JPS63168260A - Hot working method for continuously cast billet - Google Patents

Hot working method for continuously cast billet

Info

Publication number
JPS63168260A
JPS63168260A JP31145086A JP31145086A JPS63168260A JP S63168260 A JPS63168260 A JP S63168260A JP 31145086 A JP31145086 A JP 31145086A JP 31145086 A JP31145086 A JP 31145086A JP S63168260 A JPS63168260 A JP S63168260A
Authority
JP
Japan
Prior art keywords
temperature
slab
cast billet
steel ingot
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31145086A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tsuge
柘植 敏行
Kenzo Yamaguchi
山口 研三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP31145086A priority Critical patent/JPS63168260A/en
Publication of JPS63168260A publication Critical patent/JPS63168260A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the development of surface defect as compared with conventional steel ingot, such as crack, etc., by rapidly cooling only the cast billet surface, so as to become the specific temp. at the time of cooling the surface temp. of cast billet to the specific temp. CONSTITUTION:When the surface temp. of cast billet composing of killed steel produced by continuous casting is cooled to the temp. at 150-50 deg.C higher than Ar3 transformation point, only the cast billet surface is cooled, so as to become the temp. at 100-400 deg.C lower than Ar1 transformation point under red heat state in the inner part of cast billet. In this way, crystal grain of the surface layer part of cast billet is made to fine and sensibility to the crack and the surface defect after rolling are reduced as compared with the conventional steel ingot.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は鋼の連続鋳造法により製造された鋳造片の熱間
加工法に関するものであり、鋳造片の潜熱を有効利用す
るとともに、特にアルミキルド鋼に多く発生する鋳造片
の熱間圧延加工時の割れを防止するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a hot working method for cast pieces produced by a continuous steel casting method. This prevents cracks that often occur in steel during hot rolling of cast pieces.

[従来の技術1 従来、均熱された鋼塊を分塊圧延して鋼片等をつくる場
合、該鋼塊の成分、組織、加熱状況、および圧延条件な
どにより種々の割れが起こることは一般によく知られた
事実であるが、とりわけ、圧延過程中に発生する鋼塊の
横割れの現象は、アルミ脱酸を行った低・中炭素を含む
炭素鋼ならびに低合金鋼においてあられれるもので、圧
延作業を阻害し、圧延歩留りを大幅に害し、経済的損失
は極めて大きい。
[Prior art 1] Conventionally, when a soaked steel ingot is bloomed and rolled to produce a steel billet, various cracks generally occur depending on the composition, structure, heating conditions, rolling conditions, etc. of the steel ingot. It is a well-known fact that the phenomenon of transverse cracking of steel ingots that occurs during the rolling process occurs especially in carbon steel containing low and medium carbon and low alloy steel that has been subjected to aluminum deoxidation. This obstructs the rolling operation, greatly impairs the rolling yield, and causes extremely large economic losses.

元来、鋼塊鋳型から型抜きして加熱炉に挿入加熱して分
塊圧延を行う場合に、型抜きから均熱炉挿入までの間に
、製造工程上次の3つの処理方法がある。
Originally, when a steel ingot is cut from a mold and inserted into a heating furnace for heating to perform blooming rolling, there are the following three processing methods in the manufacturing process between the cutting and insertion into a soaking furnace.

1) 鋼塊の内部はもとより表層部もあまり降下せず、
該鋼塊のA r 3の変態点よりかなり高温に保持せら
れた状態で均熱炉に挿入される場合。
1) Not only the inside of the steel ingot but also the surface layer does not fall much.
When the steel ingot is inserted into a soaking furnace while being maintained at a temperature considerably higher than the A r 3 transformation point.

2) 鋼塊表層部の温度がArs点直上まで降下してい
る鋼塊、すなわち1〉の場合より全体として鋼塊温度が
下がっているがいまだオーステナイトの状態にある鋼塊
を挿入する場合。
2) When inserting a steel ingot whose temperature at the surface layer of the steel ingot has fallen to just above the Ars point, that is, a steel ingot whose overall temperature has decreased compared to case 1> but which is still in an austenitic state.

