JP2008261036A - Method for cooling continuously cast bloom - Google Patents

Method for cooling continuously cast bloom Download PDF

Info

Publication number
JP2008261036A
JP2008261036A JP2007106208A JP2007106208A JP2008261036A JP 2008261036 A JP2008261036 A JP 2008261036A JP 2007106208 A JP2007106208 A JP 2007106208A JP 2007106208 A JP2007106208 A JP 2007106208A JP 2008261036 A JP2008261036 A JP 2008261036A
Authority
JP
Japan
Prior art keywords
cooling
bloom
slab
temperature
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106208A
Other languages
Japanese (ja)
Other versions
JP5416342B2 (en
Inventor
Toshihiko Murakami
敏彦 村上
Akihiro Yamanaka
章裕 山中
Yoshiki Ito
義起 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007106208A priority Critical patent/JP5416342B2/en
Publication of JP2008261036A publication Critical patent/JP2008261036A/en
Application granted granted Critical
Publication of JP5416342B2 publication Critical patent/JP5416342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent formation of surface cracks in continuously cast bloom when the bloom is rolled. <P>SOLUTION: The method is one comprising cutting a continuously cast bloom 1 to a specified length and cooling it outside the continuous casting machine. In this method, the bloom 1 is cooled from a temperature above the Ar<SB>3</SB>transformation temperature under conditions in which the cooling strength Cs defined by the formula: Cs=Hw×T falls within the range of from 500 to 2,500 (W*min/m<SP>2</SP>*K), wherein Hw is the heat transfer rate (W/m<SP>2</SP>*K) in the state where the surface temperature of the bloom 1 is 1,000 K; and T is the time (min) necessary for the bloom 1 to pass through the cooling zone (heat transfer rate Hw). Thus, it becomes possible to increase high-temperature ductility, to prevent crack formation during a heat expansion process, and to prevent bloom surface cracking otherwise occurring during bloom rolling. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、連続鋳造されたブルーム鋳片を冷却する方法に関するものである。   The present invention relates to a method for cooling a continuously cast bloom slab.

ブルーム鋳片は、溶鋼を取鍋からタンディッシュを介して鋳型に注入し、鋳型内で凝固シェルを形成させた後、この凝固鋳片を鋳型下部から引き抜きつつ、鋳型下部に設置された2次冷却スプレー帯でさらに冷却することで製造している。   The bloom slab is obtained by injecting molten steel from a ladle into a mold through a tundish, forming a solidified shell in the mold, and then pulling out the solidified slab from the lower part of the mold while placing it on the lower part of the mold. Manufactured by further cooling in a cooling spray zone.

さらに連続鋳造されるブルーム鋳片の冷却に際しては、分塊再加熱時の鋳片表面割れを防止すべく、種々の冷却方法が提案されている。
特に、ブルーム鋳片の表層組織微細化を目的として、三次冷却と称し、連続鋳造機外でブルーム鋳片の冷却が実施されている。
Furthermore, various cooling methods have been proposed in order to prevent slab surface cracks during reheating of the slab when the bloom slab is continuously cast.
In particular, for the purpose of refining the surface structure of the bloom slab, it is called tertiary cooling, and the bloom slab is cooled outside the continuous casting machine.

例えば特許文献1では、所定長さに切断した後のブルーム鋳片を、連続鋳造機外のブルームクーラーで、Ar3変態点直上の温度域から、ブルーム鋳片上面の水量密度を5×10−4〜4×10−3m3/sm2で、上面に対する側面及び下面の水量密度比率を変化させて冷却する方法が開示されている。この方法によれば、冷却時に発生する全表面にわたる表面疵の発生を防止できると記載されている。
特開平10−1719号公報
For example, in Patent Document 1, the bloom slab after cutting to a predetermined length is subjected to a bloom cooler outside the continuous casting machine, and the water density on the upper surface of the bloom slab is set to 5 × 10 from the temperature range immediately above the Ar 3 transformation point. A method of cooling by changing the water density ratio of the side surface and the lower surface to the upper surface at 4 to 4 × 10 −3 m 3 / sm 2 is disclosed. According to this method, it is described that generation of surface flaws over the entire surface that occurs during cooling can be prevented.
Japanese Patent Laid-Open No. 10-1719

