JPS62156056A - Continuous casting method for low alloy steel - Google Patents

Continuous casting method for low alloy steel

Info

Publication number
JPS62156056A
JPS62156056A JP29532285A JP29532285A JPS62156056A JP S62156056 A JPS62156056 A JP S62156056A JP 29532285 A JP29532285 A JP 29532285A JP 29532285 A JP29532285 A JP 29532285A JP S62156056 A JPS62156056 A JP S62156056A
Authority
JP
Japan
Prior art keywords
weight
temperature
casting
continuous casting
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29532285A
Other languages
Japanese (ja)
Inventor
Shoji Miyagawa
宮川 昌治
Kenichiro Suzuki
健一郎 鈴木
Masao Oguchi
征男 小口
Kenji Murata
村田 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29532285A priority Critical patent/JPS62156056A/en
Publication of JPS62156056A publication Critical patent/JPS62156056A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve surface characteristic quality of casting bloom by adding Ti in a continuous casting of low alloy steel having Nb, Al, etc., and also adjusting a relation between Ti and N contents to the specified condition, and so on. CONSTITUTION:In the continuous casting of the low alloy steel having 0.5-2.0wt% Mn, <=0.5wt% Cu, <=0.1wt% Nb, <=0.08wt% Al, etc., contents, the steel further adds Ti under adjusting Ti and N concn. % [Ti], [N] so as to meet to equations I, II, III respectively. Further, operational condition is settled, so as to come to >=600 deg.C for charging temp. into a reheat furnace. As a product and ratio and ratio of Ti concn. and N concn. to the N concn. is settled under suitable condition, the casting under avoiding a brittle range of the casting bloom is executed. Therefore, generation of longitudinal and traversed crackings is prevented and also surface characteristic quality of the casting bloom is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連鋳鋳片の表面割れ防止方法に関する。 〔従来の技術〕 連鋳スラブやブルームの表面には介在物や気泡のほか種
々の割れが発生する。これらの欠陥のうち介在物や気泡
の除去は最近の技術の進歩によりほぼ解決されている。 割れについても大半はその防止法が明確にされているが
、鋳片表面にPJ造力方向平行に発生する縦割れやこれ
と直角方向でオフシレージョンマークの個所に発生する
J&Mttについては依然として未解決の点が多い。こ
れらの割れの防止に対し、 ■ オフシレージョンマークを浅くするよう振動条件を
変更すること、 ■ モールド内を中心とする初期凝固域を緩冷却とする
こと、 ■ 連鋳機内でのスプレーやロールによる鋳片の冷却も
可及的に緩やかにすること、 ■ 鋳片を変形させるベンディング点、アンベンディン
グ点や矯正点の温度をγ→α変態温度付近の脆化域から
低温側や高温側にはずすこと、などが効果を発揮するこ
とが主として実験的に明らかにされつつある。、(特開
昭58−22411しかしながら、これらの技術のうち
、実際の連PI機に適用しうるまで定量的に具体化され
ているものは少ない、本発明は、とくに、上記■に関し
て新規な技術を間隙するものである。 一般の連続鋳造においては鋼中の炭素、酸素、硫黄、窒
素、アルミニウム、のほか特殊微量添加元素が割れの発
生程度にかなり影響することが知られている。このなか
で、酸素と硫黄はioo。 ℃以上での脆性に富与するが、一般に連鋳用素材では問
題にならないほど低く管理されている。炭素は主要な合
金元素であるが、0.09〜0.16重量%の炭素を含
有する連鋳素材ではモールド内での初期凝固に際し凝固
シェルに凹凸ができやすく、これがオツシレーションマ
ークと重なり合うと歪み集中点として働くため、極めて
割れ感受性が高くなることが知られている。このため、
しばしばこの炭素濃度域をはずした成分系として鋳造す
ることが行われる。しかしながら、本願の係る0、2〜
0.4%Cの場合でも、このような現象はやや軽微とな
るものの鋳片表面欠陥の問題点が依然として残存するこ
とは言うまでもない。 一方、窒素、アルミニウムや特殊微量添加は1焚窒化物
の形成に関与している。これらの炭窒化物は1300℃
付近から析出を開始し、連鋳機内でのスプレィ水やロー
ルによる冷却と鋳片の熱含量により昇温、降温の熱サイ
