JP5343746B2 - Continuous casting method of round slabs for seamless steel pipes - Google Patents

Continuous casting method of round slabs for seamless steel pipes Download PDF

Info

Publication number
JP5343746B2
JP5343746B2 JP2009173317A JP2009173317A JP5343746B2 JP 5343746 B2 JP5343746 B2 JP 5343746B2 JP 2009173317 A JP2009173317 A JP 2009173317A JP 2009173317 A JP2009173317 A JP 2009173317A JP 5343746 B2 JP5343746 B2 JP 5343746B2
Authority
JP
Japan
Prior art keywords
round
slab
roll
reduction
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009173317A
Other languages
Japanese (ja)
Other versions
JP2010052042A (en
Inventor
龍郎 勝村
康一 堤
正道 阿部
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009173317A priority Critical patent/JP5343746B2/en
Publication of JP2010052042A publication Critical patent/JP2010052042A/en
Application granted granted Critical
Publication of JP5343746B2 publication Critical patent/JP5343746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method for a round slab for a seamless steel pipe. <P>SOLUTION: A round slab 9 during continuous casting by a circular mold is, before the completion of its solidification, subjected to rolling reduction with a pair of rolling reduction rolls 6a, to obtain a slab. At this time, as a pair of the rolling reduction rolls, saddle type rolls in which the opening angle &delta; of a caliber bottom is 75 to 105&deg; and also having projections 13a at the parts in contact with the round slab are used. Regarding the projection, at least one projecting protrusion continuous to the roll circumferential direction or a plurality of projections at least in one line discretely distributed to the roll circumferential direction are preferably used. In this way, the generation of porosities of the axial center part and axial center cracks easy to occur in a Cr-containing steel or the like can be suppressed at a reduced rolling draft and also without damaging the cross-sectional shape of the round slab, and the method can contribute to the reduction of production cost, the improvement of the quality of a seamless steel pipe or the like. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、継目無鋼管用丸鋳片の連続鋳造方法に関し、詳しくは、連続鋳造ままの内部品質では継目無鋼管用素材として問題のあった炭素濃度の高い炭素鋼及び合金鋼などの丸鋳片や、鋳造ままの状態では熱間加工性が悪く、継目無鋼管用素材としては使用できなかったCr含有鋼の丸鋳片の内部品質を改善するための連続鋳造方法に関する。   The present invention relates to a continuous casting method of seamless steel pipe round cast slabs, and more specifically, round casting of carbon steel and alloy steel having a high carbon concentration, which has been problematic as a material for seamless steel pipes in the internal quality as continuously cast. The present invention relates to a continuous casting method for improving the internal quality of a Cr-containing steel round cast slab, which has been inferior in hot workability in a piece or as-cast, and could not be used as a material for seamless steel pipes.

継目無鋼管は、非特許文献1に記載されるように、一般的に、鋳造した鋼塊(インゴット)に加工を加えて製造される丸状または角状の鋼片、或いは、連続鋳造により製造される丸状または角状の鋳片を継目無鋼管用素材として使用し、これらの鋼片或いは鋳片をマンネスマン穿孔法、またはプレス穿孔法、若しくは熱間押出法などを用いて中空の素管に加工し、その後、エロンゲータ、プラグミルまたはマンドレルミルなどの圧延機により延伸し、仕上げ工程としてサイザーやストレッチレデューサにより定径化する工程を経て製造されている。   As described in Non-Patent Document 1, seamless steel pipes are generally manufactured by round or square steel pieces produced by processing a cast steel ingot (ingot), or by continuous casting. Round or square slabs are used as the material for seamless steel pipes, and these steel slabs or slabs are hollow by using the Mannesmann drilling method, the press drilling method, or the hot extrusion method. And then stretched by a rolling mill such as an elongator, a plug mill or a mandrel mill, and is manufactured through a process of making the diameter constant by a sizer or a stretch reducer as a finishing process.

この継目無鋼管用の素材としては、一般の低炭素鋼のように、内質に優れ、熱間加工性の良い丸鋳片を比較的簡単に連続鋳造により製造可能な鋼種の場合には、鋳造ままの丸鋳片が用いられる。しかし、Crを含有するステンレス鋼などのように、連続鋳造による製造では、その軸芯部にポロシティや偏析が生じやすく、熱間加工性に劣る鋼種の場合には、鋳造ままの丸鋳片を用いると素管(継目無鋼管)の内面に疵が発生する。このため、連続鋳造などにより角形状の鋳片を製造し、その後、該鋳片に加工を加えて所定の寸法の丸状鋼片または角状鋼片とし、継目無鋼管用素材として使用していた。   As a material for this seamless steel pipe, in the case of a steel type that can produce a round cast slab with excellent internal quality and good hot workability by continuous casting, like general low carbon steel, An as-cast round slab is used. However, in the production by continuous casting, such as stainless steel containing Cr, porosity and segregation are likely to occur in the shaft core, and in the case of a steel type that is inferior in hot workability, an as-cast round slab is used. If used, flaws are generated on the inner surface of the raw pipe (seamless steel pipe). For this reason, square-shaped slabs are manufactured by continuous casting, etc., and then the slabs are processed into round steel pieces or square steel pieces of a predetermined size, which are used as raw materials for seamless steel pipes. It was.

ステンレス鋼などのCr含有鋼の熱間加工性が劣る主な原因は、耐食性向上のために添加されるCrの含有量増加に起因して、連続鋳造時に偏析やポロシティが鋳片軸芯部に発生しやすく、内質の劣った丸鋳片になるためである。熱間加工性に特に大きな悪影響を与えるポロシティは、丸鋳片の最終凝固部に発生する空隙に、溶鋼の粘度が高いなどの理由により、溶鋼が供給され難いことによって発生する。   The main cause of the poor hot workability of Cr-containing steels such as stainless steel is due to the increased Cr content added to improve corrosion resistance, causing segregation and porosity in the core part of the slab during continuous casting. This is because it tends to occur and becomes a round slab with inferior quality. Porosity, which has a particularly large adverse effect on hot workability, is caused by the fact that molten steel is difficult to be supplied due to the high viscosity of molten steel in the voids generated in the final solidified portion of the round cast slab.

図7に、溶鋼中のCr濃度と溶鋼の粘度との関係を示す。図7から、溶鋼中のCr濃度の増加に伴って溶鋼の粘度が増すこと、及び、13質量%前後のCr濃度で溶綱の粘度がピークを示すこと、が分かる。また、図8に、Cr濃度の少ない領域における、溶鋼中のCr濃度と溶鋼の粘度との関係を示す。図8から、Cr濃度が0.5質量%を超えると溶綱の粘度の上昇が顕著になることが分かる。   FIG. 7 shows the relationship between the Cr concentration in the molten steel and the viscosity of the molten steel. FIG. 7 shows that the viscosity of the molten steel increases as the Cr concentration in the molten steel increases, and that the viscosity of the molten steel has a peak at a Cr concentration of about 13% by mass. FIG. 8 shows the relationship between the Cr concentration in the molten steel and the viscosity of the molten steel in a region where the Cr concentration is low. FIG. 8 shows that when the Cr concentration exceeds 0.5% by mass, the viscosity of the molten steel increases significantly.

このように内部欠陥を有する丸鋳片に対して、過酷な加工方法であるマンネスマン穿孔法を施すと、得られる素管の内面には、ポロシティや偏析に起因した疵が発生する。このため、特に難加工性材料と呼ばれる鋼種は当然のこととして、炭素量の多い鋼種やCrが添加された鋼種についても、圧延工程を経て製造された丸鋼片を継目無鋼管用素材として用いることが必須とされてきた。例えば、非特許文献2に記載されるように、高Cr鋼などのように、連続鋳造ままの丸鋳片を素材として用いると素管の内面疵の発生が懸念される鋼種の場合には、大断面の鋼塊或いは連続鋳造鋳片を製造し、これらを加熱した後に分塊圧延してポロシティを機械的に圧着させ、内部品質の優れた丸鋼片を得て、継目無鋼管用素材としていた。なお、ここでいう「鋼片」とは、分塊圧延などの圧延工程を経て得られるものであり、また「鋳片」とは、連続鋳造したままのものである。   When the Mannesmann drilling method, which is a severe processing method, is performed on the round slab having the internal defects in this way, soot is generated on the inner surface of the obtained raw tube due to porosity and segregation. For this reason, the steel grades that are called difficult-to-work materials are of course used, and round steel slabs manufactured through the rolling process are used as the material for seamless steel pipes for steel grades with a high carbon content and those with addition of Cr. It has been essential. For example, as described in Non-Patent Document 2, in the case of a steel type that is concerned about the occurrence of inner surface flaws in the raw pipe when using a round cast piece as a raw material, such as high Cr steel, Manufacturing steel ingots or continuous cast slabs with large cross-sections, heating them, and then rolling them into pieces to mechanically press the porosity to obtain round steel slabs with excellent internal quality as raw material for seamless steel pipes It was. The “steel slab” here is obtained through a rolling process such as ingot rolling, and the “slab slab” is continuously cast.

また、近年、ポロシティに加え、ポロシティの周囲に発生する放射状の割れ(以下、「軸芯割れ」と記す)が製管の阻害要因になるとも言われている。この軸芯割れの発生原因は幾つか提唱されているが、最も影響度の大きい因子としては、鋳片の冷却時に発生する軸芯部熱応力であるとされている。
このように、鋳造ままの素材で製管を行うと疵の発生が懸念される場合には、鋳造した素材を分塊圧延して機械的にポロシティを圧着させ、鋳片にポロシティが存在していてもその影響を製管時に発生させないようにしていた。
In recent years, in addition to porosity, it is said that radial cracks (hereinafter referred to as “axial core cracks”) generated around the porosity become an obstacle to pipe production. Several causes for the occurrence of this axial core crack have been proposed, but the factor having the greatest influence is said to be the thermal stress at the axial core portion that occurs when the slab is cooled.
In this way, if there is a concern about the occurrence of flaws when pipe production is performed with an as-cast material, the cast material is subjected to ingot rolling to mechanically pressure-bond the porosity, and there is porosity in the slab. However, the effect was not generated during pipe making.

しかしながら、連続鋳造鋳片に分塊圧延を施すと、圧延後の鋼片の端面が凹凸のある形状となり、そのまま、継目無鋼管用素材として穿孔すると凸部を巻き込み、素管の内面疵になる。そのため、圧延後の鋼片を継目無鋼管用素材とするためには、鋼片端面の形状を整えるための切断工程が必須となる。即ち、端部の切断によりクロップが必然的に発生し、製品歩留が低下するという問題がある。また、当然ながら、分塊圧延を行うための再加熱も製品コストを増大させる要因となるという問題もある。   However, if the continuous cast slab is subjected to partial rolling, the end face of the steel slab after rolling becomes an uneven shape, and if it is drilled as it is as a raw material for seamless steel pipes, the convex part is involved and becomes the inner surface flaw of the raw pipe . Therefore, in order to use the rolled steel slab as a material for a seamless steel pipe, a cutting process for adjusting the shape of the end face of the steel slab is essential. That is, there is a problem that cropping is inevitably generated by cutting the end portion, and the product yield is lowered. In addition, of course, there is a problem that reheating for performing the ingot rolling also increases the product cost.

そこで、分塊圧延工程を経ずに丸鋳片をそのまま継目無鋼管用素材とするべく、丸鋳片の内質を向上させる技術が提案されている。
例えば、特許文献1には、連続鋳造中の鋳片を、鋳片中心部の固相率fsがO.5〜0.9の位置で、鍛造による総圧下量δが、当該鍛造位置における未凝固厚みdの0.5倍以上、つまり、δ/d≧0.5となるように連続鍛造による大圧下を施しながら鋳造する技術が開示されている。この技術は、連続鋳造時に圧下力を付与しており、圧下のための加熱は必要とせず、しかも、ポロシティの圧下については優れた技術であるが、設備費が高額であるという問題がある。また、一般の炭素鋼などの圧下不要の鋳片に対しても設備費の負担がかかってくるため、現実的でない。
Therefore, a technique for improving the quality of the round slab has been proposed so that the round slab can be used as a raw material for a seamless steel pipe without going through the block rolling process.
For example, Patent Document 1 discloses that a slab during continuous casting has a solid-state ratio fs at the center of the slab at a position where the solid phase ratio fs is 0. A technique is disclosed in which casting is performed while applying a large reduction by continuous forging so that d is 0.5 times or more, that is, δ / d ≧ 0.5. This technique provides a reduction force during continuous casting, does not require heating for reduction, and is an excellent technique for reduction of porosity, but has a problem of high equipment costs. Moreover, since the burden of an installation cost will be applied also to slab which does not require reduction, such as general carbon steel, it is not realistic.

また、特許文献2には、連続鋳造時の鋳片内質向上のために、鋳型及び鋳型直下に配置した電磁攪拌装置によって溶綱を攪拌しながら丸鋳片を連続鋳造する技術が開示されている。この技術は、鋳型内及び鋳型直下で溶鋼を電磁撹絆することにより、凝固核を未凝固層中に生成させ、この凝固核によって鋳片の軸芯部を等軸晶で充填させ、鋳片軸芯部のポロシティ及び偏析を抑制するという技術である。ただし、この技術は広く実施されているものの、その効果はポロシティの発生を防止する程は大きくない。   Further, Patent Document 2 discloses a technique for continuously casting a round slab while stirring a molten steel by a magnetic stirrer arranged immediately below the mold and the mold in order to improve the quality of the slab during continuous casting. Yes. In this technology, solidified nuclei are generated in an unsolidified layer by electromagnetically stirring molten steel in the mold and directly under the mold, and the axial core portion of the slab is filled with equiaxed crystals by this solidified nuclei. This is a technique for suppressing the porosity and segregation of the shaft core. However, although this technique is widely implemented, the effect is not so great as to prevent the occurrence of porosity.

また、連続鋳造鋳片の内質を向上させる他の手段として、例えば特許文献3に示されるように、連続鋳造中の凝固末期の鋳片に、凝固収縮量に相当する程度の圧下を加えながら鋳造する技術が実施されている。この技術は、凝固末期の鋳片を凝固収縮量だけロールで圧下し、ポロシティを軽減するとともに、濃化溶鋼の流動を抑えて中心偏析を防止する技術であり、スラブ鋳片やブルーム鋳片の内質改善方法として良く知られており、「軽圧下技術」と呼ばれている。この技術は、鋳造中に圧下を加えるだけであり、設備費は軽微であり、圧下のための再加熱も不要であり、製造コストを低減できる技術である。   Further, as another means for improving the quality of the continuous cast slab, for example, as shown in Patent Document 3, while applying a reduction corresponding to the solidification shrinkage to the slab at the end of solidification during continuous casting Casting technology is implemented. This technology reduces the porosity of the slab at the end of solidification with a roll by the amount of solidification shrinkage and reduces the flow of concentrated molten steel to prevent center segregation. It is well known as an internal quality improvement method and is called “light reduction technology”. In this technique, only reduction is applied during casting, equipment costs are small, reheating for reduction is unnecessary, and the manufacturing cost can be reduced.

この軽圧下技術の1例として、非特許文献3には、高Cr鋼であるSUS304の丸ブルーム鋳片に軽圧下技術を適用した例が開示されている。非特許文献3に記載される、鋳片軸芯部の密度測定結果では、ポロシティの発生していないときの密度が7.8g/ cmであるのに対し、圧下を付与したときの鋳片軸芯部の密度は7.7g/cmであり、また、凝固組織の写真からも軸芯部に若干のポロシティの残存が確認でき、完全にはポロシティを潰しきれていない。しかし、軽圧下を実施しない場合に比較すると、改善効果は大きい。 As an example of this light reduction technique, Non-Patent Document 3 discloses an example in which the light reduction technique is applied to a round bloom slab of SUS304, which is a high Cr steel. According to the density measurement result of the core part of the slab shaft described in Non-Patent Document 3, the density when no porosity is generated is 7.8 g / cm 3 , whereas the slab shaft when reduction is applied The density of the core is 7.7 g / cm 3 , and a slight porosity remains in the shaft core from a photograph of the solidified structure, and the porosity is not completely crushed. However, the improvement effect is great compared to the case where light reduction is not performed.

