JPS62263855A - Method for continuous casting having little center segregation - Google Patents

Method for continuous casting having little center segregation

Info

Publication number
JPS62263855A
JPS62263855A JP10389286A JP10389286A JPS62263855A JP S62263855 A JPS62263855 A JP S62263855A JP 10389286 A JP10389286 A JP 10389286A JP 10389286 A JP10389286 A JP 10389286A JP S62263855 A JPS62263855 A JP S62263855A
Authority
JP
Japan
Prior art keywords
casting
slab
temperature
molten steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10389286A
Other languages
Japanese (ja)
Other versions
JPH0346217B2 (en
Inventor
Hisao Yamazaki
久生 山崎
San Nakato
中戸 参
Katsuo Kinoshita
勝雄 木下
Kenji Saito
健志 斎藤
Masao Oguchi
征男 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10389286A priority Critical patent/JPS62263855A/en
Publication of JPS62263855A publication Critical patent/JPS62263855A/en
Publication of JPH0346217B2 publication Critical patent/JPH0346217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To execute continuous casting for sound casting bloom material without any development of center segregation by cooling under controlling in order the surface temp. of the casting bloom along casting direction at the suitable position to the end of molten steel pool, to shrink a solidified shell. CONSTITUTION:In the continuous casting for steel, the surface temp. of the casting bloom along the casting direction from the position of 2-15m before the end of casting direction of the remaining molten steel pool to the end position of the pool is cooled forcely in order by using spray nozzle, etc., in accordance with the progressing of solidification of melt center nucleus for the casting bloom. Then, at A3 transformation temp. of steel or starting temp. TA and more of Acm transformation, and surface temp. TV or less of an effective casting bloom as shown in the equation, the casting bloom is cooled under controlling and the solidified shell of the casting bloom is shrunk, to reduce the casting bloom section. In this way, shifting of the solute concentrated molten steel toward the axial part is prevented and the center segregation is reduced. Therefore, effect for improvement of the properties, such as low temp. toughness, property to lamella tear, resistance of HIC, etc., is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中心偏析の少ない鋼の連続鋳造方法に関し、さ
らに詳しくは中心偏析を軽減し、中心偏析に起因すると
ころの、鋼板における低温靭性、耐うメラーティヤー性
、耐HIC性等の向丘を図り、さらに軸受鋼の転勤疲つ
寿命や硬鋼線材における断線率やカッピー破断率を向ト
する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for continuous casting of steel with less center segregation, and more specifically, to reduce center segregation and improve low-temperature toughness in steel sheets caused by center segregation. The present invention relates to a method for improving the resistance to melatyers, HIC resistance, etc., and also improving the rolling fatigue life of bearing steel and the wire breakage rate and cuppy rupture rate of hard steel wire rods.

〔従来の技術〕[Conventional technology]

連続鋳造スラブやブルームの中心偏析を軽減するために
は、適正なロール間隔の設定とロール配列の整備あるい
は適正な2次冷却によりバルジングの発生を防IFする
ことが必要である。
In order to reduce the center segregation of continuously cast slabs and blooms, it is necessary to prevent the occurrence of bulging by setting an appropriate roll interval, arranging the rolls, or providing appropriate secondary cooling.

一方、溶鋼過熱度の低ド、鋳型への冷却材の添加・鋳型
内溶鋼への−し磁攪拌の適用、ストランド内での鋳片に
対する超音波の印加、さらにはストランド内での溶鋼へ
の電磁攪拌の適用、などの方法により中心偏析を軽減す
る技術が広く汀及している、これらの方法はいずれも鋳
造組織を等軸品化して溶質の微細分散化を図り中心偏析
を軽減することを目的としている。
On the other hand, it is necessary to reduce the degree of superheating of the molten steel, add coolant to the mold, apply magnetic stirring to the molten steel in the mold, apply ultrasonic waves to the slab in the strand, and further improve the molten steel in the strand. Techniques to reduce center segregation by methods such as the application of electromagnetic stirring are widely used.These methods all reduce center segregation by making the cast structure equiaxed and achieving fine dispersion of solutes. It is an object.

溶鋼過熱度の低下は1等軸品化を図る1−で有効ではあ
るが鋳造温度を狭い範囲に制御する必tがあり、操業の
安定性を阻害するという欠点がある。
Although reducing the degree of superheating of molten steel is effective in producing a monoaxial product, it is necessary to control the casting temperature within a narrow range, which has the drawback of inhibiting operational stability.

冷却材の添加も等軸品化には有効であるが、冷却材の溶
は残りや、モールドスラグのaき込みを誘起することが
あり、UT欠陥を生じ易いという欠点がある。
Addition of a coolant is also effective in producing equiaxed products, but the melting of the coolant may cause residue and a-clogging of mold slag, which has the drawback of easily causing UT defects.

鋳片への超音波の印加は原理的には有効であるが実施技
術として印加ロールの疲労の問題があり、実用化が困難
な欠点がある。
The application of ultrasonic waves to slabs is effective in principle, but as an implementation technique, there is a problem of fatigue of the application roll, which makes it difficult to put it into practical use.