また、特許文献2では、連続鋳造機外のブルームクーラーを用いてAr3変態点直上の温度域から冷却する際に、ブルーム鋳片の移動速度を3〜10m/minにする冷却方法が開示されている。この方法によれば、表面欠陥が低減すると記載されている。
特開2005−40837号公報
Patent Document 2 discloses a cooling method in which the moving speed of the bloom slab is 3 to 10 m / min when cooling from a temperature range immediately above the Ar 3 transformation point using a bloom cooler outside the continuous casting machine. ing. According to this method, it is described that surface defects are reduced.
JP 2005-40837 A

前記特許文献1や特許文献2に記載された三次冷却は、ブルーム鋳片を単にAr3変態点直上の温度域から冷却し、復熱・分塊再加熱による組織微細化(γ粒微細化)を狙った冷却であり、割れ進展の防止・抑制に対しては効果的である。 The tertiary cooling described in Patent Document 1 and Patent Document 2 is that the bloom slab is simply cooled from the temperature range immediately above the Ar 3 transformation point, and the structure is refined by recuperation and reheating (granular grain refinement). This is effective for preventing and suppressing crack growth.

しかしながら、加熱時の表層と内部の温度差によって熱応力割れが発生したり、急冷されてマルテンサイト変態した部分が加熱時の膨張で割れる場合がある。また鋳造する鋼種による影響もある。   However, a thermal stress crack may occur due to a temperature difference between the surface layer and the inside during heating, or a portion that has been quenched and martensitic transformed may break due to expansion during heating. In addition, there is an influence by the cast steel type.

このように特許文献1や特許文献2に開示された三次冷却では、分塊圧延時に発生する鋳片表層割れを効果的に防止することができなかった。   As described above, the tertiary cooling disclosed in Patent Literature 1 and Patent Literature 2 cannot effectively prevent the slab surface layer cracking that occurs during the ingot rolling.

本発明が解決しようとする課題は、ブルーム鋳片を単にAr3変態点直上の温度域から冷却し、復熱・分塊再加熱による組織微細化を狙った従来の三次冷却では、分塊圧延時に発生する鋳片表層割れを効果的に防止できないという点である。 The problem to be solved by the present invention is that the bloom cast slab is simply cooled from the temperature range immediately above the Ar 3 transformation point, and in the conventional tertiary cooling aimed at refining the structure by reheating and re-heating of the lump, It is a point that the slab surface layer crack which generate | occur | produces sometimes cannot be prevented effectively.

発明者らは、連続鋳造されたブルーム鋳片の三次冷却において、ブルーム鋳片表層部に、特開2002−307149号公報に記載された不明瞭なγ粒界の凝固組織を存在させ、高温延性のある組織を形成させれば、前記従来の問題を解決できると考えた。   In the tertiary cooling of the continuously cast bloom slab, the inventors made the surface layer of the bloom slab have a solidified structure of an unclear γ grain boundary described in JP-A No. 2002-307149, and the high temperature ductility It was thought that the conventional problem could be solved by forming a certain structure.

すなわち、本発明のブルーム鋳片の冷却方法は、
連続鋳造されたブルーム鋳片を所定の長さに切断した後に、連続鋳造機外で冷却する方法であって、
ブルーム鋳片の表面温度が1000Kの場合の熱伝達率(W/m2・K)をHw、冷却帯(熱伝達率Hw)をブルーム鋳片が通過する時間(min)をTとした場合に、
前記ブルーム鋳片の表面温度がAr3変態点を超える温度から、
Cs=Hw×Tで定義される冷却強度Csが500〜2500(W・min/m2・K)の範囲となる条件で冷却することを最も主要な特徴としている。
That is, the cooling method of the bloom slab of the present invention,
A method of cooling outside a continuous casting machine after cutting a continuous cast bloom slab to a predetermined length,
When the surface temperature of the bloom slab is 1000K, the heat transfer coefficient (W / m 2 · K) is Hw, and the time (min) for the bloom slab to pass through the cooling zone (heat transfer coefficient Hw) is T. ,
From the temperature at which the surface temperature of the bloom slab exceeds the Ar 3 transformation point,
The most important feature is that the cooling is performed under the condition that the cooling strength Cs defined by Cs = Hw × T is in the range of 500 to 2500 (W · min / m 2 · K).

