JP2006181583A - Method for producing continuously cast slab - Google Patents

Method for producing continuously cast slab Download PDF

Info

Publication number
JP2006181583A
JP2006181583A JP2004375565A JP2004375565A JP2006181583A JP 2006181583 A JP2006181583 A JP 2006181583A JP 2004375565 A JP2004375565 A JP 2004375565A JP 2004375565 A JP2004375565 A JP 2004375565A JP 2006181583 A JP2006181583 A JP 2006181583A
Authority
JP
Japan
Prior art keywords
slab
cast slab
water
steam
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004375565A
Other languages
Japanese (ja)
Inventor
Yukio Takahashi
幸雄 高橋
Seiji Itoyama
誓司 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004375565A priority Critical patent/JP2006181583A/en
Publication of JP2006181583A publication Critical patent/JP2006181583A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a continuously cast slab excellent in surface characteristics by which an oxidized scale layer is frmed on the surface of the cast slab inexpensively without adding any new process to perform a HCR (Hot Charge Rolling) and a DHCR (Direct Hot Charge Rolling). <P>SOLUTION: When the cast slab 18 is secondarily cooled in a continuous caster 1, saturated steam or excessive heated steam as cooling medium injected toward the cast slab from spray nozzles 16, is used. Since the cast slab is cooled with the steam, steam partial pressure effected to the generation of the scale, can be made to high and the thickness of the scale generated on the surface of the cast slab becomes thicker in comparison with the case of the water-spray, and defect, such as crack, non-metallic inclusion. slag, etc., existing the surface layer of the cast slab and just below the surface layer of the cast slab, is removed by exfoliating together with the scale layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面性状の良好な鋳片を得ることのできる連続鋳造鋳片の製造方法に関するものである。   The present invention relates to a method for producing a continuous cast slab capable of obtaining a cast slab having good surface properties.

最近、鋼の連続鋳造においては、鋳型から引き抜かれた高温の鋳片を可能な限り高温状態で保持することによって、熱間圧延時での加熱炉エネルギーの使用量を低減するといった試みがなされている。具体的には、ホットチャージ圧延(HCR)或いは直接圧延(DHCR)と呼ばれている方法であり、省エネルギーに有効なプロセスである。   Recently, in continuous casting of steel, an attempt has been made to reduce the amount of heating furnace energy used during hot rolling by holding the hot slab drawn from the mold as high as possible. Yes. Specifically, it is a method called hot charge rolling (HCR) or direct rolling (DHCR), which is an effective process for energy saving.

このHCRやDHCRを行う上で課題となる事項は、通常の方法、即ち高温の鋳片を常温程度まで放冷した後に加熱炉で所定の温度まで加熱して熱間圧延を行う方法と比較して、鋳片を高温で保持する時間が短くなるので、熱間圧延前までに鋳片表面に生成する酸化スケールの量が減少することである。このため、鋳片表層や表層直下に存在する割れ、非金属介在物、スラグなどの欠陥が酸化スケールの生成に伴って剥離、除去される確率が減少し、その結果、熱間圧延後の鋼材においては表面欠陥の顕在化が増加して、歩留まりの低下を招く。これを抑制する目的で、従来、鋳造速度の上限値の規制、モールドフラックスの適正化、鋳型内溶鋼流動の最適化などの対策が講じられている。   Compared with the usual method, that is, the method in which hot rolling is carried out by heating to a predetermined temperature in a heating furnace after allowing the high-temperature slab to cool to about room temperature, is a matter that becomes a problem in performing this HCR or DHCR. Thus, since the time for holding the slab at high temperature is shortened, the amount of oxide scale generated on the surface of the slab before hot rolling is reduced. For this reason, the probability that the cracks, non-metallic inclusions, slag, and other defects existing on the surface of the slab or directly under the surface layer will be peeled off and removed with the generation of oxide scale, and as a result, the steel after hot rolling. In this case, the manifestation of surface defects increases, leading to a decrease in yield. In order to suppress this, measures such as regulation of the upper limit of casting speed, optimization of mold flux, optimization of molten steel flow in the mold have been conventionally taken.