3)通常冷塊といわれるもので、型抜きした鋼塊を除冷
して表層部のみならず鋼塊全体をAr+点以下に、時に
は常温近くまで温度降下したものを加熱炉に挿入し圧延
温度に均熱する場合である。
3) Usually called a cold ingot, the die-cut steel ingot is slowly cooled to bring the temperature of not only the surface layer but also the entire steel ingot below the Ar+ point, sometimes to near room temperature, then inserted into a heating furnace and rolled to a rolling temperature. This is a case of soaking.

鋼塊の圧延作業は、鋼塊の重量・形状・型抜きの温度お
よび挿入までの時間によって、前記3つの方法のいずれ
かに区分されるが、前記方法1〉にあっては、割れの危
険率が小さいのに反し、横割れの殆どが前記2)の方法
に集中しており、他面前記方法3)の場合には槽割れ皆
無である。
Rolling work for steel ingots is classified into one of the three methods mentioned above, depending on the weight, shape, temperature of the steel ingot, and time until insertion, but in method 1, there is a risk of cracking. Although the ratio is small, most of the horizontal cracks are concentrated in method 2), while in method 3) there is no tank cracking.

このことは、vt割れという現象はこの型抜きから加熱
炉への挿入までの工程いかんによって生起するものであ
ることを統計的、かつ実験的に示すものである。すなわ
ち、鋼塊の横割れは製鋼時。
This shows statistically and experimentally that the phenomenon of VT cracking is caused by the process from die cutting to insertion into the heating furnace. In other words, horizontal cracking of steel ingots occurs during steel manufacturing.

加熱時、圧延時における諸要因に関係する点が極めて少
なく、型抜きから加熱炉挿入までの鋼塊自体の温度降下
の状況に大きく支配されるものである。
There are very few factors related to heating and rolling, and it is largely controlled by the temperature drop of the steel ingot itself from punching to insertion into the heating furnace.

鋼塊圧延作業のかかる知見に基づき発明されたのが特公
昭49−7771号公報に記載の発明であって、その要
旨は「還流せる容器内の冷媒または噴射方式による冷媒
に鋼塊を、該鋼塊内部が赤熱状態で、かつ、表層部のみ
がA1変態点以下となるような急速全面浸漬または曝露
したのち、炉内加熱するとともに成形加工することを特
徴とする鋼塊熱間加工法」である。
The invention described in Japanese Patent Publication No. 49-7771 was invented based on this knowledge of steel ingot rolling operations, and the gist of the invention is that ``a steel ingot is applied to a refrigerant in a container that can circulate or by an injection method. A steel ingot hot working method characterized by rapidly immersing or exposing the entire steel ingot so that the inside of the ingot is red-hot and only the surface layer is below the A1 transformation point, and then heated in a furnace and formed. It is.

前記発明は、鋼塊の横割れの原因が加熱時に鋼塊表層部
の鋳造組織である柱状晶自体が極度に粗大化すること、
または表面部のオーステナイト結晶の粒界が酸化せられ
たりすることによって前記表面部が脆弱化し分塊圧延に
よって破断することにあることから、表層部の柱状晶組
織を細分化しまたオーステナイト結晶粒も微細化させる
ため、表層部のみを急冷するものである。また前記発明
は、アルミキルト鋼においてはいわゆる溶存アルミニウ
ムと鋼中窒素が結合して窒化アルミを生成し、これが鋼
塊凝固後の温度の降下の過程において、固溶限を越える
ことによりオーステナイト粒界に板状析出物となって析
出し、割れ発生の原因となることから、鋼塊の表層部の
急冷によってオーステナイト粒界への窒化アルミの析出
を抑制し、槽割れの防止を図ったものである。
The invention provides that the cause of transverse cracking in a steel ingot is that the columnar crystals themselves, which are the casting structure of the surface layer of the steel ingot, become extremely coarse during heating;
Alternatively, the grain boundaries of the austenite crystals in the surface layer may be oxidized, making the surface region brittle and fractured by blooming rolling. In order to achieve this, only the surface layer is rapidly cooled. The invention also provides that in aluminum quilt steel, so-called dissolved aluminum and nitrogen in the steel combine to form aluminum nitride, which exceeds the solid solubility limit during the process of temperature drop after solidification of the steel ingot, thereby forming an austenite grain boundary. Since aluminum nitride precipitates in the form of plate-like precipitates and causes cracks, the steel ingot was rapidly cooled to suppress the precipitation of aluminum nitride at the austenite grain boundaries, thereby preventing tank cracks. be.