上記本発明のブルーム鋳片の冷却方法によれば、ブルーム鋳片表層部の数mmの範囲に、不明瞭なγ粒界の凝固組織を存在させて、高温延性のある組織を形成させることができる。従って、鋳片復熱過程での復熱割れ抑制、及び分塊再加熱による鋳片表層組織微細化による割れ進展抑制により、圧延時の鋳片表層割れを効果的に防止することができる。   According to the method for cooling a bloom slab according to the present invention, a solidified structure of an unclear γ grain boundary is present in the range of several mm of the surface part of the bloom slab, thereby forming a high-temperature ductile structure. it can. Therefore, it is possible to effectively prevent slab surface layer cracking during rolling by suppressing reheat cracking in the slab reheating process and suppressing crack progress by refining the slab surface layer structure by reheating the slab.

本発明のブルーム鋳片の冷却方法において、ブルーム鋳片の表面温度がAr3変態点を超える温度から冷却を開始することとしたのは、表面欠陥の起点となるフェライト組織を形成させないためである。 In the bloom slab cooling method of the present invention, the cooling is started from the temperature at which the surface temperature of the bloom slab exceeds the Ar 3 transformation point in order not to form a ferrite structure that is the origin of surface defects. .

また、本発明のブルーム鋳片の冷却方法において、Cs=Hw×Tで定義される冷却強度Csが500〜2500(W・min/m2・K)の範囲となる条件で冷却するのは、以下の理由による。 In the method for cooling a bloom slab according to the present invention, the cooling is performed under the condition that the cooling strength Cs defined by Cs = Hw × T is in the range of 500 to 2500 (W · min / m 2 · K). For the following reasons.

冷却強度Csの上下限値は、本発明の目的とするγ粒界不明瞭組織の厚みに相当し、本発明における三次冷却を実施し、目標とする組織が得られなければ意味がない。
従って、最適冷却条件として冷却強度Csの範囲が存在する。
The upper and lower limit values of the cooling strength Cs correspond to the thickness of the γ grain boundary unclear structure that is the object of the present invention, and are meaningless unless the tertiary cooling in the present invention is performed and the target structure is obtained.
Therefore, there exists a range of the cooling strength Cs as the optimum cooling condition.

発明者らの調査によれば、冷却強度Csが500未満の場合、十分な三次冷却が出来ないので、Ar3変態点を通過した後、復熱するまでの時間が短くなり、組織改質が不十分となる。 According to the investigation by the inventors, when the cooling strength Cs is less than 500, sufficient tertiary cooling cannot be performed. Therefore, after passing through the Ar 3 transformation point, the time until the reheating is shortened, and the structure reforming is performed. It becomes insufficient.

一方、冷却強度Csが2500を超える場合は、Ar3変態点を通過した後の復熱が不十分なため、急冷組織となって、特許文献1、2に記載の復熱+再加熱過程での割れが発生し易い組織となり、やはり目標とするγ粒界の不明瞭組織が得られない。 On the other hand, when the cooling strength Cs exceeds 2500, the recuperation after passing through the Ar 3 transformation point is insufficient, so that it becomes a rapidly cooled structure, and in the recuperation + reheating process described in Patent Documents 1 and 2. Therefore, the target γ grain boundary unclear structure cannot be obtained.

本発明では、必ずしもAr3変態点以上の温度まで復熱しなくても、γ粒界の不明瞭組織が形成されることが、発明者らの調査によって判明している。 In the present invention, the inventors have found that an unclear structure of γ grain boundaries is formed without necessarily reheating to a temperature not lower than the Ar 3 transformation point.