しかしながら、これらの対策を実施した場合でも鋳片の表面欠陥を完全には防止できず、熱間圧延時に表面欠陥が予測される場合にはHCRやDHCRの適用を避け、鋳片を一旦冷却するか或いは鋳片表面をスカーフィングしたりして、熱間圧延前に鋳片の表面欠陥を取り除く工程を組み込む必要があった。   However, even when these countermeasures are implemented, the surface defects of the slab cannot be completely prevented, and when surface defects are predicted during hot rolling, the application of HCR or DHCR is avoided and the slab is once cooled. Alternatively, it is necessary to incorporate a process of removing the surface defects of the slab before hot rolling by scarfing the slab surface.

このような不具合を解消する方法として、例えば特許文献1には、連続鋳造機の二次冷却帯内で高温の鋳片に対して高圧空気を噴射することにより、鋳片表面に付着したモールドパウダーを剥離させて表面性状に優れる鋳片を製造する方法が提案されている。   As a method for solving such a problem, for example, Patent Document 1 discloses a mold powder adhering to the surface of a slab by injecting high-pressure air onto a high-temperature slab in a secondary cooling zone of a continuous casting machine. There has been proposed a method for producing a slab having excellent surface properties by peeling off the slab.

しかしながら、特許文献1の方法では、空気を単に吹き付けるものであるため、当然のことながら、鋳片表層や表層直下に存在する前述のような欠陥を全て除去できるものではない。
特開昭63−248549号公報
However, in the method of Patent Document 1, since air is simply blown, it is a matter of course that not all the above-described defects existing on the slab surface layer or immediately below the surface layer can be removed.
JP-A 63-248549

本発明は上記事情に鑑みてなされたもので、その目的とするところは、新たな工程を付加することなく、鋳片表面の酸化スケール層を生成させ、それによってHCRやDHCRを実施することのできる、表面性状に優れた連続鋳造鋳片を製造する方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to generate an oxide scale layer on the surface of a slab without adding a new process, thereby implementing HCR or DHCR. An object of the present invention is to provide a method for producing a continuous cast slab having excellent surface properties.

本発明者等は、新たな工程を付加することなく表面性状に優れた鋳片の製造方法の確立を目的として、連続鋳造機の二次冷却帯内における鋳片表面での酸化スケールの生成促進に関して種々検討を加えた。その結果、酸化スケールの生成速度に及ぼす酸素分圧(PO2)や水蒸気分圧(PH2O )などの影響因子のうちで、特に水蒸気分圧(PH2O )の影響が大きいとされる従来の知見(例えば、本発明者等の出願による特開平9−271917号公報)から、連続鋳造機の二次冷却における冷却媒体としては水蒸気が有効であることを見出した。即ち、冷却媒体として水蒸気を用いることで、鋳片の冷却即ち凝固の促進と、鋳片表面での酸化スケールの生成速度の向上とを両立できるとの知見を得た。 The present inventors have promoted the generation of oxide scale on the slab surface in the secondary cooling zone of a continuous casting machine for the purpose of establishing a method for producing a slab having excellent surface properties without adding a new process. Various investigations were added. As a result, among the influencing factors such as oxygen partial pressure (P O2 ) and water vapor partial pressure (P H2O ) on the production rate of oxide scale, the influence of water vapor partial pressure (P H2O ) is particularly large. From knowledge (for example, JP-A-9-271917 filed by the present inventors), it has been found that steam is effective as a cooling medium in secondary cooling of a continuous casting machine. That is, by using water vapor as a cooling medium, it has been found that cooling of the slab, that is, promotion of solidification, and improvement in the production rate of oxide scale on the surface of the slab can be achieved.

通常、表面温度が800℃を超える高温の鋳片に水を吹き付けると、鋳片と水或いは水膜との間に蒸気膜が形成され、熱移動即ち鋳片の冷却はこの蒸気膜を介して行われることになる。この結果、水の蒸発潜熱の利用が不十分になってしまい、従って、冷却能力を高めるためには、鋳片への水の衝突圧即ち流速を高めて、この蒸気膜厚さを減少させ更には破壊して鋳片表面と水とを直接接触させる必要がある。   Normally, when water is sprayed on a high-temperature slab whose surface temperature exceeds 800 ° C., a vapor film is formed between the slab and water or a water film, and heat transfer, that is, cooling of the slab is performed via this vapor film. Will be done. As a result, the use of latent heat of vaporization of water becomes insufficient. Therefore, in order to increase the cooling capacity, the collision pressure of water on the slab, that is, the flow velocity is increased to reduce the vapor film thickness. It is necessary to break and bring the slab surface and water into direct contact.