[発明が解決しようとする問題点] しかし、前記発明は通常のインゴットにより鋼塊を製造
する場合には、鋼塊表層部を急冷し始める温度を自由に
選択でき、鋼塊表層部が比較的高い温度から急冷できて
、極めて効果的であるが、連続鋳造機により鋳片を得る
場合は、水冷鋳型に鋳込み、鋳型からの冷却作用で表面
に凝固皮殻を形成し、下方からピンチロールによる引き
抜きに対し、前記凝固皮殻が破断しないように普通鋼塊
に比べて冷却が急激である。したがって、連続鋳造にお
いては表面と内部との温度差が大きく、歪や変態歪が発
生し易い、また、溶鋼の静圧による歪や、鋳片の引き抜
き矯正時のロールによる外部歪が加わり、普通鋼に比べ
て割れが発生し易いため、連続鋳造においては、表面部
を積極的に冷却するため、表面部の温度がAr3点直上
まで降下してしまい、前記発明の効果を十分に発揮する
ことができなかった。
[Problems to be solved by the invention] However, in the case of manufacturing a steel ingot using a normal ingot, the temperature at which the surface layer of the steel ingot starts to be rapidly cooled can be freely selected, and the surface layer of the steel ingot is relatively cool. It can be rapidly cooled from a high temperature and is extremely effective, but when obtaining slabs using a continuous casting machine, it is cast into a water-cooled mold, a solidified crust is formed on the surface by the cooling action from the mold, and then the slab is cast from below by pinch rolls. During drawing, cooling is rapid compared to ordinary steel ingots so that the solidified shell does not break. Therefore, in continuous casting, there is a large temperature difference between the surface and the inside, and distortion and transformation strain are likely to occur.Additionally, distortion due to the static pressure of molten steel and external distortion caused by the rolls during drawing and straightening of slabs are added, which is normal. Since cracks are more likely to occur than steel, in continuous casting, the surface part is actively cooled, so the temperature of the surface part drops to just above the Ar3 point, and the effects of the invention cannot be fully demonstrated. I couldn't do it.

本発明は連続鋳造片の熱間加工法の前記のごとき問題点
を解決すべくなされたもので、連続鋳造片にあっても、
鋳片機!fI部を十分に高い温度から急冷することがで
き、鋼塊の割れ等の表面欠陥の発生を防止した連a鋳造
片の熱間加工法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in the hot working method of continuously cast pieces.
Slab machine! It is an object of the present invention to provide a method for hot working a continuous cast piece in which the fI part can be rapidly cooled from a sufficiently high temperature and the generation of surface defects such as cracks in the steel ingot is prevented.

[問題点を解決するための手段] 本発明者等は連続鋳造片の従来の熱間加工法について研
究を重ねた。その結果、連M鋳造片を切断後の鋼塊を水
槽に浸漬して鋼塊の表層部を急冷する従来方法では、鋼
塊の温度がA、変態点近くにまで下がっており、前記2
)の処理法に近くなり、鋼塊の表層部の結晶粒の微細化
をすることができず、かつ粒界での析出物の減少も図れ
ないので、所期の効果が得られないことが判明した。そ
こで発明者等はより高い温度から鋳片の表層部を冷却す
れば鋳片の表層部の結晶粒を微細化し、かつ粒界での析
出物を減少できることに想到し、本発明を完成するに至
ったものである。
[Means for Solving the Problems] The present inventors have conducted extensive research on conventional hot working methods for continuously cast pieces. As a result, in the conventional method of immersing the steel ingot after cutting a continuous M cast piece in a water tank to rapidly cool the surface layer of the steel ingot, the temperature of the steel ingot drops to A, close to the transformation point, and
), it is not possible to refine the crystal grains in the surface layer of the steel ingot, and it is also not possible to reduce precipitates at grain boundaries, so the desired effect may not be obtained. found. Therefore, the inventors came up with the idea that by cooling the surface layer of the slab from a higher temperature, it would be possible to refine the crystal grains in the surface layer of the slab and reduce the precipitates at the grain boundaries, and thus completed the present invention. This is what we have come to.