なお、前記特開2002−307149号に記載された方法は、鋳型直下で二次冷却を開始して鋳片表面温度をAr3変態点より一旦低下させ、その直後にAr3変態点より高い温度に復熱させるもので、冷却と複熱時間を規定したものである。この方法によれば、γ粒界に粒状のフェライト、パーライトを混合した組織を形成でき、不明瞭なγ粒界の凝固組織を得ることで、脆化温度領域で矯正しても、表面割れを防止できるようになると記載されている。 The method described in JP-A No. 2002-307149 starts secondary cooling directly under the mold to temporarily lower the slab surface temperature from the Ar 3 transformation point, and immediately after that, a temperature higher than the Ar 3 transformation point. In this method, cooling and double heat time are specified. According to this method, it is possible to form a structure in which granular ferrite and pearlite are mixed in the γ grain boundary, and to obtain a solidified structure of an unclear γ grain boundary. It is described that it can be prevented.

本発明によれば、三次冷却により、γ粒界に粒状のフェライト、パーライトの混合組織を生成させ、不明瞭なγ粒界凝固組織を得ることができるので、高温延性が増し、加熱膨張過程の割れを防止でき、分塊圧延時に発生する鋳片表層割れを防止することができる。   According to the present invention, by tertiary cooling, a mixed structure of granular ferrite and pearlite can be formed at the γ grain boundary, and an unclear γ grain boundary solidified structure can be obtained. Cracks can be prevented, and slab surface layer cracks that occur during block rolling can be prevented.

以下、本発明の着想から課題解決に至るまでの経過と共に、本発明を実施するための最良の形態例を、添付図面を用いて説明する。
発明者らは、本発明による着想を具体化するため、図1に示す試験装置を試作し、鋳片表層組織改質と冷却条件について調査した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings along with the progress from the idea of the present invention to the solution of a problem.
In order to embody the idea of the present invention, the inventors made a test apparatus shown in FIG. 1 and investigated the slab surface layer structure modification and cooling conditions.

なお、図1中の1はブルーム鋳片、2はブルーム鋳片1の移動速度を模擬するための駆動装置、3はブルーム鋳片1の長辺側と短辺側の各々片面のみに冷却水を噴射するための冷却スプレーである。   In FIG. 1, 1 is a bloom slab, 2 is a drive device for simulating the moving speed of the bloom slab 1, and 3 is cooling water on only one side of the long side and the short side of the bloom slab 1. It is a cooling spray for spraying.

実験は、下記表1に示す実施条件で、以下の手順で行った。
まず、下記表1の試験鋼種になるように成分及び温度を調整した溶鋼を用いて、ブルーム鋳片断面相当のインゴットを連続鋳造した。
The experiment was performed according to the following procedure under the implementation conditions shown in Table 1 below.
First, an ingot corresponding to the cross section of a bloom cast slab was continuously cast using molten steel whose components and temperature were adjusted so as to be the test steel types shown in Table 1 below.

その後、型抜きして図1に示す試験装置まで搬送した後、長辺側と短辺側の各々片面のみ、Ar3変態点以上の温度から、ブルーム鋳片1がスプレー冷却帯を通過する時間Tだけ、冷却スプレー3より冷却水を噴射して冷却した。冷却後は、冷却水の噴射を中止して復熱させた後(図2参照)、サンプルを切り出して組織を観察(再加熱試験を含む)した。 Thereafter, after die cutting and transporting to the test apparatus shown in FIG. 1, the time during which the bloom cast slab 1 passes the spray cooling zone from the temperature above the Ar 3 transformation point on only one side of the long side and the short side. Cooling water was sprayed from the cooling spray 3 for T only and cooled. After cooling, after cooling water injection was stopped and reheated (see FIG. 2), the sample was cut out and the structure was observed (including a reheating test).