このような高圧水の使用によって、鋳片の冷却速度が向上すること、並びに、鋳片表面での酸化スケールの除去効果が高くなることは期待できるものの、鋳片表面における酸化スケールの生成速度の向上は期待できない。何故なら、前述のように高圧水を使用することによって蒸気膜が少なくなり、鋳片表面は蒸気膜で覆われることがないか或いは蒸気膜の面積が小さくなり、酸化スケールの生成に効果的である、鋳片表面における水蒸気分圧(PH2O )が低下してしまうからである。 Although the use of such high-pressure water can be expected to improve the cooling rate of the slab and increase the effect of removing the oxide scale on the slab surface, We cannot expect improvement. This is because, as described above, the use of high-pressure water reduces the vapor film, and the slab surface is not covered with the vapor film or the area of the vapor film is reduced, which is effective for the generation of oxide scale. This is because the water vapor partial pressure (P H2O ) at the slab surface is lowered.

この点、水蒸気を使用した場合には、水の場合と異なり蒸発潜熱による冷却効果は本来期待できないことから、冷却能力を高めるためには鋳片への水蒸気の衝突圧(=流速)を高める必要があるが、気体であるために水と比較して容易に数倍〜数十倍の流速を得ることが可能となる。しかも、この場合に鋳片表面における水蒸気分圧(PH2O )は低下することがない。即ち、二次冷却の媒体として水蒸気を用いることで、スケールの生成速度を低下させることなく、二次冷却強度を高めることが可能であり、水蒸気の方が通常用いられている水スプレイよりも二次冷却の冷却媒体として優位であるとの知見を得た。 In this regard, when steam is used, unlike the case of water, the cooling effect due to latent heat of vaporization cannot be expected. Therefore, in order to increase the cooling capacity, it is necessary to increase the impact pressure (= flow velocity) of steam on the slab. However, since it is a gas, it is possible to easily obtain a flow rate several times to several tens of times that of water. Moreover, in this case, the water vapor partial pressure (P H2O ) on the surface of the slab does not decrease. That is, by using water vapor as the secondary cooling medium, it is possible to increase the secondary cooling strength without reducing the scale generation rate, and water vapor is more suitable than water sprays that are normally used. The knowledge that it is superior as a cooling medium of the next cooling was obtained.

そこで、この事象を確認するために、基礎実験を実施して酸化スケールの生成速度を調査した。約1,000℃の高温鋳片を冷却する基礎実験において、冷却媒体として水を用いた場合と、約160℃の飽和水蒸気を用いた場合とで生成スケール厚みを比較した結果、水蒸気を冷却媒体として用いることでスケールの生成速度は水を用いた場合の約1.2倍に達することが確認できた。   In order to confirm this phenomenon, a basic experiment was conducted to investigate the rate of oxide scale formation. In a basic experiment for cooling a high-temperature slab of about 1,000 ° C., as a result of comparing the generated scale thickness when water is used as the cooling medium and when saturated steam at about 160 ° C. is used, water vapor is used as the cooling medium. As a result, it was confirmed that the rate of scale formation reached about 1.2 times that when water was used.

このことは、前述したように高温域では一般に膜沸騰伝熱になっていることから判断すると、水を用いた場合でも鋳片表面は水蒸気で覆われていると考えられるため、水と水蒸気とで鋳片表面の水蒸気分圧(PH2O )に差があるとは考えにくい。一方、同一スプレイノズルを用いた場合、冷却媒体の鋳片表面への衝突流速は前述のように水蒸気のそれは水と比較して数倍〜数十倍速くなることから、冷却媒体として水蒸気を用いた場合には、酸化スケールの除去と生成とが繰り返し発生し、これによって酸化スケールの生成速度が向上したものと考えられる。 Judging from the fact that film boiling heat transfer is generally performed at high temperatures as described above, it is considered that the slab surface is covered with water vapor even when water is used. Therefore, it is unlikely that there is a difference in the water vapor partial pressure (P H2O ) on the slab surface. On the other hand, when the same spray nozzle is used, the collision flow velocity of the cooling medium to the slab surface is several to several tens times faster than that of water as described above. In such a case, it is considered that the removal and generation of the oxide scale occurred repeatedly, thereby improving the generation rate of the oxide scale.