本発明の連続鋳造片の熱間加工法は、連続鋳造により製
造されたキルド鋼からなる鋳片を、その表面温度がAr
s変悪点より150〜50℃高い温度まで冷却時に、冷
却媒体により鋳片内部が赤熱状悪で、かつ表面温度がA
r+変態点より100〜400°C低い温度となるよう
に急冷した後、前記鋳片を所定長さに切断し、ついで炉
内加熱して熱間成形することを要旨とする。
The hot working method for continuously cast slabs of the present invention involves processing slabs made of killed steel manufactured by continuous casting so that the surface temperature thereof is Ar.
When cooled to a temperature 150 to 50℃ higher than the bad point, the inside of the slab was red hot due to the cooling medium, and the surface temperature was A.
The gist is that after rapidly cooling the slab to a temperature 100 to 400°C lower than the r+ transformation point, the slab is cut into a predetermined length, and then heated in a furnace to hot form.

[作用] 本発明では鋳片の表面温度がAr=変態点より150〜
50℃高い温度まで冷却された時に、鋳片内部が赤熱状
芯のままで、鋳片表面(20〜40m−程度が好ましい
)のみをAr+変態点より100〜400℃低い温度と
なるように急冷することにより、その組織をベイナイト
変態させ、鋳片内部に対し圧縮応力を付与し、オーステ
ナイト粒界に組織的に弱いフィルム状のフェライトが生
成するのを防止する。また、AIN等の析出をも抑制し
、脆化を防止する。さらに、変態組織の厚さを均一にし
、圧縮応力を一定として応力が集中するのを防止する。
[Function] In the present invention, the surface temperature of the slab is 150 to
When cooled to a temperature 50℃ higher, the inside of the slab remains as a red-hot core, and only the surface of the slab (preferably about 20 to 40m) is rapidly cooled to a temperature 100 to 400℃ lower than the Ar+ transformation point. This transforms the structure into bainite, applies compressive stress to the inside of the slab, and prevents the formation of structurally weak film-like ferrite at austenite grain boundaries. It also suppresses precipitation of AIN, etc., and prevents embrittlement. Furthermore, the thickness of the transformed structure is made uniform, the compressive stress is kept constant, and stress concentration is prevented.

鋳片を冷却媒体により急冷を開始する温度は、鋳片の表
面温度がA r 323点より150〜50℃高い温度
であって、この温度であれば鋳片がオーステナイト−相
であり、急冷により鋳片表層部の結晶粒が十分に微細化
できる温度である。
The temperature at which rapid cooling of the slab starts with a cooling medium is such that the surface temperature of the slab is 150 to 50°C higher than the A r 323 point. At this temperature, the slab is in the austenite phase, and the rapid cooling This is the temperature at which the crystal grains in the surface layer of the slab can be sufficiently refined.

急冷開始温度をこの範囲に限定したのは、表面温度がA
r2変君点より150℃以上高いと十分な急冷が得られ
ず、鋳片を完全にAr1変君させることが困難になるか
らであり、逆にAr3変態点に50℃以上近くなると鋳
片の表層部の結晶粒が粗大化し、割れの発生が多くなる
からである。使用する冷却媒体としてはいかなるもので
も良く、また冷却方法のいかんち問わないので、例えば
ウオークスプレィ、ミストの吹き付け、その池水槽によ
ることもできる。鋳片は冷却媒体により表面温度がAr
1変態点より10〇二400℃低い温度まで急冷される
ことによって、鋳片表層部は完全にA r 1変態を完
了する。冷却終了温度を上記範囲にに限定した理由は、
Ar+変態点より400℃以上の低い温度であると、返
って収縮による割れの発生が増えて好ましくないからで
あり、API変悪点より低い温度が100℃を越えると
鋳片表層部のAr。
The reason why the quenching start temperature is limited to this range is that the surface temperature is A.
This is because if the temperature is 150°C or more higher than the r2 transformation point, sufficient rapid cooling will not be obtained and it will be difficult to completely transform the slab into Ar1. This is because the crystal grains in the surface layer become coarser and more cracks occur. Any cooling medium may be used, and any cooling method may be used; for example, walk spray, mist spraying, or a pond tank may be used. The surface temperature of the slab is reduced to Ar due to the cooling medium.
By being rapidly cooled to a temperature 1002400°C lower than the 1 transformation point, the surface layer of the slab completely completes the A r 1 transformation. The reason for limiting the cooling end temperature to the above range is as follows.
If the temperature is 400°C or more lower than the Ar + transformation point, cracking due to shrinkage will increase, which is undesirable. If the temperature lower than the API transformation point exceeds 100°C, Ar on the surface layer of the slab will increase.