ナイタール(HNO3:C2H5OH=10%:90%)でエッチングして現出させた鋳片表層組織の観察結果を図3及び図4に示す。また、この図3及び図4に示した凝固組織を得た場合における実験時の冷却条件を下記表2に示す。 FIGS. 3 and 4 show the observation results of the surface structure of the cast slab that has been exposed by etching with nital (HNO 3 : C 2 H 5 OH = 10%: 90%). Table 2 below shows the cooling conditions during the experiment when the solidified structure shown in FIGS. 3 and 4 was obtained.

なお、表2に示した冷却中の熱伝達率Hwは、ブルーム鋳片の表皮下25mmの位置にセットした埋め込み式熱電対により測定したブルーム鋳片の温度推移を基にして求めた。すなわち、前記温度推移から冷却による抜熱量を評価して得た図2に示すような冷却カーブを用い、スプレー冷却帯(熱伝達率Hw)をブルーム鋳片1が通過する時間(min)Tとの関係で組織調査(γ粒界不明瞭域出現)して求めた。   The heat transfer coefficient Hw during cooling shown in Table 2 was obtained based on the temperature transition of the bloom slab measured by an embedded thermocouple set at a position of 25 mm of the surface of the bloom slab. That is, using a cooling curve as shown in FIG. 2 obtained by evaluating the amount of heat removed by cooling from the temperature transition, the time (min) T during which the bloom slab 1 passes through the spray cooling zone (heat transfer coefficient Hw) and It was obtained by the structure investigation (appearance of γ grain boundary unclear area).

ブルーム鋳片が二次冷却帯通過時にAr3変態点以下にならないように冷却した後、連続鋳造機外で、Cs=Hw×Tで定義される冷却強度Csが1855.29(W・min/m2・K)となる条件で冷却した場合(発明例)は、図3のように表層4mmの範囲に目標とするγ粒界不明瞭組織が出現した。 After cooling the bloom slab so that it does not fall below the Ar 3 transformation point when passing through the secondary cooling zone, the cooling strength Cs defined by Cs = Hw × T is 1855.29 (W · min / When cooled under the condition of m 2 · K) (invention example), a target γ grain boundary unclear structure appeared in the range of the surface layer of 4 mm as shown in FIG.

一方、前記冷却強度Csが2600.01(W・min/m2・K)となる条件で冷却した場合(比較例)は、図4のように、鋳片表層に目標とするγ粒界不明瞭組織が出現しておらず、鋳片表層の粒界が明瞭である。 On the other hand, when cooling is performed under the condition that the cooling strength Cs is 2600.01 (W · min / m 2 · K) (comparative example), as shown in FIG. A clear structure does not appear, and the grain boundary of the slab surface layer is clear.

図5は、Cs=Hw×Tで定義される冷却強度Csと、組織改質厚み(γ粒界不明瞭組織)との関係を整理した図である。この図5に示すように、Ar3変態点を超える温度から開始する三次冷却の冷却条件、すなわち前記冷却強度Csが500〜2500(W・min/m2・K)の範囲となるように適正化することで、Nbの有無に係わらず、ブルーム鋳片の表層にγ粒界不明瞭組織が出現することが判明した。 FIG. 5 is a diagram in which the relationship between the cooling strength Cs defined by Cs = Hw × T and the structure modification thickness (gamma grain boundary unclear structure) is arranged. As shown in FIG. 5, the cooling condition of the third cooling starting from the temperature exceeding the Ar 3 transformation point, that is, the cooling strength Cs is appropriate to be in the range of 500 to 2500 (W · min / m 2 · K). It became clear that a γ grain boundary unclear structure appeared in the surface layer of the bloom cast slab regardless of the presence or absence of Nb.