こうした点を考えると、鋳型内あるいはストランド内で
のi(z磁撹拌は実用上の欠点が少なく、また等軸品化
には効果があって、−・般にバ及している。しかし、電
磁攪拌により等軸品化が進むことによる中心偏析の軽減
は傾向的には認められるものの、実際には電磁攪拌を適
用した連続鋳造スラブを素材とする厚鋼板製品の機械特
性は、電磁撹拌をかけない同一素材の厚鋼板製品と比較
して、格別にm4Aな改善は認められないし、また、電
磁攪拌を適用した連続鋳造ブルームを素材とする硬鋼線
材の破断率も電磁攪拌をかけない素材から得た線材と比
較して顕著な改善効果が認められてはいなかった。
Taking these points into consideration, i(z magnetic stirring within the mold or within the strand has few practical drawbacks, is effective in producing equiaxed products, and is widely used.However, Although it is recognized that center segregation tends to be reduced due to the progress of equiaxed products due to electromagnetic stirring, in reality, the mechanical properties of thick steel plate products made from continuously cast slabs to which electromagnetic stirring is applied are Compared to thick steel plate products made of the same material that are not subjected to electromagnetic stirring, there is no particular improvement in m4A, and the fracture rate of hard steel wire rods made from continuous casting blooms that are subjected to electromagnetic stirring is also lower than that of materials that are not subjected to electromagnetic stirring. No significant improvement effect was observed compared to the wire rod obtained from.

また、連続鋳IayJ片の最終凝固域において、鋳片を
軽圧丁し、中心偏析の原因となる溶質C化溶鋼を鋳片の
上方へ排出し中心偏析を排出する従来技術がある。(特
開昭54−107831)しかしながら、連続鋳造にお
いて最終凝固位置でのクレータ先端は非常に鋭く、また
クレータは直線でなく波状になっていると言われており
、そのような位置では、溶質濃化溶鋼がクレータの四部
に閉じこめられ、その結果偏析度の大きい点状の偏析が
存在すると考えられる。
Furthermore, there is a conventional technique in which the slab is lightly pressed in the final solidification region of the continuously cast IayJ slab, and the solute carbonized molten steel that causes center segregation is discharged above the slab to discharge the center segregation. (JP 54-107831) However, in continuous casting, the tip of the crater at the final solidification position is said to be very sharp, and the crater is not straight but wavy, and at such a position, the solute concentration is low. It is thought that the molten steel is confined in the four parts of the crater, resulting in the existence of point-like segregation with a high degree of segregation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はスラブないしはブルームの連鋳鋳片において、
中心偏析を解消し健全な素材鋳片を製造する方法を提供
するものである。
The present invention relates to continuously cast slabs or blooms,
The present invention provides a method for eliminating center segregation and producing sound slabs.

第4図にlit1w4線用プルーム鋳片の縦断面マクロ
組織を示す、該鋳片は低温鋳造したためド面側は下面か
ら軸心まで全域に亘り等軸品が形成される。一方、」二
面側は上面から150mmg)範囲が分岐柱状晶でそれ
より内部は等軸品である。軸心部は鋳込方向に沿ってザ
ク状のキャビティが断続的に形成されている。ブルーム
鋳片で特徴的なのは、軸心近傍にV偏析を伴なうことで
、これは鋼塊軸心部に発生するV偏析と形態を異にし、
むしろ鋼塊での逆V偏析の形!島を有する。■偏析は軸
心を中心にして輻約100mm程度の領域に発生する。
FIG. 4 shows the longitudinal cross-sectional macrostructure of a plume slab for lit1w4 wire.Since the slab was cast at a low temperature, an equiaxed product is formed over the entire area from the bottom surface to the axis on the dot side. On the other hand, on the dihedral side, the range of 150 mm from the top surface is branched columnar crystals, and the inside is equiaxed. Hollow-shaped cavities are formed intermittently in the shaft center along the casting direction. A characteristic feature of bloom slabs is that they are accompanied by V segregation near the axial center, which is different in form from the V segregation that occurs at the axial center of steel ingots.
Rather, it is a form of inverted V segregation in steel ingots! It has an island. ■Segregation occurs in an area with a convergence of approximately 100 mm around the axis.