変態が十分に完了しないからである。これにより鋪片表
層部の結晶粒の微細化と、結晶粒界の不純物の析出が阻
止される。その後鋳片表層部の変態が終了したら直ちに
急冷を中止し、以後は放冷することが好ましいが、これ
によって鋳片の不必要な収縮によって、鋳片に生じた割
れが広がるのが防止される0本発明の対象となるのは、
アルミキルト鋼でかつAr+〜Arz変態をする鋼であ
る。
This is because the metamorphosis is not fully completed. This prevents the refinement of the crystal grains in the surface layer of the slab and the precipitation of impurities at the grain boundaries. After that, it is preferable to stop the rapid cooling immediately after the transformation of the surface layer of the slab is completed, and then allow it to cool.This prevents the cracks that have formed in the slab from spreading due to unnecessary shrinkage of the slab. 0 The objects of the present invention are:
It is an aluminum quilt steel that undergoes Ar+ to Arz transformation.

[実施例] 本発明の種々の態様の実施例を示し本発明の効果を明ら
かにする。
[Examples] Examples of various aspects of the present invention will be shown to clarify the effects of the present invention.

(実施例1) J I S−3CR22を電気炉で溶製し、アルミニウ
ムを添加して十分に脱酸し、アルミキルド鋼とし、曲げ
型連続鋳造機の鋳型に注入し、下方よりピンチロールに
より鋳片を引き出し、連続鋳造片がピンチロールを通過
後、鋳片の表面温度を測定し920℃(A「、変態点+
70℃)になると、つオータスプレーにより急冷し、鋳
片の表面温度が500℃(A r +変態点−200℃
)になるまで急冷した。急冷後鋳片を切断し、直ちに加
熱炉に装入所定温度まで加熱した後、圧延加工し130
X130X8000+*mのビレットとし、表面疵を調
査した。なお、比較のためにピンチロールを通過後に冷
却せずに、切断後表面温度が1000℃に冷却された鋳
片を水槽に装入して急冷したものを比較例とし、鋳型よ
り引き抜き後全く急速冷却しなかったものについて参考
例として、同様に加熱炉に装入後圧延加工し、表面疵を
調査した0表面疵調査の結果は第1図に示す、第1図は
表面疵を深さ一一別に長さを集計し、各々の表面疵の長
さの合計をビレットの全長で割った%を長さ率として、
横軸に表面疵深さ一輪をとり、縦軸に長さ率をとって表
したものである。第1図から知られるように、参考例に
あっては1.0輪−以下の表面疵が多く、比較例あって
は0.5mm以下の表面疵が増加しているのに対し、本
発明例ではこれらに比較して、著しく表面疵が少ない。
(Example 1) JIS-3CR22 was melted in an electric furnace, aluminum was added and sufficiently deoxidized to make aluminum killed steel, and the steel was poured into a mold of a bending continuous casting machine and cast from below using pinch rolls. After pulling out the piece and passing the continuously cast piece through the pinch rolls, the surface temperature of the piece was measured at 920°C (A", transformation point +
When the temperature reaches 70℃, the surface temperature of the slab reaches 500℃ (A r + transformation point -200℃).
). After quenching, the slab is cut, immediately charged into a heating furnace, heated to a predetermined temperature, and then rolled to 130
A billet of X130X8000+*m was prepared and surface flaws were investigated. For comparison, a slab whose surface temperature after cutting was cooled to 1000℃ without being cooled after passing through the pinch rolls was charged into a water tank and rapidly cooled. As a reference example, a sample that was not cooled was similarly charged into a heating furnace and then rolled, and the surface flaws were investigated. The results of the zero surface flaw investigation are shown in Figure 1. The lengths are tallied individually, and the length ratio is calculated by dividing the total length of each surface flaw by the total length of the billet.
The surface flaw depth is plotted on the horizontal axis and the length ratio is plotted on the vertical axis. As can be seen from FIG. 1, the reference example had many surface flaws of 1.0 mm or less, and the comparative example had an increased number of surface flaws of 0.5 mm or less, whereas the present invention The example has significantly less surface flaws than these.

(実施例2) 実施例1と同様に連続鋳造片を製造し、ピンチロールで
矯正後の冷却ゾーンの位置および長さを種々に変更し、
第1表に示すような急冷開始温度および急冷終了温度で
鋳片を急冷し、直ちに加熱炉に挿入し圧延加工した後、
表面疵を調査した。
(Example 2) Continuously cast pieces were manufactured in the same manner as in Example 1, and the position and length of the cooling zone after correction with pinch rolls were variously changed.
After rapidly cooling the slab at the quenching start temperature and quenching end temperature shown in Table 1, immediately inserting it into a heating furnace and rolling it,
Inspected for surface flaws.

第1表から知られるように、比較例は急冷終了温度が高
すぎるか急冷開始温度が低すぎて、きず長さ率がいずれ
も劣るものである。これに対して急冷開始温度Ar2変
悪点より150〜50℃高く、急冷終了温度がA r 
1変態点より100〜400℃低い本発明例はそれぞれ
この温度範囲外の比較例に比べてきず長さ率が極めて低
く表面疵が著しく少ないことが確認された。
As can be seen from Table 1, in the comparative examples, the quenching end temperature was too high or the quenching start temperature was too low, and the flaw length ratio was poor in both cases. On the other hand, the quenching start temperature Ar2 is 150 to 50°C higher than the bad point, and the quenching end temperature is Ar2.
It was confirmed that the examples of the present invention, which are 100 to 400 degrees Celsius lower than the first transformation point, had extremely low flaw length ratios and significantly fewer surface defects than comparative examples outside this temperature range.

「発明の効果J 本発明の連続鋳造片の熱間加工法は、以上説明したよう
に連続鋳造により製造されたキルド鋼からなる鋳片を、
その表面温度がAr3変君点より150〜50℃高い温
度まで冷却時に、冷却媒体により鋳片内部が赤熱状態で
、かつ表面温度がAr+変態点より100〜400℃低
い温度となるように急冷した後、前記鋳片を所定長さに
切断し、ついで炉内加熱して熱間成形する熱間加工法で
あって、鋳片がつながったままでオーステナイト−相の
Ar3変君点よりかなりの高温から2冷されるため、鋳
片の表層部の結晶粒がV&細化し、かつ粒界へのアルミ
窒化物等の析出を抑制するので、鋼塊の割れ感受性を著
しく減少し、従来十分な効果の得られなかった連続鋳造
によって得られる鋼塊の圧延加工後の表面疵を著しく減
少することができるという優れた効果がある。
"Effect of the Invention J The hot working method for continuously cast slabs of the present invention, as explained above, processes slabs made of killed steel manufactured by continuous casting.
When the surface temperature was 150 to 50 degrees Celsius higher than the Ar3 transformation point, the inside of the slab was kept red hot by a cooling medium, and the surface temperature was rapidly cooled to 100 to 400 degrees Celsius lower than the Ar+ transformation point. After that, the slab is cut into a predetermined length, and then heated in a furnace for hot forming. 2. Due to cooling, the crystal grains in the surface layer of the slab become V & finer, and the precipitation of aluminum nitrides, etc. in the grain boundaries is suppressed, which significantly reduces the cracking susceptibility of the steel ingot, which has not been sufficiently effective in the past. It has the excellent effect of significantly reducing surface flaws after rolling of steel ingots obtained by continuous casting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼塊の熱間圧延加工後の表面疵深さと長さのr
Wi係を示す図である。
Figure 1 shows the surface flaw depth and length r after hot rolling of a steel ingot.
It is a figure showing Wi section.