この軽圧下技術を丸鋳片の連続鋳造に採用したときの最大の問題は、ロールによる圧下で引き起こされる鋳片形状の悪化つまり偏平化と、圧下量の増大に伴って発生の可能性が増大する凝固界面近傍の割れである。
即ち、丸鋳片に対して、板状鋳片を圧下するために用いるような、鋳片の移送方向に対し垂直な断面の断面形状が矩形である平型ロールにより圧下を加えると、ロールに接触した部分は平面化し、他方、ロールに接触していない部分は膨らみ、丸鋳片の断面形状は偏平化し、更には角形に近づく。このような鋳片を穿孔して継目無鋼管とすると、偏肉が発生する場合が多くなる。しかも、このような圧下により、鋳片断面内で圧下方向と直交する方向に引張応力が発生することで、割れが発生しやすくなる。また、ポロシティの圧着効果を高めるために圧下量を大きくすれば、断面形状は更に真円から遠ざかり、その結果、継目無鋼管の偏肉が大きくなって所望の規格を外れる恐れが高くなるとともに、割れの発生率が高くなり、更には、継目無鋼管用素材として使用する際に、丸鋳片を転動して行う搬送ができなくなったり、また穿孔時の噛込み不安定になったりするなどの重大な問題が発生する。
The biggest problem when this light rolling technology is applied to continuous casting of round slabs is that the shape of the slab is deteriorated or flattened due to rolling by rolls, and the possibility of occurrence increases as the rolling amount increases. It is a crack near the solidification interface.
That is, when rolling is applied to a round slab by a flat roll having a rectangular cross-sectional shape perpendicular to the slab transfer direction, such as used for rolling a plate-shaped slab, The contacted portion is flattened, while the portion not in contact with the roll swells, the cross-sectional shape of the round cast slab is flattened, and further approaches a square shape. When such a slab is drilled into a seamless steel pipe, uneven thickness often occurs. Moreover, due to such a reduction, a tensile stress is generated in the direction perpendicular to the reduction direction in the cross section of the slab, so that cracking is likely to occur. In addition, if the amount of reduction is increased in order to enhance the pressure bonding effect of porosity, the cross-sectional shape is further away from the perfect circle, and as a result, the uneven thickness of the seamless steel pipe is increased and there is a high possibility that it will deviate from the desired standard. The occurrence rate of cracks increases, and furthermore, when used as a material for seamless steel pipes, it becomes impossible to convey by rolling round cast pieces, and the biting becomes unstable during drilling, etc. A serious problem occurs.

この偏平化の問題を解決するべく、特許文献4には、楕円形鋳型により断面形状が楕円形の鋳片を鋳造し、それを、ラウンド孔型ロ一ルにより長径方向に圧下し、真円断面の鋳片を得る技術が開示されている。
特許文献4に記載された方法は圧下後の鋳片形状の問題を解決しているが、記載される実施例から判断すると、所望する鋳片直径に対し、10%を超える、いわば強圧下を施しても、直径10mm以上のポロシティが残存し、鋳片段階におけるポロシティの低減効果は認められるものの、製管工程での疵抑制効果は疑問であり、その効果は小さいと言わざるを得ない。また、圧下量を大きくするためには、楕円形鋳型の長径と短径との差を大きくする必要があり、その場合には、鋳造時の鋳型内湯流れが真円断面の鋳型(円形鋳型)を用いた場合に比較して不均一になり、それに起因する湯面変動やモールドパウダーの巻き込みが、新たな欠陥の原因になる。また、必要な圧下量に対応して鋳型を数多く準備する必要があること、及び、内部品質に問題の無い鋼種の場合も圧下をかけることになり、コストが上昇することなどの問題もある。
In order to solve the problem of flattening, Patent Document 4 describes casting an slab having an elliptical cross section with an elliptical mold and rolling it down in a major axis direction with a round hole type roll. A technique for obtaining a cross-section slab is disclosed.
Although the method described in Patent Document 4 solves the problem of the slab shape after the reduction, judging from the described examples, it exceeds 10% with respect to the desired slab diameter. Even if it is applied, a porosity of 10 mm or more in diameter remains and the effect of reducing the porosity at the slab stage is recognized, but the effect of suppressing flaws in the pipe making process is doubtful, and the effect is small. Also, in order to increase the amount of reduction, it is necessary to increase the difference between the major axis and the minor axis of the elliptical mold. In that case, the mold flow during casting is a mold with a round cross section (circular mold). Compared to the case of using, non-uniformity is caused, and fluctuations in the molten metal surface and entrainment of mold powder caused by this cause new defects. In addition, it is necessary to prepare a large number of molds corresponding to the required amount of reduction, and in the case of a steel type that does not have a problem in internal quality, reduction is also required, resulting in an increase in cost.

これらの問題を解決するために、本発明者らは、例えば特許文献5に示すように、カリバー底の開き角度δが70°以上115°以下である鞍型ロールを用い、円形鋳型により鋳造された連続鋳造中の丸鋳片を圧下しながら鋳造する技術を提案し、一定の効果が得られることを確認した。   In order to solve these problems, the present inventors, for example, as shown in Patent Document 5, are cast by a circular mold using a vertical roll having a caliber bottom opening angle δ of 70 ° to 115 °. We have proposed a technique for casting while rolling round slabs during continuous casting, and confirmed that a certain effect can be obtained.

特開昭63-183765号公報Japanese Unexamined Patent Publication No. 63-183765 特開平1-180762号公報Japanese Unexamined Patent Publication No. 1-180762 特開昭49-121738号公報JP 49-121738 A 特開平7-108358号公報JP 7-108358 A 特開平10-34304号公報Japanese Patent Laid-Open No. 10-34304

第3版鉄鋼便覧III(2)(1980)、p.952、p.9713rd edition Steel Handbook III (2) (1980), p.952, p.971 第3版鉄鋼便覧III(2)(1980)、p.107〜1703rd Edition Steel Handbook III (2) (1980), p.107-170 材料とプロセス、vo1.7(1994)、No.1、p.195Materials and processes, vo1.7 (1994), No.1, p.195

特許文献5に記載された技術により、所望する効果を得るためには、体積減少率なるパラメータを増加する必要があり、それは、即ち、鋳造速度の相関が或る程度はあるものの、実質的には圧下量を増大させることが必要であることが分かった。この場合、鋳片径が大きくなればなるほど、圧下の負荷は増大し、従って、大型設備を導入するか、或いは、軸芯部のポロシティの抑制を不十分のまま断念するかと、いう選択を余儀なくされ、特許文献5に記載の技術によっても、完全な解決には至らないことが認められた。   In order to obtain a desired effect by the technique described in Patent Document 5, it is necessary to increase a parameter called volume reduction rate, that is, although there is a certain degree of correlation between casting speeds, It has been found necessary to increase the amount of reduction. In this case, the larger the slab diameter, the greater the reduction load. Therefore, it is necessary to select whether to introduce a large facility or abandon the suppression of the porosity of the shaft core part. It was recognized that even the technique described in Patent Document 5 does not lead to a complete solution.

また、上記した従来の技術では、さらに、鋼の丸鋳片、特にCr含有鋼の丸鋳片を連続鋳造するにあたり、ポロシティの生成を完全に抑制することはできず、また、鋳造中の丸鋳片に軽圧下を加えた場合、鋳片断面形状が偏平となり、それによる弊害も発生していた。
即ち、合金成分を多く含む継目無鋼管用の丸鋳片の製造方法においては、軽圧下を行うことなく内質を改善することはほぼ不可能である一方、軽圧下そのものの実施により真円形状から遠ざかることに起因して生ずる製管工程での損失が大きく、それ故、所望する圧下量での軽圧下を行うことができず、その結果、内質が良く、製管に好適な丸鋳片を得ることは困難であるという問題があった。
In addition, in the conventional technique described above, the porosity generation cannot be completely suppressed in continuous casting of steel round cast slabs, particularly Cr-containing steel round cast slabs. When light reduction was applied to the slab, the cross-sectional shape of the slab was flattened, resulting in problems.
In other words, in the method of manufacturing round slabs for seamless steel pipes containing a large amount of alloy components, it is almost impossible to improve the internal quality without performing light reduction. Loss in the pipe making process caused by moving away from the pipe is large, and therefore it is not possible to perform a light reduction with a desired reduction amount, and as a result, the inner casting has a good quality and is suitable for pipe making. There was a problem that it was difficult to obtain a piece.

本発明は、上記した従来技術の問題に鑑みてなされたものであり、熱間加工性の劣る鋼、特にCr含有鋼などの合金元素の多い鋼であっても、鋳造ままの丸鋳片をそのまま継目無鋼管用素材とすることのできる、内部品質に優れた丸鋳片を、断面形状劣化を伴うことなく且つ経済的に安定して製造することのできる、継目無鋼管用丸鋳片の連続鋳造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and round cast slabs as cast can be obtained even for steels with poor hot workability, particularly steels with many alloying elements such as Cr-containing steels. A round cast slab for seamless steel pipe that can be used as a raw material for seamless steel pipe as it is, and can be manufactured stably and economically without deterioration of the cross-sectional shape, with excellent internal quality. An object is to provide a continuous casting method.

本発明者らは、上記した目的を達成するために、連続鋳造時の丸鋳片の内部品質に影響する各種要因ついて、鋭意研究した。その結果、丸鋳片の凝固完了位置近傍に、所定のカリバー底の開き角度δを有し、かつ丸鋳片に接触する部位に円周方向に連続した突条、または円周方向に離散的に分布した突起を配設した一対の鞍型ロールを配し、丸鋳片を圧下することが有効であるという結論に達した。これにより、丸鋳片の内部品質が格段に向上することを知見した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors that affect the internal quality of the round slab during continuous casting. As a result, in the vicinity of the solidification completion position of the round slab, there is a predetermined caliber bottom opening angle δ, and a continuous ridge in the circumferential direction at a portion in contact with the round slab, or discrete in the circumferential direction. It was concluded that it is effective to arrange a pair of vertical rolls with protrusions distributed in the area and to reduce the round slab. As a result, it has been found that the internal quality of the round slab is greatly improved.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨とするところは、次のとおりである。
(1)円形鋳型による連続鋳造中の丸鋳片に、該丸鋳片の凝固完了前に、一対の圧下ロールにより圧下を加え、次いで、丸鋳片を切断して継目無鋼管用丸鋳片を製造するに当たり、前記一対の圧下ロールとして、カリバー底の開き角度δが75°以上105°以下であり、且つ、前記丸鋳片と対向する部位に、丸鋳片と接触する突起を有する鞍型ロールを使用することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) Before the solidification of the round slab, the round slab during continuous casting with a circular mold is subjected to reduction by a pair of reduction rolls, and then the round slab is cut to obtain a round slab for seamless steel pipes. When the caliber bottom opening angle δ is not less than 75 ° and not more than 105 °, and the portion facing the round cast piece has a protrusion that contacts the round cast piece. A continuous casting method for round slabs for seamless steel pipes, characterized by using a mold roll.

(2)(1)において、前記突起が、少なくとも1条のロール円周方向に連続する突条であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(3)(1)において、前記突起が、ロール円周方向に離散的に分布した複数の突起であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(4)(1)ないし(3)のいずれかにおいて、前記突起が、前記鞍型ロールの軸方向断面における断面形状が円弧であり、該円弧の半径Rが、
R=0.20D〜0.50D
(ここで、R:突条断面の円弧半径(mm)、D:丸鋳片直径(mm))
を満足することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(2) The continuous casting method for a round cast piece for a seamless steel pipe according to (1), wherein the protrusion is a protrusion that is continuous in at least one roll circumferential direction.
(3) A continuous casting method of a round cast piece for a seamless steel pipe according to (1), wherein the protrusions are a plurality of protrusions distributed discretely in a roll circumferential direction.
(4) In any one of (1) to (3), the protrusion has an arc shape in a cross section in the axial direction of the saddle roll, and a radius R of the arc is
R = 0.20D ~ 0.50D
(Where R: arc radius of the ridge cross section (mm), D: round slab diameter (mm))
A continuous casting method of round slabs for seamless steel pipes characterized by satisfying

(5)(3)において、前記複数の突起が、該突起の、ロール円周方向の底面長さBとロール軸方向の底面長さAとの比、A/B、が0.2〜1であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(6)(5)において、前記複数の突起を、該複数の突起のうち隣り合う突起同士の端部間の間隔が、前記鞍型ロールの円周方向の投影長さで、零を含み、前記鞍型ロールと前記丸鋳片との接触長さ未満となるように、設けることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(5) In (3), in the plurality of protrusions, the ratio of the bottom surface length B in the roll circumferential direction to the bottom surface length A in the roll axis direction, A / B, is 0.2 to 1. A continuous casting method for round cast slabs for seamless steel pipes.
(6) In (5), the interval between the end portions of the plurality of protrusions adjacent to each other among the plurality of protrusions is a projection length in the circumferential direction of the saddle roll, and includes zero. A continuous casting method of a round cast piece for a seamless steel pipe, characterized by being provided so as to be less than a contact length between the vertical roll and the round cast piece.

(7)(5)または(6)において、前記複数の突起を、該複数の突起の前記鞍型ロールの円周方向における底面長さBが、前記鞍型ロールと前記丸鋳片との接触長さの1/2以上である突起とすることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(8)(1)ないし(7)のいずれかにおいて、前記圧下を、前記丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に、次式
面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
で定義される面積減少率が1〜5%の範囲となる圧下とすることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。
(7) In (5) or (6), the plurality of protrusions are such that the bottom surface length B in the circumferential direction of the plurality of protrusions is the contact between the saddle roll and the round cast piece. A continuous casting method for a round slab for a seamless steel pipe, characterized in that the protrusion is a half or more of the length.
(8) In any one of (1) to (7), the reduction is performed when the solid phase ratio fs at the shaft core portion of the round cast slab is 0.3 to 0.85. = {1- (Cross sectional area of round slab after reduction) / (Cross sectional area of round slab before reduction)} × 100
A continuous casting method of round slabs for seamless steel pipes, characterized in that the area reduction rate defined by is in the range of 1 to 5%.

(9)(1)ないし(8)のいずれかにおいて、前記丸鋳片が、0.5質量%以上のCrを含有するCr含有鋼製であることを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。   (9) In any one of (1) to (8), the round cast slab is made of Cr-containing steel containing 0.5% by mass or more of Cr. Casting method.

本発明によれば、所定のカリバー底開き角度を有する鞍型ロールの丸鋳片に接触する位置に設置した突起を介して丸鋳片を圧下するので、丸鋳片の軸芯部に有効に圧下力が付与され、少ない圧下量で且つ丸鋳片の断面形状を損ねることなく、Cr含有鋼などに生じやすい軸芯部のポロシティや軸芯割れの発生を抑制できた丸鋳片を製造でき、継目無鋼管用素材として、製造コストの削減や継目無鋼管の品質向上等に寄与でき、産業上格段の効果を奏する。また本発明によれば、少ない圧下量でも丸鋳片軸芯部のポロシティや軸芯割れの発生を抑制でき、高額な設備投資が不要となるという効果もある。   According to the present invention, since the round slab is squeezed through the protrusions installed at the positions in contact with the round slab of the vertical roll having a predetermined caliber bottom opening angle, it is effective for the shaft core part of the round slab. It is possible to produce round slabs with reduced rolling force and with reduced reduction amount and without damaging the cross-sectional shape of round slabs, which can suppress the occurrence of shaft core porosity and shaft core cracks that are likely to occur in Cr-containing steel. As a material for seamless steel pipes, it can contribute to reducing manufacturing costs and improving the quality of seamless steel pipes, and has a remarkable industrial effect. In addition, according to the present invention, it is possible to suppress the occurrence of porosity and shaft core cracks in the shaft portion of the round cast slab even with a small reduction amount, and there is also an effect that expensive equipment investment is not required.