第2図は回−サイズ鋳片の軸心近傍におけるセミマクロ
分析値の統計的な分布を小したものである。これより中
心偏析とこれに隣接した負偏析帯とが鮮明に認められる
。この図から負偏析の発生し始める領域は軸心から40
comの範囲である。すなわち軸心を中心とした80m
mの幅の領域でバルクの溶質移動があることが分る。こ
の溶質移動が生じている領域は該鋳片を鋳造した実際の
鋳造条件の下で、鋳込方向に沿う鋳片位置で見ると、鋳
片内桟溶鋼プール最先端(クレータエンド)から手前8
〜ionから溶鋼プール最先端に至る間の位置に相当し
ている。さらにこのような範囲は鋳片断面寸法、鋳造速
度あるいは冷却条件などが変れば当然変化するものであ
るが、実際の連続鋳造条件の丁では溶鋼プール最先端か
ら手前2〜15mから溶鋼プール最先端に至る範囲に相
当している。そしてこのような溶質C化溶鋼の移動は第
4図に示したようにV偏析線に沿って生じていることは
、V偏析についての表面分析を行った結果から明らかと
なる。さらにこのような溶質C化溶鋼の移動が生じるの
は溶鋼プール内残溶鋼の凝固収縮に伴なう吸引力によっ
て発生したものであることは、冶金的な観察とm巾な数
値計算から明らかにすることができる。
FIG. 2 shows a reduced statistical distribution of semi-macro analysis values in the vicinity of the axis of a double-sized slab. From this, the central segregation and the adjacent negative segregation zone are clearly recognized. From this figure, the area where negative segregation begins to occur is 40° from the axis.
com range. In other words, 80m around the axis
It can be seen that there is bulk solute movement in a region with a width of m. Under the actual casting conditions in which the slab was cast, the area where this solute movement occurs is 8 points from the tip (crater end) of the molten steel pool inside the slab when viewed from the slab position along the casting direction.
~ion to the leading edge of the molten steel pool. Furthermore, this range naturally changes if the slab cross-sectional dimensions, casting speed, cooling conditions, etc. change, but under actual continuous casting conditions, from 2 to 15 m in front of the leading edge of the molten steel pool to the leading edge of the molten steel pool. This corresponds to a range of . It is clear from the surface analysis of V segregation that such movement of the solute C-treated molten steel occurs along the V segregation line as shown in FIG. Furthermore, it is clear from metallurgical observations and extensive numerical calculations that this movement of solute C-treated molten steel is caused by the suction force accompanying the solidification contraction of the remaining molten steel in the molten steel pool. can do.

従って、中心偏析を防11ニするには鋳片の軸心(スラ
ブの場合は厚さ中心)近傍における、溶鋼プール内残溶
鋼の凝固収縮に伴なう吸引力によって発生した溶質C化
溶鋼の移動を阻止することである。
Therefore, in order to prevent center segregation, the solute carbonized molten steel generated by the suction force caused by the solidification shrinkage of the remaining molten steel in the molten steel pool near the axis of the slab (in the case of slabs, the thickness center) The goal is to prevent movement.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための末完用の技術1段は、鋼の
連続鋳造において、残溶湯プールの鋳込方向最先端より
手前2〜15mの位置からプール最先端位置まで、鋳込
方向に沿う鋳片表面温度を、鋳片の液芯核の凝固の進行
に合わせて、鋼のA3変態温度もしくはAcm変15の
開始温度Ta以にで次式に示す有効鋳片表面温度Tv以
ドの温度に逐次強制冷却して鋳片凝固殻を収縮せしめ。
The first stage of technology to solve the above problems is to continuously cast steel from a position 2 to 15 m before the leading edge of the residual molten metal pool in the casting direction to the pool's leading edge position. In accordance with the progress of solidification of the liquid core core of the slab, the surface temperature of the slab along the slab is adjusted to be below the A3 transformation temperature of the steel or the starting temperature Ta of Acm 15 and below the effective slab surface temperature Tv shown in the following formula. The solidified slab shell is contracted by sequential forced cooling to a certain temperature.

鋳片断面を減面して鋳造することを特徴とする。It is characterized by casting with a reduced cross section of the slab.

Ta + (TN −Ta )Xo、3=Tv但し。Ta + (TN - Ta) Xo, 3=Tv However.

TN:ピンチロールを出た後の自然放冷による鋳片表面
温度 Ta:凝固収縮1よを補償するに必要な凝固殻平均冷却
を得る鋳片表面温度 〔作用〕 上記技術手段は溶鋼プール内残溶鋼の凝固才なわち鋳片
の液芯核の凝固に伴なう収縮量を鋳片凝固殻を収縮変形
させることにより補償するので、H質濃化溶鋼の軸心部
へ向けての移動を阻止する作用をなす、溶鋼プール内残
溶鋼の凝固収縮に伴なう収縮量すなわち圧縮変形歪を鋳
片断面積、鋳込速度、冷却水比など種々の鋳造条件に対
して計算すると第3図に影線を付した領域内にある。
TN: Surface temperature of the slab due to natural cooling after exiting the pinch rolls Ta: Surface temperature of the slab to obtain the average cooling of the solidified shell necessary to compensate for solidification shrinkage 1 [Function] The above technical means Since the shrinkage caused by the solidification of the molten steel, that is, the amount of shrinkage caused by the solidification of the liquid core of the slab, is compensated for by shrinking and deforming the solidified slab shell, the movement of the H-quality concentrated molten steel toward the axial center is compensated for by shrinking and deforming the solidified slab shell. Figure 3 shows the amount of shrinkage, that is, compressive deformation strain caused by the solidification shrinkage of the remaining molten steel in the molten steel pool, which acts as a deterrent, and is calculated for various casting conditions such as slab cross-sectional area, pouring speed, and cooling water ratio. It is within the shaded area.

鋳片凝固殻に外部から収縮を榮えて鋳片の液芯核の収縮
を補償しようとすると、液芯核に有効に゛作用する収縮
量は、外部からの収縮の印加力法にも依存するが、印加
↑の1/2〜1/10に低rする。これを全効率ηであ
られす1例えば偏モ比1.4程度のビレット鋳片を厚さ
方向への収縮歪を供えようとすると全効率はη=0.2
となることが実験的検証により判明した。
When attempting to compensate for the shrinkage of the liquid core core of the slab by applying external shrinkage to the solidified slab shell, the amount of contraction that effectively acts on the liquid core core also depends on the method of applying the external shrinkage force. However, r becomes low to 1/2 to 1/10 of the application ↑. This can be expressed as the total efficiency η1.For example, if a billet slab with a partial modulus ratio of about 1.4 is subjected to shrinkage strain in the thickness direction, the total efficiency is η = 0.2.
It was found through experimental verification that

鋳片凝固殻に圧縮歪を加える手段として、y1片表面を
強制冷却し、凝固殻の平均温度を必要とする圧縮歪が得
られるように鋳片の液芯核の凝固による体積収縮酸相当
量だけ低下させてやれば、残溶鋼液芯核の凝固に伴なう
収縮歪を完全に補償し、溶質濃化溶鋼の■状偏析線に沿
う移動を阻111することができる。
As a means of applying compressive strain to the solidified slab shell, the surface of the y1 piece is forcibly cooled, and the volume shrinkage due to the solidification of the liquid core core of the slab is reduced by the equivalent amount of acid so that the compressive strain required by the average temperature of the solidified shell is obtained. By decreasing the amount by 111, it is possible to completely compensate for the shrinkage strain caused by the solidification of the remaining molten steel liquid core, and to prevent the solute-enriched molten steel from moving along the ■-shaped segregation line.

例えばブルーム鋳片の場合、溶鋼プールはピンチロール
の先方に大きく突き出していて、この領域は通常水冷を
行わず復熱するにまかせている。第5図は鋳片のメニス
カスのからの距離とその表面温度を示したものである。
For example, in the case of bloom slabs, the molten steel pool protrudes significantly beyond the pinch rolls, and this area is usually not water cooled and is allowed to reheat. Figure 5 shows the distance from the meniscus of the slab and its surface temperature.

第5図中に示されているN097ピンチロールを出たあ
との自然放冷による鋳片表面温度TNは復熱の状遵;を
小している。ピンチロールを出た後の領域においても溶
鋼液芯核の凝固は着実に進行し凝固収縮は生じているに
も拘らず、′PJ片凝固穀は復熱によりむしろ膨張する
傾向にある。
The slab surface temperature TN due to natural cooling after exiting the N097 pinch rolls shown in FIG. 5 has a small recuperation state. Even in the region after exiting the pinch rolls, solidification of the molten steel liquid core progresses steadily and solidification shrinkage occurs, but the 'PJ piece solidified grains tend to expand due to reheating.

従って溶質C化溶鋼に■偏析線に沿う吸引を益々助長し
、ひいては中心偏析の発生程度を促進することとなる。
Therefore, the suction of the solute C-treated molten steel along the segregation line is further promoted, which in turn accelerates the degree of center segregation.

そこで第1図に示したように溶鋼プール最先端に至るち
1偵位置範囲にスプレーを設置することにより、鋳片凝
固殻を強制的に冷却し凝固殻を収縮させ、溶鋼液芯核の
凝固収縮を補Cナス− この方法により中心偏析を軽誠するためには、スプレー
を配置した位置での凝固収縮量ならびに確保すべき表面
温度を把握しなければならない。
Therefore, as shown in Figure 1, by installing a sprayer in the first position up to the leading edge of the molten steel pool, the solidified shell of the slab is forcibly cooled, the solidified shell shrinks, and the molten steel liquid core solidifies. Compensating for Shrinkage - In order to reduce center segregation using this method, it is necessary to understand the amount of solidification shrinkage at the position where the spray is placed and the surface temperature that must be maintained.

そこでまず、鋳片の伝熱解析を行いスプレー配を位置で
の凝固プロフィールから下記(1)式によって凝固収縮
ツよを求めた。
First, a heat transfer analysis of the slab was performed, and the solidification shrinkage strength was determined from the solidification profile at the spray location using the following equation (1).

凝固シェル断面を第6図に模式的に示した。A cross section of the solidified shell is schematically shown in FIG.

(1)  シェルプロフィールfsLは回転MTh(4
であると仮定する。
(1) The shell profile fsL is the rotation MTh(4
Assume that

(す等固相率f(、f;+tのシェルプロフィールは異
なる固相率間で合同である。
The shell profile of the solid fraction f(, f; +t is congruent between different solid fractions.

以1−の仮定の下で鋳片がX【からX【+1まですすむ
間の体積収縮率ηは、 ・・・(1) ここで、 η 、凝内時の体積収縮率 β :凝固収縮率 fsi:i番目の領域の固相率 vi:面Xi  +Xt+I  、fi、fSiで囲ま
れた体積 W :鋳片幅 D =鋳片長 である0次に鋳片の凝固殻を冷却し、凝固時の体積収縮
を補うためには次の(2)式が成りたたなければならな
い。
Under the assumption of 1- below, the volumetric shrinkage rate η during which the slab progresses from X[ to fsi: Solid phase ratio in the i-th region vi: Volume surrounded by planes Xi + In order to compensate for volumetric shrinkage, the following equation (2) must hold true.

ηm=ηn+1−ηn       ・・・(2)ここ
で、 ηm:凝IM殻の収縮率 ηnun層での凝固収縮率 ηn++:n+1層での凝固数Iii率である。凝固収
縮率ηmは次の(3)式で表わされ、上記(1)式で求
めた各層の体積収縮率の差を代入することにより、IM
固殻のモ均温度降F埴ΔTを得る。
ηm=ηn+1−ηn (2) where, ηm: contraction rate of solidified IM shell ηnun solidification contraction rate in layer ηn++: solidification number Iii rate in n+1 layer. The solidification shrinkage rate ηm is expressed by the following equation (3), and by substituting the difference in the volume shrinkage rate of each layer obtained using the above equation (1), IM
Obtain the uniform temperature drop F ΔT of the solid shell.

・・・(3) ここで、 L:鋳片軸心からfs=1までの距離 α:而面11張係数 ΔT:凝固殻の平均温度降下量 である、上記(3)式で求めた凝固殻の平均温度と鋳片
表面温度の関係は下記(4)式で表わされる(H,S 
GAR9LAII、 J、G、JAEGER: ”Ga
nductian ofbeat in 5olids
”、 0xford University Pres
s。
...(3) Here, L: Distance from the axis of the slab to fs = 1 α: Tensile coefficient ΔT: Average temperature drop of the solidified shell, calculated by the above equation (3) The relationship between the average temperature of the shell and the surface temperature of the slab is expressed by the following equation (4) (H, S
GAR9LAII, J, G, JAEGER: “Ga
nductian of beat in 5olids
”, Oxford University Pres.
s.

5econd edition 1958  P、99
〜100)、さらに表面温度がTaに保たれx/l=1
ではTlに保たれるとすると温度プロフィールは下記(
5)式の如く近似される。
5th edition 1958 P, 99
~100), and the surface temperature is maintained at Ta, x/l=1
So, assuming that it is maintained at Tl, the temperature profile is as follows (
5) It is approximated as shown in Eq.

従って、(5)式で求めたTaに鋳片表面温度を制御す
ることにより中心偏析の原因となる凝固時の体積収縮が
補償される。
Therefore, by controlling the surface temperature of the slab to Ta determined by equation (5), volume shrinkage during solidification, which causes center segregation, can be compensated for.

第5図に0.8%C10,24%Si、0.8%Mn、
0.010%F、0.007%S、0.03%A又を含
有するブルーム鋳片の通常操業時におけるピンチロール
を出た後の鋳片表面温度の一例を示した。自然放冷のま
まの鋳片表面温度は破線で示した温度TNとなった。自
然放冷時の鋳片温度がこの破線に示す鋳片表面温度TN
である場合に、第3図に示す凝固収縮騒を補償するため
に必要とする凝固−aモ均冷却度を得ることができる鋳
片表面温度Taを実線で示した。
Figure 5 shows 0.8%C10, 24%Si, 0.8%Mn,
An example of the surface temperature of a bloom slab containing 0.010% F, 0.007% S, and 0.03% A after exiting the pinch roll during normal operation is shown. The surface temperature of the slab as it was allowed to cool naturally was the temperature TN shown by the broken line. The slab temperature during natural cooling is the slab surface temperature TN shown by this broken line.
In this case, the solid line indicates the slab surface temperature Ta at which the solidification-a-monouniform cooling degree required to compensate for the solidification shrinkage noise shown in FIG. 3 can be obtained.

連続鋳片の中心偏析を軽減するためには、ピンチロール
を出たあとの鋳片の表面温度が第5図の影線を施した領
域にあればよいことが実験によって確かめられた。
It has been confirmed through experiments that in order to reduce center segregation of a continuous slab, the surface temperature of the slab after exiting the pinch rolls should be in the shaded area in FIG.

影線を施した領域のに限温度TVはL記温度Taよりも
高くてもよく、その許容範囲は、図中に破線で示した温
度TNと、実線で示したE記温度Taとの差の30%高
温側にあっても効果があるという実験結果に基づくもの
である。その実験結果を第7図に示す、第7図中に中心
偏析比(C/Co)を示しているが、CはMJi中心の
組成、このCOは鋳造前溶鋼(例えばタンプッシュ内)
の組成である。
The limit temperature TV in the shaded area may be higher than the L temperature Ta, and the allowable range is the difference between the temperature TN shown by the broken line in the figure and the E temperature Ta shown by the solid line. This is based on experimental results showing that it is effective even when the temperature is 30% higher. The experimental results are shown in Figure 7. Figure 7 shows the central segregation ratio (C/Co), where C is the composition of the MJi center, and this CO is the molten steel before casting (for example, in the tumble push).
The composition is

次に第5図に示す鋳片表面温度の下限温度は、0.8%
C,0,24%Si、0.8%Mn、0.0IO%P、
0.007%S、0.03%A愛を含イ1する鋼のγ相
から(α+Fe5C)相への変1!;開始温度TA(本
鋼種=690℃)である、鋳片表面温度の下限を変態温
度T^に規宣する理由は次の通りである。鋼は冷却によ
り収縮するが、変!ム温度に到達するとW張に変る。そ
こで鋳片軸心に濃化溶鋼が存在する場合、鋳片表面を冷
却し鋳片凝固殻を収縮させれば、未凝固部分凝固時の収
縮;11を補償することとなり、中心偏析は軽減される
が、鋳片表面がその鋼種の変fム温度をド回ると膨張し
、C化溶鋼が吸引され中心偏析が助長される。従って表
面温度を変態温度T^より高く保つ必pがある。
Next, the lower limit temperature of the slab surface temperature shown in Fig. 5 is 0.8%.
C, 0.24%Si, 0.8%Mn, 0.0IO%P,
Change from γ phase to (α+Fe5C) phase in steel containing 0.007% S and 0.03% A love 1! The reason why the lower limit of the slab surface temperature, which is the starting temperature TA (this steel type = 690°C), is defined as the transformation temperature T^ is as follows. Steel contracts when cooled, but it's strange! When the temperature reaches the warm temperature, it changes to W tension. Therefore, if there is concentrated molten steel at the slab axis, cooling the slab surface and shrinking the slab solidified shell will compensate for the shrinkage during partial solidification (11) and reduce center segregation. However, when the surface of the slab reaches a temperature exceeding the temperature of the steel type, it expands, and the carbonized molten steel is attracted, promoting center segregation. Therefore, it is necessary to maintain the surface temperature higher than the transformation temperature T^.

以上詳述したように、溶鋼プール最先端に至る位2!i
範囲にスプレーを設置し鋳片表面を水冷する場合、その
表面温度を、凝固収縮閂を補償するために必要とする凝
固aモ均冷却度が得られる鋳片表面温度と従来法の温度
差の30%分高温移行した表面温度を上限とし、水冷を
行う鋼種のA3変態もしくはAcmf7JQ開始温度を
下限とする温度範囲内に制御することにより、確実に中
心偏析を軽減させることができる。
As detailed above, the molten steel pool is the most advanced! i
When spraying is installed in a range to water-cool the surface of a slab, the surface temperature is set to the temperature difference between the surface temperature of the slab and the conventional method to obtain the uniform cooling degree of the solidification a-money required to compensate for the solidification shrinkage bar. Center segregation can be reliably reduced by controlling the temperature within a temperature range with the upper limit being the surface temperature that has shifted to a high temperature by 30% and the lower limit being the A3 transformation or Acmf7JQ initiation temperature of the steel type to be water cooled.

各鋼種のA3もしくはAcm変態開始温度、すなわち体
積膨張開始温度は示差8膨張測定にて確認することが好
ましい。
It is preferable to confirm the A3 or Acm transformation start temperature of each steel type, that is, the volumetric expansion start temperature, by differential 8 dilatation measurement.

〔実施例〕 鋳片断面560X400mmの破線用ブルーム鋳片(c
=o、so%)を鋳造速度0.55m/分。
[Example] Bloom slab for broken line with slab cross section 560 x 400 mm (c
= o, so%) at a casting speed of 0.55 m/min.

水比0.55文/kgで連続鋳造した。Continuous casting was carried out at a water ratio of 0.55 m/kg.

実施例のAストランドではメニスカスから23〜29m
の範囲に第1図に示したスプレー配管を設置してスプレ
ー冷却し、第5図中に実線で示した鋳片表面温度T5を
得た。
In the example A strand, 23 to 29 m from the meniscus
The spray piping shown in FIG. 1 was installed in the area shown in FIG. 1 for spray cooling, and the slab surface temperature T5 shown by the solid line in FIG. 5 was obtained.

本Pt造条件のもとでは、溶鋼プール最先端はメニスカ
スから28.5 mの位置であり、この位置は本発明に
基づく付加的スプレー冷却を行うことにより手前(メニ
スカス側)に移動してくるが、このスプレー冷却帯内に
あり、本発明の効果は損なわれないことは別途確認した
Under the present Pt construction conditions, the leading edge of the molten steel pool is at a position 28.5 m from the meniscus, and this position will be moved to the front (towards the meniscus) by performing additional spray cooling based on the present invention. However, it was separately confirmed that the spray cooling zone was within the spray cooling zone and that the effects of the present invention were not impaired.

比較例としてBストランドにAストランドと同じスプレ
ー配管を用いて、故意にスプレー冷却水量をAストラン
ドの2倍にし、鋳片表面温1f1が冷却開始後約4mで
A3変態点を下回るようにした。また別の比較例Cスト
ランドは従来法で鋳造した。
As a comparative example, the same spray piping as for the A strand was used for the B strand, the amount of spray cooling water was intentionally made twice that of the A strand, and the slab surface temperature 1f1 was made to fall below the A3 transformation point about 4 m after the start of cooling. Another Comparative Example C strand was cast using conventional methods.