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造により製造されたキルド鋼からなる鋳片
を、その表面温度がAr_3変態点より150〜50℃
高い温度まで冷却時に、冷却媒体により鋳片内部が赤熱
状態で、かつ表面温度がAr_1変態点より100〜4
00℃低い温度となるように急冷した後、前記鋳片を所
定長さに切断し、ついで炉内加熱して熱間成形すること
を特徴とする連続鋳造片の熱間加工法。
(1) A cast slab made of killed steel manufactured by continuous casting has a surface temperature of 150 to 50°C above the Ar_3 transformation point.
When cooling to a high temperature, the inside of the slab is in a red-hot state due to the cooling medium, and the surface temperature is 100 to 40% higher than the Ar_1 transformation point.
1. A method of hot working a continuously cast piece, which comprises rapidly cooling the piece to a temperature lower than 00° C., cutting the piece into a predetermined length, and then heating it in a furnace to hot form it.
JP31145086A 1986-12-30 1986-12-30 Hot working method for continuously cast billet Pending JPS63168260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31145086A JPS63168260A (en) 1986-12-30 1986-12-30 Hot working method for continuously cast billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31145086A JPS63168260A (en) 1986-12-30 1986-12-30 Hot working method for continuously cast billet

Publications (1)

Publication Number Publication Date
JPS63168260A true JPS63168260A (en) 1988-07-12

Family

ID=18017365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31145086A Pending JPS63168260A (en) 1986-12-30 1986-12-30 Hot working method for continuously cast billet

Country Status (1)

Country Link
JP (1) JPS63168260A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329505A (en) * 1992-06-01 1993-12-14 Kobe Steel Ltd Method for preventing surface crack of low-alloy steel
JPH0673445A (en) * 1992-08-27 1994-03-15 Kobe Steel Ltd Manufacture of steel material having little surface flaw
US5493766A (en) * 1992-09-09 1996-02-27 Aichi Steel Works, Ltd. Process for hot working continuous-cast bloom and steel ingot
WO2000015362A1 (en) * 1998-09-14 2000-03-23 Sms Demag Ag Method and device for producing hot-rolled strips and plates
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
JP2011212736A (en) * 2010-04-01 2011-10-27 Sumitomo Metal Ind Ltd Method for cooling continuously cast bloom and method for producing the bloom

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497771A (en) * 1972-05-11 1974-01-23
JPS61193758A (en) * 1985-02-22 1986-08-28 Sumitomo Metal Ind Ltd Production of hot worked steel material having good surface characteristic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497771A (en) * 1972-05-11 1974-01-23
JPS61193758A (en) * 1985-02-22 1986-08-28 Sumitomo Metal Ind Ltd Production of hot worked steel material having good surface characteristic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329505A (en) * 1992-06-01 1993-12-14 Kobe Steel Ltd Method for preventing surface crack of low-alloy steel
JPH0673445A (en) * 1992-08-27 1994-03-15 Kobe Steel Ltd Manufacture of steel material having little surface flaw
US5493766A (en) * 1992-09-09 1996-02-27 Aichi Steel Works, Ltd. Process for hot working continuous-cast bloom and steel ingot
WO2000015362A1 (en) * 1998-09-14 2000-03-23 Sms Demag Ag Method and device for producing hot-rolled strips and plates
US6451136B1 (en) * 1998-09-14 2002-09-17 Sms Demag Ag Method for producing hot-rolled strips and plates
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
JP2011212736A (en) * 2010-04-01 2011-10-27 Sumitomo Metal Ind Ltd Method for cooling continuously cast bloom and method for producing the bloom

Similar Documents

Publication Publication Date Title
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP2002086252A (en) Continous casting method
JP3702807B2 (en) Continuous casting method
JP3008825B2 (en) Slab surface crack suppression method
JPS63168260A (en) Hot working method for continuously cast billet
JPS63112058A (en) Continuous casting method
JP6954514B1 (en) Continuous casting method
JP2008261036A (en) Method for cooling continuously cast bloom
KR100963021B1 (en) Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality
JP2006205241A (en) Continuous casting method for steel
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
CN113584278A (en) Process method for improving surface quality of medium carbon manganese boron steel
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JPH09206899A (en) Method for cooling continuous casting bloom
JP3406459B2 (en) Cooling method for continuous casting bloom
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JPH0112561B2 (en)
JP3039369B2 (en) Method for producing Ni-containing steel
JP3380032B2 (en) Method for producing high-strength steel wire with excellent drawability
US4422884A (en) Method of treating a continuously cast strand formed of stainless steel
US4408652A (en) Method of continuously casting nickel containing steel wherein surface cracks are prevented
JPH0568525B2 (en)
KR100419644B1 (en) A Method for Manufacturing Continuously Cast Strands from High Ni Containing Steel
JPS61193758A (en) Production of hot worked steel material having good surface characteristic
KR20040057216A (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same