クルを繰り返す途中で急速に析出する。勿論、γ粒界は
凝固時の溶質分布において、これらの析出に関与する成
分が濃化した個所を中心として生じ、粒界拡散も速やか
なため、γ粒界への析出が優先するものである。この結
果、連鋳機内で不可避的に鋳片に変形を与える温度域で
はγ粒界に多数の微細な析出物が発生しており、γ粒界
に変形にともなうボイドが形成され粒界割れに至ること
となる。また、γ粒界に初析フェライトが析出すると、
フェライトとオーステナイトの高温強度を比較したとき
前者が格段に弱いため、粒界割れが著しくなる。 このように粒界に初析フェライトが析出し、Cuなどの
成分が濃化し、さらに炭窒化物が集積している場合には
連鋳機内での鋳片変形時の割れのほか、熱間圧延前の均
熱などに際して生じる熱応力も、しばしば鋳片の縦割れ
を誘発することが知られている。 〔発明が解決しようとする問題点〕 このような現状を打開すべ〈発明者らは多種のマイクロ
アロイイング成分について検討し、窒素含有量を0.0
05重量%以下とし、0.005〜0.05重量%以下
のチタンを添加することが著効を示し、特に窒素含有量
に応じてチタンの濃度を調整することにより連鋳鋳片の
表面欠陥が極めて小さくなるという新規な知見を見い出
した。さらに、連鋳鋳片を冷却せず直接に加熱炉に装入
し、熱間圧延に供するに際し、加熱炉装入前の鋳片の温
度が600℃以上となるように連鋳機の冷却条件を制御
することが鋳片の割れを回避する上で重要なことが明ら
かとなった。 本発明はこのような知見に基いて連鋳鋳片の表面割れ防
止に効果的な新技術を提供することを目的とする。 〔問題点を解決するための手段〕 本発明は連鋳鋳片の表面割れ防止方法であって、その技
術手段として、 C:0.2〜0.4重量% Si:0.50重量%以下 Mn : 0.5〜2−0重量% Cu:0.5重量%以下 Nb:0.1重量%以下 A見: 0.08重量%以下 その他不可避的不純物 を含む鋼の連続鋳造に当り、Nの含有量をo、 o o
 s重量%以下とし、N含有量に応じてTiを添加する
。 すなわちTiとNの濃度を [N]=0.005以下 で、かつ [Til  X  [N] =(0,5〜10)XIO−5 [T i ] /  [N]  = 1.5〜lOに調
整し、熱間圧延前の加熱炉へ装入する際の温度を600
℃以上となるよう冷却条件を設定して鋳造することを特
徴とする。 但し[Til、[N]はそれぞれTi、Nの重量%であ
る。 〔作用〕 含Ti鋼ではTiNやTiCの析出が、A文、Nb、V
などの炭化物、窒化物の析出に優先して起るがその程度
をこれまでの知見から予測することは困難である。これ
は、前述のように凝固時の成分偏析とともに析出のため
の過飽和度が鋳造条件により変化するためである。 そこで木発明者らはまず、 C:0.2〜0.4重量% Si:0.05〜0.50重量% Mn  : 0.5〜2.0重量% Cu:0.5重量%以下 N b : 0.1重量%以下 Ai:0.08重量%以下 の鋼にTiを0.005〜0.05重量%添加し、連R
鋳片の表層部と同等の凝固条件で凝固させて鋼中の析出
物といわゆる連続鋳造プロセスにおける750°C付近
の脆化域の高温延性を調査した。 その結果、Nb無添加でTi添加材の場合T i Cは
TiNに比べて極めて析出頻度が少なくて、実質的な析
出物はTiNと見て良いことが判明した。また、Nb添
加を行うと析出物はNbの微細な炭窒化物がオーステナ
イト粒界あるいはその近傍にクラスタ状に析出し、高温
引張り試験ではオーステナイト粒界のフィルム状初析フ
ェライト部、あるいは同フィルム状初析フェライト部近
傍の該クラスタ状析出物集合域を起点として破断が進行
するのに対し、これにTiの添加を行うとクラスタ状N
b炭窒化物はTiとNbを含む、非クラスタ状炭窒化物
に変化し、十−ステナイト粒界のフィルム状初析フェラ
イトと粒内のベイナイトなどの焼入れ組織からなる組織
から、フェライト−パーライト組織へと変化し、オース
テナイト粒界を起点とする破断は認め難くなり高温延性
が、著しく改善されることが知見された。 勿論、含Ti−Nb炭窒化物中のTiとNbの構成比率
はTi濃度の増加にともない増大し。 析出物の形態が変化するものである。また、含Ti−N
b炭窒化物中の炭素と窒素の構成比率は決定が困難であ
るが、鋼中のTi、Nb、C,Nの濃度と凝固条件に依
存するものと考えられる。 したがって、このような析出物が析出した後に鋼中に残
存するTi、Nb、C,Nの濃度を決定することは極め
て困難である。 そこで、750℃付近のいわゆる高温脆化域における該
鋼材の延性を含Nb鋼、さらには含Nb−Cu鋼につい
て調べ、TiとNの濃度が脆化域における高温延性に及
ぼす影響を把握して実質的に有効なTi添加量を決定す
ることに努めた。その結果を第1図に示す、第1図は含
Nb鋼に関してTiとNの濃度図上に高温引張り破断後
の断面減少率(%)(以下R,A、と記す)をO印で囲
んでプロットしたものである。 第1図から連続鋳造工程で横割れを実質的に発生しない
R,A、≧60%の領域を求めると、次の通りである。 [N]≦0.005 0.5X10””5≦[Til X [N]≦10XI
O−5 1,5< [T i] / [N]≦10ここで[N]
、[TilはそれぞれN、Tiの重量%を示す。 なお、T i / N e変化の上限よりもTi濃度の
大なる領域においても一部表面欠陥の防止に好ましい領
域の存在も認められたが、Ti/N5度比の上限よりも
Ti5度が高い場合には以下のような難点があることが
判明している。  1)Tiが過剰の場合、鋼材の機械的性質に対する影響
を無視できない。 2)  Tiが過剰の場合、連続鋳造用ノズルの閉塞や
連続鋳造用パウダー中へのTi化合物の濃化のためパウ
ダーの物性が劣化し、しばしばこのだめの鋳片表面欠陥
が生じ、操業を阻害することがある。 一方、含Nb鋼にCuが加わるとR,A、が著し?低下
する。さらに、連鋳鋳片の表面割れを防止するには連鋳
機内のスプレィ冷却など鋳片表面の熱履歴が特に東要で
あって、連PI機内での鋳片表面の温度がスプレィ冷却
により低下し、ついで復熱し、さらにロールと接触して
また低下する間で鋳片表面温度の最大値と最小値間の差
が過大であり、かつ鋳片矯正時の温度が低過ぎると連鋳
機内で割れが発生し、仮に割れが発生しない場合でも、
熱間圧延前の加熱炉へ装入するに際しての鋳片表面温度
が低過ぎると昇熱時に鋳片に発生する熱応力により粒界
を中心として鋳造方向に割れが進展することを知見した
。鋳造終了後加熱炉に至る過程での本発明に係る組成の