また、本発明によれば、炭素鋼などの連続鋳造ままの継目無鋼管用丸鋳片においても、低コストで内部品質の大幅な改善が得られ、それにより、製品歩留りが向上するとともに生産能率も向上するという大きな効果もある。   In addition, according to the present invention, in a round cast piece for seamless steel pipes such as carbon steel, which is continuously cast, a significant improvement in internal quality can be obtained at a low cost, thereby improving product yield and producing efficiency. There is also a great effect of improving.

本発明の実施形態の1例を示す図であり、継目無鋼管用丸鋳片を連続鋳造により製造する状況を示す概略図である。It is a figure which shows one example of embodiment of this invention, and is the schematic which shows the condition which manufactures the round cast piece for seamless steel pipes by continuous casting. 突条付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which is rolling down the round slab during casting using the vertical roll with a protrusion. 突条付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を、ロール軸芯を含む断面で、模式的に示す説明図である。It is explanatory drawing which shows typically the state which is rolling down the round cast piece under casting using the vertical roll with a protrusion with the cross section containing a roll axial center. 2列の突条を有する鞍型ロールの一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the saddle type roll which has a 2 row | line | column protrusion. 突条の断面形状の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the cross-sectional shape of a protrusion. 複数の突起付き鞍型ロールを用いて鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which is rolling down the round slab during casting using the vertical roll with a some protrusion. 溶鋼中のCr濃度と溶鋼の粘度との関係の一例を示した図である。It is the figure which showed an example of the relationship between Cr density | concentration in molten steel, and the viscosity of molten steel. 溶鋼中のCr濃度(低濃度側)と溶鋼の粘度との関係の一例を示した図である。It is the figure which showed an example of the relationship between Cr density | concentration (low concentration side) in molten steel, and the viscosity of molten steel. 圧下ロールとして平型ロールを使用して連続鋳造中の丸鋳片を圧下している状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state which is rolling down the round slab during continuous casting using a flat type roll as a reduction roll.

本発明は、継目無鋼管用丸鋳片の製造方法であり、本発明では、連続鋳造機1を利用し、タンディッシュ2に収容された溶鋼8を、浸漬ノズル3を介して内部空間横断面が真円(円形)である連続鋳造鋳型(円形鋳型)4に注入し、連続的に丸鋳片9を鋳造するに当たり、油圧シリンダー7を備え丸鋳片に押付け力を付加可能な一対の圧下ロール6,6を丸鋳片の凝固完了位置より上流側の適正な位置に配置し、該一対の圧下ロール6,6により該丸鋳片の凝固完了前に該丸鋳片9に圧下を加える。そして、丸鋳片の凝固完了位置より下流側の適当な位置に設置された鋳片切断機(図示せず)により丸鋳片を切断して、継目無鋼管用素材を得る。この状況を図1に示す。   The present invention is a method for producing a round cast slab for a seamless steel pipe. In the present invention, a continuous casting machine 1 is used, and a molten steel 8 accommodated in a tundish 2 is passed through an immersion nozzle 3 through an internal space cross section. Is poured into a continuous casting mold (circular mold) 4 that is a perfect circle (circular) and continuously casts a round slab 9, a pair of reductions that are provided with a hydraulic cylinder 7 and can apply a pressing force to the round slab The rolls 6 and 6 are arranged at appropriate positions upstream of the solidification completion position of the round slab, and the round slab 9 is pressed by the pair of reduction rolls 6 and 6 before the solidification of the round slab is completed. . And a round cast piece is cut | disconnected by the cast piece cutting machine (not shown) installed in the appropriate position downstream from the solidification completion position of a round cast piece, and the raw material for seamless steel pipes is obtained. This situation is shown in FIG.

なお、円形鋳型4の下流側には、鋳造中の丸鋳片を支持するための鋳片支持ロール5が多数、配置される。また、鋳片支持ロール5が配置される範囲には、鋳造中の丸鋳片9を強制冷却するためのスプレーノズル(図示せず)が配置され、二次冷却帯を構成している。図1では、圧下ロール6,6は、鋳片支持ロール5を設置すべき位置と同じ位置に配置しているが、鋳片支持ロール5を設置すべき位置とは異なる位置に配置してもよい。また、図1では、圧下ロール6,6を、丸鋳片9が水平方向に移送される位置に設置した例を示しているが、これに限定されないことは言うまでもない。圧下ロール6,6を、丸鋳片9が垂直または斜め方向に移送される位置に設置することも可能である。   A large number of slab support rolls 5 for supporting the round slabs being cast are arranged on the downstream side of the circular mold 4. Further, a spray nozzle (not shown) for forcibly cooling the round slab 9 being cast is disposed in a range where the slab support roll 5 is disposed, thereby constituting a secondary cooling zone. In FIG. 1, the rolling rolls 6 and 6 are arranged at the same position as the position where the slab support roll 5 is to be installed, but may be arranged at a position different from the position where the slab support roll 5 is to be installed. Good. 1 shows an example in which the rolling rolls 6 and 6 are installed at positions where the round slab 9 is transferred in the horizontal direction, it is needless to say that the present invention is not limited to this. It is also possible to install the rolling rolls 6 and 6 at a position where the round cast slab 9 is transferred vertically or obliquely.

さらに、図1に示す連続鋳造機1を利用して、継目無鋼管用の丸鋳片を製造する場合を例にとり、本発明の製造方法についてさらに詳しく説明する。
タンディッシュ2から、浸漬ノズル3を介して円形鋳型4に注入された溶鋼8は、円形鋳型4の内壁に接触して冷却され、円形鋳型4との接触部に円形の凝固シェル10を形成する。そして、この凝固シェル10を外殻とし、内部に未凝固層11を有する丸鋳片9は、鋳片支持ロ一ル5のうちのピンチロールによって円形鋳型4から引き抜かれ、鋳片支持ロール5で支持されながら二次冷却帯で冷却される。二次冷却帯での冷却により、凝固シェル10の厚みが増大し、やがて軸芯部までの凝固を完了する。軸芯部までの凝固を完了した丸鋳片9は、鋳片切断機(図示せず)によって所定の長さに切断され、継目無鋼管用丸鋳片とされる。なお、図1には示されていないが、丸鋳片9の軸芯部の品質を向上させるために、円形鋳型4或いは円形鋳型直下の二次冷却帯に電磁撹拌装置を配置してもよい。この電磁撹拌装置により、未凝固層11が強制的に撹拌され、等軸晶を形成して、軸芯部のポロシティ及び偏析が改善される。
Further, the production method of the present invention will be described in more detail by taking as an example the case of producing round cast pieces for seamless steel pipes using the continuous casting machine 1 shown in FIG.
The molten steel 8 injected into the circular mold 4 from the tundish 2 via the immersion nozzle 3 is cooled by contacting the inner wall of the circular mold 4 to form a circular solidified shell 10 at the contact portion with the circular mold 4. . Then, the round slab 9 having the solidified shell 10 as an outer shell and having an unsolidified layer 11 therein is pulled out from the circular mold 4 by the pinch roll of the slab support roll 5, and the slab support roll 5 It is cooled in the secondary cooling zone while being supported by. Due to the cooling in the secondary cooling zone, the thickness of the solidified shell 10 increases, and eventually solidification to the shaft core is completed. The round slab 9 that has been solidified up to the shaft core is cut into a predetermined length by a slab cutting machine (not shown) to form a seamless steel pipe round slab. Although not shown in FIG. 1, in order to improve the quality of the shaft core part of the round cast piece 9, an electromagnetic stirring device may be arranged in the secondary cooling zone immediately below the circular mold 4 or the circular mold. . With this electromagnetic stirrer, the unsolidified layer 11 is forcibly stirred to form equiaxed crystals, and the porosity and segregation of the shaft core portion are improved.

本発明では、凝固が完了する前の適正な位置で、鋳造中の丸鋳片9に一対の圧下ロール6,6を用いて圧下を加える。これにより、軸芯部のポロシティ及び放射状の軸芯割れが改善し、丸鋳片9の内部品質が向上する。
本発明では、使用する一対の圧下ロール6,6を、カリバー底の開き角度δが75°以上105°以下であり、且つ、丸鋳片と対向する部位に、丸鋳片と接触する突起13を有する一対の鞍型ロール6a,6aとする。
In the present invention, rolling is applied to the round slab 9 during casting using a pair of rolling rolls 6 and 6 at an appropriate position before solidification is completed. As a result, the porosity of the shaft core portion and radial shaft core cracking are improved, and the internal quality of the round cast piece 9 is improved.
In the present invention, a pair of the rolling rolls 6 and 6 to be used has a caliber bottom opening angle δ of 75 ° or more and 105 ° or less, and a protrusion 13 that contacts the round cast piece at a portion facing the round cast piece. A pair of saddle type rolls 6a and 6a having

鞍型ロールの丸鋳片に接触する部位に設けられる突起13としては、少なくとも1条のロール円周方向に連続する突条13a、あるいは、ロール円周方向に離散的に分布した複数の突起13bとすることが好ましい。少なくとも1条のロール円周方向に連続する突条13aを有する例を図2に、また、ロール円周方向に離散的に分布した複数の突起13bを有する例を図6に示す。   As the protrusions 13 provided in the portion that contacts the round cast piece of the vertical roll, at least one protrusion 13a that is continuous in the roll circumferential direction, or a plurality of protrusions 13b that are discretely distributed in the roll circumferential direction. It is preferable that 2 shows an example having at least one protrusion 13a continuous in the roll circumferential direction, and FIG. 6 shows an example having a plurality of protrusions 13b distributed discretely in the roll circumferential direction.

一対の圧下ロール6,6として、一対の鞍型ロール6a,6aを用いることにより、圧下ロール6a,6aと丸鋳片9との接触箇所が4点となり、圧下ロール6a,6aが丸鋳片9を拘束しやすくなるうえ、図3に断面図で示すように、異なる4つの方向から丸鋳片9を圧下することが可能となる。これにより、平型ロールを用いた圧下に比較して、圧下後の丸鋳片9の偏平率εを小さくすることができる。なお、ここでいう「偏平率ε」は、「ε(%)=1一(丸鋳片の或る断面中での最短径部長さ)/(同一断面中の最長径部長さ)/×100」で定義される値をいう。   By using a pair of vertical rolls 6a and 6a as the pair of rolling rolls 6 and 6, there are four contact points between the rolling rolls 6a and 6a and the round cast piece 9, and the rolls 6a and 6a are round cast pieces. In addition to restraining 9, the round cast piece 9 can be rolled down from four different directions as shown in the cross-sectional view of FIG. 3. As a result, the flatness ε of the round slab 9 after the reduction can be reduced as compared with the reduction using the flat roll. The “flattening ratio ε” here is “ε (%) = 1 one (the shortest diameter portion length in a certain cross section of a round cast piece) / (the longest diameter portion length in the same cross section) / × 100. "Means the value defined by.

圧下ロールとして使用する鞍型ロール6aは、カリバー底の開き角度δを75°以上105°以下とする。これにより、丸鋳片の軸芯部に、圧下により発生する応力・歪を圧縮方向の応力・歪とすることができ、ポロシティの低減が可能となる。なお、カリバー底の開き角度δが、この範囲を逸脱すると、圧下時に丸鋳片の幅方向(圧下方向に垂直な方向)に、引張応力が作用し、問題となる。ポロシティの低減のためには、当該箇所への静水圧の付加が有効であるとされているが、丸鋳片の軸芯部に対しては簡便に行うことは困難である。また、丸鋳片への圧下を、平型ロールを用いて行えば、圧下方向には大きな圧縮効果を得ることが可能であるが、圧下方向に垂直な鋳片幅方向(鋳片の圧下方向に垂直な方向)の応力は引張応力となり、ポロシティの低減効果が低下する。   The vertical roll 6a used as the rolling roll has a caliber bottom opening angle δ of 75 ° or more and 105 ° or less. As a result, the stress / strain generated by the reduction in the shaft core portion of the round slab can be made the stress / strain in the compression direction, and the porosity can be reduced. If the opening angle δ of the caliber bottom deviates from this range, a tensile stress acts in the width direction (direction perpendicular to the rolling direction) of the round slab at the time of rolling, which causes a problem. In order to reduce the porosity, it is considered effective to add hydrostatic pressure to the location, but it is difficult to simply apply to the shaft core portion of the round cast slab. In addition, if the reduction to the round slab is performed using a flat roll, it is possible to obtain a large compression effect in the reduction direction, but the slab width direction perpendicular to the reduction direction (the slab reduction direction) The stress in the direction perpendicular to the direction becomes tensile stress, and the effect of reducing the porosity is reduced.

そして、本発明で使用する鞍型ロール6aは、上記したカリバー底の開き角度δを有し、さらに、丸鋳片9と対向する面に丸鋳片に接触する突起13を設けたロールとする。例えば図3に示すように、この突起13を丸鋳片9と接触させて、鞍型ロール6aの圧下力を丸鋳片9に付与する。なお、突起13の配設位置は、丸鋳片9と接触できる位置であればよく、とくに限定する必要はないが、丸鋳片9の軸芯部への圧下効率をより一層高める観点からは、鞍型ロール6a、6aのロール軸を含み丸鋳片9の軸方向(搬送方向)に垂直な断面で、丸鋳片9の中心Oと鞍型ロール6a、6aの幅方向中心とを結んだ直線に対して、略45°の角度をなし、且つ、丸鋳片9の中心Oを通る2つの直線と鞍型ロール表面との交点近傍の位置となるように、鞍型ロール表面にそれぞれ配置することが好ましい。   The vertical roll 6a used in the present invention has a caliber bottom opening angle δ as described above, and further has a protrusion 13 in contact with the round cast piece on the surface facing the round cast piece 9. . For example, as shown in FIG. 3, the protrusion 13 is brought into contact with the round slab 9 to apply the rolling force of the vertical roll 6 a to the round slab 9. In addition, the arrangement | positioning position of the processus | protrusion 13 should just be a position which can contact with the round slab 9, and it is not necessary to specifically limit, but from a viewpoint of raising the rolling efficiency to the axial center part of the round slab 9 further. The cross-section perpendicular to the axial direction (conveying direction) of the round slab 9 including the roll shafts of the vertical rolls 6a and 6a is connected to the center O of the round cast slab 9 and the center in the width direction of the vertical rolls 6a and 6a. The vertical roll surface has an angle of approximately 45 ° with respect to the straight line and is positioned near the intersection of the two straight lines passing through the center O of the round slab 9 and the vertical roll surface. It is preferable to arrange.

なお、配設する突起13は、図2に示すようなロール円周方向に連続する突条13aとすることが好ましい。突起13をロール円周方向に連続する突条13aとすることにより、丸鋳片9の全長にわたって圧下力を均等に与えることができ、内部品質向上に有利である。なお、突条13aは、ロール幅の片側で1条としてもあるいは図4に示すように2条(複数条)としてもよい。また、ロール円周方向に連続する突起ではなく、図6(a)に示すようなロール円周方向に離散的に分布した複数の突起13bとしてもよい。ロール円周方向に離散的に分布した複数の突起13bは、ロール軸方向に、ロール幅の片側で1列としてもあるいは片側で複数列形成してもよい。ロール円周方向に離散的に分布した複数の突起13bをロール軸方向に、複数列形成する場合には、例えば図6(c)に示すように、突起13bを千鳥状に配置することが丸鋳片の長手方向に均一に圧下力を付与する観点から好ましい。また、突起13の設置数(設置条、設置列)を多くすると、突起の設置なしの通常の鞍型ロールによる圧下と大差ないことになるため、ロール幅の片側で4条以下程度、あるいは4列以下程度とすることが好ましい。   In addition, it is preferable that the protrusion 13 to arrange | position is the protrusion 13a which continues in the roll circumferential direction as shown in FIG. By making the protrusion 13 into a protrusion 13a continuous in the roll circumferential direction, a rolling force can be uniformly applied over the entire length of the round cast piece 9, which is advantageous for improving the internal quality. The protrusions 13a may be one on one side of the roll width or two (a plurality) as shown in FIG. Moreover, it is good also as several protrusion 13b discretely distributed in the roll circumferential direction as shown to Fig.6 (a) instead of the protrusion continuous in a roll circumferential direction. The plurality of protrusions 13b distributed discretely in the roll circumferential direction may be formed in one row on one side of the roll width or in multiple rows on one side in the roll axis direction. When a plurality of protrusions 13b distributed discretely in the roll circumferential direction are formed in a plurality of rows in the roll axis direction, the protrusions 13b may be arranged in a staggered manner as shown in FIG. 6C, for example. This is preferable from the viewpoint of uniformly applying a rolling force in the longitudinal direction of the slab. Also, if the number of protrusions 13 (installation strips, installation rows) is increased, there will be no significant difference from the reduction by a normal vertical roll without the projections. It is preferable to make it below the row.

なお、ロール幅の片側で複数条あるいは複数列の突起を設ける場合には、上記した、鞍型ロール6a、6aのロール軸を含み丸鋳片9の軸方向(搬送方向)に垂直な断面で、丸鋳片9の中心Oと鞍型ロール6a、6aの幅方向中心とを結んだ直線に対して、略45°の角度をなし、且つ、丸鋳片9の中心Oを通る直交する2つの直線と鞍型ロール表面との交点近傍の位置となるように、突条又は突起をそれぞれ並べて鞍型ロール表面に配置することが好ましい。   In the case where a plurality of lines or a plurality of rows of protrusions are provided on one side of the roll width, the cross section perpendicular to the axial direction (conveying direction) of the round cast piece 9 includes the roll shafts of the saddle type rolls 6a and 6a. An angle of about 45 ° is formed with respect to a straight line connecting the center O of the round slab 9 and the center in the width direction of the saddle type rolls 6a, 6a, and 2 perpendicular to the center O of the round slab 9 It is preferable to arrange the protrusions or protrusions on the surface of the saddle roll so that they are positioned near the intersection of the two straight lines and the saddle roll surface.

また、突起13の、鞍型ロール6aの軸方向断面における断面形状は、少なくとも底部に比べ高さ方向に幅が狭くなる形状とすることが好ましい。しかし、突起の高さ方向に対する幅の変化が大きくなるような鋭角的断面形状の突起では、突起との接触部で丸鋳片が鋭角的にへこみ、その個所が真円形状への整形時または製管時に外面疵の起点となる恐れがある。また、ロール円周方向に離散的に分布した複数の突起13bの場合には、とくに突起の断面形状が、底部に比べ高さ方向に大きくなる形状では、圧下ロールによる丸鋳片の圧下に際して、突起が鋳片に食込み、操業を阻害する恐れがある。このような問題や、ロールによる圧下力を丸鋳片の軸芯部へ効果的に伝達するという観点から、本発明では、突起の、鞍型ロール6aの軸方向断面における断面形状は、図5に示すような円弧状とすることが好ましい。突起の断面形状が円弧状であれば、加工が比較的簡便であり、圧下によるへこみが外面疵の起点となるという問題も少ないという利点がある。なお、突起の断面形状が矩形状や台形状であってもなんら問題はない。また、複数条、複数列の突起を設置する場合、全て同じ形状とする必要もない。   In addition, the cross-sectional shape of the protrusion 13 in the axial cross section of the saddle type roll 6a is preferably a shape whose width is narrower in the height direction than at least the bottom. However, in the case of a protrusion having an acute cross-sectional shape in which the change in the width with respect to the height direction of the protrusion is large, the round cast piece is sharply recessed at the contact portion with the protrusion, and the portion is shaped during a round shape or There is a risk that it may become the starting point for external defects during pipe making. Also, in the case of a plurality of protrusions 13b that are discretely distributed in the roll circumferential direction, particularly in a shape in which the cross-sectional shape of the protrusion is larger in the height direction than the bottom portion, when the round cast slab is reduced by the reduction roll, Protrusions may bite into the slab and hinder operation. From the viewpoint of effectively transmitting such a problem and the rolling force by the roll to the shaft core portion of the round cast slab, in the present invention, the sectional shape of the protrusion in the axial section of the saddle type roll 6a is as shown in FIG. It is preferable to use an arc shape as shown in FIG. If the cross-sectional shape of the protrusion is an arc, the processing is relatively simple, and there is an advantage that there is little problem that the dent caused by the rolling becomes the starting point of the outer surface flaw. There is no problem even if the cross-sectional shape of the protrusion is rectangular or trapezoidal. Moreover, when installing multiple protrusions and multiple rows of protrusions, it is not necessary that they all have the same shape.

突起の断面形状を円弧状とした場合には、円弧の半径Rは、丸鋳片の直径Dとの関係で、次式
R=0.20D〜0.50D
(ここで、R:突条断面の円弧半径(mm)、D:丸鋳片直径(mm))
を満足する範囲とすることが好ましい。円弧の半径Rが、丸鋳片直径Dの0.20未満では、突起が鋭利な断面形状を呈し、突起による丸鋳片のへこみが製管後の疵となる恐れがある。一方、円弧の半径Rが、丸鋳片直径Dの0.50を超えて大きくなると、鞍型ロール6aの限られた領域に設置することが難しくなるとともに、突起を設置する効果が小さくなりすぎ、実質的に突起を設置する意味がなくなる。このようなことから、突起13のロール軸方向断面の断面形状を円弧状とした場合の、円弧の半径Rは、丸鋳片の直径Dとの関係で、0.20D以上0.50D以下の範囲に限定することが好ましい。なお、円弧の中心点はロール表面上としてもロール表面より下の領域としてもよい。
When the cross-sectional shape of the protrusion is an arc shape, the radius R of the arc is related to the diameter D of the round cast slab, and R = 0.20D to 0.50D
(Where R: arc radius of the ridge cross section (mm), D: round slab diameter (mm))
It is preferable to make the range satisfy. When the radius R of the arc is less than 0.20 of the diameter D of the round slab, the projection has a sharp cross-sectional shape, and the dent of the round slab due to the projection may become a defect after pipe making. On the other hand, when the radius R of the circular arc exceeds 0.50 of the diameter D of the round slab, it becomes difficult to install in the limited area of the saddle type roll 6a, and the effect of installing the projection becomes too small. It makes no sense to install protrusions. For this reason, the radius R of the arc when the cross-sectional shape of the cross section in the roll axis direction of the protrusion 13 is an arc is in the range of 0.20D to 0.50D in relation to the diameter D of the round cast slab. It is preferable to limit. The center point of the arc may be on the roll surface or an area below the roll surface.

また、突起13を、ロール円周方向に離散的に分布した複数の突起13bとする場合には、突起の底面の、ロール円周方向長さBと、ロール軸方向長さAとの比、A/B、が0.2〜1とすることが好ましい。なお、図6(b)に示すように、ロール円周方向長さBは、ロール軸方向に直交し突起13bのロール軸方向中心を含む断面で、ロール表面に沿った長さを言うものとする。また、図6(b)のA−A矢視図に示すように、突起の底面のロール軸方向長さAは、ロール軸方向断面で、ロール表面に沿った長さを言うものとする。
A/Bが0.2未満では、丸鋳片の範囲が狭く、鞍型ロールの圧下力を効果的に丸鋳片の軸芯部に伝達することが難しくなる。また、突起により鋳片表面に凹みが発生しやすくなる。また、A/Bが1を超えて大きくなると、突起の幅が大きくなりすぎて、鞍型ロールの圧下力を効果的に丸鋳片の軸芯部に伝達しにくくなる。このため、ロール円周方向に離散的に分布した複数の突起13bにおける突起の底面の、ロール円周方向長さBと、ロール軸方向長さAとの比、A/Bを0.2以上1以下とすることが好ましい。
Further, when the protrusion 13 is a plurality of protrusions 13b distributed discretely in the roll circumferential direction, the ratio between the roll circumferential direction length B and the roll axial direction length A of the bottom surface of the protrusion, A / B is preferably 0.2 to 1. As shown in FIG. 6 (b), the roll circumferential length B is a cross section perpendicular to the roll axial direction and including the center of the projection 13b in the roll axial direction, and refers to the length along the roll surface. To do. Moreover, as shown to the AA arrow figure of FIG.6 (b), the roll axial direction length A of the bottom face of a processus | protrusion shall say the length along a roll surface in a roll axial direction cross section.
When A / B is less than 0.2, the range of the round slab is narrow, and it becomes difficult to effectively transmit the rolling force of the vertical roll to the shaft core portion of the round slab. Moreover, a dent tends to occur on the surface of the slab due to the protrusion. When A / B exceeds 1 and the width of the protrusion becomes too large, it becomes difficult to effectively transmit the rolling force of the saddle type roll to the shaft core portion of the round cast slab. For this reason, the ratio between the roll circumferential direction length B and the roll axial direction length A, A / B, is 0.2 or more and 1 or less, in the plurality of projections 13b distributed discretely in the roll circumferential direction. It is preferable that

また、突起13を、ロール円周方向に離散的に分布した複数の突起13bとする場合には、突起の底面の、ロール円周方向長さBは、鞍型ロール6aの円周方向で、鞍型ロール6aと丸鋳片9との接触長以下接触長の1/2以上とすることが好ましい。底面のロール円周方向長さBが、接触長の1/2未満では、鞍型ロールと鋳片の接触長範囲で圧縮応力場を保持し、流動的である溶鋼を排出させる効果を有効に生み出すことが難しくなる。   When the protrusion 13 is a plurality of protrusions 13b distributed discretely in the roll circumferential direction, the roll circumferential length B of the bottom surface of the protrusion is the circumferential direction of the saddle-shaped roll 6a. It is preferable that the contact length between the vertical roll 6a and the round cast piece 9 is equal to or less than ½ of the contact length. If the bottom circumferential length B of the roll is less than 1/2 of the contact length, the compressive stress field is maintained in the contact length range of the vertical roll and the slab, and the effect of discharging the fluid molten steel is effective. It becomes difficult to produce.

またこの場合、隣り合う突起の端部間の距離である突起端部間の間隔Lが、少なくともロール円周方向間隔で、鞍型ロール6aと丸鋳片9との接触長さ未満(零を含む)となるように、複数の突起13bを設けることが好ましい。突起端部間の間隔Lが接触長さを超えて大きくなると、丸鋳片の長さ方向に亘って、均一に圧縮応力場を付与できなくなる場合が生じる。複数の突起13bを設ける場合は、図6(c)に示すように突起13bを千鳥状に複数列設けることが好ましい。この場合、隣り合う突起13bの端部間の間隔Lは、ロール円周方向断面への投影面での間隔で接触長さ未満、好ましくは零となるように、すなわち、図6(c)に示すように、千鳥状で重なり合うように配置することが好ましい。これにより、丸鋳片の長さ方向に亘って軸芯部に均一に圧縮応力場が付与できることになる。   In this case, the distance L between the protrusion ends, which is the distance between the ends of the adjacent protrusions, is at least the distance in the circumferential direction of the roll and less than the contact length between the vertical roll 6a and the round cast piece 9 (zero). A plurality of protrusions 13b is preferably provided. If the distance L between the projecting ends exceeds the contact length, there may be a case where the compressive stress field cannot be uniformly applied over the length direction of the round cast slab. When providing a plurality of projections 13b, it is preferable to provide a plurality of rows of projections 13b in a staggered manner as shown in FIG. In this case, the distance L between the end portions of the adjacent protrusions 13b is less than the contact length, preferably zero, at the distance on the projection surface on the roll circumferential cross section, that is, in FIG. As shown, it is preferably arranged so as to overlap in a staggered manner. Thereby, a compressive-stress field can be uniformly provided to an axial center part over the length direction of a round cast piece.

本発明では、圧下ロールとして突起付きの鞍型ロールを使用して圧下を行うが、圧下は、丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に行うことが好ましい。なお、ここでいう「丸鋳片の軸芯部での固相率fs」とは、当該断面において、凝固・伝熱計算により求めた丸鋳片の軸芯部の温度Tが、鋼種によって決まる液相線温度Tと固相線温度Tの間のどの位置にあるかを表す指標で、次式を用いて算出するものとする。 In the present invention, a vertical roll with projections is used as the reduction roll, and the reduction is preferably performed at a time when the solid phase ratio fs at the shaft core portion of the round cast slab is 0.3 to 0.85. . The “solid phase ratio fs at the shaft core portion of the round slab” here means that the temperature T of the shaft core portion of the round slab obtained by solidification / heat transfer calculation in the cross section is determined by the steel type. an index indicating how in any position between the liquidus temperature T L and solidus temperature T S, which shall be calculated using the following equation.

fs=(T−T)/(T−T
完全凝固状態がfs:1.0であり、未凝固状態がfs:0である。
圧下位置における鋳片の固相率fsが0.3未満では、凝固があまり進行しておらず、その後の凝固過程でさらにポロシティが発生するため、軸芯部への圧下効果が不十分となる。一方、固相率fsが0.85を超えると、未凝固層として残留する溶湯の流動性が低下するうえ、鋳片の温度も低下し、丸鋳片の軸芯部への圧下効果が低下する。このようなことから、圧下ロールによる圧下は、fsが0.3〜0.85である時期に行うことが好ましい。なお、完了凝固後に丸鋳片に圧下を加えても、わずかではあるが軸芯部への圧下効果はあるが、鋳片の軸芯部に割れを生じる恐れがある。
fs = (T L -T) / (T L -T S)
The completely solidified state is fs: 1.0, and the unsolidified state is fs: 0.
When the solid phase ratio fs of the slab at the reduction position is less than 0.3, solidification does not proceed so much and porosity is further generated in the subsequent solidification process, so that the reduction effect on the shaft core is insufficient. On the other hand, when the solid phase ratio fs exceeds 0.85, the fluidity of the molten metal remaining as an unsolidified layer is lowered, the temperature of the slab is also lowered, and the reduction effect on the shaft core portion of the round slab is lowered. For this reason, it is preferable to perform the reduction by the reduction roll at a time when fs is 0.3 to 0.85. In addition, even if the rolling is applied to the round cast piece after the completion of solidification, although there is a slight reduction effect on the shaft core portion, there is a possibility that the shaft core portion of the cast piece may be cracked.

さらに、上記した位置で、一対の鞍型ロール6a,6aを使用して行う圧下では、圧下量を面積減少率で1〜5%の範囲となるように圧下することが好ましい。なお、「面積減少率」は、次式
面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
で定義される値を使用するものとする。
Furthermore, at the above-described position, when the reduction is performed using the pair of saddle type rolls 6a and 6a, it is preferable to reduce the reduction amount so that the area reduction rate is in the range of 1 to 5%. In addition, "area reduction rate" is the following formula
Area reduction rate (%) = {1− (cross-sectional area of round cast slab after reduction) / (cross-sectional area of round cast slab before reduction)} × 100
The value defined in is used.