こうして鋳造した各ストランドのプルーム鋳片をサンプ
ルとして採取し、中心偏析を調査するとともに、圧延、
線引によりPC鋼線を製造し、セメンタイト評点、カッ
ビー破面率を調へた。その結果を第1表に示した。実施
例は比較例に比し、中心偏析C/ Coのばらつき(標
準偏X)が約171Oとなり、セメンタイト評点はCス
トテントでは粒界にセメンタイトの発生が見られ、Bス
トランドでは全村界に発生していたが、実施例では仝〈
認められず一十点はOであった。
Plume slabs of each strand cast in this way were collected as samples to investigate center segregation, and
A PC steel wire was produced by drawing, and the cementite rating and Cubby fracture rate were measured. The results are shown in Table 1. Compared to the comparative example, the variation in center segregation C/Co (standard deviation However, in the example,
It was not recognized and I got 10 points.

第  1  表 11J:*O:無し  l:粒界に一識発生  2:粒
界に発生3:全粒界に発生 またカッピー破面率はCストランド6.5%、Bストラ
ンドでは12.2%であったが実施例では0となった。
1st Table 11J: *O: None l: Occurs at one grain boundary 2: Occurs at grain boundaries 3: Occurs at all grain boundaries Also, the cuppy fracture surface ratio is 6.5% for C strand and 12.2% for B strand. However, in the example, it was 0.

このように本発明が極めて優れていることが明確である
Thus, it is clear that the present invention is extremely superior.

セメンタイトJt点とは伸線前の圧延材(8〜10mm
φ)の横断面をピクリンl’ltj飽和水溶液にて腐食
し、その断面のセメンタイト析出状況を顕微鏡1i!!
察によりOll、2.3の4段階に評点化するものであ
る。
Cementite Jt point is the rolled material (8 to 10 mm) before wire drawing.
A cross section of φ) was corroded with a saturated aqueous solution of picrin l'ltj, and the state of cementite precipitation on the cross section was observed using a microscope 1i! !
Based on our observations, the scores are graded into four grades: Oll, 2.3.

例えば評点Oはセメンタイトの析出が全くないもの、評
点4はセメンタイトの析出がネットワーク状にあるもの
、評点l、2は析出が生じているが断続的なものである
For example, a score of O indicates that there is no precipitation of cementite, a score of 4 indicates that cementite precipitation occurs in a network, and a score of 1 and 2 indicates that precipitation occurs, but only intermittently.

また、カッピー破面率とは伸線材(4mmφの7本撚り
)を引張り試験し、波面の形状判定により7本中のカッ
プ状破面の割合で示す。
In addition, the cuppy fracture surface ratio is expressed as the ratio of cup-shaped fracture surfaces among the 7 wires by tensile testing a drawn wire material (7 strands of 4 mm diameter) and determining the shape of the wave surface.

また、前述したI造条件にて0.45%C10,24%
Si、1.10%Mn、01010%P、0、007%
Sを含有する鋼について本発明法を適応し実験した。そ
の時の表面温度推移を第8因に示す、実施例は本鋼種の
A1変態開始温度712°CとTaの間に位置する。
In addition, under the above-mentioned I-building conditions, 0.45%C10.24%
Si, 1.10%Mn, 01010%P, 0,007%
The method of the present invention was applied and tested on steel containing S. The surface temperature transition at that time is shown in the eighth factor, and the example is located between the A1 transformation start temperature of 712°C and Ta of this steel type.

この実験に適用した鋼種は、40mmφに圧延され焼入
を施されるが、中心偏析によりマルテンサイトが発生し
中心部で割れが発生することがある。
The steel type used in this experiment was rolled to a diameter of 40 mm and hardened, but martensite was generated due to center segregation and cracks could occur in the center.

第2表に鋳片の中心偏析結果と焼入後の割れの発生率を
小才。
Table 2 shows the center segregation results of slabs and the incidence of cracking after quenching.

第  2  表 1)つ焼入後の11縄瀉引1波試験で調査〔発明の効果
〕 本発明により、連続鋳造のスラブやブルームの中心偏析
を軽減し、低温靭性、対ラメラーテイヤー性、耐HIC
性の向に、軸受鋼における転勤疲労寿命、硬鋼線材にお
ける断線率やカッピー破断率を向りすることができる。
Table 2 1) Investigated by 11 rope drawing wave test after quenching [Effects of the invention] The present invention reduces center segregation of continuously cast slabs and blooms, improves low-temperature toughness, lamellar tear resistance, HIC resistance
The transfer fatigue life of bearing steel, wire breakage rate and cuppy rupture rate of hard steel wire rods can be determined in the direction of resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は中心偏析を低誠するためのスプレーノズルの配
置図、第2図は鋳片軸心近傍のセミマクロ偏析を示すグ
ラフ、第3図は溶鋼プール内残溶鋼の凝固に伴なう収縮
硅を補償するに必要な圧縮変形歪を示すグラフ、第4図
は硬鋼線材ブルームのマクロ組織を示す金属組織の写真
(倍率0.25倍)、第5図は本発明のχ流側と比較例
の鋳片表面温度推移を示す図表、第6図は凝固シェル断
面の模式図、第7図は中心偏析に有効な温度範囲を決定
する実験結果を示すグラフ、第8図は0.45%C鋼に
本発明を適用した時の表面温度推移を示すグラフである
。 l・・・凝固殻 2・・・溶鋼プール 3・・・ピンチロール 4・・・ローラテーブル 5・・・スプレーノズル
Figure 1 is a layout diagram of the spray nozzle to reduce center segregation, Figure 2 is a graph showing semi-macro segregation near the axis of the slab, and Figure 3 is shrinkage due to solidification of the remaining molten steel in the molten steel pool. A graph showing the compressive deformation strain necessary to compensate for silicon, Fig. 4 is a photograph of the metal structure showing the macrostructure of hard steel wire bloom (magnification: 0.25x), Fig. 5 shows the χ flow side of the present invention. Figure 6 is a schematic diagram of the cross section of the solidified shell; Figure 7 is a graph showing the experimental results for determining the effective temperature range for center segregation; Figure 8 is 0.45. It is a graph showing the surface temperature transition when the present invention is applied to %C steel. l... Solidified shell 2... Molten steel pool 3... Pinch roll 4... Roller table 5... Spray nozzle

Claims (1)

【特許請求の範囲】 1 鋼の連続鋳造において、残溶湯プールの鋳込方向最
先端より手前2〜15mの位置からプール最先端位置ま
での鋳込方向に沿う鋳片表面温度を、鋳片の液芯核の凝
固の進行に合わせて、鋼のA_3変態温度もしくはAc
m変態の開始温度T_A以上で次式に示す有効鋳片表面
温度T_V以下の温度に逐次強制冷却して鋳片凝固殻を
収縮せしめ、鋳片断面を減面して鋳造することを特徴と
する中心偏析の少ない連続鋳造方法。 記 Ta+(T_N−T_a)×0.3=T_V但し、 T_N:ピンチロールを出た後の自然放冷による鋳片表
面温度 T_a:凝固収縮量を補償するに必要な凝固殻平均冷却
を得る鋳片表面温度
[Claims] 1. In continuous casting of steel, the surface temperature of the slab along the casting direction from a position 2 to 15 m before the leading edge of the remaining molten metal pool in the casting direction to the pool's leading edge position is measured. As the liquid core solidifies, the steel's A_3 transformation temperature or Ac
It is characterized by successively forced cooling to a temperature above the m-transformation start temperature T_A and below the effective slab surface temperature T_V shown by the following formula to shrink the solidified slab shell and reduce the cross section of the slab before casting. Continuous casting method with less center segregation. Ta + (T_N - T_a) x 0.3 = T_V However, T_N: Surface temperature of slab due to natural cooling after exiting the pinch rolls T_a: Casting temperature to obtain average cooling of solidified shell necessary to compensate for solidification shrinkage amount Single surface temperature
JP10389286A 1986-05-08 1986-05-08 Method for continuous casting having little center segregation Granted JPS62263855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10389286A JPS62263855A (en) 1986-05-08 1986-05-08 Method for continuous casting having little center segregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10389286A JPS62263855A (en) 1986-05-08 1986-05-08 Method for continuous casting having little center segregation

Publications (2)

Publication Number Publication Date
JPS62263855A true JPS62263855A (en) 1987-11-16
JPH0346217B2 JPH0346217B2 (en) 1991-07-15

Family

ID=14366074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10389286A Granted JPS62263855A (en) 1986-05-08 1986-05-08 Method for continuous casting having little center segregation

Country Status (1)

Country Link
JP (1) JPS62263855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063991A (en) * 1988-05-13 1991-11-12 Irsid Process for cooling a continuously cast metal product
WO2009001480A1 (en) 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012019014A2 (en) 2010-02-04 2018-03-27 Crown Packaging Technology Inc method for making a metal cup, apparatus for making a metal cup, container body, and container
JP2013523459A (en) 2010-04-12 2013-06-17 クラウン パッケイジング テクノロジー インコーポレイテッド Can manufacturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063991A (en) * 1988-05-13 1991-11-12 Irsid Process for cooling a continuously cast metal product
WO2009001480A1 (en) 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Method of continuously casting small-section billet
US7909086B2 (en) 2007-06-28 2011-03-22 Sumitomo Metal Industries, Ltd. Method for continuously casting billet with small cross section

Also Published As

Publication number Publication date
JPH0346217B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
JP4834223B2 (en) Cold rolled steel
JPS5916862B2 (en) Continuous casting method
JP4055689B2 (en) Continuous casting method
US20030070786A1 (en) Billet by continuous casting and manufacturing method for the same
JP3401785B2 (en) Cooling method of slab in continuous casting
JPS62263855A (en) Method for continuous casting having little center segregation
JP3149834B2 (en) Steel slab continuous casting method
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3440891B2 (en) Structural steel with excellent lamellar tear resistance
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPS6261764A (en) Continuous casting method with less central segregation
JPH0436776B2 (en)
JP3362703B2 (en) Continuous casting method
JP7031628B2 (en) Continuous steel casting method
NZ192672A (en) Continuous cast steel product having reduced microsegregation
JPH01162551A (en) Method for continuously casting round shape billet
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
Triolet et al. A thermomechanical modelling of continuous casting to master steel slabs internal soundness and surface quality
US3945424A (en) Method of straightening a continuously cast strand
JP3257218B2 (en) Manufacturing method for spring steel
JPS644868B2 (en)
JPH078421B2 (en) Continuous casting method
RU2184009C1 (en) Steel continuous casting method
JPH0390259A (en) Continuous casting method