本発明のブルーム鋳片の冷却方法は、以上の調査結果に基づいてなされたものであり、
連続鋳造されたブルーム鋳片を所定の長さに切断した後に、連続鋳造機外でスプレー冷却する方法であって、
ブルーム鋳片の表面温度が1000Kの場合の熱伝達率(W/m2・K)をHw、スプレー冷却帯(熱伝達率Hw)をブルーム鋳片が通過する時間(min)をTとした場合に、
前記ブルーム鋳片の表面温度がAr3変態点を超える温度から、
Cs=Hw×Tで定義される冷却強度Csが500〜2500(W・min/m2・K)の範囲となる条件で冷却するものである。
The method for cooling a bloom slab of the present invention is based on the above investigation results,
A method of spray-cooling outside a continuous casting machine after cutting a continuous cast bloom slab to a predetermined length,
When the surface temperature of the bloom slab is 1000K, the heat transfer coefficient (W / m 2 · K) is Hw, and the time (min) for the bloom slab to pass through the spray cooling zone (heat transfer coefficient Hw) is T In addition,
From the temperature at which the surface temperature of the bloom slab exceeds the Ar 3 transformation point,
Cooling is performed under conditions where the cooling strength Cs defined by Cs = Hw × T is in the range of 500 to 2500 (W · min / m 2 · K).

この本発明方法において、三次冷却における前記冷却強度Csの制御は、単に冷却水量で決定されるものではなく、如何にブルーム鋳片が冷却されたかが重要で、ブルーム鋳片に噴射する冷却水量(冷却水、エアー)と搬送テーブルの送り速度の制御によって行う。   In the method of the present invention, the control of the cooling strength Cs in the tertiary cooling is not simply determined by the amount of cooling water, it is important how the bloom slab is cooled, and the amount of cooling water (cooling) sprayed on the bloom slab is important. This is done by controlling the water and air) and the feed rate of the transfer table.

すなわち、前述の熱電対温度の推移から、冷却帯での熱伝達率Hwを推算し、ブルーム鋳片表面が冷却帯を通過する時間Tとの積で整理することで、γ粒界不明領域出現の最適条件を把握し、安定的に鋳片表層組織を改質することが可能となるのである。   That is, the heat transfer coefficient Hw in the cooling zone is estimated from the above-described transition of the thermocouple temperature, and the product is arranged by the product of the time T when the bloom slab surface passes through the cooling zone. Therefore, it is possible to grasp the optimum condition of the steel and to stably modify the slab surface layer structure.

発明者らは、本発明方法の効果を確認するために、ブルーム鋳片の表層組織改質と冷却強度Csの関係を用いて、実機操業の中で、鋳片表面疵初検合格率において、品質改善の効果を確認した。   In order to confirm the effect of the method of the present invention, the inventors used the relationship between the surface structure modification of the bloom slab and the cooling strength Cs, and in the actual machine operation, in the slab surface defect initial pass rate, The effect of quality improvement was confirmed.

下記表3に実機試験条件を、下記表4に冷却条件を、また図6に本発明の効果を示す初検合格率の比較を示す。   Table 3 below shows actual machine test conditions, Table 4 below shows cooling conditions, and FIG. 6 shows a comparison of the initial test pass rates showing the effects of the present invention.

図6に示すように、本発明方法を実施した場合の初検合格率は71.5%、本発明方法を実施しない場合の初検合格率は57.3%で、初検合格率として14.2%改善した。また改善率として約31%改善し、本発明による効果が立証された。   As shown in FIG. 6, the initial test pass rate when the method of the present invention is implemented is 71.5%, the initial test pass rate when the method of the present invention is not performed is 57.3%, and the initial test pass rate is 14%. Improved by 2%. The improvement rate was improved by about 31%, and the effect of the present invention was proved.

本発明は上記の例に限らず、請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in the claims.

例えば上記の例では、スプレーの熱伝達率Hwは、熱電対による測定温度を入力し、熱電対の深さ、材料特性などに基づいて計算した値を使用しているが、簡易的には、下記の(1)式、(2)式により求めることもできる(特別報告No.29、鋼材の強制冷却、社団法人日本鉄鋼協会、S53.11.10発行、p58)。   For example, in the above example, the heat transfer coefficient Hw of the spray uses the value calculated based on the thermocouple depth, material properties, etc., by inputting the temperature measured by the thermocouple. It can also obtain | require by following (1) Formula and (2) Formula (Special Report No. 29, forced cooling of steel materials, Japan Iron and Steel Institute, S53.11.10 issue, p58).

Hw=101.399・Tw−0.1358・W0.6293・V0.2734 …(1)
V=103.25・R0.35・P0.62・S0.52・H−0.4 …(2)
但し、V:流速(m/s)、R:水量/空気量、P:空気圧(kgf/cm2)、H:ノズル高さ(cm)、S:スリット幅(cm)、Tw:伝熱面温度(℃)、W:水量密度(リットル/min・m2
Hw = 10 1.399・ Tw -0.1358・ W 0.6293・ V 0.2734 … (1)
V = 10 3.25・ R 0.35・ P 0.62・ S 0.52・ H −0.4 (2)
However, V: Flow velocity (m / s), R: Water volume / Air volume, P: Air pressure (kgf / cm 2 ), H: Nozzle height (cm), S: Slit width (cm), Tw: Heat transfer surface Temperature (° C), W: Water density (L / min · m 2 )

上記(1)(2)式を用いて熱伝達率Hwを計算した結果を、図7に示す三次冷却時と、図8に示すミストスプレーによる冷却時の実験値に併記すると、実験値と推算値とでは略同等の熱伝達率が得られることが分かる。   The results of calculating the heat transfer coefficient Hw using the above formulas (1) and (2) are shown in the experimental values at the time of tertiary cooling shown in FIG. 7 and at the time of cooling by mist spray shown in FIG. It can be seen that a heat transfer coefficient substantially equal to the value can be obtained.

また本発明では、特に冷却強度Csとの関係が重要であるため、冷却帯から噴射する冷却水は、ミストスプレー、高圧スプレー等のどのような噴射態様で噴射したものでも良い。   In the present invention, since the relationship with the cooling strength Cs is particularly important, the cooling water sprayed from the cooling zone may be sprayed in any spraying manner such as mist spray or high pressure spray.

本発明は、実施例に示したような中炭素鋼ブルーム鋳片のみならず低炭素鋼ブルーム鋳片や高炭素鋼ブルーム鋳片の連続鋳造にも適用できる。   The present invention can be applied not only to the medium carbon steel bloom cast as shown in the examples, but also to continuous casting of low carbon steel bloom cast and high carbon steel bloom cast.

本発明方法の試験装置を説明する図ある。It is a figure explaining the test device of the method of the present invention. 実験に供した冷却パターンを示した図である。It is the figure which showed the cooling pattern used for experiment. 鋳片表層組織の観察結果を示した図で、目標とするγ粒界の不明瞭組織が得られた場合である。It is the figure which showed the observation result of slab surface layer structure, and is a case where the unclear structure of the target (gamma) grain boundary is obtained. 鋳片表層組織の観察結果を示した図で、目標とするγ粒界の不明瞭組織が得られなかった場合である。It is the figure which showed the observation result of slab surface layer structure, and is a case where the unclear structure of the target (gamma) grain boundary was not obtained. Cs=Hw×Tで定義される冷却強度Csと、組織改質厚み(γ粒界不明瞭組織)との関係を整理した図である。It is the figure which arranged the relationship between the cooling intensity | strength Cs defined by Cs = HwxT, and structure | tissue modification thickness (gamma grain boundary unclear structure). 本発明の効果を示す初検合格率の比較を示す図である。It is a figure which shows the comparison of the initial examination pass rate which shows the effect of this invention. 三次冷却時の熱伝達率Hwを計算した結果を示す図である。It is a figure which shows the result of having calculated the heat transfer rate Hw at the time of tertiary cooling. ミストスプレーによる熱伝達率hを示した図である。It is the figure which showed the heat transfer rate h by mist spray.

符号の説明Explanation of symbols

1 ブルーム鋳片
3 冷却スプレー
1 Bloom slab 3 Cooling spray

Claims (1)

連続鋳造されたブルーム鋳片を所定の長さに切断した後に、連続鋳造機外で冷却する方法であって、
前記ブルーム鋳片の表面温度がAr3変態点を超える温度から、
下記式で定義される冷却強度Csが500〜2500(W・min/m2・K)の範囲となる条件で冷却することを特徴とするブルーム鋳片の冷却方法。
Cs=Hw×T
ここで、Hw:ブルーム鋳片の表面温度が1000Kの場合の熱伝達率
(W/m2・K)
T:冷却帯(熱伝達率Hw)をブルーム鋳片が通過する時間(min)
A method of cooling outside a continuous casting machine after cutting a continuous cast bloom slab to a predetermined length,
From the temperature at which the surface temperature of the bloom slab exceeds the Ar 3 transformation point,
A cooling method for a bloom slab, wherein the cooling strength Cs defined by the following formula is cooled in a range of 500 to 2500 (W · min / m 2 · K).
Cs = Hw × T
Here, Hw: heat transfer coefficient when the surface temperature of the bloom slab is 1000K
(W / m 2・ K)
T: Time for the bloom slab to pass through the cooling zone (heat transfer coefficient Hw) (min)
JP2007106208A 2007-04-13 2007-04-13 Cooling method for bloom slab Active JP5416342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106208A JP5416342B2 (en) 2007-04-13 2007-04-13 Cooling method for bloom slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106208A JP5416342B2 (en) 2007-04-13 2007-04-13 Cooling method for bloom slab

Publications (2)

Publication Number Publication Date
JP2008261036A true JP2008261036A (en) 2008-10-30
JP5416342B2 JP5416342B2 (en) 2014-02-12

Family

ID=39983730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106208A Active JP5416342B2 (en) 2007-04-13 2007-04-13 Cooling method for bloom slab

Country Status (1)

Country Link
JP (1) JP5416342B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212736A (en) * 2010-04-01 2011-10-27 Sumitomo Metal Ind Ltd Method for cooling continuously cast bloom and method for producing the bloom
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2015193038A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of carbon steel
CN113518831A (en) * 2019-02-28 2021-10-19 杰富意钢铁株式会社 Slow cooling cover and cooling method for cast piece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212736A (en) * 2010-04-01 2011-10-27 Sumitomo Metal Ind Ltd Method for cooling continuously cast bloom and method for producing the bloom
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2015193038A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of carbon steel
CN113518831A (en) * 2019-02-28 2021-10-19 杰富意钢铁株式会社 Slow cooling cover and cooling method for cast piece
CN113518831B (en) * 2019-02-28 2023-02-28 杰富意钢铁株式会社 Slow cooling cover and cooling method for cast piece

Also Published As

Publication number Publication date
JP5416342B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP6369571B2 (en) Continuous casting method for slabs
JP2008100249A (en) Continuous casting method and continuous casting equipment for steel
JP5416342B2 (en) Cooling method for bloom slab
JP3622687B2 (en) Steel continuous casting method
JP3705101B2 (en) Continuous casting method
JP2007181861A (en) Continuously cast slab
JP2011224649A (en) Continuous casting method of steel
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP5999294B2 (en) Steel continuous casting method
JP2002307149A (en) Continuous casting method
JP2018099704A (en) Continuous casting method for steel
JP6245139B2 (en) Thick steel plate for sour welded steel pipe excellent in scale peel resistance, method for producing the same, and welded steel pipe
JP3453990B2 (en) Cooling method for continuous casting bloom
JP2006205241A (en) Continuous casting method for steel
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JP2003181608A (en) Method for cooling bloom outside continuous casting machine
JPS63168260A (en) Hot working method for continuously cast billet
JP3406459B2 (en) Cooling method for continuous casting bloom
JP4021245B2 (en) Heating method for continuous casting bloom
JP2022183765A (en) Continuous casting method for steel
JPH06246414A (en) Continuous casting of high carbon steel
JP2004330275A (en) Blooming mill operation method of continuous casting bloom for preventing occurrence of surface defect
JP2005211974A (en) Method for manufacturing low-carbon case hardening steel piece of cast for reducing surface flaw of rolled slab
JPS62156056A (en) Continuous casting method for low alloy steel
JP2023141895A (en) CONTINUOUS CASTING METHOD OF Cu-CONTAINING STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350