鋼の鋳片表面温度の最低値と圧延後の製品割れ発生率の
関係を調査したところ、鋳片表面温度が530〜560
℃以上で加熱炉に装入して再加熱すると割れの発生が全
く認められないことが判明した。 ここで、熱応力計算の結果ならびに鋼の高温延性に関す
る実験室的検討の結果について述べると、ます熱応力計
算に関してはサイズ400X560mm断面の連n鋳片
を仮定し、鋳造後常温に至るまでの鋳片表面に働く応力
の推移を求めたところ鋳片表面温度が550℃の時点で
割れを誘起する方向の引張応力が極大値を示すことが分
った。さらに、鋼の高温延性についての実験結果に関し
ては、熱応力計算と同様、実機連鋳機での鋳片熱履歴に
相当する熱サイクルを供試鋼(化学組成 C!;L:0
.25重量%、Si:0.30重量%、Mn:1.30
重量%、Cu:0.30重量%、Nb:0.030重量
%)に付与した後、高温引張試験を行ったところ、鋳片
の冷却過程において650〜550℃にかけて高温延性
の急激な低下、具体的には断面減少率にして20%の低
下が観察された。これらの検討結果は、鋳片の表面温度
が600°C以下に冷却されると、鋼の高温延性が低下
し、かつ鋳片表面に働く引張応力が増加するため、表面
欠陥に対し極めて悪い条件になることを意味し、実機で
の操業実績を説明するところのものである。 このような割れの発生に関して試験を行った結果を要約
すると、連鋳機内での横割れは前述のTi添加によりほ
ぼ防止できるが、さらに鋳片矯正時の温度を900°C
以上とすることが好ましいこと、また加熱炉へ装入する
際の鋳片表面温度が550℃よりも低下するとT i 
gS加を行なわなければ巨大な縦割れが発生するが、T
iを添加すると縦割れは著しく小さくなるものの完全に
防止することは困難であり、割れのない鋳片の製造には
、Tiを添加しかつ加熱炉装入温度を600℃以上とす
ることが必要である。 〔実施例〕 200T転炉−RH真空精錬−湾曲型連鋳機により種々
の組成の鋼を鋳造した。 実験は断面寸法400X560mmのプルームを鋳造速
度0.4〜0.5m/minで鋳造し、鋳片の曲げおよ
び矯正点の温度が800℃以上となるように主として連
鋳機内のスプレィ水の鋳造方向の分布により調整した。 すなわち単位重量当りの水量は1.0〜1.51/kg
@5teelの範囲とした。 これにより鋳片を加熱炉へ装入する際の温度を600℃
以上に保つことができ、実際の温度は600〜650℃
であった。 なお、オフシレージョンのサイクルは1分間100回、
ストロークは6mmとした。鋳造後、定常鋳込み、定常
冷却を受けた鋳片を鋳造長さ約10m分をスカーフして
、鋳片表面から4mmまでのブルーム表面欠陥を調べ、
割れの大きさ、発生頻度を定量化した。 なお、鋳造した鋼の組成は、 C:0.2〜0.4重量% Si:0.50重量%以下 Mn : 0.5〜2.0重量% Nb:0.1重量%以下 Cu:0.5重量%以下 A文: O,Oa重量%以下 であるが、鋳片の表面割れはc<o、oa重量%、ある
いはNb<0.01玉i%では相対的に少なく、第2図
にはこれらのC,Nbの濃度範囲の鋼に対する結果を除
いて表示している。なお、該濃度範囲内であっても本発
明の効果は認められることは確認済である。 第2図中
の割れの指数は0〜100であって、0〜5であれば鋳
片の手入れを省略して熱間圧延工程に直送することが可
能、5〜20では鋳片の軽微な手入れ、20〜70では
鋳片の乗手入れが必要とされる。なお、該指数70以上
では廃用とせざるを得ない。 すなわち、第1図のT i −N濃度図上に特定された
濃度域は実際の連鋳機による鋳片の製造時にも表面欠陥
の少ない鋳片を得る上で極めて有効であることが第2図
において実証されたこととなる。 〔発明の効果〕 本発明により、連続鋳造に際し表面性状の極めて優れた
鋳片を得ることができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preventing surface cracks in continuously cast slabs. [Prior Art] Inclusions, bubbles, and various other cracks occur on the surfaces of continuously cast slabs and blooms. Among these defects, removal of inclusions and bubbles has been almost completely solved by recent technological advances. Prevention methods for most cracks have been clarified, but there are still unknowns regarding vertical cracks that occur on the slab surface parallel to the PJ force direction and J&Mtt that occur at the off-sill mark in a direction perpendicular to this. There are many points to be resolved. To prevent these cracks, ■ change the vibration conditions to make the off-sillage mark shallower, ■ slowly cool the initial solidification area centered on the inside of the mold, ■ use spray or rolls in the continuous casting machine. ■ The temperature at the bending point, unbending point, and straightening point where the slab is deformed should be changed from the brittle region near the γ→α transformation temperature to the low or high temperature side. It is becoming clear, mainly through experiments, that removing the hair, etc., is