面積減少率が1%未満では、丸鋳片軸芯部への、所望の圧下効果が期待できない。一方、面積減少率を、5%を超えて大きくすると、その後に、丸鋳片の真円化処理を必要とする場合が生じ、工程を複雑化する。このようなことから、圧下量(面積減少率)は、1%以上5%以下の範囲とすることが好ましい。一対の鞍型ロール6a,6aを用いて丸鋳片を圧下すると、平型ロールで丸鋳片を圧下した場合に比較して、圧下量(面積減少率)を大きくすることなく、軸芯部への有効な圧下を加えることができる。このため、一対の鞍型ロール6a,6aを用いる丸鋳片の圧下では、面積減少率が1%以上5%以下程度あれば、十分にポロシティを圧着できる。   If the area reduction rate is less than 1%, a desired reduction effect on the round cast slab core cannot be expected. On the other hand, if the area reduction rate is increased beyond 5%, a rounded slab may need to be rounded thereafter, which complicates the process. For this reason, the reduction amount (area reduction rate) is preferably in the range of 1% to 5%. When a round slab is squeezed using a pair of vertical rolls 6a, 6a, the shaft core portion is increased without increasing the squeezing amount (area reduction rate) compared to the case where the round slab is squeezed with a flat roll. An effective reduction to can be applied. For this reason, when the round cast slab using the pair of vertical rolls 6a and 6a is pressed, the porosity can be sufficiently crimped if the area reduction rate is about 1% or more and 5% or less.

本発明は、鋼種を問わず、丸鋳片9の内質の向上に有効であるが、溶鋼の粘度が高く、鋳造中にポロシティや偏析が発生しやすい鋼種に対して適用した場合に、特にその効果が著しい。このような鋼種としては、0.5質量%を超えるCrを含有するCr含有鋼が例示できる。
以上のように、本発明によれば、従来は困難であった、Cr含有鋼などの難加工性鋼種の連続鋳造による継目無鋼管用丸鋳片の製造が、連続鋳造設備に大きな変更を加えることなく実現される。そして、丸鋳片9の断面形状を損ねることなく、内部品質の大幅に改善された丸鋳片が製造可能になることにより、Cr含有鋼などの継目無鋼管の製造コストが低減可能となる。
The present invention is effective for improving the quality of the round cast slabs 9 regardless of the steel type, particularly when applied to a steel type in which the molten steel has a high viscosity and is susceptible to porosity and segregation during casting. The effect is remarkable. Examples of such steel types include Cr-containing steels containing Cr exceeding 0.5% by mass.
As described above, according to the present invention, the production of round slabs for seamless steel pipes by continuous casting of difficult-to-process steel types such as Cr-containing steel, which has been difficult in the past, greatly changes the continuous casting equipment. It is realized without. Then, since it becomes possible to manufacture a round cast slab having greatly improved internal quality without impairing the cross-sectional shape of the round cast slab 9, the production cost of seamless steel pipes such as Cr-containing steel can be reduced.

本発明の効果を検証するために、有限要素法解析や実験にて得た、各種形状の鞍型ロールの効果を、図1に示すビレット連続鋳造機における丸鋳片の鋳造にて調査した。
(実施例1)
[試験鋳造1]
図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表1に示すカリバー底の角度δを変更した各種形状の一対の鞍型ロール6a,6aを使用し、表1に示す固相率(0.4〜0.6)の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
In order to verify the effects of the present invention, the effects of various types of vertical rolls obtained by finite element analysis and experiments were investigated by casting round slabs in the billet continuous casting machine shown in FIG.
(Example 1)
[Test casting 1]
Using the billet continuous casting machine shown in FIG. 1, a pair of saddle-shaped rolls 6a and 6a having various shapes and different caliber bottom angles δ shown in Table 1 are used as the rolling rolls 6 and 6, as shown in Table 1. At the position of the solid phase ratio (0.4 to 0.6), the round slab 9 was subjected to reduction by 2% in terms of area reduction rate to produce a round slab. The value calculated using the slab temperature calculated by solidification / heat transfer calculation was used for the solid phase ratio at the reduction position.

なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製丸鋳片であり、圧下前の直径Dは210mmであった。使用した鞍型ロール6aは、図3に示すような位置に、ロール円周方向に連続する突条13aを1条、設置した鞍型ロールを使用した場合を本発明例とし、突条を設置しない鞍型ロール6aを使用した場合、あるいは図9に示すような一対の平型ロール6c,6cを使用した場合を比較例とした。なお、設置した突条13aのロール軸方向断面での断面形状は、半径R:50mmの円弧形状とした(R/D:0.24)。
得られた丸鋳片について、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は次のとおりとした。
The target round slab was a Cr-containing steel round slab containing 13% by mass of Cr, and the diameter D before reduction was 210 mm. The vertical roll 6a used is a case in which the vertical roll 13a, which is one continuous protrusion 13a in the circumferential direction of the roll, is used at the position shown in FIG. The case where the saddle type roll 6a which is not used was used, or the case where a pair of flat type rolls 6c and 6c as shown in FIG. In addition, the cross-sectional shape in the roll-axis direction cross section of the installed protrusion 13a was made into the circular arc shape of radius R: 50mm (R / D: 0.24).
About the obtained round cast piece, the area of the porosity and the shaft core crack were measured, and the properties of the shaft core portion were evaluated. The evaluation method was as follows.

得られた丸鋳片から、軸芯部観察用試験材を採取し、該試験材の断面を研磨し、光学顕微鏡(倍率:100倍)を用いて、断面のマクロ組織、および軸芯部近傍のミクロ組織を撮像し、画像解析により、該断面におけるポロシティの面積を測定した。ポロシティの面積率は、次式で算出した。
ポロシティ面積率(%)=(ポロシティの面積)/(丸鋳片断面積)×100
得られたポロシティ面積率(%)を指標にし、評点1〜5の5段階で評価した。ポロシティ面積率が0.3%超えは評点1、ポロシティ面積率が0.3%以下0.15%超えは評点2、ポロシティ面積率が0.15%以下0.1%超えは評点3、ポロシティ面積率が0.1%以下0.025%超えは評点4、ポロシティ面積率が0.025%以下は評点5、とした。評点が高いほどポロシティの残存程度が低いことになる。
From the obtained round cast slab, a test material for observing the shaft core part is collected, the cross section of the test material is polished, and the macrostructure of the cross section and the vicinity of the shaft core part using an optical microscope (magnification: 100 times) The microstructure of was measured, and the area of porosity in the cross section was measured by image analysis. The area ratio of porosity was calculated by the following formula.
Porosity area ratio (%) = (Porosity area) / (Round slab cross-sectional area) x 100
The obtained porosity area ratio (%) was used as an index, and the evaluation was made in 5 grades of 1-5. If the porosity area ratio exceeds 0.3%, the rating is 1, the porosity area ratio is 0.3% or less, and the rating is 2; the porosity area ratio is 0.15% or less, the rating is 0.1%; the rating is 3, and the porosity area ratio is 0.1% or less, and the porosity is more than 0.025%. Score 4 and a porosity area ratio of 0.025% or less were rated 5. The higher the score, the lower the porosity remaining.

また、軸芯部のミクロ組織から、軸芯部での割れ発生の有無、および割れが発生している場合には、その長さを測定し、各割れの長さ合計を求め、その試験材の軸芯部割れ長さとして、軸芯割れの程度を評価した。
得られた軸芯割れの長さ合計を指標として、5段階で評価した。割れ長さ合計が50mm超えの場合を評点1、50mm以下15mm超えの場合を評点2、15mm以下5mm超えの場合を評点3、5mm以下1mm超えの場合を評点4、1mm以下の場合を評点5、とした。評点が高いほど軸芯割れの程度が低いことになる。
Also, from the microstructure of the shaft core part, whether or not cracks occurred in the shaft core part, and if cracks are occurring, measure the length, find the total length of each crack, the test material The degree of shaft core cracking was evaluated as the shaft core crack length.
The total length of the obtained shaft core cracks was used as an index and evaluated in five stages. Score 1 if the total crack length exceeds 50 mm, Grade 2 if the length is 50 mm or less and 15 mm or more, Grade 3 if the length is 15 mm or less and 5 mm or more, Grade 4 if the length is 5 mm or less and 1 mm or more, Grade 5 , And. The higher the score, the lower the degree of shaft center cracking.

得られた結果を表1に示す。
またさらに、上記したような軸芯部内部性状を有する、丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、通常のマンネスマン穿孔方式の製管法により、継目無鋼管(外径177.8mmφ×肉厚12mm)を得た。得られた各鋼管について全長に亘り、内面を目視および超音波探傷法で検査し、内面疵の発生の有無を調査した。そして、内面疵の発生した鋼管の全数に対する割合を、内面疵発生率(%)と定義し、算出した。
The obtained results are shown in Table 1.
Furthermore, a round cast slab (outer diameter: 210 mmφ) having the above-described inner core internal properties is used as a material (seamless steel pipe material), and seamless steel pipe (outside Diameter 177.8 mmφ × wall thickness 12 mm). About each obtained steel pipe, the inner surface was inspected visually and by the ultrasonic flaw detection method over the full length, and the presence or absence of the generation | occurrence | production of an inner surface flaw was investigated. And the ratio with respect to the total number of steel pipes in which inner surface defects occurred was defined and calculated as an inner surface defect rate (%).

なお、得られた内面疵発生率に基づき、5段階で評価し、製管結果とした。なお、内面疵発生率が、15%超えの場合を評点1、15%以下10%超えの場合を評点2、10%以下5%超えの場合を評点3、5%以下3%超えの場合を評点4、3%以下の場合を評点5、とした。製管結果が、評点3以上である場合を、合格と評価した。得られた製管の結果を表1に併記する。   In addition, based on the obtained inner surface flaw occurrence rate, it evaluated in five steps and set it as the pipe making result. Note that the rate of internal flaws is 15% or more, grade 1; 15% or less, 10% or more; grade 2, 10% or less, 5% or more; grade 3, 5% or less, 3% or more. A rating of 4 was given when the rating was 4, 3% or less. A case where the pipe making result was a score of 3 or more was evaluated as acceptable. The results of the obtained pipe making are also shown in Table 1.

また、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表1に併記した。   Also, using finite element method analysis, the stress acting on the round slab during the rolling of the slab is analyzed, the presence or absence of tensile stress in the shaft part of the round slab is investigated, and the results are also shown in Table 1. did.

Figure 0005343746
Figure 0005343746

本発明例はいずれも、丸鋳片に引張応力の発生はなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。一方、本発明の範囲を外れる比較例では、丸鋳片の軸芯部に引張応力が発生し、ポロシティ評点や軸芯割れ評点が低く、したがって製管後の内面疵発生率が高く製管評点も2以下となっている。なお、圧下ロールとして鞍型ロールを使用することにより、突起なしでも、カリバー底の開き角度δを適切に選定することにより、平型ロールにくらべてある程度の圧下効果が期待できる。   In all of the examples of the present invention, there was no generation of tensile stress in the round slabs, the internal properties of the shaft part of the round slabs became good, the rate of occurrence of internal flaws after pipe making decreased, and the pipe making results were also good. It was. On the other hand, in the comparative example outside the scope of the present invention, tensile stress is generated in the shaft core portion of the round cast slab, and the porosity score and the shaft core crack score are low, so that the rate of occurrence of internal flaws after pipe making is high and the pipe making score. Is also 2 or less. In addition, by using a saddle type roll as the reduction roll, a certain degree of reduction effect can be expected as compared with a flat roll by appropriately selecting the opening angle δ of the caliber bottom without a protrusion.

平型ロールを用いて圧下し、本発明の範囲を外れる試験No.1(比較例)は、圧下時に鋳片に引張応力が発生するため、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の角度δが70°で、突起なしの鞍型ロールを使用し、本発明の範囲を外れる試験No.2(比較例)は、カリバー底の開き角度δが小さいため、圧下時に鋳片に引張応力が発生し、しかも、突起を有していないため、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の角度δが80°で、突起を有していない鞍型ロールを用いて圧下し、本発明の範囲を外れる試験No.3(比較例)は、突起を有していないことから鋳片軸芯部への圧下力の伝達が十分でなく、丸鋳片におけるポロシティ評点が3、軸芯割れ評点が2で、製管評点は2と低かった。また、カリバー底の角度δが90°で、突起を有していない鞍型ロールを用いて圧下し、本発明の範囲を外れる試験No.4(比較例)は、突起を有していないことから鋳片軸芯部への圧下力の伝達が十分でなく、丸鋳片におけるポロシティ評点が3、軸芯割れ評点が3で、製管評点は2と低かった。また、カリバー底の角度δが110°で、突起なしの鞍型ロールを使用し、本発明の範囲を外れる試験No.2(比較例)は、カリバー底の開き角度δが大きすぎるため、圧下時に鋳片に引張応力が発生し、しかも、突起を有していないため、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点、軸芯割れ評点が2で低く、また製管評点は1となっている。また、カリバー底の開き角度δが110°と本発明の範囲を外れる試験No.11(比較例)は、カリバー底の開き角度δが大きすぎるため、圧下時に鋳片に引張応力が発生し、突起を有していたにもかかわらず、鋳片軸芯部への圧下力の伝達が十分でなく、ポロシティ評点が3、軸芯割れ評点が2で低く、また製管評点は2となっている。
[試験鋳造2]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表2に示すように、固相率fsが0.2〜1.0の範囲内の各位置で、丸鋳片9に、面積減少率で3%の圧下を施し、丸鋳片を製造した。なお、対象とした丸鋳片は、試験鋳造1と同様に、Crを13質量%含有するCr含有鋼製であり、圧下前の直径Dは210mmであった。また、突条(突起)の設置位置は、図3に示すような位置とし、試験鋳造1と同様とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状(半径R:70mm)の突条(R/D:0.33)とした。
In test No. 1 (comparative example), which is rolled using a flat roll and falls outside the scope of the present invention, tensile stress is generated in the slab during rolling, so the porosity score and shaft core crack score are low at 2, The tube-making score is 1. In addition, test No. 2 (comparative example) using a caliber bottom angle δ of 70 ° and a saddle-shaped roll having no protrusions and out of the scope of the present invention has a small caliber bottom opening angle δ. Since the tensile stress is generated in the slab and there is no protrusion, the transmission of the rolling force to the core part of the slab is not sufficient, the porosity score and the shaft core crack score are low at 2, and the pipe making The score is 1. In addition, test No. 3 (comparative example), which has a caliber bottom angle δ of 80 ° and is rolled down using a saddle type roll having no protrusions and deviates from the scope of the present invention, has no protrusions. The rolling force was not sufficiently transmitted from the slab to the core part of the slab, the porosity score in the round slab was 3, the shaft core crack score was 2, and the pipe making score was 2 low. In addition, test No. 4 (comparative example), which has a caliber bottom angle δ of 90 ° and is rolled down using a saddle type roll having no protrusions and deviates from the scope of the present invention, has no protrusions. The rolling force was not sufficiently transmitted from the core to the slab shaft core, the porosity score in the round slab was 3, the shaft core crack score was 3, and the pipe making score was 2. In addition, test No. 2 (comparative example) using a saddle type roll having a caliber bottom angle δ of 110 ° and having no protrusion and deviating from the scope of the present invention has an excessively large caliber bottom opening angle δ. Sometimes tensile stress is generated in the slab, and because it does not have protrusions, the transmission of the rolling force to the slab shaft core is not sufficient, and the porosity score and shaft core crack score are 2 low, The tube score is 1. In addition, test No. 11 (comparative example) in which the caliber bottom opening angle δ is 110 °, which is outside the range of the present invention, is because the caliber bottom opening angle δ is too large, and tensile stress is generated in the slab during rolling. Despite having protrusions, the transmission of the rolling force to the slab shaft core is not sufficient, the porosity score is 3, the shaft crack score is 2, and the pipe making score is 2. Yes.
[Test casting 2]
Similarly to the test casting 1, the billet continuous casting machine shown in FIG. 1 is used, and as the rolling rolls 6 and 6, the caliber bottom angle δ is 90 °, and one ridge 13a is continuous in the roll circumferential direction. As shown in Table 2, a pair of vertical rolls 6a and 6a were used, and as shown in Table 2, at each position where the solid phase ratio fs was in the range of 0.2 to 1.0, the round cast piece 9 had an area reduction rate of 3%. A round cast slab was produced. The target round cast slab was made of Cr-containing steel containing 13% by mass of Cr, as in the test casting 1, and the diameter D before reduction was 210 mm. Moreover, the installation position of the protrusion (protrusion) was as shown in FIG. In addition, the installed ridge was a ridge (R / D: 0.33) having a cross-sectional shape in the roll axis direction of an arc (radius R: 70 mm).

得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。なお、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
About the obtained round cast piece, similarly to the test casting 1, the porosity area ratio and the shaft core crack length were measured, and the porosity score and the shaft core crack score were obtained.
Furthermore, in the same manner as in the test casting 1, the obtained round cast slab was used to produce a seamless steel pipe (size: outer diameter 177.8 mmφ × thickness 12 mm). The inner surface of each of the obtained steel pipes was inspected, and the rate of occurrence of inner surface flaws (%) was calculated in the same manner as in test casting 1 to obtain a pipe making score. In addition, the outer surface after pipe making was also observed visually, and the presence or absence of an outer surface flaw was investigated.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 0005343746
Figure 0005343746

本発明例はいずれも、丸鋳片に引張応力の発生はなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。一方、本発明の範囲を外れる試験No.17(比較例)は、圧下時の固相率fsが1.0で完全凝固完了後の圧下であり、ポロシティ評点が3、軸芯割れ評点が3で低く、また製管評点は2となっている。また、圧下時の固相率が本発明の好ましい範囲を低く外れる試験No.12(本発明例)は、ポロシティ評点が3、軸芯割れ評点が4、製管評点は3となっている。圧下時の固相率が本発明の好ましい範囲を低く外れる場合には、圧下の効果は小さく、ポロシティの低減効果の度合が小さく、好ましい範囲の場合に比べて製管成績も低くなる。一方、圧下時の固相率が好ましい範囲より高くなると、低固相率の時に比べポロシティの低減効果は大きくなるが、溶鋼の流動性に起因して、ポロシティ、軸芯割れの改善度合いは低下し、好ましい固相率での圧下に比べ、製管成績は圧下している。また、凝固完了後の圧下の効果は極めて少ないことがわかる。   In all of the examples of the present invention, there was no generation of tensile stress in the round slabs, the internal properties of the shaft part of the round slabs became good, the rate of occurrence of internal flaws after pipe making decreased, and the pipe making results were also good. It was. On the other hand, test No. 17 (comparative example) out of the scope of the present invention is a reduction after solidification is completed with a solid phase ratio fs of 1.0, and a porosity score of 3 and a shaft core cracking score of 3 are low. The tube-making score is 2. In Test No. 12 (example of the present invention) in which the solid phase ratio during reduction falls outside the preferable range of the present invention, the porosity score is 3, the shaft core crack score is 4, and the pipe making score is 3. When the solid phase ratio during reduction falls outside the preferred range of the present invention, the effect of reduction is small, the degree of porosity reduction effect is small, and the pipe making performance is also lower than in the preferred range. On the other hand, when the solid fraction at the time of rolling is higher than the preferred range, the effect of reducing the porosity is greater than when the solid fraction is low, but due to the fluidity of the molten steel, the degree of improvement in porosity and axial core cracking is reduced. However, compared with the reduction at a preferable solid phase ratio, the pipe making performance is reduced. It can also be seen that the effect of the reduction after completion of solidification is very small.

また、圧下時の面積減少率が本発明の好適範囲を低く外れる試験No.18、No.20(本発明例)は、ポロシティ評点が3、軸芯割れ評点が3で、製管評点は3と若干低めとなっており、圧下の効果が、圧下時の面積減少率が好ましい範囲に比べて低くなっている。また、圧下時の面積減少率が本発明の好適範囲を高く外れる試験No.19、No.21(本発明例)は、ポロシティ評点が5、軸芯割れ評点が4で、製管評点は4または5と高いが、突起による鋳片外面の凹みが深く鋳片断面形状が若干不良となり、製管後に管の外面に疵の発生が認められた。圧下時の面積減少率の増加は、圧下時の負荷が大きくなり、設備規模の増大を考慮する必要があるとともに、圧下後の鋳片表面に突起による凹みが深くなり、製管時の外面疵の発生源となることが懸念される。
[試験鋳造3]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表3に示すように、固相率fsが0.4〜0.6の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。なお、対象とした丸鋳片は、試験鋳造1と同様に、Crを13質量%含有するCr含有鋼製であり、圧下前の直径Dは210mmであった。また、突条(突起)の設置位置は、図3に示すような位置とし、試験鋳造1と同様とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状とし、円弧の半径Rを種々変化させ、表3に示すように、R/Dが0.10〜0.65の範囲に変化させた突条とした。
Test No. 18 and No. 20 (examples of the present invention) in which the area reduction rate during rolling falls out of the preferred range of the present invention has a porosity score of 3, an axial core crack score of 3, and a pipe making score of 3 The reduction effect is lower than the preferred range of the area reduction rate during reduction. Test No. 19 and No. 21 (examples of the present invention) in which the area reduction rate during rolling greatly deviates from the preferred range of the present invention has a porosity score of 5, an axis core crack score of 4, and a pipe making score of 4 Or it was as high as 5, but the depression of the outer surface of the slab due to the protrusion was deep, and the cross-sectional shape of the slab became slightly poor, and generation of flaws was observed on the outer surface of the tube after pipe making. The increase in the area reduction rate during reduction increases the load during reduction, and it is necessary to consider the increase in the scale of the equipment. There is concern that it will be a source of
[Test casting 3]
Similarly to the test casting 1, the billet continuous casting machine shown in FIG. 1 is used, and as the rolling rolls 6 and 6, the caliber bottom angle δ is 90 °, and one ridge 13a is continuous in the roll circumferential direction. Using the installed pair of vertical rolls 6a and 6a, as shown in Table 3, the round cast slab 9 is subjected to 2% reduction in area reduction rate at a position where the solid phase rate fs is 0.4 to 0.6. A round slab was produced. The target round cast slab was made of Cr-containing steel containing 13% by mass of Cr, as in the test casting 1, and the diameter D before reduction was 210 mm. Moreover, the installation position of the protrusion (protrusion) was as shown in FIG. In addition, the installed ridges are ridges in which the cross-sectional shape of the cross section in the roll axis direction is an arc shape, the radius R of the arc is variously changed, and as shown in Table 3, the R / D is changed in the range of 0.10 to 0.65. Articles were used.

得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。なお、製管後の管外面についても、目視で観察し、外面疵の有無を調査した。
About the obtained round cast piece, similarly to the test casting 1, the porosity area ratio and the shaft core crack length were measured, and the porosity score and the shaft core crack score were obtained.
Furthermore, in the same manner as in the test casting 1, the obtained round cast slab was used to produce a seamless steel pipe (size: outer diameter 177.8 mmφ × thickness 12 mm). The inner surface of each of the obtained steel pipes was inspected, and the rate of occurrence of inner surface flaws (%) was calculated in the same manner as in test casting 1 to obtain a pipe making score. In addition, the pipe outer surface after pipe making was also observed visually, and the presence or absence of an outer surface flaw was investigated.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005343746
Figure 0005343746

突起の断面形状が本発明の好適範囲を満足する本発明例では、丸鋳片に引張応力の発生もなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。
なお、R/Dが0.10となる、突起の断面形状が本発明の好適範囲を低く外れる試験No.22(本発明例)では、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっており、突起による鋳片凹みに起因する、管の外面疵の発生が認められた。また、R/Dが0.65となり、突起の断面形状が本発明の好適範囲を高く外れる試験No.26(本発明例)では、圧下効果が若干不足し、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっているが、管の外面疵の発生は認められなかった。
In the example of the present invention in which the cross-sectional shape of the protrusion satisfies the preferred range of the present invention, there is no generation of tensile stress in the round cast piece, the internal property of the round cast piece core is good, and the rate of occurrence of internal flaws after pipe making The pipe making results were also good.
In Test No. 22 (example of the present invention) in which the cross-sectional shape of the protrusion with R / D is 0.10 deviates from the preferred range of the present invention, the porosity score is 3, the shaft core crack score is 3, and the internal quality is slightly The pipe production score was 3, and the occurrence of defects on the outer surface of the pipe due to the depression of the cast slab due to the protrusion was observed. In Test No. 26 (invention example) in which the R / D is 0.65 and the cross-sectional shape of the protrusion deviates from the preferred range of the present invention, the rolling effect is slightly insufficient, the porosity score is 3, the shaft core crack score is The internal quality was slightly reduced at 3 and the pipe production score was 3, but no occurrence of external flaws on the pipe was observed.

このように、突起(突条)の円弧状断面の半径Rが大きすぎなければ、圧下効果が高まり、製管評点も高くなり製管成績が向上する。一方、半径Rが小さすぎると、丸鋳片を局部的に圧下するため、その部分が外面疵の基点となることがある。
[試験鋳造4]
試験鋳造1と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、ロール円周方向に連続する突条13aを1条、設置した、一対の鞍型ロール6a,6aを使用し、表4に示すように、固相率fsが0.4〜0.6の位置で、丸鋳片9に、面積減少率で2%の圧下を施し、丸鋳片を製造した。なお、突条(突起)の設置位置は、試験鋳造1と同様に、図3に示す位置とした。なお、設置した突条は、ロール軸方向断面の断面形状が円弧状とし、円弧の半径Rを50mmとした(R/D:0.24)。なお、比較例として、圧下なしの場合も行った。
Thus, if the radius R of the arc-shaped cross section of the protrusion (projection) is not too large, the reduction effect is enhanced, the pipe production score is increased, and the pipe production performance is improved. On the other hand, if the radius R is too small, the round cast slab is locally crushed, so that portion may become the base point of the outer surface flaw.
[Test casting 4]
Similarly to the test casting 1, the billet continuous casting machine shown in FIG. 1 is used, and as the rolling rolls 6 and 6, the caliber bottom angle δ is 90 °, and one ridge 13a is continuous in the roll circumferential direction. Using a pair of vertical rolls 6a, 6a installed, as shown in Table 4, the round cast slab 9 is subjected to 2% reduction in area reduction rate at a position where the solid phase rate fs is 0.4 to 0.6. A round slab was produced. In addition, the installation position of the protrusion (projection) was set to the position shown in FIG. In addition, the installed ridges have a circular cross section in the roll axial direction cross section, and the radius R of the arc is 50 mm (R / D: 0.24). As a comparative example, the case of no reduction was also performed.

対象とした丸鋳片は、Crを質量%で、0%(炭素鋼)、1%、13%含有する鋼製とし、圧下前の直径Dはいずれも210mmとした。
得られた丸鋳片について、試験鋳造1と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。
またさらに、試験鋳造1と同様に、得られた丸鋳片を用いて製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を製造した。得られた各鋼管について内面を検査し、試験鋳造1と同様に、内面疵発生率(%)を算出し、製管評点を求めた。
The target round cast slab was made of steel containing 0% (carbon steel), 1%, and 13% by mass of Cr, and the diameter D before rolling was 210 mm.
About the obtained round cast piece, similarly to the test casting 1, the porosity area ratio and the shaft core crack length were measured, and the porosity score and the shaft core crack score were obtained.
Furthermore, in the same manner as in the test casting 1, the obtained round cast slab was used to produce a seamless steel pipe (size: outer diameter 177.8 mmφ × thickness 12 mm). The inner surface of each of the obtained steel pipes was inspected, and the rate of occurrence of inner surface flaws (%) was calculated in the same manner as in test casting 1 to obtain a pipe making score.

得られた結果を表4に示す。   Table 4 shows the obtained results.

Figure 0005343746
Figure 0005343746

一般の炭素鋼の場合には、圧下なしでもポロシティ面積が0〜数mmと小さく、本発明を適用した場合はもちろん、本発明を適用することなく、製管評点は3以上であり、製管成績は良好である。一方、1%Cr鋼では、圧下なしではポロシティ面積が数十〜100 mm程度と、切断位置でばらつくが、本発明を適用することにより、炭素鋼並みの数mm程度までポロシティ面積を低減することができ、製管評点も4と、向上している。さらに、13%Cr鋼では、圧下なしでは100 mm程度以上のポロシティが切断位置に係らず観察され、製管評点は1であるが、本発明を適用することにより、大幅にポロシティ面積を低減することができ、製管評点も3と向上し、製管成績は良好である。
(実施例2)
実施例1に加えてさらに、丸鋳片の内部性状に及ぼす突起形状の影響を、ロール円周方向に離散的に分布した複数の突起を設置した鞍型ロールを用いて行った。
[試験鋳造2−1]
(実施例1)の[試験鋳造−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表5に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表5に示す固相率fsの位置で、丸鋳片9に、表5に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の間隔Lがロール円周方向断面への投影面で隣り合う列間では零となるようにした。
In the case of general carbon steel, the porosity area is as small as 0 to several mm 2 even without reduction, and when the present invention is applied, the pipe production score is 3 or more without applying the present invention. Tube performance is good. On the other hand, with 1% Cr steel, the porosity area is about several tens to 100 mm 2 without reduction, but it varies at the cutting position. By applying the present invention, the porosity area is reduced to about several mm 2 which is the same as carbon steel. The pipe making score is 4 and improved. Furthermore, the 13% Cr steel, is without pressure observed porosity of more than about 100 mm 2 is regardless of the cutting position, the pipe-score is 1, by applying the present invention, greatly reduces the porosity area The pipe making score is improved to 3, and the pipe making performance is good.
(Example 2)
In addition to Example 1, the influence of the protrusion shape on the internal properties of the round cast slab was performed using a saddle type roll provided with a plurality of protrusions distributed in the circumferential direction of the roll.
[Test casting 2-1]
Similarly to [Test Casting-1] in (Example 1), using the billet continuous casting machine shown in FIG. The round cast slabs 6a, 6a were used, and the round cast slab 9 was subjected to reduction with the area reduction rate shown in Table 5 at the position of the solid phase rate fs shown in Table 5 to obtain the round cast slab (diameter D before reduction). : 210 mmφ). In addition, the value calculated using the slab temperature calculated by solidification and heat transfer calculation was used for the solid phase ratio in the reduction position. Moreover, the used saddle type roll 6a has a plurality of protrusions 13b distributed in the circumferential direction of the roll as shown in FIG. 6 (c) at positions as shown in FIG. It was set as the roll installed in 2 rows so that it might become. As shown in FIG. 6 (b), the shape of the protrusion is an arc shape (radius R) in the cross section in the roll axis direction, and the length B along the roll surface and the length along the roll surface in the roll circumferential direction. The ratio of A and A / B is 0.50, and the interval L between the ends of adjacent protrusions is made to be zero between adjacent rows on the projection plane on the circumferential surface of the roll.

なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製とした。得られた丸鋳片について、実施例1と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は実施例1と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、通常のマンネスマン穿孔方式の製管法により、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、実施例1と同様に、5段階で評価し、製管結果とした。
The target round cast slab was made of Cr-containing steel containing 13% by mass of Cr. About the obtained round cast slab, the area of a porosity and a shaft core crack were measured similarly to Example 1, and the property of the shaft core part was evaluated. The evaluation method was the same as in Example 1.
Furthermore, using the obtained round cast slab (outer diameter: 210 mmφ) as the raw material (seamless steel pipe material), seamless steel pipe (size: outer diameter 177.8 mmφ x wall thickness) is produced by the usual Mannesmann drilling method. 12 mm). In the same manner as in Example 1, the entire length of each steel pipe obtained was inspected, and the presence / absence of inner surface flaws and the rate of inner surface flaws were determined. Based on the inner surface flaw occurrence rate obtained, the evaluation was made in five stages in the same manner as in Example 1 to obtain the pipe making result.

なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表5に併記した。
得られた結果を表5に示す。
In addition, using finite element method analysis, the stress acting on the round slab when the round slab is reduced is analyzed, the presence or absence of tensile stress in the shaft part of the round slab is investigated, and the result is also shown in Table 5. did.
The results obtained are shown in Table 5.

Figure 0005343746
Figure 0005343746

ロール円周方向に離散的に分布した複数の突起13bを2列、設置した鞍型ロールを使用した本発明例では、得られる丸鋳片の内部性状は、ロール円周方向に連続的する突条を1条設置した鞍型ロールを使用した場合と同様の、丸鋳片に引張応力の発生もなく、優れた、ポロシティ評点、軸芯割れ評点を有する丸鋳片が得られ、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。なお、カリバー底の開き角度δが、70°、110°と本発明の範囲を外れる試験No.2−1(比較例)は、カリバー底の開き角度δが小さすぎるため、圧下時に鋳片に引張応力が発生し、またカリバー底の開き角度δが、110°と本発明の範囲を外れる試験No.2−5(比較例)は、カリバー底の開き角度δが大きすぎるため、それぞれ、圧下時に鋳片に引張応力が発生し、突起を有していたにもかかわらず、鋳片軸芯部への圧下力の伝達が十分でなく、いずれもポロシティ評点が3、軸芯割れ評点が2で低く、また製管評点は2となっている。
[試験鋳造2−2]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表6に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表6に示す固相率fsの位置で、丸鋳片9に、表6に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製である。圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
In the present invention example using a vertical roll in which a plurality of protrusions 13b distributed in the roll circumferential direction are arranged in two rows, the internal properties of the obtained round cast slab are continuous protrusions in the roll circumferential direction. Similar to the case of using a saddle type roll with a single strip, round cast slabs with excellent porosity score and axial core crack score can be obtained without generating any tensile stress on round cast slabs. The internal properties of the shaft core portion were good, the incidence of internal flaws after pipe making was reduced, and the pipe making result was also good. Test No. 2-1 (comparative example) in which the opening angle δ of the caliber bottom is outside the range of the present invention of 70 ° and 110 ° (Comparative Example) is that the opening angle δ of the caliber bottom is too small. In Test No. 2-5 (Comparative Example) where tensile stress occurs and the caliber bottom opening angle δ is 110 °, which is outside the range of the present invention, the caliber bottom opening angle δ is too large. Even though the slab sometimes had tensile stress and had protrusions, the transmission of the rolling force to the slab shaft core was not sufficient, and in all cases, the porosity score was 3 and the shaft core crack score was 2 The pipe production score is 2.
[Test casting 2-2]
Similarly to [Test Casting 2-1], using the billet continuous casting machine shown in FIG. 1, a pair of vertical rolls 6a having the caliber bottom angle δ and the projection shape shown in Table 6 as the rolling rolls 6 and 6 are shown. , 6a is used, and the round slab 9 is subjected to reduction with the area reduction rate shown in Table 6 at the position of the solid fraction fs shown in Table 6 to produce a round slab (diameter before reduction D: 210 mmφ). did. In addition, the target round cast slab is made of Cr-containing steel containing 13% by mass of Cr. The value calculated using the slab temperature calculated by solidification / heat transfer calculation was used for the solid phase ratio at the reduction position.

また、使用した鞍型ロール6aは、[試験鋳造2−1]と同様に、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを隣り合う列間で千鳥状となるように2列設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の間隔Lが隣り合う列間で零となるようにした。なお、対象とした丸鋳片は、Crを13質量%含有するCr含有鋼製とした。なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表6に併記した。   Moreover, the used vertical roll 6a has a plurality of discretely distributed in the roll circumferential direction as shown in FIG. 6C at the position as shown in FIG. 3 as in [Test Casting 2-1]. The protrusion 13b was a roll installed in two rows so as to form a staggered pattern between adjacent rows. As shown in FIG. 6 (b), the shape of the protrusion is an arc shape (radius R) in the cross section in the roll axis direction, and the length B along the roll surface and the length along the roll surface in the roll circumferential direction. The ratio of A and A / B is 0.50, and the interval L between the ends of adjacent protrusions is made zero between adjacent rows. The target round cast slab was made of Cr-containing steel containing 13% by mass of Cr. In addition, using finite element method analysis, the stress acting on the round slab when the round slab is being reduced is analyzed, the presence or absence of tensile stress in the shaft part of the round slab is investigated, and the results are also shown in Table 6. did.

得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティ面積率、軸芯割れ長さを測定し、ポロシティ評点、軸芯割れ評点を求めた。評価方法は[試験鋳造2−1]と同様とした。
またさらに、[試験鋳造2−1]と同様に、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)として製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、実施例1と同様に、5段階で評価し、製管結果とした。また、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
About the obtained round cast piece, the porosity area rate and the axial core crack length were measured similarly to [Test casting 2-1], and the porosity score and the axial core crack score were obtained. The evaluation method was the same as [Test casting 2-1].
Furthermore, similarly to [Test casting 2-1], the obtained round cast slab (outer diameter: 210 mmφ) was produced as a raw material (seamless steel pipe material), and the seamless steel pipe (size: outer diameter 177.8 mmφ) × wall thickness 12 mm). In the same manner as in Example 1, the entire length of each steel pipe obtained was inspected, and the presence / absence of inner surface flaws and the rate of inner surface flaws were determined. Based on the inner surface flaw occurrence rate obtained, the evaluation was made in five stages in the same manner as in Example 1 to obtain the pipe making result. Moreover, the outer surface after pipe making was also observed visually to investigate the presence or absence of outer surface defects.

得られた結果を表6に示す。   The results obtained are shown in Table 6.

Figure 0005343746
Figure 0005343746

ロール円周方向に離散的に分布した複数の突起13bを2列、設置した鞍型ロールを使用した本発明例では、得られる丸鋳片の内部性状は、ロール円周方向に連続的する突条を1条設置した鞍型ロールを使用した場合と同様の、丸鋳片に引張応力の発生もなく、優れた、ポロシティ評点、軸芯割れ評点を有する丸鋳片が得られ、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。   In the present invention example using a vertical roll in which a plurality of protrusions 13b distributed in the roll circumferential direction are arranged in two rows, the internal properties of the obtained round cast slab are continuous protrusions in the roll circumferential direction. Similar to the case of using a saddle type roll with a single strip, round cast slabs with excellent porosity score and axial core crack score can be obtained without generating any tensile stress on round cast slabs. The internal properties of the shaft core portion were good, the incidence of internal flaws after pipe making was reduced, and the pipe making result was also good.

一方、本発明の範囲を外れる試験No.2−11(比較例)は、圧下時の固相率fsが1.0で完全凝固完了後の圧下であり、ポロシティ評点が3、軸芯割れ評点が3で低く、また製管評点は2となっている。また、圧下時の固相率が本発明の好ましい範囲を低く外れる試験2−6(本発明例)は、ポロシティ評点が3、軸芯割れ評点が4で低く、また製管評点は3となっている。圧下時の固相率が本発明の好ましい範囲を低く外れる場合には、圧下の効果は小さく、ポロシティ、軸芯割れの改善効果は少なく、製管成績も低くなる。また、凝固完了後の圧下の効果は極めて少ないことがわかる。   On the other hand, test No. 2-11 (comparative example) outside the scope of the present invention was a reduction after solidification was completed with a solid fraction fs of 1.0 at the time of reduction, a porosity score of 3, and a core crack score of 3 The pipe production score is 2. In Test 2-6 (example of the present invention) in which the solid phase ratio during reduction falls outside the preferable range of the present invention, the porosity score is 3 and the shaft core crack score is 4, and the tube production score is 3. ing. When the solid phase ratio during the reduction falls outside the preferred range of the present invention, the effect of reduction is small, the effect of improving the porosity and axial core cracking is small, and the pipe making results are also low. It can also be seen that the effect of the reduction after completion of solidification is very small.

また、圧下時の面積減少率が本発明の好適範囲を低く外れる試験No.2−12、No. 2−14(本発明例)は、ポロシティ評点が3、軸芯割れ評点が3で、製管評点は3と若干低めとなっている。圧下時の面積減少率が本発明の好適範囲を低く外れる場合には、圧下の効果は小さく、ポロシティおよび軸芯割れの改善効果は少なく、圧下時の面積減少率が好ましい範囲の場合に比べて製管成績が低下する。また、圧下時の面積減少率が本発明の好適範囲を高く外れる試験No. 2−13、No. 2−15(本発明例)は、ポロシティ評点が5、軸芯割れ評点が4で、製管評点は4または5と高いが、突起による鋳片外面の凹みが深く鋳片断面形状が若干不良となり、製管後に管の外面に疵の発生が認められた。圧下時の面積減少率の増加は、圧下時の負荷が大きくなり、設備規模の増大を考慮する必要があるとともに、圧下後の鋳片表面に突起による凹みが深くなり、製管時の外面疵の発生源となることが懸念される。
[試験鋳造2−3]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、カリバー底の角度δが90°で、表7に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表7に示す固相率fsの位置で、丸鋳片9に、表7に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列、設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bを0.10〜1.50に変化した形状とした。なお、Bは接触弧長の最大値とした。また、隣り合う突起の端部間の間隔Lはロール円周方向断面への投影面で隣り合う列間で零となるようにした。
Test Nos. 2-12 and No. 2-14 (examples of the present invention) in which the area reduction rate during rolling falls out of the preferred range of the present invention, the porosity score is 3, the shaft core crack score is 3, The tube score is slightly lower at 3. When the area reduction rate during reduction is out of the preferred range of the present invention, the reduction effect is small, the effect of improving the porosity and shaft core cracking is small, and the area reduction rate during reduction is less than the preferred range. Pipe-making performance is reduced. Test No. 2-13 and No. 2-15 (examples of the present invention) in which the area reduction rate during rolling greatly deviates from the preferred range of the present invention, the porosity score is 5, the shaft core crack score is 4, Although the pipe score was as high as 4 or 5, the dent on the outer surface of the slab was deep due to the protrusions, and the cross-sectional shape of the slab was slightly poor. The increase in the area reduction rate during reduction increases the load during reduction, and it is necessary to consider the increase in the scale of the equipment. There is concern that it will be a source of
[Test casting 2-3]
Similarly to [Test Casting 2-1], using the billet continuous casting machine shown in FIG. 1, the caliber bottom angle δ is 90 ° as the rolling rolls 6 and 6, and the caliber bottom angle δ shown in Table 7 is: Using a pair of vertical rolls 6a, 6a having a protrusion shape, the round cast slab 9 is subjected to reduction at the solid phase rate fs shown in Table 7 at the area reduction rate shown in Table 7, and round cast slab ( A diameter D before the reduction: 210 mmφ was produced. In addition, the value calculated using the slab temperature calculated by solidification and heat transfer calculation was used for the solid phase ratio in the reduction position. Moreover, the used saddle type roll 6a has a plurality of protrusions 13b distributed in the circumferential direction of the roll as shown in FIG. 6 (c) at positions as shown in FIG. It was set as the roll which installed two rows so that it might become. As shown in FIG. 6 (b), the shape of the protrusion is an arc shape (radius R) in the cross section in the roll axis direction, and the length B along the roll surface and the length along the roll surface in the roll circumferential direction. The ratio of A and A / B was changed to 0.10 to 1.50. Note that B is the maximum value of the contact arc length. Further, the interval L between the ends of the adjacent protrusions was made to be zero between the adjacent rows on the projection plane onto the roll circumferential cross section.

なお、対象とした丸鋳片は、同様に、Crを13質量%含有するCr含有鋼製とした。得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は[試験鋳造2−1]と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)とし、[試験鋳造2−1]と同様に製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。実施例1と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、[試験鋳造2−1]と同様に、5段階で評価し、製管結果とした。また、製管後の外面についても、目視で観察し、外面疵の有無を調査した。
In addition, the target round cast slab was similarly made of Cr-containing steel containing 13% by mass of Cr. About the obtained round cast slab, the area of a porosity and a shaft core crack were measured similarly to [Test casting 2-1], and the property of the shaft core part was evaluated. The evaluation method was the same as [Test casting 2-1].
Furthermore, the obtained round cast slab (outer diameter: 210 mmφ) was used as the raw material (seamless steel pipe material), and pipes were produced in the same manner as in [Test casting 2-1], and seamless steel pipe (size: outer diameter 177.8 mmφ) × wall thickness 12 mm). In the same manner as in Example 1, the entire length of each steel pipe obtained was inspected, and the presence / absence of inner surface flaws and the rate of inner surface flaws were determined. Based on the inner surface flaw occurrence rate obtained, it was evaluated in five stages in the same manner as in [Test Casting 2-1], and the pipe production result was obtained. Moreover, the outer surface after pipe making was also observed visually to investigate the presence or absence of outer surface defects.

なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査した。
得られた結果を表7に示す。
In addition, the stress which acts on a round cast piece at the time of rolling down of a round cast piece was analyzed using the finite element method analysis, and the presence or absence of the tensile stress in a round cast piece core part was investigated.
The results obtained are shown in Table 7.

Figure 0005343746
Figure 0005343746

突起形状A/Bが本発明の好適範囲を満足する本発明例では、丸鋳片に引張応力の発生もなく、丸鋳片軸芯部の内部性状が良好となり、製管後の内面疵発生率も低下し、製管結果も良好であった。なお、突起形状A/Bが0.10と、突起形状A/Bが本発明の好適範囲を低く外れる試験No.2-16(本発明例)では、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が3となっており、また、突起による鋳片凹みに起因する、管の外面疵の発生が認められた。また、突起形状A/Bが1.50となる、突起形状A/Bが本発明の好適範囲を高く外れる試験No.2-20(本発明例)では、圧下効果が若干不足し、ポロシティ評点が3、軸芯割れ評点が3で内部品質が若干低下し、製管評点が2となっているが、管の外面疵の発生は認められなかった。   In the present invention example in which the protrusion shape A / B satisfies the preferred range of the present invention, there is no generation of tensile stress in the round cast slab, the internal property of the shaft part of the round cast slab is good, and internal flaws are generated after pipe production The rate was also reduced and the pipe making results were good. In Test No. 2-16 (example of the present invention) where the protrusion shape A / B is 0.10 and the protrusion shape A / B falls outside the preferred range of the present invention, the porosity score is 3, and the shaft core crack score is 3. The internal quality was slightly deteriorated, the pipe making score was 3, and the occurrence of flaws on the outer surface of the pipe due to the slab dent due to the protrusion was observed. Further, in test No. 2-20 (invention example) in which the protrusion shape A / B is 1.50 and the protrusion shape A / B deviates from the preferred range of the present invention, the reduction effect is slightly insufficient, and the porosity score is 3 The inner core crack rating was 3 and the internal quality was slightly reduced, and the pipe making score was 2. However, the occurrence of flaws on the outer surface of the pipe was not observed.

このように、突起形状A/Bが大きすぎなければ、圧下効果が高まり、製管評点も高くなり製管成績が向上する。一方、突起形状A/Bが小さすぎると、丸鋳片を局部的に圧下するため、その部分が外面疵の基点となることがある。
[試験鋳造2−4]
[試験鋳造2−1]と同様に、図1に示すビレット連続鋳造機を利用し、圧下ロール6,6として、表8に示すカリバー底の角度δ、突起形状を有する一対の鞍型ロール6a,6aを使用し、表8に示す固相率fsの位置で、丸鋳片9に、表8に示す面積減少率で圧下を施し、丸鋳片(圧下前の直径D:210mmφ)を製造した。なお、圧下位置での固相率は、凝固・伝熱計算により算出された鋳片温度を用いて算出した値を使用した。
Thus, if projection shape A / B is not too large, a rolling-down effect will increase, a pipe making score will also become high, and a pipe making result will improve. On the other hand, if the protrusion shape A / B is too small, the round cast slab is locally crushed, so that portion may become the base point of the outer surface defect.
[Test casting 2-4]
Similarly to [Test Casting 2-1], using the billet continuous casting machine shown in FIG. , 6a is used to produce a round slab (diameter D before being reduced: 210 mmφ) at the position of the solid phase rate fs shown in Table 8 with a reduction in the area reduction rate shown in Table 8 on the round slab 9 did. In addition, the value calculated using the slab temperature calculated by solidification and heat transfer calculation was used for the solid phase ratio in the reduction position.

また、使用した鞍型ロール6aは、図3に示すような位置に、図6(c)示すようなロール円周方向に離散的に分布した複数の突起13bを、隣り合う列間で千鳥状となるように2列、設置したロールとした。突起の形状は、図6(b)に示すように、ロール軸方向断面で円弧状(半径R)を呈し、ロール円周方向でロール表面に沿った長さBとロール表面に沿った長さAとの比、A/Bが0.50となる形状を有し、隣り合う突起の端部間の長さ(ロール円周方向への投影)Lが隣り合う列間で零となるようにした。   Moreover, the used saddle type roll 6a has a plurality of protrusions 13b distributed in the circumferential direction of the roll as shown in FIG. 6 (c) at positions as shown in FIG. It was set as the roll which installed two rows so that it might become. As shown in FIG. 6 (b), the shape of the protrusion is an arc shape (radius R) in the cross section in the roll axis direction, and the length B along the roll surface and the length along the roll surface in the roll circumferential direction. The ratio of A and A / B is 0.50, and the length (projection in the roll circumferential direction) L between the ends of adjacent protrusions is made zero between adjacent rows.

なお、対象とした丸鋳片は、Crを含有しない炭素鋼、Crを1.0質量%含有する1%Cr鋼、Crを13質量%含有する13%Cr鋼製とした。得られた丸鋳片について、[試験鋳造2−1]と同様に、ポロシティの面積、軸芯割れを測定し、軸芯部の性状を評価した。評価方法は実施例1と同様とした。
またさらに、得られた丸鋳片(外径:210mmφ)を素材(継目無鋼管素材)として製管し、継目無鋼管(大きさ:外径177.8mmφ×肉厚12mm)を得た。[試験鋳造2−1]と同様に、得られた各鋼管の全長に亘り検査し、内面疵の発生の有無および内面疵発生率を求めた。得られた内面疵発生率に基づき、[試験鋳造2−1]と同様に、5段階で評価し、製管結果とした。
The target round slabs were made of carbon steel not containing Cr, 1% Cr steel containing 1.0% by mass of Cr, and 13% Cr steel containing 13% by mass of Cr. About the obtained round cast slab, the area of a porosity and a shaft core crack were measured similarly to [Test casting 2-1], and the property of the shaft core part was evaluated. The evaluation method was the same as in Example 1.
Further, the obtained round cast slab (outer diameter: 210 mmφ) was produced as a raw material (seamless steel pipe material) to obtain a seamless steel pipe (size: outer diameter 177.8 mmφ × wall thickness 12 mm). Similarly to [Test Casting 2-1], the entire length of each steel pipe obtained was inspected, and the presence / absence of internal flaws and the rate of internal flaws were determined. Based on the inner surface flaw occurrence rate obtained, it was evaluated in five stages in the same manner as in [Test Casting 2-1], and the pipe production result was obtained.

なお、有限要素法解析を用いて、丸鋳片の圧下時に、丸鋳片に作用する応力を解析し、丸鋳片軸芯部における引張応力の有無を調査し、その結果を表8に併記した。
得られた結果を表8に示す。
In addition, the finite element method analysis was used to analyze the stress acting on the round slab when the round slab was rolled down, to investigate the presence or absence of tensile stress in the core part of the round slab, and the results are also shown in Table 8. did.
Table 8 shows the obtained results.

Figure 0005343746
Figure 0005343746

ロール円周方向に離散的に分布した複数の突起を有する鞍型ロールを使用して所定の断面減少率以上に圧下を施す本発明例は、円周方向に連続的に延びる発条を有する鞍型ロールを使用して所定の固相率範囲の位置で所定量以上の圧下を施した試験鋳造4の場合と同様の圧下効果が得られる。
一般の炭素鋼の場合には、圧下なしでもポロシティ面積が0〜数mmと小さく、本発明を適用した場合はもちろん、本発明を適用することなく、製管評点は3以上であり、製管成績は良好である。一方、1%Cr鋼では、圧下なしではポロシティ面積が数十〜100 mm程度と、切断位置でばらつくが、本発明を適用することにより、炭素鋼並みの数mm程度までポロシティ面積を低減することができ、製管評点も4と、向上している。さらに、13%Cr鋼では、圧下なしでは100 mm程度以上のポロシティが切断位置に係らず観察されるが、本発明を適用することにより、大幅にポロシティ面積を低減することができ、製管評点も3と向上し、製管成績は良好である。
An example of the present invention that uses a saddle type roll having a plurality of protrusions distributed in the circumferential direction of the roll to reduce the cross-section more than a predetermined cross-sectional reduction rate is a saddle type having a ridge that continuously extends in the circumferential direction. A reduction effect similar to that in the case of the test casting 4 in which a roll is used to reduce a predetermined amount or more at a position in a predetermined solid phase ratio range is obtained.
In the case of general carbon steel, the porosity area is as small as 0 to several mm 2 even without reduction, and when the present invention is applied, the pipe production score is 3 or more without applying the present invention. Tube performance is good. On the other hand, with 1% Cr steel, the porosity area is about several tens to 100 mm 2 without reduction, but it varies at the cutting position. By applying the present invention, the porosity area is reduced to about several mm 2 which is the same as carbon steel. The pipe making score is 4 and improved. Furthermore, the 13% Cr steel, porosity of more than about 100 mm 2 is without pressure is observed regardless of the cutting position, by applying the present invention, it is possible to significantly reduce the porosity area, the pipe producing The score is also improved to 3, and the pipe making performance is good.

1 ビレット連続鋳造機
2 タンディッシュ
3 浸漬ノズル
4 円形鋳型
5 鋳片支持ロール
6、 圧下ロール
6a、6b 圧下ロール(鞍型ロール)
6c 圧下ロール(平型ロール)
7 油圧シリンダー
8 溶鋼
9 丸鋳片
10 凝固シェル
11 未凝固層
12 鞍型ロール
13、13a、13b 突起
1 Billet continuous casting machine
2 Tundish
3 Immersion nozzle
4 Circular mold
5 slab support roll
6, Rolling roll
6a, 6b Rolling roll (Roll type roll)
6c Rolling roll (flat roll)
7 Hydraulic cylinder
8 Molten steel
9 Round slab
10 Solidified shell
11 Unsolidified layer
12 Vertical roll
13, 13a, 13b Protrusion

Claims (9)

円形鋳型による連続鋳造中の丸鋳片に、該丸鋳片の凝固完了前に、一対の圧下ロールにより圧下を加え、次いで、丸鋳片を切断して継目無鋼管用丸鋳片を製造するに当たり、前記一対の圧下ロールとして、カリバー底の開き角度δが75°以上105°以下であり、且つ、前記丸鋳片と対向する部位に、丸鋳片と接触する突起を有する鞍型ロールを使用することを特徴とする継目無鋼管用丸鋳片の連続鋳造方法。 Before the solidification of the round slab, the round slab during continuous casting using a circular mold is subjected to reduction by a pair of reduction rolls, and then the round slab is cut to produce a round slab for seamless steel pipes. In this case, as the pair of rolling rolls, a caliber bottom opening angle δ is 75 ° or more and 105 ° or less, and a vertical roll having a protrusion that contacts the round cast piece at a portion facing the round cast piece. A continuous casting method for round slabs for seamless steel pipes, characterized by being used. 前記突起が、少なくとも1条のロール円周方向に連続する突条であることを特徴とする請求項1に記載の継目無鋼管用丸鋳片の連続鋳造方法。 2. The continuous casting method for a round cast piece for a seamless steel pipe according to claim 1, wherein the protrusion is a protrusion that is continuous in at least one roll circumferential direction. 前記突起が、ロール円周方向に離散的に分布した複数の突起であることを特徴とする請求項1に記載の継目無鋼管用丸鋳片の連続鋳造方法。 2. The continuous casting method for a round cast piece for a seamless steel pipe according to claim 1, wherein the protrusions are a plurality of protrusions distributed discretely in a roll circumferential direction. 前記突起が、前記鞍型ロールの軸方向断面における断面形状が円弧であり、該円弧の半径Rが、
R=0.20D〜0.50D
(ここで、R:突起断面の円弧半径(mm)、D:丸鋳片直径(mm))
を満足することを特徴とする請求項1ないし3のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。
The protrusion has a circular cross section in the axial cross section of the saddle-shaped roll, and the radius R of the circular arc is:
R = 0.20D ~ 0.50D
(Here, R: radius of arc of protrusion cross section (mm), D: diameter of round cast slab (mm))
The continuous casting method for a round slab for a seamless steel pipe according to any one of claims 1 to 3, wherein:
前記複数の突起が、該突起の、ロール円周方向の底面長さBとロール軸方向の底面長さAとの比、A/Bが0.2〜1であることを特徴とする請求項3に記載の継目無鋼管用丸鋳片の連続鋳造方法。 The ratio of the bottom surface length B in the roll circumferential direction to the bottom surface length A in the roll axis direction of the plurality of protrusions, A / B is 0.2 to 1, wherein the plurality of protrusions are defined in claim 3. The continuous casting method of the round cast piece for seamless steel pipes of description. 前記複数の突起を、該複数の突起のうち隣り合う突起同士の端部間の間隔が、前記鞍型ロールの円周方向への投影長さで、零を含み、前記鞍型ロールと前記丸鋳片との接触長さ未満となるように、設けることを特徴とする請求項5に記載の継目無鋼管用丸鋳片の連続鋳造方法。 In the plurality of protrusions, an interval between adjacent protrusions among the plurality of protrusions is a projection length in a circumferential direction of the saddle type roll, and includes zero, and the vertical roll and the round The continuous casting method for a round slab for a seamless steel pipe according to claim 5, wherein the continuous slab is provided so as to be less than a contact length with the slab. 前記複数の突起を、該複数の突起の前記鞍型ロールの円周方向における底面長さBが、前記鞍型ロールと前記丸鋳片との接触長さの1/2以上である突起とすることを特徴とする請求項5または6に記載の継目無鋼管用丸鋳片の連続鋳造方法。 The plurality of protrusions are protrusions having a bottom surface length B of the plurality of protrusions in the circumferential direction of the saddle type roll that is not less than 1/2 of a contact length between the saddle type roll and the round cast piece. The continuous casting method of the round slab for seamless steel pipes according to claim 5 or 6. 前記圧下を、前記丸鋳片の軸芯部での固相率fsが0.3〜0.85である時期に、次式
面積減少率(%)={1−(圧下後の丸鋳片の断面積)/(圧下前の丸鋳片の断面積)}×100
で定義される面積減少率が1〜5%の範囲となる圧下とすることを特徴とする請求項1ないし7のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。
When the reduction is performed at a time when the solid phase ratio fs at the shaft core portion of the round slab is 0.3 to 0.85, the area reduction rate (%) = {1− (cross-sectional area of the round slab after reduction) / (Cross-sectional area of round slab before rolling)} × 100
8. The continuous casting method for round slabs for seamless steel pipes according to claim 1, wherein the area reduction rate defined by is reduced to a range of 1 to 5%.
前記丸鋳片が、0.5質量%以上のCrを含有するCr含有鋼製であることを特徴とする請求項1ないし8のいずれかに記載の継目無鋼管用丸鋳片の連続鋳造方法。 9. The continuous casting method of a round slab for seamless steel pipes according to claim 1, wherein the round slab is made of Cr-containing steel containing 0.5 mass% or more of Cr.
JP2009173317A 2008-07-30 2009-07-24 Continuous casting method of round slabs for seamless steel pipes Expired - Fee Related JP5343746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173317A JP5343746B2 (en) 2008-07-30 2009-07-24 Continuous casting method of round slabs for seamless steel pipes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008195625 2008-07-30
JP2008195625 2008-07-30
JP2009173317A JP5343746B2 (en) 2008-07-30 2009-07-24 Continuous casting method of round slabs for seamless steel pipes

Publications (2)

Publication Number Publication Date
JP2010052042A JP2010052042A (en) 2010-03-11
JP5343746B2 true JP5343746B2 (en) 2013-11-13

Family

ID=42068516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173317A Expired - Fee Related JP5343746B2 (en) 2008-07-30 2009-07-24 Continuous casting method of round slabs for seamless steel pipes

Country Status (1)

Country Link
JP (1) JP5343746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622904B (en) * 2019-02-01 2020-06-02 东北大学 Device and method for realizing core pressing process in continuous casting round billet solidification process
CN114054700B (en) * 2021-10-15 2022-11-15 东北大学 Method and device for pressing round billet
CN116000258B (en) * 2023-02-01 2023-06-02 东北大学 Hole pattern manufacturing method for continuous casting round billet solidification tail end pressing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124704A (en) * 1991-10-11 1995-05-16 Kawasaki Heavy Ind Ltd Horizontal continuous casting method and apparatus thereof
JPH09174211A (en) * 1995-12-22 1997-07-08 Nkk Corp Production of continuously cast billet for seamless steel pipe
JPH09174212A (en) * 1995-12-22 1997-07-08 Nkk Corp Production of continuously cast billet for seamless steel pipe
JP3237518B2 (en) * 1996-05-16 2001-12-10 日本鋼管株式会社 Manufacturing method of chrome alloy steel round billet slab
JP3646417B2 (en) * 1996-07-30 2005-05-11 Jfeスチール株式会社 Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JP3214377B2 (en) * 1996-12-12 2001-10-02 日本鋼管株式会社 Manufacturing method of continuous cast slab for seamless steel pipe

Also Published As

Publication number Publication date
JP2010052042A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4830612B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP5545419B1 (en) Method for continuous casting of steel and method for manufacturing strip steel
JP4609330B2 (en) Continuous casting method of ultra-thick steel plates with excellent internal quality and slabs for ultra-thick steel plates
JP4296985B2 (en) Ultra-thick steel plate with excellent internal quality and its manufacturing method
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP6390718B2 (en) Continuously cast slab, manufacturing method and manufacturing apparatus thereof, manufacturing method and manufacturing apparatus of thick steel plate
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JPH09300053A (en) Production of chromium alloy steel round cast billet
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5962206B2 (en) Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP5594164B2 (en) Manufacturing method of seamless steel pipe in high alloy or stainless steel
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP2013252542A (en) Method for continuously casting cast slab
JP3319379B2 (en) Continuous casting method of steel billet
JP3958787B1 (en) Continuous casting method
JP3646417B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP3367332B2 (en) Manufacturing method of difficult-to-work seamless steel pipe
JP5973703B2 (en) Seamless pipe manufacturing method
JP3356100B2 (en) Continuous casting method
JP3275828B2 (en) Continuous casting method
JP4424189B2 (en) Billet billet manufacturing method with excellent internal quality
JP3395674B2 (en) Continuous casting method
JP2013180307A (en) Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees