JP4424189B2 - Billet billet manufacturing method with excellent internal quality - Google Patents

Billet billet manufacturing method with excellent internal quality Download PDF

Info

Publication number
JP4424189B2
JP4424189B2 JP2004360774A JP2004360774A JP4424189B2 JP 4424189 B2 JP4424189 B2 JP 4424189B2 JP 2004360774 A JP2004360774 A JP 2004360774A JP 2004360774 A JP2004360774 A JP 2004360774A JP 4424189 B2 JP4424189 B2 JP 4424189B2
Authority
JP
Japan
Prior art keywords
billet
slab
reduction
press
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004360774A
Other languages
Japanese (ja)
Other versions
JP2006167736A (en
Inventor
恒夫 近藤
泰史 久保
裕文 堀
富夫 山川
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004360774A priority Critical patent/JP4424189B2/en
Publication of JP2006167736A publication Critical patent/JP2006167736A/en
Application granted granted Critical
Publication of JP4424189B2 publication Critical patent/JP4424189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、ポロシティーの生成しやすい鋼種においても、安価で生産性を損なうことなく、内部品質の良好なビレット鋼片を製造することのできるビレット鋼片製造方法に関する。   The present invention relates to a billet slab manufacturing method capable of manufacturing billet slabs with good internal quality at a low cost and without impairing productivity even in a steel type that easily generates porosity.

連続鋳造時に最終凝固位置近傍に発生する空孔(ポロシティー)の低減は、鉄鋼製品の品質向上における重要課題であり、各種の改善方法が試みられている。簡便な方法としては、鋳型の横断面形状における「縦横比」(長片と短片と比を意味し、「扁平比」とも称する)の値を大きくすることにより、鋳片段階でのポロシティーの発生をある程度抑制することは可能である。しかし、大断面を有するビレットの要求に応えるためには、一定厚さ以上の厚さを有する鋳片を製造する必要のある場合があり、その場合には、鋳型横断面の縦横比の値を増大させても、鋼種次第では、ポロシティー欠陥の発生を防止することは困難である。   Reduction of porosity (porosity) generated in the vicinity of the final solidification position during continuous casting is an important issue in improving the quality of steel products, and various improvement methods have been attempted. As a simple method, by increasing the value of the “aspect ratio” (meaning the ratio of long piece to short piece, also referred to as “flat ratio”) in the cross-sectional shape of the mold, the porosity at the slab stage is increased. It is possible to suppress the occurrence to some extent. However, in order to meet the demand for billets having a large cross section, it may be necessary to produce a slab having a thickness greater than a certain thickness. Even if it is increased, it is difficult to prevent the occurrence of porosity defects depending on the steel type.

ポロシティーの低減方法としては、下記の技術が公知であり、それぞれに以下に述べる問題を有している。
1)鋳型横断面の扁平比(縦横比)の調整
特許文献1には、5%以上のクロムを含有する高クロム含有圧延用素材鋼の製造方法において、上記圧延素材鋼を縦横比が実質的に1.5〜4.0の鋳片として連続鋳造する方法が開示されている。この方法によれば、鋳型横断面の扁平比を上げることにより、鋳片横断面中心部へのポロシティーの集中は緩和されるものの、鋼種によっては効果が不十分であり、鋳片横断面中心部にポロシティーが残存する場合がある。
The following techniques are known as methods for reducing porosity, and each has the following problems.
1) Adjustment of flattening ratio (aspect ratio) of mold cross section In Patent Document 1, in the manufacturing method of high chromium-containing rolling material steel containing 5% or more of chromium, the rolling material steel has a substantial aspect ratio. Discloses a method of continuous casting as 1.5 to 4.0 slabs. According to this method, by increasing the flatness ratio of the mold cross-section, the concentration of porosity at the center of the slab cross-section is reduced, but depending on the steel type, the effect is insufficient, and the center of the slab cross-section Porosity may remain in the part.

2)連続鋳造時における鋳片の未凝固圧下
特許文献2をはじめとする多数の特許文献には、未凝固圧下技術が開示されている。例えば、特許文献2には、連鋳鋳片の厚み中心部における固相率が0.9以上になる領域にて鋳片の未凝固厚みの1.5倍以上の鍛圧加工による圧下を、ブルームの場合にはブルームの幅方向の中央域でブルーム幅の20〜40%の領域に、スラブの場合にはスラブの幅方向の中央域でスラブ幅の70〜90%の領域に、加えるセンターポロシティーのない連鋳鋳片の製造方法が開示されている。
2) Unsolidified reduction of cast slab during continuous casting Many patent documents including Patent Document 2 disclose unsolidified reduction technology. For example, Patent Document 2 discloses a reduction by forging that is 1.5 times or more the unsolidified thickness of a slab in a region where the solid phase ratio at the thickness center portion of the continuous cast slab is 0.9 or more. In the case of slab, the center polo is added to the region of 20 to 40% of the bloom width in the central region in the width direction of the bloom, and in the case of slab, to the region of 70 to 90% of the slab width in the central region in the width direction of the slab. A method for producing a continuous cast slab without a city is disclosed.

しかしながら、これらの方法では、未凝固圧下域を凝固末期に設定する必要があり、その圧下位置を適正位置に的中させることが難しく、安定して鋳片品質を向上させることが容易ではない。   However, in these methods, it is necessary to set the unsolidified reduction zone at the end of solidification, and it is difficult to focus the reduction position at an appropriate position, and it is not easy to improve the slab quality stably.

3)連続鋳造時における鋳片の凝固後圧下
特許文献3には、連鋳材より厚鋼板を製造する方法において、連鋳機の出側に圧下装置を設置し、連鋳スラブに対して、所定の関係を満たすように圧下を施した後、500℃以下で冷却することなく脱水素処理を施す連鋳鋼板の製造方法が開示されている。しかし、連続鋳造設備への大きな圧下装置の設置は、設置スペースの確保などの面で制約が大きく、また、既設設備への設置は一層困難である。さらに、複数の連続鋳造設備を有する場合には連鋳機毎に大きな圧下装置を設置する必要があり、設備費の面においても制約が生じやすい。
3) Reduction after solidification of cast slab during continuous casting In Patent Document 3, in a method of producing a thick steel plate from a continuous cast material, a reduction device is installed on the outlet side of the continuous casting machine. There is disclosed a method for producing a continuous cast steel sheet that is subjected to dehydrogenation without being cooled at 500 ° C. or lower after being subjected to reduction so as to satisfy a predetermined relationship. However, the installation of a large reduction device in a continuous casting facility is greatly restricted in terms of securing an installation space and the installation in an existing facility is more difficult. Further, when a plurality of continuous casting facilities are provided, it is necessary to install a large reduction device for each continuous casting machine, and there is a tendency to restrict the facility cost.

4)ロール圧下によるポロシティーの無害化
ロール圧下は、プレスによる圧下と比較して鋳片中心部への圧下力の浸透が小さく、その効果が得られにくい。この対策として、ロールの長手方向中央部のロール軽を大径とした凸型ロールを用いて鋳片の巾方向中央部を重点的にロール圧下する方法がある。
4) Porosity detoxification by roll reduction Roll reduction has less penetration of the reduction force into the center of the slab than press reduction, and its effect is difficult to obtain. As a countermeasure against this, there is a method of intensively rolling down the center part in the width direction of the slab using a convex roll having a large diameter in the center part in the longitudinal direction of the roll.

例えば、特許文献4には、連続鋳造ラインで凝固後に発生する連続鋳造鋳片のセンターポロシティを、中央部に凸部を形成したピンチロールにより圧着する鋳片軽圧下方法において、引抜き矯正ロールの後段に前記ピンチロールを配置し、ピンチロールの直前に設けた鋳片表面冷却設備により表面を600℃〜400℃に冷却した後、ピンチロールにより圧下する鋳片軽圧下方法が開示されている。   For example, in Patent Document 4, in the method of lightly reducing the center of a continuously cast slab generated after solidification in a continuous casting line by a pinch roll having a convex portion formed at the center, a subsequent stage of the drawing correction roll. A slab light reduction method is disclosed in which the pinch roll is disposed on the surface, the surface is cooled to 600 ° C. to 400 ° C. by a slab surface cooling facility provided immediately before the pinch roll, and then the slab is reduced by the pinch roll.

しかしながら、上記のようなロール圧下による方法では、鋳片の幅方向中央部に窪みが生じることから、後工程のロールによる分塊圧延工程において皺疵などの分塊圧延疵が発生しやすい。   However, in the method using the roll reduction as described above, a depression is generated in the center portion in the width direction of the slab, and thus, a piece of rolled material such as a piece is easily generated in a piecewise rolling process using a roll in a subsequent step.

5)分塊圧延前におけるプレス圧下
例えば、特許文献5には、均熱炉と分塊圧延ミルとの間でプレスし、センターポロシティを圧着する圧下装置において、圧下装置のプレスヘッドに連続鋳造ブルームの移動方向と直行する凸部を設けることにより、鋳片移動方向へのメタルフローを抑制し、プレス圧下力の浸透を向上させた圧下装置が開示されている。しかしながら、鋳片サイズ、鋼種などの条件によっては、必ずしもその効果が発揮されないことがある。
5) Press reduction before partial rolling For example, Patent Document 5 discloses a continuous casting bloom in a reduction head that presses between a soaking furnace and a partial rolling mill and presses the center porosity. There is disclosed a reduction device that suppresses metal flow in the slab movement direction and improves the penetration of the press reduction force by providing a convex portion that is orthogonal to the movement direction. However, depending on conditions such as slab size and steel type, the effect may not always be exhibited.

6)プレス圧下のみによるビレット製造
ロールによる分塊圧延を行わずに、プレス圧下のみによりビレットを製造する方法も実施されているが、生産性を向上させることが難しい。
6) Billet production only by pressing pressure Although the method of manufacturing a billet only by pressing pressure is performed, without performing the lump rolling by a roll, it is difficult to improve productivity.

上述のとおり、ポロシティーの生成しやすい鋼種においても、内部品質の良好なビレット鋼片を、安価で生産性を損なうことなく、高い信頼性のもとに製造するためには、なお、解決されねばならない問題が残されている。   As mentioned above, even in the steel grades that easily generate porosity, it is still a problem to produce billet billets with good internal quality at a low cost and without compromising productivity. There are still problems to be solved.

特許第2840103号公報(特許請求の範囲および2頁左欄24〜29行)Japanese Patent No. 2840103 (Claims and page 2, left column, lines 24 to 29)

特許第2945060号公報(特許請求の範囲および2頁左欄24〜45行)Japanese Patent No. 2945060 (Claims and page 2, left column, lines 24 to 45) 特開昭55−114404号公報(特許請求の範囲および1頁右欄20行〜2頁左上欄14行)JP-A-55-114404 (claims and page 1, right column, line 20 to page 2, upper left column, line 14) 特許第2705414号公報(特許請求の範囲および段落[0008])Japanese Patent No. 2705414 (Claims and paragraph [0008]) 実開平5−28544号公報(実用新案登録請求の範囲および段落[0008])Japanese Utility Model Laid-Open No. 5-28544 (claim for utility model registration and paragraph [0008]) 伊藤泰朗、川本正幸、川東文雄、吉田直嗣、加藤誠:CAMP−ISIJ Vol.9(1966)−55Yasuhiro Ito, Masayuki Kawamoto, Fumio Kawato, Naoyoshi Yoshida, Makoto Kato: CAMP-ISI Vol. 9 (1966) -55

本発明は、上記の問題に鑑みてなされたものであり、その課題は、ポロシティーの生成しやすい鋼種においても、鋳型横断面の扁平比を規定するとともに、鋼種に固有の凝固収縮率に応じたプレス圧下量を規定することにより、内部品質の良好なビレット鋼片を、安価で生産性を損なうことなく製造することのできるビレット鋼片の製造方法を提供することにある。   The present invention has been made in view of the above problems, and the problem is that, even in a steel type in which porosity is likely to be generated, the flat ratio of the mold cross-section is specified and the solidification shrinkage rate specific to the steel type is determined. It is another object of the present invention to provide a billet billet manufacturing method that can produce billet billets with good internal quality at low cost without impairing productivity by defining the amount of press reduction.

本発明者は、上述の課題を解決するために、従来の問題点を踏まえて、内部品質の良好なビレット鋼片の製造方法について検討を行い、下記の(a)および(b)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor has studied a manufacturing method of billet billets with good internal quality based on the conventional problems, and has obtained the following findings (a) and (b) The present invention was completed.

(a)液相から固相に凝固する際の凝固収縮率が4%以上の鋼種においては、鋳型横断面の扁平比を適正化することにより、ブルーム段階でのポロシティーが過大とならないように制御した上で、鋼種によって異なるポロシティーの大きさに応じて、ロールによる分塊圧延前に、適正量のプレス圧下を行うことにより、生産能率の低下やコストアップを抑制しつつ、鋼片の品質改善を図ることができる。   (A) For steel grades with a solidification shrinkage rate of 4% or more when solidifying from the liquid phase to the solid phase, the porosity at the bloom stage will not be excessive by optimizing the flatness ratio of the mold cross section. After controlling, depending on the size of the porosity, which varies depending on the steel type, by performing an appropriate amount of press rolling before roll rolling with a roll, while suppressing the reduction in production efficiency and cost increase, Quality can be improved.

(b)上記(a)の鋼種を、鋳型横断面の厚さが240mm以上で、鋳型横断面の扁平比が1.5〜4.0の鋳型を用いて連続鋳造し、下記の(1)式により表される関係を満足する条件でプレス圧下すると、鋼片のポロシティーが十分に圧着されやすくなり、ロール圧延後に内部品質の良好なビレット鋼片が得られる。
0.7≦L/Lo+0.03×Δδ≦1.0 ・・・(1)
ここで、Loはプレスによる最大圧下時のプレス前の圧下面間距離(mm)を、Lはプレスによる最大圧下時のプレス後の圧下面間距離(mm)を、Δδは凝固収縮率(%)を、それぞれ表す。
(B) The above steel type (a) was continuously cast using a mold having a mold cross section thickness of 240 mm or more and a mold cross section flatness ratio of 1.5 to 4.0, and the following (1) When the press reduction is performed under the conditions satisfying the relationship represented by the formula, the porosity of the steel slab becomes sufficiently pressure-bonded, and a billet steel slab having good internal quality is obtained after roll rolling.
0.7 ≦ L / Lo + 0.03 × Δδ ≦ 1.0 (1)
Here, Lo is the distance (mm) between the pressed surfaces before pressing at the time of the maximum reduction by the press, L is the distance (mm) between pressing surfaces after the pressing at the maximum reduction by the press, and Δδ is the solidification shrinkage rate (%). ) Respectively.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)および)に示されるビレット鋼片の製造方法にある。
The present invention has been completed based on the above findings, and the gist thereof lies in a method for manufacturing a billet billet as shown in the following (1) and ( 2 ).

(1)液相から固相に凝固する際の凝固収縮率が4%以上である鋼の溶鋼を、横断面の厚さが240mm以上、幅が厚さの1.8〜4.0倍の鋳型を用いて連続鋳造し、得られたブルーム鋳片に対して、幅方向に、下記(1)式の関係を満たし、かつ圧下量を100〜300mmの範囲内とする条件で全長にわたってプレス圧下を施した後に、ロール圧延を行うことを特徴とするビレット鋼片の製造方法。
(1) A steel melt having a solidification shrinkage rate of 4% or more when solidified from a liquid phase to a solid phase has a cross-sectional thickness of 240 mm or more and a width of 1.8 to 4.0 times the thickness. continuous casting using a mold, the obtained Bloom cast piece, the width direction, meets the following relationship (1), and a reduction rate over the entire length under conditions in the range of 100~300mm A method for producing a billet billet comprising performing roll rolling after pressing.

0.7≦L/Lo+0.03×Δδ≦1.0 ・・・(1)
ここで、Loはプレスによる最大圧下時のプレス前の圧下面間距離(mm)を、Lはプレスによる最大圧下時のプレス後の圧下面間距離(mm)を、Δδは凝固収縮率(%)を、それぞれ表す。
0.7 ≦ L / Lo + 0.03 × Δδ ≦ 1.0 (1)
Here, Lo is the distance (mm) between the pressed surfaces before pressing at the time of the maximum reduction by the press, L is the distance (mm) between pressing surfaces after the pressing at the maximum reduction by the press, and Δδ is the solidification shrinkage rate (%). ) Respectively.

(2)上記プレス圧下後にロール圧延を行うに際し、プレス圧下後にブルーム鋳片を加熱することなく、熱間状態のまま引き続きロール圧延することを特徴とする前記(1)に記載のビレット鋼片の製造方法。
(2 ) When performing the roll rolling after the press reduction, the billet slab according to (1 ) is continuously rolled in a hot state without heating the bloom slab after the press reduction. Production method.

本発明において、「液相から固相に凝固する際の凝固収縮率」とは、溶鋼が液相から固相へと凝固するときの体積収縮率を意味し、後述するとおり、非特許文献1に記載された
方法により、測定することができる。なお、鋼種ごとの凝固収縮率の代表的な値は、SUS304鋼(0.06%C−18%Cr−8%Ni)では2.4%、BBS鋼(1.0%C−1.5%Cr)では3.7%、H50鋼(0.50%C)では4.1%、M9S鋼(0.1%C−9%Cr)では4.7%、スーパー13%Cr鋼(0.01%C−12%Cr)では5.9%、13%Cr鋼(0.2%C−13%Cr)では6.4%である。
In the present invention, “solidification shrinkage rate when solidifying from a liquid phase to a solid phase” means a volume shrinkage rate when molten steel is solidified from a liquid phase to a solid phase. It can be measured by the method described in 1. The typical values of solidification shrinkage for each steel type are 2.4% for SUS304 steel (0.06% C-18% Cr-8% Ni) and BBS steel (1.0% C-1.5). % Cr) is 3.7%, H50 steel (0.50% C) is 4.1%, M9S steel (0.1% C-9% Cr) is 4.7%, Super 13% Cr steel (0 .01% C-12% Cr) is 5.9%, and 13% Cr steel (0.2% C-13% Cr) is 6.4%.

また、「熱間状態のまま」とは、ブルーム鋳片の温度が300〜1000℃の範囲にある状態のままであることを意味する。   Further, “in the hot state” means that the temperature of the bloom slab remains in the range of 300 to 1000 ° C.

本発明の方法によれば、ポロシティーの生成しやすい鋼種においても、鋳片横断面の扁平比および鋼種に固有の凝固収縮率に応じたプレス圧下量を適正範囲に調整することにより、内部品質の良好なビレット鋼片を、安価で生産性を損なうことなく製造することができる。したがって、本発明は、管製品などの素材となる鋼材ビレットの内部品質の向上に大きく寄与できるとともに、管製品の内面および外面疵の発生防止に極めて効果的である。   According to the method of the present invention, even in a steel type in which porosity is likely to be generated, by adjusting the press reduction amount according to the flatness ratio of the slab cross section and the solidification shrinkage rate specific to the steel type to an appropriate range, the internal quality Can be manufactured at low cost without impairing productivity. Therefore, the present invention can greatly contribute to the improvement of the internal quality of the steel billet that is a raw material for pipe products and the like, and is extremely effective in preventing the occurrence of flaws on the inner surface and outer surface of the pipe product.

本発明の方法は、前記とおり、液相から固相に凝固する際の凝固収縮率が4%以上である鋼の溶鋼を、横断面の厚さが240mm以上、幅が厚さの1.8〜4.0倍の鋳型を用いて連続鋳造し、得られたブルーム鋳片に対して、幅方向または厚さ方向に前記(1)式の関係を満たす条件で全長にわたってプレス圧下を施した後に、ロール圧延を行うことを特徴とするビレット鋼片の製造方法である。以下に、本発明の方法についてさらに詳しく説明する。   As described above, according to the method of the present invention, a molten steel having a solidification shrinkage rate of 4% or more when solidified from a liquid phase to a solid phase is obtained by using a cross-sectional thickness of 240 mm or more and a width of 1.8 mm. After continuous casting using a ~ 4.0-fold mold, the resulting bloom cast slab was subjected to press reduction over the entire length under the condition satisfying the relationship of the above expression (1) in the width direction or the thickness direction. A method of manufacturing a billet steel slab characterized by performing roll rolling. Hereinafter, the method of the present invention will be described in more detail.

従来、横断面の厚さが240mm以上の比較的大断面のブルームにおいて、鋳型の扁平比を1.5以上として鋳造し、ロールにより分塊圧延することによってビレットを製造していたが、凝固収縮率の大きな材質については、ポロシティーを完全に抑制することはできなかった。   Conventionally, billets were produced by casting a mold with a flatness ratio of 1.5 or more in a relatively large cross-section bloom having a cross-sectional thickness of 240 mm or more, and then rolling it with a roll. For materials with a high rate, the porosity could not be completely suppressed.

そこで、本発明者らは、ロール分塊工場にプレス設備を設置し、鋳片材料の凝固収縮率、鋳型扁平比、プレス量およびプレス方向を変化させて、ビレット製造および製管試験を行った結果、鋼種により定まる凝固収縮率およびスラブ断面形状に応じて、適正なプレス量が存在することが判明した。   Therefore, the present inventors installed a press facility in the roll smash factory, and performed billet production and pipe making tests by changing the solidification shrinkage rate, mold flatness ratio, press amount and press direction of the slab material. As a result, it was found that an appropriate press amount exists depending on the solidification shrinkage and the slab cross-sectional shape determined by the steel type.

以下に、本発明を前記の範囲に限定した理由、および本発明の好ましい範囲について説明する。   The reason why the present invention is limited to the above range and the preferable range of the present invention will be described below.

1)凝固収縮率(Δδ)
鋳型サイズが300mm×600mmの鋳型を用いて連続鋳造を行い、得られた鋳片の短辺側を鋳片の幅方向にプレス圧下した場合と圧下しない場合とについて、ロールによる分塊圧延を行い、直径230mmのビレットとした。このビレットをピアサーミルおよびマンドレルミルを用いて外径275mm、肉厚13mmの鋼管に製管し、その内面の目視検査を行って、欠陥の有無を調査した。
1) Solidification shrinkage (Δδ)
Continuous casting is performed using a mold having a mold size of 300 mm × 600 mm, and when the short side of the obtained slab is pressed down in the width direction of the slab, partial rolling is performed with a roll. The billet was 230 mm in diameter. This billet was formed into a steel pipe having an outer diameter of 275 mm and a wall thickness of 13 mm using a Piercer mill and a mandrel mill, and the inner surface was visually inspected to check for defects.

図1は、凝固収縮率とパイプ内面欠陥発生状況との関係を示す図である。同図において、パイプ内面欠陥発生状況が「良」とは、マンドレルミル製管後のパイプ内面目視観察にて欠陥が認められなかった状況をいい、「不良」とは、同パイプ内面目視観察にて1個以上の欠陥が認められた状況をいう。   FIG. 1 is a diagram showing a relationship between a solidification shrinkage rate and a pipe inner surface defect occurrence state. In the same figure, the occurrence of defects on the pipe inner surface is “good” means that no defects were found in the pipe inner surface after the mandrel mill pipe making, and “defect” means that the pipe inner surface was visually observed. The situation where one or more defects are recognized.

図1の結果から、凝固収縮率が4%未満では、プレス圧下を行わなくとも扁平比を1.8以上の2.0とすることにより、パイプの内面欠陥の発生は防止でき、内質は良好となることがわかる。そこで、本発明においては、凝固収縮率が4%以上の鋼種を対象とした。なお、凝固収縮率の上限は特に規定しないが、凝固収縮率が7%以内であれば本発明の効果を得ることができるので、好ましい。   From the results of FIG. 1, when the solidification shrinkage rate is less than 4%, the occurrence of inner surface defects of the pipe can be prevented by setting the flatness ratio to 2.0, which is 1.8 or more, without performing press reduction. It turns out that it becomes favorable. Therefore, in the present invention, a steel type having a solidification shrinkage rate of 4% or more was targeted. The upper limit of the coagulation shrinkage rate is not particularly defined, but it is preferable that the coagulation shrinkage rate is within 7% because the effect of the present invention can be obtained.

2)鋳型横断面の厚さ
鋳型横断面の厚さが240mm未満の場合には、鋳片が完全に凝固するまでの時間が短い。したがって、鋳造速度を低下させることにより発生しセンターポロシティーの原因となるブリッジングは容易に抑制することができる。また、最終凝固位置近傍においても、比較的大きな冷却速度を確保できることから、液相から固相への遷移領域を狭くすることができ、ポロシティーが大きく成長するおそれは少ない。
2) Mold cross-sectional thickness When the mold cross-sectional thickness is less than 240 mm, the time until the slab is completely solidified is short. Therefore, bridging that is caused by lowering the casting speed and causes center porosity can be easily suppressed. In addition, since a relatively large cooling rate can be secured even near the final solidification position, the transition region from the liquid phase to the solid phase can be narrowed, and there is little possibility that the porosity grows greatly.

そこで、本発明は、鋳型横断面の厚さが240mm以上のポロシティー感受性の高い(すなわち、ポロシティーの生成しやすい)鋳型サイズの鋳型により鋳造し、ビレット鋼片を製造する方法を対象とした。   Therefore, the present invention is directed to a method for producing a billet billet by casting with a mold having a mold size having a mold cross section having a thickness of 240 mm or more and having a high porosity sensitivity (that is, porosity is easily generated). .

3)鋳型の長辺と短辺の長さの比(鋳型横断面の扁平比)
鋳型横断面の扁平比が1.8未満では、本発明の製造方法を用いた場合の効果が小さいので、扁平比を1.8以上とした。
3) Ratio of long side to short side of mold (flat ratio of mold cross section)
When the flat ratio of the mold cross-section is less than 1.8, the effect when the manufacturing method of the present invention is used is small, so the flat ratio is set to 1.8 or more.

また、鋳型横断面の扁平比の適正な上限を調査するため、前記と同様の調査を行った。すなわち、鋳型サイズが300mm×600mmの鋳型をベースとして鋳型幅を変更することにより、種々の扁平比を有する鋳型サイズを用いた連続鋳造を行い、得られた鋳片の長辺側を鋳片の厚さ方法にプレス圧下した場合と、短辺側を鋳片の幅方向にプレス圧下した場合とについて、ロール分塊圧延を行い、直径230mmのビレットを得た。このビレットをピアサーミルおよびマンドレルミルを用いて外径275mm、肉厚13mmの鋼管に製管し、API 5CT L−80の13%Cr鋼パイプを得た。その外面の目視検査を行って、欠陥の有無を調査した。   Moreover, in order to investigate the appropriate upper limit of the flatness ratio of the mold cross section, the same investigation as described above was performed. That is, by changing the mold width based on a mold having a mold size of 300 mm × 600 mm, continuous casting using mold sizes having various flatness ratios is performed, and the long side of the obtained slab is placed on the long side of the slab. Roll rolling was performed for the case where the thickness method was pressed and the case where the short side was pressed in the width direction of the slab to obtain a billet having a diameter of 230 mm. This billet was formed into a steel pipe having an outer diameter of 275 mm and a wall thickness of 13 mm using a Piercer mill and a mandrel mill to obtain a 13% Cr steel pipe of API 5CT L-80. The outer surface was visually inspected for the presence of defects.

図2は、鋳型横断面の扁平比とパイプ外面疵発生指数との関係を示す図である。同図において、パイプ外面疵発生指数とは、ビレットを無手入れで製管した場合の目視検査において、有害疵が存在した長さ比率(%)をいう。   FIG. 2 is a diagram showing the relationship between the flatness ratio of the mold cross section and the pipe outer surface flaw occurrence index. In the figure, the pipe outer surface flaw occurrence index refers to the length ratio (%) at which harmful flaws existed in the visual inspection when the billet is made without maintenance.

鋳型横断面の扁平比が4.0を超えて大きくなると、ブルームが薄くなりすぎることから、ロール圧延における短辺圧下時に長辺中央部が凹型となりやすく、長辺側表面に圧縮による皺状の外面疵が発生しやすい。   When the flattening ratio of the mold cross section exceeds 4.0, the bloom becomes too thin. Therefore, the central part of the long side tends to be concave when the short side is reduced in roll rolling, and the long side surface has a ridge-like shape due to compression. Outer surface flaws are likely to occur.

以上の理由から、鋳型横断面の扁平比を1.8〜4.0の範囲とした。   For the above reasons, the flattening ratio of the mold cross section is set in the range of 1.8 to 4.0.

なお、鋳型横断面の扁平比の好ましい範囲は、1.8〜3.0の範囲である。   In addition, the range with a preferable flat ratio of a mold cross section is the range of 1.8-3.0.

4)プレス圧下量
鋼が液相から固相に凝固する際の凝固収縮率に応じた適正なプレス圧下量を調査するため、下記の調査を行った。鋳型サイズが300mm×600mmの鋳型を用いて連続鋳造を行い、得られた鋳片の短辺側を鋳片の幅方向にプレス圧下した後、ロール分塊圧延を行って、直径230mmのビレットとし、このビレットをピアサーミルおよびマンドレルミルを用いて外径275mm、肉厚13mmの鋼管に製管し、その内面の目視検査を行って、欠陥の有無を調査した。
4) Press reduction amount In order to investigate an appropriate press reduction amount according to the solidification shrinkage rate when steel solidifies from a liquid phase to a solid phase, the following investigation was conducted. Continuous casting is performed using a mold having a mold size of 300 mm × 600 mm, the short side of the obtained slab is pressed in the width direction of the slab, and then roll-rolling is performed to form a billet having a diameter of 230 mm. The billet was formed into a steel pipe having an outer diameter of 275 mm and a wall thickness of 13 mm using a Piercer mill and a mandrel mill, and the inner surface was visually inspected to check for defects.

図3は、凝固収縮率、およびプレスによる最大圧下時のプレス後の圧下面間距離(L)とプレスによる最大圧下時のプレス前の圧下面間距離(Lo)との比(L/Lo)と、パイプ内面疵発生状況との関係を示す図である。同図において、○印は内面疵の発生がないことを示し、●印は内面疵が発生したことを示す。また、内面疵の発生の有無は、マンドレルミル製管後のパイプ内面目視観察により、可視疵の認められた場合を「発生有り」、可視疵の認められなかった場合を「発生無し」と判定した。
図3の結果から、下記の事項が判明した。すなわち、比(L/Lo)の値が(1.0−0.03×Δδ)を超える場合は、ポロシティーが十分に圧着しない。また、比(L/Lo)の値が(0.7−0.03×Δδ)未満の場合には、圧下量が過大となり、不要な圧下動力によるコストアップを生じ、また、プレス圧下による鋳片の変形が大きくなって、ロール分塊時にビレットの曲がりなどが発生し、安定した生産性を損ねやすく、コーナー部の折れこみ疵も発生しやすい。
FIG. 3 shows the ratio (L / Lo) of the solidification shrinkage rate and the distance (L) between the pressed surfaces after pressing at the time of maximum reduction by pressing and the distance (Lo) between the pressing surfaces before pressing at the maximum reduction by pressing. It is a figure which shows the relationship between a pipe inner surface flaw occurrence condition. In the figure, a circle indicates that there is no internal flaw, and a circle indicates that an internal flaw has occurred. In addition, the presence or absence of internal flaws was determined by visual observation of the pipe internal surface after mandrel mill pipe production, when visible flaws were observed, and when no visible flaws were observed, it was determined that there was no occurrence. did.
From the results in FIG. 3, the following matters were found. That is, when the value of the ratio (L / Lo) exceeds (1.0−0.03 × Δδ), the porosity is not sufficiently pressed. On the other hand, if the ratio (L / Lo) is less than (0.7−0.03 × Δδ), the reduction amount becomes excessive, resulting in an increase in cost due to unnecessary reduction power, and casting due to press reduction. The deformation of the piece becomes large, the billet is bent at the time of roll lump, and stable productivity is likely to be lost, and the corner portion is likely to be bent.

なお、鋳片が、中間製品であるビレットの最終形状となるまで、プレス圧下する場合には、能率が悪く生産性は低下するので、プレス圧下後には、ロール圧延を行うのが適切である。   Note that when the slab is pressed down until it reaches the final shape of the billet, which is an intermediate product, the efficiency is poor and the productivity is lowered. Therefore, it is appropriate to perform roll rolling after the pressing.

5)鋳片の短辺側プレス圧下
鋳片の長辺側を鋳片の厚さ方向にプレス圧下した場合も、鋳片の短辺側を鋳片の幅方向にプレス圧下した場合も、前述の図2に示したとおり、ポロシティー発生の抑制については同様の効果を得ることができる。しかし、鋳片の短辺側を鋳片の幅方向にプレス圧下した場合には、鋼片厚さが減少しないので、同じ鋳型サイズの鋳型を用いて鋳造した場合においても、より大断面のビレットを製造することができる。プレス圧下後のロール分塊圧延では、鋼片厚さを増大させることはできず、プレス圧下後の厚さにより製造可能な最大ビレット直径が決定されるからである。したがって、短辺側のプレス圧下は、同じ鋳型サイズを用いた場合であっても、製造可能なビレット直径の範囲を大きく確保することができるため、工業生産上有利であり、好ましい。
5) Pressing down the short side of the slab Whether the long side of the slab is pressed down in the thickness direction of the slab, or when the short side of the slab is pressed down in the width direction of the slab, As shown in FIG. 2, the same effect can be obtained for the suppression of the generation of porosity. However, if the short side of the slab is pressed down in the width direction of the slab, the thickness of the steel slab does not decrease, so even when casting using a mold of the same mold size, a billet with a larger cross section Can be manufactured. This is because the roll billet rolling after the press reduction cannot increase the thickness of the steel slab, and the maximum billet diameter that can be manufactured is determined by the thickness after the press reduction. Therefore, the press reduction on the short side is advantageous and advantageous in industrial production because a large range of billet diameters that can be manufactured can be secured even when the same mold size is used.

6)プレス圧下後のロール圧下
プレス圧下後の再加熱を行わずに、熱間状態のまま、引き続きロールにより圧延することが、エネルギーコスト節減の観点から好ましい。
6) Roll reduction after press reduction It is preferable from the viewpoint of energy cost saving to continue rolling with a roll in a hot state without performing reheating after press reduction.

本発明のビレットの製造方法の効果を確認するため、下記のとおりビレット鋼片の製造試験を行うとともに、さらに、そのビレット鋼片を用いて製管試験を行って、管内面および管外面の品質を評価した。   In order to confirm the effect of the billet manufacturing method of the present invention, a billet steel slab manufacturing test is performed as follows, and a pipe making test is further performed using the billet steel slab to determine the quality of the pipe inner surface and the pipe outer surface. Evaluated.

(試験方法)
化学組成および凝固収縮率の異なる鋼種の溶鋼を用いて連続鋳造を行い、得られた鋳片を均熱炉にて1250℃に均熱した後、プレス圧下を行い、その後、ロールによる分塊圧延を行って、ビレット鋼片を製造した。さらに、このビレット鋼片をピアサーミルおよびマンドレルミルにより穿孔圧延して製管し、継目無鋼管を得た。このようにして得られた鋼管の内面および外面を目視検査することにより、表面欠陥の有無を調査し、その品質を評価した。
(Test method)
Continuous casting is performed using molten steels of different steel types with different chemical compositions and solidification shrinkage rates, and the resulting slab is soaked to 1250 ° C in a soaking furnace, then pressed, and then rolled by rolls. To produce billet billets. Further, this billet steel slab was pierced and rolled by a piercer mill and a mandrel mill to produce a seamless steel pipe. By visually inspecting the inner and outer surfaces of the steel pipe thus obtained, the presence or absence of surface defects was investigated and the quality was evaluated.

プレス圧下は、油圧式の3000T(2.94×107N)プレス設備に、高さ1m×巾1mの圧下用金型を設置して横方向(水平方向)に鋳片を圧下した。ブルームは、約0.8mの推進毎にプレスを繰り返す方法により、その全長に対して圧下が施された。長辺側のプレス圧下は、ブルームを縦置とすることにより、また、短辺側のプレス圧下は、ブルームを横置きとすることにより、それぞれ、実施した。 For press reduction, a slab was reduced in the horizontal direction (horizontal direction) by installing a reduction mold having a height of 1 m and a width of 1 m in a hydraulic 3000T (2.94 × 10 7 N) press facility. The bloom was pressed down over its entire length by a method in which pressing was repeated for every about 0.8 m of propulsion. The press reduction on the long side was performed by placing the bloom vertically, and the press reduction on the short side was performed by placing the bloom horizontally.

鋼の凝固時における凝固収縮率は、非特許文献1に記載された静滴法によって調査した。すなわち、実験試料(直径φ6mm)を炉内回転軸上の載台上に静置し、炉内をArガスにより置換した後、各測定温度ごとにCCDカメラを用いて試料のシルエットを撮影し、画像を記録した。精度向上のために、載台を回転させて、4方向から測定を行い、試料の非対称形状による誤差の発生を防止した。得られた画像データに基づいて区分求積法により試料の体積および密度を算出した。   The solidification shrinkage rate at the time of solidification of steel was investigated by the sessile drop method described in Non-Patent Document 1. That is, the experimental sample (diameter φ6 mm) was placed on a stage on the rotation axis in the furnace, and the inside of the furnace was replaced with Ar gas, and then the sample silhouette was photographed using a CCD camera for each measurement temperature, Images were recorded. In order to improve accuracy, the stage was rotated and measurements were taken from four directions to prevent errors due to the asymmetrical shape of the sample. Based on the obtained image data, the volume and density of the sample were calculated by the sectional quadrature method.

製管後の内面品質および外面品質は、下記のとおりとした。すなわち、内面品質は、内面疵の発生がなかった場合を良好(○)とし、内面疵が発生した場合を不良(×)と評価した。また、外面品質については、外面疵の長さ比率が1%未満の場合を良好(○)とし、外面疵の長さ比率が1%以上の場合を不良(×)と評価した。   The inner surface quality and outer surface quality after pipe making were as follows. That is, the quality of the inner surface was evaluated as good (◯) when the inner surface flaws were not generated and evaluated as poor (×) when the inner surface flaws were generated. As for the outer surface quality, the case where the length ratio of the outer surface defects was less than 1% was evaluated as good (◯), and the case where the length ratio of the outer surface defects was 1% or more was evaluated as defective (x).

(試験結果)
表1および表2に、試験条件および結果をまとめて示した。
(Test results)
Tables 1 and 2 collectively show test conditions and results.

Figure 0004424189
Figure 0004424189

Figure 0004424189
Figure 0004424189

試験番号3〜8、試験番号11、試験番号15〜20、および試験番号23は、本発明で規定する凝固収縮率、鋳片横断面厚さ、鋳型の扁平比、および前記(1)式の関係を全て満足する本発明例についての試験である。いずれも、製管後の内面および外面ともに品質は良好であった。   Test numbers 3 to 8, Test number 11, Test numbers 15 to 20, and Test number 23 are the solidification shrinkage rate, the slab cross-sectional thickness, the flatness ratio of the mold, and the formula (1) defined in the present invention. This is a test for an example of the present invention that satisfies all the relationships. In both cases, the quality was good on both the inner and outer surfaces after pipe production.

また、試験番号1および13は、鋳型厚さが240mm未満であることから、鋳片にポロシティーが発生しにくく、本発明の方法を用いなくても、製管後の内面および外面の品質は良好であった。試験番号25は、鋼の凝固収縮率が4%未満であることから、鋳片にポロシティーが発生しにくく、したがって、本発明の方法を用いなくても、管内面および外面の品質は良好であった。   Moreover, since test numbers 1 and 13 have a mold thickness of less than 240 mm, it is difficult for porosity to occur in the slab, and the quality of the inner surface and the outer surface after pipe making is not required without using the method of the present invention. It was good. In Test No. 25, since the solidification shrinkage rate of steel is less than 4%, porosity is hardly generated in the slab, and therefore the quality of the tube inner surface and outer surface is good without using the method of the present invention. there were.

鋳型の扁平比が大きすぎた比較例である試験番号2および14は、皺状のビレット疵が発生し、これに起因して管外面品質が不良となった。鋳型の扁平比が小さすぎた比較例である試験番号12および24は、プレス圧下の条件が適正範囲内であるにも拘わらず、管内面の品質は不良であった。   In Test Nos. 2 and 14, which are comparative examples in which the flatness ratio of the mold was too large, a bowl-shaped billet wrinkle occurred, resulting in poor tube outer surface quality. In Test Nos. 12 and 24, which are comparative examples in which the flatness ratio of the mold was too small, the quality of the inner surface of the pipe was poor, even though the conditions under the pressing pressure were within the appropriate range.

プレス圧下時の比(L/Lo)の値が(0.7−0.03×Δδ)未満となって前記(1)式の関係を満足しない比較例の試験番号9および21は、プレス圧下後にロール分塊圧延を行う際に、鋼片姿勢が不安定なために圧延の安定性が低下し、ビレットの形状が不良となり、コーナー部の折れ込みに起因する管外面疵が発生した。また、比(L/Lo)の値が(1.0−0.03×Δδ)を超えて前記(1)式の関係を満足しない比較例の試験番号10および22は、ポロシティーが十分に圧着せず、管内面疵が発生した。   Test numbers 9 and 21 of comparative examples in which the value of the ratio (L / Lo) at the time of press reduction is less than (0.7-0.03 × Δδ) and does not satisfy the relationship of the above expression (1) are Later, when roll-rolling was performed, the steel slab posture was unstable, so that the rolling stability was lowered, the billet shape was poor, and the tube outer surface flaws occurred due to the folding of the corner portion. Moreover, the test numbers 10 and 22 of the comparative examples in which the value of the ratio (L / Lo) exceeds (1.0−0.03 × Δδ) and does not satisfy the relationship of the expression (1) are sufficiently porous. Without crimping, flaws on the inside of the tube occurred.

本発明の方法によれば、ポロシティーの生成しやすい鋼種においても、鋳片横断面の扁平比および鋼種に固有の凝固収縮率に応じたプレス圧下量を適正範囲に調整することにより、内部品質の良好なビレット鋼片を、安価で生産性を損なうことなく製造することができる。したがって、本発明は、継目無管製造用の丸ビレット製造分野において広く適用できるビレット鋼片の製造方法であるとともに、鋼管の内面および外面品質の向上技術として広範に利用できる。   According to the method of the present invention, even in a steel type in which porosity is likely to be generated, by adjusting the press reduction amount according to the flatness ratio of the slab cross section and the solidification shrinkage rate specific to the steel type to an appropriate range, the internal quality Can be manufactured at low cost without impairing productivity. Therefore, the present invention is a method for manufacturing billet steel pieces that can be widely applied in the field of manufacturing round billets for seamless pipe manufacturing, and can be widely used as a technique for improving the inner and outer surface quality of steel pipes.

凝固収縮率とパイプ内面欠陥発生状況との関係を示す図である。It is a figure which shows the relationship between a solidification shrinkage rate and a pipe inner surface defect generation condition. 鋳型扁平比とパイプ外面疵発生指数との関係を示す図である。It is a figure which shows the relationship between a mold flat ratio and a pipe outer surface wrinkle generation | occurrence | production index. 凝固収縮率およびプレス圧下比(L/Lo)とパイプ内面疵発生状況との関係を示す図である。It is a figure which shows the relationship between a solidification shrinkage rate and a press reduction ratio (L / Lo), and a pipe inner surface flaw generation | occurrence | production condition.

Claims (2)

液相から固相に凝固する際の凝固収縮率が4%以上である鋼の溶鋼を、横断面の厚さが240mm以上、幅が厚さの1.8〜4.0倍の鋳型を用いて連続鋳造し、得られたブルーム鋳片に対して、幅方向に、下記(1)式の関係を満たし、かつ圧下量を100〜300mmの範囲内とする条件で全長にわたってプレス圧下を施した後に、ロール圧延を行うことを特徴とするビレット鋼片の製造方法。
0.7≦L/Lo+0.03×Δδ≦1.0 ・・・(1)
ここで、Loはプレスによる最大圧下時のプレス前の圧下面間距離(mm)を、Lはプレスによる最大圧下時のプレス後の圧下面間距離(mm)を、Δδは凝固収縮率(%)を、それぞれ表す。
Using a molten steel having a solidification shrinkage rate of 4% or more when solidifying from a liquid phase to a solid phase, a mold having a cross-sectional thickness of 240 mm or more and a width of 1.8 to 4.0 times the thickness is used. continuous casting Te, the obtained Bloom cast piece, the width direction, meets the following relationship (1), and a pressing pressure over the entire length of the rolling reduction under conditions in the range of 100~300mm A method for producing a billet billet characterized by performing roll rolling after application.
0.7 ≦ L / Lo + 0.03 × Δδ ≦ 1.0 (1)
Here, Lo is the distance (mm) between the pressed surfaces before pressing at the time of the maximum reduction by the press, L is the distance (mm) between pressing surfaces after the pressing at the maximum reduction by the press, and Δδ is the solidification shrinkage rate (%). ) Respectively.
上記プレス圧下後にロール圧延を行うに際し、プレス圧下後にブルーム鋳片を加熱することなく、熱間状態のまま引き続きロール圧延することを特徴とする請求項1に記載のビレット鋼片の製造方法。 2. The method for producing a billet steel slab according to claim 1, wherein, when the roll rolling is performed after the press reduction, the roll slab is continuously rolled in a hot state without heating the bloom cast slab after the press reduction.
JP2004360774A 2004-12-14 2004-12-14 Billet billet manufacturing method with excellent internal quality Active JP4424189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360774A JP4424189B2 (en) 2004-12-14 2004-12-14 Billet billet manufacturing method with excellent internal quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360774A JP4424189B2 (en) 2004-12-14 2004-12-14 Billet billet manufacturing method with excellent internal quality

Publications (2)

Publication Number Publication Date
JP2006167736A JP2006167736A (en) 2006-06-29
JP4424189B2 true JP4424189B2 (en) 2010-03-03

Family

ID=36669031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360774A Active JP4424189B2 (en) 2004-12-14 2004-12-14 Billet billet manufacturing method with excellent internal quality

Country Status (1)

Country Link
JP (1) JP4424189B2 (en)

Also Published As

Publication number Publication date
JP2006167736A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4830612B2 (en) Continuous casting method for slabs for extra heavy steel plates
US11123780B2 (en) Device and method for achieving core part press-down technology in continuous casting round billet solidification process
CN101412082B (en) Production method for preventing cracks on medium-carbon high manganese steel
JP4609330B2 (en) Continuous casting method of ultra-thick steel plates with excellent internal quality and slabs for ultra-thick steel plates
JPWO2014030701A1 (en) Method for continuous casting of steel and method for manufacturing strip steel
JP2006263730A (en) Method for manufacturing extra-heavy steel plate very excellent in internal-quality characteristics
JP4296985B2 (en) Ultra-thick steel plate with excellent internal quality and its manufacturing method
JP5741162B2 (en) Manufacturing method of round steel slab for high Cr steel seamless steel pipe making
US20140250965A1 (en) Method of producing seamless metal pipe
WO2016114319A1 (en) Continuously cast piece and manufacturing method and manufacturing device therefor, manufacturing method and manufacturing device for thick steel plate
JP5045528B2 (en) Billet manufacturing method
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP2012110898A (en) Continuous casting method of round cast billet for making 13cr seamless steel pipe
JP4424189B2 (en) Billet billet manufacturing method with excellent internal quality
JP5962206B2 (en) Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP3104627B2 (en) Unsolidified rolling production method of round billet
JP4687629B2 (en) Metal continuous casting method
JP3646417B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe manufacturing
JP5387205B2 (en) Continuous casting method and continuous casting equipment for round slab
JP3275828B2 (en) Continuous casting method
JP2012152804A (en) Method for manufacturing seamless steel pipe in high alloy or stainless steel
JP3356100B2 (en) Continuous casting method
JP2010000522A (en) Continuous casting method for cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4424189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350