本発明は、上記検討結果に基づいてなされたものであり、本発明に係る連続鋳造鋳片の製造方法は、連続鋳造機にて鋳片を二次冷却するに際し、スプレイノズルから鋳片に向けて噴射する冷却媒体として飽和水蒸気或いは過熱水蒸気を用いることを特徴とするものである。   The present invention has been made on the basis of the above examination results, and the continuous casting slab manufacturing method according to the present invention is directed from the spray nozzle to the slab when the slab is secondarily cooled by a continuous casting machine. Saturated steam or superheated steam is used as a cooling medium to be injected.

本発明によれば、連続鋳造機で鋳造されている鋳片の表面で生成するスケールの厚みが水スプレイの場合に比べて厚くなり、鋳片表層及び鋳片表層直下に存在する割れ、非金属介在物、スラグなどの欠陥がスケール層とともに剥離・除去されるので、新たな工程を付加することなく、連続鋳造鋳片の表面欠陥を大幅に低減することが可能となる。その結果、HCR及びDHCRを適用した場合でも、熱間圧延後の鋼材の表面欠陥を低減することが達成され、製品歩留まりの向上のみならずHCR及びDHCRのメリットを享受することが可能になるなど、工業上有益な効果がもたらされる。   According to the present invention, the thickness of the scale generated on the surface of the slab cast by the continuous casting machine is thicker than in the case of the water spray, and the crack, non-metal present in the slab surface layer and immediately below the slab surface layer Since defects such as inclusions and slag are peeled and removed together with the scale layer, the surface defects of the continuous cast slab can be greatly reduced without adding a new process. As a result, even when HCR and DHCR are applied, it is possible to reduce the surface defects of the steel material after hot rolling, and it is possible not only to improve the product yield but also to enjoy the advantages of HCR and DHCR. Industrially beneficial effects are brought about.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施に好適な連続鋳造機の概略断面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of a continuous casting machine suitable for carrying out the present invention.

図1に示すように、スラブ鋳片を鋳造するための連続鋳造機1には、溶鋼17を注入して凝固させるための鋳型4が設置されており、この鋳型4の上方には、取鍋(図示せず)から溶鋼17を受け、受けた溶鋼17を浸漬ノズル3を介して鋳型4に供給するタンディッシュ2が配置され、一方、鋳型4の下方には、対向する一対のロールを1組として複数組の鋳片支持ロール5が設置されている。そして、鋳片支持ロール5の下流側には、複数本の搬送ロール6と、搬送ロール6の上方に位置して鋳片18の鋳造速度と同期するガス切断機7とが設置されている。又、鋳片支持ロール5には、鋳型4の直下から下流側に向かって、第1冷却ゾーン8,8、第2冷却ゾーン9,9、第3冷却ゾーン10,10、第4冷却ゾーン11,11、第5冷却ゾーン12,12、及び第6冷却ゾーン13,13の合計12箇所に分割された冷却ゾーンからなる二次冷却帯が設置されている。   As shown in FIG. 1, a continuous casting machine 1 for casting slab slabs is provided with a mold 4 for injecting molten steel 17 to solidify, and above this mold 4 is a ladle. A tundish 2 that receives the molten steel 17 from (not shown) and supplies the received molten steel 17 to the mold 4 via the immersion nozzle 3 is disposed. On the other hand, a pair of opposing rolls 1 is provided below the mold 4. A plurality of slab support rolls 5 are installed as a set. And on the downstream side of the slab support roll 5, a plurality of transport rolls 6 and a gas cutter 7 positioned above the transport roll 6 and synchronized with the casting speed of the slab 18 are installed. Further, the slab support roll 5 has first cooling zones 8, 8, second cooling zones 9, 9, third cooling zones 10, 10, and fourth cooling zone 11 from directly under the mold 4 toward the downstream side. , 11, fifth cooling zones 12, 12, and sixth cooling zones 13, 13 are provided with a secondary cooling zone comprising cooling zones divided into a total of 12 locations.

二次冷却帯の各冷却ゾーンは、図1の第1冷却ゾーン8に例示するように、二次冷却の冷却媒体を供給するための冷却媒体配管14が設置され、冷却媒体配管14の枝分かれした各先端部には、鋳片18の表面に対向してスプレイノズル16が設置されており、また、冷却媒体配管14の冷却媒体供給側は、水を供給するための供給配管14aと水蒸気を供給するための供給配管14bとの2つに分岐し、水を供給するための供給配管14aには流量調整弁15aが配置され、水蒸気を供給するための供給配管14bには流量調整弁15bが配置されている。即ち、流量調整弁15a及び流量調整弁15bを調整することで、水または水蒸気の何れか一方、或いは、水と水蒸気との混合体を冷却媒体として供給することが可能な構造になっている。冷却媒体としての水または水蒸気或いは水と水蒸気との混合体は、スプレイノズル16から鋳片18の表面に向けて噴射される。図1では図示していないが、第2冷却ゾーン9から第6冷却ゾーン13の全ての冷却ゾーンがこのような構造になっている。   As illustrated in the first cooling zone 8 of FIG. 1, each cooling zone of the secondary cooling zone is provided with a cooling medium pipe 14 for supplying a cooling medium for secondary cooling, and the cooling medium pipe 14 is branched. A spray nozzle 16 is installed at each tip so as to face the surface of the slab 18, and the cooling medium supply side of the cooling medium pipe 14 supplies water with a supply pipe 14 a for supplying water. The flow control valve 15a is arranged in the supply pipe 14a for supplying water, and the flow control valve 15b is arranged in the supply pipe 14b for supplying water vapor. Has been. That is, by adjusting the flow rate adjusting valve 15a and the flow rate adjusting valve 15b, either water or water vapor or a mixture of water and water vapor can be supplied as a cooling medium. Water or water vapor or a mixture of water and water vapor as a cooling medium is sprayed from the spray nozzle 16 toward the surface of the slab 18. Although not shown in FIG. 1, all the cooling zones from the second cooling zone 9 to the sixth cooling zone 13 have such a structure.

尚、鋳片表面温度や酸化スケール生成量を制御する観点からは、各冷却ゾーンともに上記のように冷却媒体の種類及び流量を制御できるようにするのが望ましいが、必ずしも全ての冷却ゾーンをこのような構造にする必要はなく、一部の冷却ゾーンでは従来の水スプレイとしてもよい。また、冷却媒体として水蒸気のみを供給する構造としてもよい。また更に、冷却ゾーンの設置数は図1では合計12であるが、連続鋳造機1の機長などに応じて幾つに分割してもよい。   In addition, from the viewpoint of controlling the slab surface temperature and oxide scale generation amount, it is desirable to be able to control the type and flow rate of the cooling medium in each cooling zone as described above. It is not necessary to have such a structure, and a conventional water spray may be used in some cooling zones. Moreover, it is good also as a structure which supplies only water vapor | steam as a cooling medium. Furthermore, although the total number of cooling zones is 12 in FIG. 1, it may be divided into several according to the length of the continuous casting machine 1.

このような構成の連続鋳造機1において、以下のようにして連続鋳造鋳片を鋳造する。即ち、タンディッシュ2から浸漬ノズル3を介して鋳型4に溶鋼17を鋳造する。鋳型4に鋳造された溶鋼17は鋳型4で冷却されて凝固シェル19を形成し、内部に未凝固層20を有する鋳片18として、鋳片支持ロール5に支持されつつ下方に連続的に引き抜かれる。鋳片18は鋳片支持ロール5を通過する間、飽和水蒸気或いは過熱水蒸気を冷却媒体として用いた二次冷却帯で冷却され、凝固シェル19の厚みを増大して、やがて中心部までの凝固を完了する。この場合、HCR或いはDHCRを実施するときには、鋳片18aの温度を高めることが望ましく、従って、高温の鋳片18aを得るために凝固完了位置21を連続鋳造機1の出側に位置させることが好ましい。このようにして鋳造した鋳片18をガス切断機7により切断して鋳片18aを得る。鋳片18aは、HCR或いはDHCR、若しくは、通常の方法即ち鋳片18aを常温程度まで放冷した後に加熱炉で加熱して熱間圧延を行う方法により、次工程で熱間圧延される。ここで、飽和水蒸気とは、蒸気が飽和した状態の水蒸気であり、過熱水蒸気とは、蒸気の飽和温度以上に加熱された状態の水蒸気である。   In the continuous casting machine 1 having such a configuration, a continuous cast slab is cast as follows. That is, molten steel 17 is cast from the tundish 2 to the mold 4 through the immersion nozzle 3. The molten steel 17 cast in the mold 4 is cooled by the mold 4 to form a solidified shell 19, and is continuously drawn downward as a slab 18 having an unsolidified layer 20 therein while being supported by the slab support roll 5. It is. While the slab 18 passes through the slab support roll 5, it is cooled in a secondary cooling zone using saturated steam or superheated steam as a cooling medium to increase the thickness of the solidified shell 19 and eventually solidify to the center. Complete. In this case, when carrying out HCR or DHCR, it is desirable to raise the temperature of the slab 18a. Therefore, in order to obtain a high-temperature slab 18a, the solidification completion position 21 should be located on the exit side of the continuous casting machine 1. preferable. The slab 18 thus cast is cut by the gas cutter 7 to obtain a slab 18a. The slab 18a is hot-rolled in the next step by HCR or DHCR, or a normal method, that is, a method in which the slab 18a is allowed to cool to room temperature and then heated in a heating furnace and hot rolled. Here, the saturated water vapor is water vapor in a state where the steam is saturated, and the superheated water vapor is water vapor heated to a temperature equal to or higher than the saturation temperature of the vapor.

このように、本発明では連続鋳造機1の二次冷却帯における二次冷却媒体として水蒸気を使用するので、二次冷却帯で冷却される鋳片18の表面では水蒸気分圧(PH2O )が高く維持され、鋳片18の表面で生成するスケールの厚みが水スプレイの場合に比べて厚くなり、鋳片18の表層及び表層直下に存在する割れ、非金属介在物、スラグなどの欠陥がスケール層とともに剥離・除去されるので、新たな工程を付加することなく、連続鋳造機1から排出される鋳片18aの表面欠陥を大幅に低減することが可能となる。その結果、HCR及びDHCRを適用した場合でも、熱間圧延後の鋼材の表面欠陥を低減することが達成され、製品歩留まりの向上のみならずHCR及びDHCRのメリットを享受することが可能になる。また、水蒸気は水に比べて供給圧力の変更幅を大きくすることが可能であり、スプレイノズル16から鋳片18に向けて噴射する水蒸気の圧力を任意に変更することによって所定の冷却強度を得ることができるので、鋳造速度の上限を設定する必要もなく鋳造することができる。 Thus, in the present invention, since steam is used as the secondary cooling medium in the secondary cooling zone of the continuous casting machine 1, the steam partial pressure (P H2O ) is increased on the surface of the slab 18 cooled in the secondary cooling zone. The thickness of the scale produced on the surface of the slab 18 is maintained higher than that in the case of the water spray, and defects such as cracks, non-metallic inclusions, slag, etc. existing on the surface layer of the slab 18 and the surface layer are scaled. Since it is peeled and removed together with the layers, it is possible to greatly reduce the surface defects of the slab 18a discharged from the continuous casting machine 1 without adding a new process. As a result, even when HCR and DHCR are applied, it is possible to reduce the surface defects of the steel material after hot rolling, and it is possible not only to improve the product yield but also to enjoy the advantages of HCR and DHCR. In addition, the change width of the supply pressure of water vapor can be made larger than that of water, and a predetermined cooling strength can be obtained by arbitrarily changing the pressure of water vapor sprayed from the spray nozzle 16 toward the slab 18. Therefore, it is possible to cast without setting an upper limit of the casting speed.

尚、上記説明はスラブ鋳片に関して行ったが、ブルーム鋳片及びビレット鋳片であっても上記に沿って本発明を適用することができる。   In addition, although the said description was performed regarding the slab slab, even if it is a bloom slab and a billet slab, this invention can be applied along the above.

鋳片の厚みが260mm、鋳片の幅が1,200mm〜1,500mmである、図1に示すスラブ連続鋳造機を用いて表1に示す低炭素鋼の連続鋳造を行い、得られた鋳片をDHCRして、最終的に厚みが0.8mm〜1.5mmの冷延鋼板を製造した。そして、得られた冷延鋼板において、へゲやスリーバーといった表面欠陥の発生状況について調査した。   A cast obtained by performing continuous casting of the low carbon steel shown in Table 1 using a slab continuous casting machine shown in FIG. 1 having a cast piece thickness of 260 mm and a cast piece width of 1,200 mm to 1,500 mm. The piece was DHCRed to finally produce a cold rolled steel sheet having a thickness of 0.8 mm to 1.5 mm. And in the obtained cold-rolled steel sheet, the occurrence state of surface defects such as hege and sliver was investigated.

Figure 2006181583
Figure 2006181583

鋳造速度は1.8m/分、加熱炉への鋳片の平均装入温度は880℃〜920℃、在炉時間は80分〜90分、炉内温度は1,150℃とした。この実施例では、2ストランドのスラブ連続鋳造機を用い、一方のストランドに本発明方法を適用して二次冷却の冷却媒体として全ての冷却ゾーンで飽和水蒸気(温度170℃)を用い(本発明例)、もう一方のストランドでは通常の水スプレイによる二次冷却を行った(比較例)。鋳造条件及び冷延鋼板における表面欠陥の発生率を表2に示す。   The casting speed was 1.8 m / min, the average charging temperature of the slab into the heating furnace was 880 ° C. to 920 ° C., the in-furnace time was 80 minutes to 90 minutes, and the furnace temperature was 1,150 ° C. In this embodiment, a two-strand continuous slab caster is used, and the method of the present invention is applied to one strand and saturated water vapor (temperature 170 ° C.) is used as a cooling medium for secondary cooling in all cooling zones (the present invention). Example), the other strand was subjected to secondary cooling by a normal water spray (comparative example). Table 2 shows the casting conditions and the incidence of surface defects in the cold-rolled steel sheet.

Figure 2006181583
Figure 2006181583

表2から明らかなように、本発明例では比較例に対して冷延鋼板での表面欠陥率の大幅な低減が認められた。これは、冷却媒体として水蒸気を使用したことによって鋳片表面の酸化スケールの生成が促進され、表面欠陥が全て除去できる程度まで酸化スケール厚みを確保できたことによる。   As is clear from Table 2, in the present invention example, a significant reduction in the surface defect rate in the cold-rolled steel sheet was recognized compared to the comparative example. This is because the use of water vapor as the cooling medium promotes the generation of oxide scale on the surface of the slab, and the oxide scale thickness can be secured to such an extent that all surface defects can be removed.

本発明の実施に好適な連続鋳造機の概略断面図である。It is a schematic sectional drawing of the continuous casting machine suitable for implementation of this invention.

符号の説明Explanation of symbols

1 連続鋳造機
2 タンディッシュ
3 浸漬ノズル
4 鋳型
5 鋳片支持ロール
6 搬送ロール
7 ガス切断機
8 第1冷却ゾーン
9 第2冷却ゾーン
10 第3冷却ゾーン
11 第4冷却ゾーン
12 第5冷却ゾーン
13 第6冷却ゾーン
14 冷却媒体配管
15a,15b 流量調整弁
16 スプレイノズル
17 溶鋼
18 鋳片
19 凝固シェル
20 未凝固層
21 凝固完了位置
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Tundish 3 Immersion nozzle 4 Mold 5 Casting piece support roll 6 Transport roll 7 Gas cutting machine 8 1st cooling zone 9 2nd cooling zone 10 3rd cooling zone 11 4th cooling zone 12 5th cooling zone 13 Sixth cooling zone 14 Cooling medium piping 15a, 15b Flow rate adjusting valve 16 Spray nozzle 17 Molten steel 18 Cast slab 19 Solidified shell 20 Unsolidified layer 21 Solidification completion position

Claims (1)

連続鋳造機にて鋳片を二次冷却するに際し、スプレイノズルから鋳片に向けて噴射する冷却媒体として飽和水蒸気或いは過熱水蒸気を用いることを特徴とする、連続鋳造鋳片の製造方法。   A method for producing a continuous cast slab, wherein saturated steam or superheated steam is used as a cooling medium sprayed from a spray nozzle toward the slab when the slab is secondarily cooled by a continuous casting machine.
JP2004375565A 2004-12-27 2004-12-27 Method for producing continuously cast slab Pending JP2006181583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375565A JP2006181583A (en) 2004-12-27 2004-12-27 Method for producing continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375565A JP2006181583A (en) 2004-12-27 2004-12-27 Method for producing continuously cast slab

Publications (1)

Publication Number Publication Date
JP2006181583A true JP2006181583A (en) 2006-07-13

Family

ID=36735062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375565A Pending JP2006181583A (en) 2004-12-27 2004-12-27 Method for producing continuously cast slab

Country Status (1)

Country Link
JP (1) JP2006181583A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303108A (en) * 2011-09-22 2012-01-04 首钢贵阳特殊钢有限责任公司 Continuous casting production process for improving quality of free cutting steel casting blank
CN107649657A (en) * 2017-08-29 2018-02-02 武钢集团昆明钢铁股份有限公司 A kind of small billet tundish stops the method poured
CN109175284A (en) * 2018-09-10 2019-01-11 武汉科技大学 A kind of efficient, energy-efficient continuous casting secondary cooling method
CN114309080A (en) * 2021-11-29 2022-04-12 邯郸钢铁集团有限责任公司 Method for judging direct-loading hot-loading on conventional hot continuous rolling production line
CN114749618A (en) * 2020-11-25 2022-07-15 宝钢德盛不锈钢有限公司 Production method for reducing mountain scale at edge of hot-rolled 200-series stainless steel coil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102303108A (en) * 2011-09-22 2012-01-04 首钢贵阳特殊钢有限责任公司 Continuous casting production process for improving quality of free cutting steel casting blank
CN107649657A (en) * 2017-08-29 2018-02-02 武钢集团昆明钢铁股份有限公司 A kind of small billet tundish stops the method poured
CN109175284A (en) * 2018-09-10 2019-01-11 武汉科技大学 A kind of efficient, energy-efficient continuous casting secondary cooling method
CN114749618A (en) * 2020-11-25 2022-07-15 宝钢德盛不锈钢有限公司 Production method for reducing mountain scale at edge of hot-rolled 200-series stainless steel coil
CN114769545A (en) * 2020-11-25 2022-07-22 宝钢德盛不锈钢有限公司 Production method for reducing mountain scales on hot-rolled edge of 200-series stainless steel
CN114749618B (en) * 2020-11-25 2024-03-01 宝钢德盛不锈钢有限公司 Production method for reducing mountain scales at hot rolled edge of 200 series stainless steel
CN114769545B (en) * 2020-11-25 2024-03-01 宝钢德盛不锈钢有限公司 Production method for reducing mountain scales at hot rolled edge of 200 series stainless steel
CN114309080A (en) * 2021-11-29 2022-04-12 邯郸钢铁集团有限责任公司 Method for judging direct-loading hot-loading on conventional hot continuous rolling production line
CN114309080B (en) * 2021-11-29 2023-10-03 邯郸钢铁集团有限责任公司 Method for judging direct hot charging of conventional hot continuous rolling production line

Similar Documents

Publication Publication Date Title
KR101507456B1 (en) A process and a plant for the production of metal strip
CN106552831A (en) A kind of manufacture method of Thin Specs hot-strip
RU2493925C2 (en) Method and device for continuous slab forming
JP3726506B2 (en) Billet water cooling method
CN103008587B (en) A kind of thin strap continuous casting anti-oxidation iron sheet generation method
JP2003062647A (en) Direct rolling method for continuous cast steel piece
JP4899629B2 (en) Billet continuous casting method
JP2006181583A (en) Method for producing continuously cast slab
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP5825087B2 (en) Continuous casting method
TWI485259B (en) Method for reducing surface defects of small steel embryos
CN111618264B (en) Casting blank cooling method for improving temperature uniformity of casting blank
JP2008087055A (en) Method for completing continuous casting
JP2008261036A (en) Method for cooling continuously cast bloom
JP2007222920A (en) Method and apparatus for cooling continuous cast slab
JPH0218936B2 (en)
KR102638366B1 (en) Secondary cooling method and device for continuous casting cast steel
JP4525690B2 (en) Steel continuous casting method
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP7355285B1 (en) Continuous steel casting method
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
WO2023190018A1 (en) Method for continuous casting of steel
JPS58116905A (en) Producing device for steel material by direct rolling
KR101243211B1 (en) Twin roll strip casting process of martensitic stainless strip

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921