effective. , (Unexamined Japanese Patent Publication No. 58-22411) However, few of these techniques have been quantitatively realized to the extent that they can be applied to an actual continuous PI machine. It is known that in general continuous casting, carbon, oxygen, sulfur, nitrogen, aluminum, and other special trace elements added to the steel significantly affect the degree of cracking. Oxygen and sulfur contribute to brittleness at temperatures above 100°F, but they are generally kept so low that they do not pose a problem in materials for continuous casting.Carbon is a major alloying element, but Continuously cast materials containing 16% carbon tend to have irregularities in the solidified shell during initial solidification in the mold, and when these overlap with the oscillation marks they act as strain concentration points, making the material extremely susceptible to cracking. known. For this reason,
Casting is often performed as a component system outside this carbon concentration range. However, according to the present application, 0, 2~
Needless to say, even in the case of 0.4% C, although such a phenomenon becomes somewhat slight, the problem of surface defects of the slab still remains. On the other hand, nitrogen, aluminum, and special trace additions are involved in the formation of single-fire nitrides. These carbonitrides are heated to 1300℃
Precipitation starts in the vicinity, and rapidly precipitates during the repeated thermal cycle of temperature rise and fall due to cooling by spray water and rolls in the continuous casting machine and the heat content of the slab. Of course, γ grain boundaries occur mainly in areas where the components involved in precipitation are concentrated in the solute distribution during solidification, and grain boundary diffusion is rapid, so precipitation at γ grain boundaries takes priority. . As a result, many fine precipitates are generated at the γ grain boundaries in the temperature range where slabs are unavoidably deformed in the continuous caster, and voids are formed at the γ grain boundaries due to deformation, leading to intergranular cracking. It will be reached. In addition, when pro-eutectoid ferrite precipitates at the γ grain boundaries,
When comparing the high-temperature strengths of ferrite and austenite, the former is much weaker, resulting in significant intergranular cracking. In this way, pro-eutectoid ferrite is precipitated at the grain boundaries, components such as Cu are concentrated, and carbonitrides are further accumulated. It is known that thermal stress generated during prior soaking and the like often induces vertical cracking in slabs. [Problems to be solved by the invention] In order to overcome this current situation, the inventors studied various types of microalloying components and reduced the nitrogen content to 0.0.
Adding titanium in an amount of 0.05% by weight or less, and adding titanium in an amount of 0.005 to 0.05% by weight or less has shown remarkable effects, and in particular, by adjusting the concentration of titanium according to the nitrogen content, surface defects in continuously cast slabs can be reduced. discovered a new finding that the Furthermore, when continuously cast slabs are directly charged into a heating furnace without being cooled and subjected to hot rolling, the cooling conditions of the continuous casting machine are set so that the temperature of the slabs before charging into the heating furnace is 600°C or higher. It has become clear that controlling this is important in avoiding cracking of slabs. Based on this knowledge, the present invention aims to provide a new technique that is effective in preventing surface cracks in continuously cast slabs. [Means for solving the problems] The present invention provides a method for preventing surface cracking of continuously cast slabs, and the technical means thereof include: C: 0.2 to 0.4% by weight Si: 0.50% by weight or less Mn: 0.5 to 2-0% by weight Cu: 0.5% by weight or less Nb: 0.1% by weight or less A: 0.08% by weight or less When continuously casting steel containing other unavoidable impurities, N The content of o, o o
s weight % or less, and Ti is added according to the N content. That is, the concentrations of Ti and N are set to [N] = 0.005 or less, and [Til X [N] = (0,5 to 10) Adjust the temperature when charging into the heating furnace before hot rolling to 600℃.
It is characterized by casting by setting cooling conditions so that the temperature is at least ℃. However, [Til and [N] are the weight percent of Ti and N, respectively. [Function] In Ti-containing steel, precipitation of TiN and TiC occurs in A, Nb, and V
It occurs preferentially to the precipitation of carbides and nitrides such as carbides, but it is difficult to predict the extent from the knowledge so far. This is because, as described above, the degree of supersaturation for precipitation changes depending on the casting conditions as well as component segregation during solidification. Therefore, the wood inventors first set the following conditions: C: 0.2-0.4% by weight Si: 0.05-0.50% by weight Mn: 0.5-2.0% by weight Cu: 0.5% by weight or lessN b: 0.1% by weight or less Ai: 0.08% by weight or less of steel with 0.005 to 0.05% by weight of Ti added, and R
The steel was solidified under the same solidification conditions as the surface layer of the slab, and the precipitates in the steel and the high-temperature ductility of the embrittlement region around 750°C in the so-called continuous casting process were investigated. As a result, it was found that in the case of a material with no Nb added and Ti added, T i C precipitates extremely less frequently than TiN, and the substantial precipitates can be considered to be TiN. Furthermore, when Nb is added, fine carbonitrides of Nb precipitate in clusters at or near austenite grain boundaries, and in high-temperature tensile tests, the precipitates are film-like pro-eutectoid ferrite parts at austenite grain boundaries, or the same film-like precipitates. Fracture progresses starting from the cluster-like precipitate collection area near the pro-eutectoid ferrite part, but when Ti is added to this, cluster-like N
b Carbonitrides change to non-clustered carbonitrides containing Ti and Nb, and change from a structure consisting of a film-like pro-eutectoid ferrite at deca-stenite grain boundaries and a quenched structure such as bainite within the grains to a ferrite-pearlite structure. It was found that fractures originating from austenite grain boundaries became difficult to recognize, and high-temperature ductility was significantly improved. Of course, the composition ratio of Ti and Nb in the Ti--Nb carbonitride increases as the Ti concentration increases. The form of the precipitate changes. In addition, Ti-N
Although it is difficult to determine the composition ratio of carbon and nitrogen in carbonitrides, it is thought to depend on the concentrations of Ti, Nb, C, and N in the steel and the solidification conditions. Therefore, it is extremely difficult to determine the concentrations of Ti, Nb, C, and N remaining in the steel after such precipitates have separated out. Therefore, we investigated the ductility of the steel in the so-called high-temperature embrittlement region around 750°C for Nb-containing steel and Nb-Cu steel to understand the influence of Ti and N concentrations on the high-temperature ductility in the embrittlement region. Efforts were made to determine a substantially effective amount of Ti added. The results are shown in Figure 1. Figure 1 shows the area reduction rate (%) (hereinafter referred to as R, A) after high-temperature tensile fracture (hereinafter referred to as R, A) surrounded by O marks on the Ti and N concentration diagram for Nb-containing steel. This is what was plotted. From FIG. 1, the region where R and A are ≧60% in which transverse cracks do not substantially occur during the continuous casting process is determined as follows. [N]≦0.005 0.5X10''5≦[Til X [N]≦10XI
O-5 1,5< [T i] / [N]≦10 where [N]
, [Til indicates the weight percent of N and Ti, respectively. It should be noted that even in the region where the Ti concentration is higher than the upper limit of the Ti/N e change, the existence of a region favorable for preventing surface defects was also observed, but the Ti5 degree is higher than the upper limit of the Ti/N5 degree ratio. In this case, the following difficulties have been found. 1) When Ti is excessive, the influence on the mechanical properties of steel cannot be ignored. 2) If Ti is in excess, the physical properties of the powder deteriorate due to clogging of the continuous casting nozzle and concentration of Ti compounds in the continuous casting powder, which often causes surface defects in the cast slab and hinders operations. There are things to do. On the other hand, when Cu is added to Nb-containing steel, R and A become significant? descend. Furthermore, in order to prevent surface cracking of continuously cast slabs, the thermal history of the slab surface is particularly important, such as spray cooling in the continuous casting machine, and the temperature of the slab surface in the continuous PI machine is reduced by spray cooling. However, if the difference between the maximum and minimum surface temperature of the slab is too large during the time when it recuperates, then comes into contact with the rolls and then decreases again, and the temperature during straightening of the slab is too low, it will cause problems in the continuous casting machine. Cracks occur, and even if no cracks occur,
It has been found that if the surface temperature of the slab is too low when it is charged into the heating furnace before hot rolling, cracks will propagate in the casting direction centering on the grain boundaries due to the thermal stress generated in the slab during heating. When investigating the relationship between the minimum value of the surface temperature of the slab of steel having the composition according to the present invention during the process leading to the heating furnace after completion of casting and the incidence of product cracking after rolling, it was found that the surface temperature of the slab was between 530 and 560.
It was found that no cracking was observed when the material was charged into a heating furnace and reheated at temperatures above ℃. Here, we will discuss the results of thermal stress calculations and the results of laboratory studies regarding the high-temperature ductility of steel. Regarding thermal stress calculations, we assume a continuous slab with a cross section of 400 x 560 mm, and When the transition of stress acting on one surface was determined, it was found that the tensile stress in the direction that induces cracking reaches its maximum value when the slab surface temperature reaches 550°C. Furthermore, regarding the experimental results regarding the high-temperature ductility of steel, similar to the thermal stress calculation, a thermal cycle corresponding to the thermal history of the slab in an actual continuous casting machine was applied to the test steel (chemical composition C!; L: 0).
.. 25% by weight, Si: 0.30% by weight, Mn: 1.30
When a high-temperature tensile test was carried out after adding 0.30% by weight, Cu: 0.30% by weight, and 0.030% by weight Nb, it was found that during the cooling process of the slab, there was a sudden decrease in high-temperature ductility from 650 to 550°C. Specifically, a decrease of 20% in area reduction rate was observed. These study results indicate that when the surface temperature of the slab is cooled to below 600°C, the high-temperature ductility of the steel decreases and the tensile stress acting on the slab surface increases, creating extremely poor conditions for surface defects. It is meant to explain the operational results of actual equipment. To summarize the results of tests regarding the occurrence of such cracks, horizontal cracks in the continuous casting machine can be almost prevented by adding Ti, but the temperature during straightening of slabs is further increased to 900°C.
It is preferable that the temperature is above 550°C, and that if the surface temperature of the slab when charging it into the heating furnace falls below 550°C, T i
If gS is not applied, huge vertical cracks will occur, but T
Adding i significantly reduces vertical cracks, but it is difficult to prevent them completely, and to produce crack-free slabs, it is necessary to add Ti and set the heating furnace charging temperature to 600°C or higher. It is. [Example] Steels of various compositions were cast using a 200T converter-RH vacuum refining-curved continuous caster. In the experiment, a plume with a cross-sectional dimension of 400 x 560 mm was cast at a casting speed of 0.4 to 0.5 m/min, and the casting direction of the spray water in the continuous casting machine was mainly controlled so that the temperature at the bending and straightening point of the slab was 800°C or higher. Adjusted according to the distribution of In other words, the amount of water per unit weight is 1.0 to 1.51/kg
The range was @5teel. This allows the temperature when charging the slab into the heating furnace to 600℃.
The actual temperature is 600-650℃.
Met. The off-sillage cycle is 100 times per minute.
The stroke was 6 mm. After casting, the slab that had been subjected to steady casting and steady cooling was scarfed for a casting length of approximately 10 m, and bloom surface defects up to 4 mm from the slab surface were examined.
The size and frequency of cracks were quantified. The composition of the cast steel is as follows: C: 0.2-0.4% by weight Si: 0.50% by weight or less Mn: 0.5-2.0% by weight Nb: 0.1% by weight or less Cu: 0 .5% by weight or less Sentence A: O, Oa is less than % by weight, but the surface cracking of the slab is relatively small when c<o, oa% by weight, or Nb<0.01% by weight, as shown in Figure 2. The results are shown excluding the results for steel with these C and Nb concentration ranges. It has been confirmed that the effects of the present invention can be observed even within this concentration range. The cracking index in Figure 2 is from 0 to 100, and if it is 0 to 5, the slab can be sent directly to the hot rolling process without any maintenance, and if it is 5 to 20, it is possible to send the slab directly to the hot rolling process. Maintenance: 20 to 70 requires maintenance of the slab. Note that if the index exceeds 70, it must be discontinued. In other words, the second finding is that the concentration range specified on the T i -N concentration diagram in FIG. 1 is extremely effective in obtaining slabs with few surface defects even when manufacturing slabs using an actual continuous casting machine. This is proven in the figure. [Effects of the Invention] According to the present invention, slabs with extremely excellent surface properties can be obtained during continuous casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は750℃における高温引張り試験結果を示すグ
ラフ、第2図は連鋳鋳片の横割れ指数を示すグラフであ
る。
FIG. 1 is a graph showing the results of a high-temperature tensile test at 750° C., and FIG. 2 is a graph showing the transverse cracking index of continuously cast slabs.

Claims (1)

【特許請求の範囲】 1 C:0.2〜0.4重量% Si:0.50重量%以下 Mn:0.5〜2.0重量% Cu:0.5重量%以下 Nb:0.1重量%以下 Al:0.08重量%以下 を含む鋼の連続鋳造に当り、Tiを添加すると共に、T
iとNのそれぞれの濃度[Ti]重量%、[N]重量%
を [N]=0.005以下 [Ti]×[N] =(0.5〜10)×10^−^5 [Ti]/[N]=1.5〜10 に調整し、熱間圧延前の加熱炉へ装入する際の温度を6
00℃以上となるよう操業条件を設定して鋳造すること
を特徴とする連鋳鋳片の表面割れ防止方法。
[Claims] 1 C: 0.2-0.4% by weight Si: 0.50% by weight or less Mn: 0.5-2.0% by weight Cu: 0.5% by weight or less Nb: 0.1 When continuously casting steel containing Al: 0.08% by weight or less, Ti is added and T
Respective concentrations of i and N [Ti] weight %, [N] weight %
[Ti] × [N] = (0.5 to 10) The temperature when charging into the previous heating furnace is 6
A method for preventing surface cracks in continuously cast slabs, characterized by casting under operating conditions such that the temperature is 00°C or higher.
