindrical shape with an axial length L2 (mm) that increases toward the end, and has a tip surface formed into a spherical shape with a radius of curvature r (mm) and an axial length LI (mm). A workpiece part having an axial length L3 (mm) formed by an arc rotation surface having a radius of curvature R (mm) so that the outer diameter increases continuously toward the rear end in the axial direction continuously to the tip rolling part, The axial length of a tapered cylinder formed with a taper angle of 2 θ (°) so that the outer diameter increases continuously toward the maximum outer diameter D (mm) at the rear end in the axial direction. A plug having a reeling part of L4 (mm) and a step of piercing and rolling with an inclined roll type piercing and rolling machine, the outer diameter d of the plug, the radius of curvature, the axial length Ll, L A method for producing a seamless pipe, characterized in that the relationship between 2 and L3 and the outer diameter Bd of the solid round billet satisfies the deviations of the following formulas (7) to (9).
0. 12≤d/Bd≤0. 35 · · · (7)  0. 12≤d / Bd≤0. 35 (7)
0. 020≤ (d/2Bd) / (R/L3)≤0. 046 · · · (8)  0.020≤ (d / 2Bd) / (R / L3) ≤0. 046 (8)
0. 5d≤Ll +L2≤3d · · · (9)  0. 5d≤Ll + L2≤3d (9)
[6] 請求項 2に記載の丸铸片カもなる外径 Bd (mm)の中実丸ビレットを、外径 d(mm )が軸方向にわたり等径または外径 dが軸方向後端に向かうにしたがって増大する軸 方向長さ L2 (mm)の円柱状で、その先端面が曲率半径 r (mm)、軸方向長さ LI (m m)の球面状に形成された先端圧延部と、この先端圧延部に連続して外径が軸方向 後端に向かうにしたがって増大するように曲率半径 R (mm)の円弧回転面で形成さ れた軸方向長さ L3 (mm)のワーク部と、このワーク部に連続して外径が軸方向後端 の最大外径 D (mm)に向力うにしたがって増大するようにテーパ角度 2 θ (° )で形成 されたテーパ円柱状の軸方向長さ L4 (mm)のリーリング部とを有し、少なくとも前記 先端圧延部の 1100°Cにおける引張強度が 50MPa以上であるプラグを用い、傾斜口 ール式の穿孔圧延機で穿孔圧延する工程を備え、 前記プラグの外径 d、曲率半径 R、軸方向長さ Ll、 L2および L3と中実丸ビレットの外径 Bdとの関係が下記の(8)〜 (10)式の 、ずれも満足することを特徴とする継目無管の製造方法。 [6] The solid round billet of the outer diameter Bd (mm) of the round flange piece according to claim 2, wherein the outer diameter d (mm) is the same diameter in the axial direction or the outer diameter d is at the rear end in the axial direction. A tip rolling section that has a cylindrical shape with an axial length L2 (mm) that increases toward the end, and has a tip surface formed into a spherical shape with a radius of curvature r (mm) and an axial length LI (mm). A workpiece part having an axial length L3 (mm) formed by an arc rotation surface having a radius of curvature R (mm) so that the outer diameter increases continuously toward the rear end in the axial direction continuously to the tip rolling part, The axial length of a tapered cylinder formed with a taper angle of 2 θ (°) so that the outer diameter increases continuously toward the maximum outer diameter D (mm) at the rear end in the axial direction. Using a plug with an L4 (mm) reeling section and at least the tip rolled section with a tensile strength at 1100 ° C of 50 MPa or more, and piercing with an inclined hole type piercing and rolling mill Comprising an extended to process, the outer diameter d of the plug, the radius of curvature R, axial length Ll, the relationship between the outer diameter Bd of L2 and L3 and Nakajitsumaru billet below (8) to A method of manufacturing a seamless pipe, characterized in that the deviation of equation (10) is satisfied.
0.06≤d/Bd≤0.12 ··· (10)  0.06≤d / Bd≤0.12 (10)
0.020≤ (d/2Bd)/(R/L3)≤0.046 ··· (8)  0.020≤ (d / 2Bd) / (R / L3) ≤0.046 ... (8)
0.5d≤Ll+L2≤3d ··· (9)  0.5d≤Ll + L2≤3d (9)
上記プラグの先端圧延部が取り替え可能であることを特徴とする請求項 6に記載の 継目無管の製造方法。  7. The method for manufacturing a seamless pipe according to claim 6, wherein the rolled end portion of the plug is replaceable.
PCT/JP2006/306275 2006-03-28 2006-03-28 Process for producing seamless pipe WO2007110930A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06730223.2A EP2008733B1 (en) 2006-03-28 2006-03-28 Process for producing seamless pipe
PCT/JP2006/306275 WO2007110930A1 (en) 2006-03-28 2006-03-28 Process for producing seamless pipe
CN2006800540554A CN101410195B (en) 2006-03-28 2006-03-28 Method for manufacturing seamless pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306275 WO2007110930A1 (en) 2006-03-28 2006-03-28 Process for producing seamless pipe

Publications (1)

Publication Number Publication Date
WO2007110930A1 true WO2007110930A1 (en) 2007-10-04

Family

ID=38540870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306275 WO2007110930A1 (en) 2006-03-28 2006-03-28 Process for producing seamless pipe

Country Status (3)

Country Link
EP (1) EP2008733B1 (en)
CN (1) CN101410195B (en)
WO (1) WO2007110930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634601A (en) * 2021-08-16 2021-11-12 大冶特殊钢有限公司 Roll profile for improving surface quality of rolled steel pipe of Assel rolling mill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012992B2 (en) * 2010-12-08 2012-08-29 住友金属工業株式会社 Seamless pipe manufacturing method
JP5459347B2 (en) * 2012-04-18 2014-04-02 新日鐵住金株式会社 Round billet for seamless metal pipe and method for producing seamless metal pipe
CN115106494B (en) * 2022-05-27 2023-08-18 燕山大学 Flexible forming device and method for spiral groove pipe

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613605A (en) 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Piercing method with cross helical roll piercer
JPH0313222A (en) 1989-06-08 1991-01-22 Sumitomo Metal Ind Ltd Rolling method for seamless tube
JPH071096A (en) 1993-04-20 1995-01-06 Sumitomo Metal Ind Ltd Method for cooling cast slab in continuous casting
JPH08332556A (en) 1995-06-06 1996-12-17 Sumitomo Metal Ind Ltd Improvement of internal quality of cast bloom in continuous casting
JP2000140911A (en) 1998-11-11 2000-05-23 Kawasaki Steel Corp Method for piercing round billet
JP2001062550A (en) 1999-08-27 2001-03-13 Sumitomo Metal Ind Ltd Casting piece cooling method in continuous casting
JP2002361304A (en) * 2001-06-11 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube using round billet
JP2003117643A (en) 2001-10-15 2003-04-23 Sumitomo Metal Ind Ltd Method for continuously casting bloom and billet of steel
WO2004052569A1 (en) * 2002-12-12 2004-06-24 Sumitomo Metal Industries, Ltd. Seamless metal tube producing method
JP2004330252A (en) 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd Continuous casting method for round billet, and round billet
WO2004103593A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless tube
JP2006095565A (en) * 2004-09-29 2006-04-13 Sumitomo Metal Ind Ltd Method for continuously casting round cast billet, round cast billet, and method for making seamless pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327234A (en) * 2001-04-26 2002-11-15 Sumitomo Metal Ind Ltd Round billet for seamless steel tube, and seamless steel tube
JP4352838B2 (en) * 2003-09-26 2009-10-28 Jfeスチール株式会社 Steel continuous casting method
EP1728566B1 (en) * 2004-03-11 2012-08-29 Sumitomo Metal Industries, Ltd. Seamless pipe producing device and seamless pipe producing method using them

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613605A (en) 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Piercing method with cross helical roll piercer
JPH0313222A (en) 1989-06-08 1991-01-22 Sumitomo Metal Ind Ltd Rolling method for seamless tube
JPH071096A (en) 1993-04-20 1995-01-06 Sumitomo Metal Ind Ltd Method for cooling cast slab in continuous casting
JPH08332556A (en) 1995-06-06 1996-12-17 Sumitomo Metal Ind Ltd Improvement of internal quality of cast bloom in continuous casting
JP2000140911A (en) 1998-11-11 2000-05-23 Kawasaki Steel Corp Method for piercing round billet
JP2001062550A (en) 1999-08-27 2001-03-13 Sumitomo Metal Ind Ltd Casting piece cooling method in continuous casting
JP2002361304A (en) * 2001-06-11 2002-12-17 Sumitomo Metal Ind Ltd Method for manufacturing seamless steel tube using round billet
JP2003117643A (en) 2001-10-15 2003-04-23 Sumitomo Metal Ind Ltd Method for continuously casting bloom and billet of steel
WO2004052569A1 (en) * 2002-12-12 2004-06-24 Sumitomo Metal Industries, Ltd. Seamless metal tube producing method
JP2004330252A (en) 2003-05-08 2004-11-25 Sumitomo Metal Ind Ltd Continuous casting method for round billet, and round billet
WO2004103593A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless tube
JP2006095565A (en) * 2004-09-29 2006-04-13 Sumitomo Metal Ind Ltd Method for continuously casting round cast billet, round cast billet, and method for making seamless pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2008733A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634601A (en) * 2021-08-16 2021-11-12 大冶特殊钢有限公司 Roll profile for improving surface quality of rolled steel pipe of Assel rolling mill
CN113634601B (en) * 2021-08-16 2024-05-17 大冶特殊钢有限公司 Roller shape for improving surface quality of Assel rolling mill rolled steel pipe

Also Published As

Publication number Publication date
CN101410195B (en) 2011-04-06
EP2008733A1 (en) 2008-12-31
CN101410195A (en) 2009-04-15
EP2008733B1 (en) 2013-11-06
EP2008733A4 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US20060065032A1 (en) Method of manufacturing seamless tube
WO2007110930A1 (en) Process for producing seamless pipe
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
JP4045813B2 (en) Seamless steel pipe manufacturing method
JP2005305516A (en) Continuous casting method, and extra-thick steel plate excellent in inner quality and producing method therefor
JP4301133B2 (en) Method for continuous casting of round slab, method for making round slab and seamless pipe
JP6036125B2 (en) Steel continuous casting method
JP5716414B2 (en) Continuous casting equipment for round slabs for seamless steel pipe production
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP2001062550A (en) Casting piece cooling method in continuous casting
JP2004330252A (en) Continuous casting method for round billet, and round billet
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP3319379B2 (en) Continuous casting method of steel billet
JP5790385B2 (en) Continuous casting method of round slab for 13Cr seamless steel pipe
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JP4285288B2 (en) Steel continuous casting method
US20190040485A1 (en) Stainless steel tubes and method for production thereof
RU2638265C1 (en) METHOD OF PRODUCTION OF SEAMLESS MACHINED PIPES WITH SIZE OF 610×21-27 mm FROM STEEL OF 08Cr18N10T-S GRADE
JP5973703B2 (en) Seamless pipe manufacturing method
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
RU2638264C1 (en) METHOD OF PRODUCTION OF SEAMLESS MACHINED PIPES WITH SIZE OF 610×15-20 mm FROM STEEL TO 08Cr18N10T-S GRADE
RU2638263C1 (en) METHOD OF PRODUCTION OF SEAMLESS MACHINED PIPES WITH SIZE OF 610×28-32 mm FROM STEEL OF 08Cr18N10T-S GRADE
RU2617080C1 (en) Method of producing seamless machined pipes with 610x10-14 mm size from steel of "08х18н10т-ш" grade
RU2615400C1 (en) Method of producing seamless machined pipes with 530×13-17 mm size from steel of "08х18н10-ш" grade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680054055.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730223

Country of ref document: EP