JP29532285A 1985-12-27 1985-12-27 Continuous casting method for low alloy steel Pending JPS62156056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29532285A JPS62156056A (en) 1985-12-27 1985-12-27 Continuous casting method for low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29532285A JPS62156056A (en) 1985-12-27 1985-12-27 Continuous casting method for low alloy steel

Publications (1)

Publication Number Publication Date
JPS62156056A true JPS62156056A (en) 1987-07-11

Family

ID=17819113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29532285A Pending JPS62156056A (en) 1985-12-27 1985-12-27 Continuous casting method for low alloy steel

Country Status (1)

Country Link
JP (1) JPS62156056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979558A (en) * 1988-03-09 1990-12-25 Nippon Steel Corporation Process for preparation of a casting having MnS dispersed and uniformly and finely precipitated therein
CN103469093A (en) * 2013-08-15 2013-12-25 甘肃酒钢集团宏兴钢铁股份有限公司 Molybdenum-containing stainless steel and smelting method thereof
CN110643886A (en) * 2019-10-15 2020-01-03 云南德胜钢铁有限公司 Low-alloy-ratio steelmaking method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141526A (en) * 1974-05-01 1975-11-14
JPS5113311A (en) * 1974-07-24 1976-02-02 Nippon Steel Corp RENZOKUCHUZOCHUHENYORINO HOOROOYOKOHANNO SEIZOHOHO
JPS5118222A (en) * 1974-08-06 1976-02-13 Nippon Steel Corp RENZOKUCHUZO CHUHENYORINO CHOFUKASHIBORYOKOHANNO SEIZOHOHO
JPS5118926A (en) * 1974-08-07 1976-02-14 Nippon Steel Corp Renzokuchuzonyoru koaatenkakono seizoho
JPS5177531A (en) * 1974-12-28 1976-07-05 Nippon Steel Corp Renzokuchuzoniokeru chuhenhyomenketsukanboshihoho
JPS5343625A (en) * 1976-10-04 1978-04-19 Nippon Steel Corp Method of making core added steel by continuous casting
JPS5388620A (en) * 1977-01-17 1978-08-04 Sumitomo Metal Ind Ltd Preparation of hot rolled steel belt having high strength
JPS58164722A (en) * 1982-03-25 1983-09-29 Kobe Steel Ltd Production of steel material having high resistance to hydrogen induced cracking
JPS58167064A (en) * 1982-03-26 1983-10-03 Nippon Kokan Kk <Nkk> Continuous casting method of steel
JPS58213855A (en) * 1982-06-02 1983-12-12 Kobe Steel Ltd Structural steel for big heat input welding
JPS58224054A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPS58224055A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141526A (en) * 1974-05-01 1975-11-14
JPS5113311A (en) * 1974-07-24 1976-02-02 Nippon Steel Corp RENZOKUCHUZOCHUHENYORINO HOOROOYOKOHANNO SEIZOHOHO
JPS5118222A (en) * 1974-08-06 1976-02-13 Nippon Steel Corp RENZOKUCHUZO CHUHENYORINO CHOFUKASHIBORYOKOHANNO SEIZOHOHO
JPS5118926A (en) * 1974-08-07 1976-02-14 Nippon Steel Corp Renzokuchuzonyoru koaatenkakono seizoho
JPS5177531A (en) * 1974-12-28 1976-07-05 Nippon Steel Corp Renzokuchuzoniokeru chuhenhyomenketsukanboshihoho
JPS5343625A (en) * 1976-10-04 1978-04-19 Nippon Steel Corp Method of making core added steel by continuous casting
JPS5388620A (en) * 1977-01-17 1978-08-04 Sumitomo Metal Ind Ltd Preparation of hot rolled steel belt having high strength
JPS58164722A (en) * 1982-03-25 1983-09-29 Kobe Steel Ltd Production of steel material having high resistance to hydrogen induced cracking
JPS58167064A (en) * 1982-03-26 1983-10-03 Nippon Kokan Kk <Nkk> Continuous casting method of steel
JPS58213855A (en) * 1982-06-02 1983-12-12 Kobe Steel Ltd Structural steel for big heat input welding
JPS58224054A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPS58224055A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979558A (en) * 1988-03-09 1990-12-25 Nippon Steel Corporation Process for preparation of a casting having MnS dispersed and uniformly and finely precipitated therein
CN103469093A (en) * 2013-08-15 2013-12-25 甘肃酒钢集团宏兴钢铁股份有限公司 Molybdenum-containing stainless steel and smelting method thereof
CN103469093B (en) * 2013-08-15 2015-12-02 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of containing molybdenum stainless steel and smelting process thereof
CN110643886A (en) * 2019-10-15 2020-01-03 云南德胜钢铁有限公司 Low-alloy-ratio steelmaking method

Similar Documents

Publication Publication Date Title
CN106756511B (en) A kind of bimetal saw blade backing D6A broad hot strips and its production method
GB1562104A (en) Production of seamless steel pipe
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JPS62156056A (en) Continuous casting method for low alloy steel
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
JPH057914A (en) Hot rolling method for steel for preventing generation of surface flaw
CN117206483B (en) Continuous casting method for improving carbon segregation of rectangular spring steel blank
JPH09285855A (en) Manufacture of ni containing steel
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPS62156057A (en) Continuous casting method for sb-containing steel
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPS6240902A (en) Method for preventing crack in direct hot rolling of continuously cast steel ingot
JPH06246414A (en) Continuous casting of high carbon steel
JPS621844A (en) Method for preventing surface cracking of continuously cast slab
JP2518618B2 (en) Mold for continuous casting of steel
JPH05255747A (en) Production of thick high tensile strength steel plate excellent in sulfide corrosion cracking resistance
JP5854214B2 (en) Method for continuous casting of Si-containing steel
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab