JP5402790B2 - Method for cooling continuous cast bloom slab and method for manufacturing the slab - Google Patents

Method for cooling continuous cast bloom slab and method for manufacturing the slab Download PDF

Info

Publication number
JP5402790B2
JP5402790B2 JP2010085384A JP2010085384A JP5402790B2 JP 5402790 B2 JP5402790 B2 JP 5402790B2 JP 2010085384 A JP2010085384 A JP 2010085384A JP 2010085384 A JP2010085384 A JP 2010085384A JP 5402790 B2 JP5402790 B2 JP 5402790B2
Authority
JP
Japan
Prior art keywords
slab
cooling
spray
bloom
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010085384A
Other languages
Japanese (ja)
Other versions
JP2011212736A (en
Inventor
敏彦 村上
道和 古賀
信輔 渡辺
寛隆 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010085384A priority Critical patent/JP5402790B2/en
Publication of JP2011212736A publication Critical patent/JP2011212736A/en
Application granted granted Critical
Publication of JP5402790B2 publication Critical patent/JP5402790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、連続鋳造ブルーム鋳片の冷却方法およびその鋳片の製造方法に関し、特にその連続鋳造鋳片の冷却時の蛇行および曲がりを防止することができ、かつ、その連続鋳造鋳片の冷却時に表面に発生する割れと熱間圧延時に表面に発生する割れを大幅に低減することができる冷却方法であって、低炭素鋼から焼入れ性の高い鋼種などの幅広い鋼種に適用可能な連続鋳造鋳片の冷却方法に関する。さらに、そのように連続鋳造中に鋳片を適切に冷却することによって、低炭素鋼から焼入れ性の高い鋼種などの幅広い鋼種に関し、そのブルーム鋳片の表層下4mm厚以上にオーステナイト結晶粒界不明瞭化層を有するブルーム鋳片の製造方法に関する。   The present invention relates to a method for cooling a continuous cast bloom slab and a method for manufacturing the slab, and in particular, can prevent meandering and bending during cooling of the continuous cast slab, and cool the continuous cast slab. It is a cooling method that can greatly reduce cracks that sometimes occur on the surface and cracks that occur on the surface during hot rolling, and can be applied to a wide range of steel types such as low-carbon steel and highly hardened steel grades. It is related with the cooling method of a piece. Further, by appropriately cooling the slab during continuous casting, a wide range of steel types such as low carbon steel and highly hardenable steel grades can be used. The present invention relates to a method for producing a bloom slab having a clarification layer.

連続鋳造ブルーム鋳片は、溶鋼を取鍋からタンディッシュに注入し、さらに鋳型内に注入し、鋳型内で凝固シェルを形成させ、2次冷却スプレー帯でさらに鋳片を冷却し、凝固鋳片を連続鋳造機外へ引き抜くことによって製造されている。   Continuous casting bloom slab is a process of pouring molten steel from a ladle into a tundish, further injecting it into a mold, forming a solidified shell in the mold, further cooling the slab in a secondary cooling spray zone, and solidifying the slab. It is manufactured by drawing out the continuous casting machine.

しかし、その連続鋳造鋳片の冷却時やその鋳片の熱間圧延時に鋳片表面に割れが発生する場合がある。その割れの発生状況には鋳造鋼種の影響もあるため、それらの割れを大幅に低減できる方法であって、低炭素鋼から焼入れ性の高い鋼種などの幅広い鋼種に適用可能な連続鋳造鋳片の製造方法が望まれてきた。   However, cracks may occur on the surface of the slab when the continuous cast slab is cooled or when the slab is hot-rolled. Since the occurrence of cracks is also affected by the type of cast steel, it is a method that can greatly reduce those cracks, and it is a continuous cast slab that can be applied to a wide range of steel types such as low carbon steel and high hardenability. A manufacturing method has been desired.

例えば、連続鋳造ブルーム鋳片を分塊圧延するに際し、鋳片を再加熱し圧延した後に発生する鋳片表面割れを防止するために、種々の対策が提案されていて、連続鋳造機外で冷却することによって、連続鋳造鋳片の表面温度をAr変態点より高い温度からAr変態点以下の温度まで低下させ、その鋳片表面割れの発生を防止する、3次冷却と称される方法が知られている。 For example, when rolling a continuous cast bloom slab, various measures have been proposed to prevent slab surface cracks that occur after reheating and rolling the slab, and cooling outside the continuous caster. By reducing the surface temperature of the continuously cast slab from a temperature higher than the Ar 3 transformation point to a temperature not higher than the Ar 1 transformation point, a method called tertiary cooling that prevents the occurrence of surface cracks on the slab It has been known.

この3次冷却に関する技術として、特許文献1には、連続鋳造されたブルームを所定の長さに切断後、機外に設置されたブルームクーラーを用いて、ブルームをAr変態点直上の温度域から冷却するに際し、ブルーム上面・側面・下面の水量密度比率を変えて冷却することを特徴とする、連続鋳造ブルームの冷却時に発生する割れ防止方法が記載されている。 As a technique related to the tertiary cooling, Patent Document 1 discloses that a continuous cast bloom is cut into a predetermined length, and then a bloom cooler installed outside the apparatus is used to set the bloom to a temperature range immediately above the Ar 3 transformation point. A method for preventing cracks occurring during cooling of a continuous casting bloom is described, wherein the cooling is performed by changing the water density ratio of the bloom upper surface, side surface, and lower surface when cooling.

また、特許文献2には、同じくブルームクーラーを用いて、ブルームをAr変態点直上の温度域から冷却する際に、ブルームの移動速度を3m/minから10m/minにすることで、ブルーム鋳片下面を均一にかつ所定の冷却速度を確保して冷却することを特徴とする、ブルームの表面欠陥を低減する発明が記載されている。 Also, in Patent Document 2, when a bloom cooler is used to cool a bloom from a temperature range immediately above the Ar 3 transformation point, the bloom moving speed is changed from 3 m / min to 10 m / min. There is described an invention for reducing surface defects of bloom, characterized in that the lower surface of the single piece is cooled uniformly while ensuring a predetermined cooling rate.

いずれも、鋳片の冷却時に鋳片の表面をフェライト・パーライト変態、ベイナイト変態、マルテンサイト変態などをさせた後、圧延前に再加熱して再変態させ、圧延時の表面疵発生を防止している。   In all cases, the surface of the slab is subjected to ferrite-pearlite transformation, bainite transformation, martensite transformation, etc. during cooling of the slab, and then reheated and retransformed before rolling to prevent surface flaws during rolling. ing.

しかし、これらの方法は切断後の鋳片を冷却するため、冷却時に曲がりが発生するなどの新たな問題が発生するおそれがある。また、この問題を回避するために十分な冷却を行うことができず、或る程度の割れ発生防止効果は認められても十分な効果が得られない場合もあると懸念される。
さらに、特許文献3には、連続鋳造で製造され所定の長さに切断された鋳片をその表面温度がAr変態点より50〜150℃高い温度まで冷却した段階で、内部が赤熱状態で、表面組織がベイナイト組織となるよう急速冷却し、その後炉内加熱して熱間成形することを特徴とする、窒素添加鋼や鉛添加鋼に対しても十分に表面疵を低減することができる連続鋳造鋳片の熱間加工法が記載されている。しかし、この方法でも前記した鋳片の曲がり問題は解消されないほか、その問題を避けるために十分な冷却を行うことができない場合があるとの懸念は同様である。
However, since these methods cool the slab after cutting, there is a possibility that new problems such as bending occur during cooling. Further, there is a concern that sufficient cooling cannot be performed to avoid this problem, and even if a certain degree of cracking prevention effect is recognized, a sufficient effect may not be obtained.
Furthermore, Patent Document 3 discloses that a slab manufactured by continuous casting and cut to a predetermined length is cooled to a temperature 50 to 150 ° C. higher than the Ar 3 transformation point, and the inside is in a red hot state. The surface defects can be sufficiently reduced even for nitrogen-added steel and lead-added steel, characterized by rapid cooling so that the surface structure becomes a bainite structure, and then hot forming by heating in the furnace. A hot working method for continuous cast slabs is described. However, this method does not solve the above-mentioned problem of bending of the slab, and the concern that sufficient cooling may not be performed to avoid the problem is the same.

そのほか、焼入れ性の高い高炭素鋼や高Mn鋼では急速冷却により熱応力割れが発生するおそれもある。   In addition, in high carbon steel and high Mn steel with high hardenability, thermal stress cracking may occur due to rapid cooling.

特開平10−1719号公報Japanese Patent Laid-Open No. 10-1719 特開2005−40837号公報JP 2005-40837 A 特開平6−88125号公報JP-A-6-88125 特開2002−307149号公報JP 2002-307149 A

本発明は、連続鋳造鋳片の冷却時の曲がりとそれに伴う蛇行を防止することができ、さらに連続鋳造鋳片の冷却時に表面に発生する割れと熱間圧延時に表面に発生する割れを大幅に低減できる冷却方法であって、低炭素鋼から焼入れ性の高い鋼種などの幅広い鋼種に適用可能な連続鋳造鋳片の冷却方法を提供することを目的とする。   The present invention can prevent the bending of the continuous cast slab and the meandering accompanying it, and greatly reduces the cracks generated on the surface during cooling of the continuous cast slab and the surface generated during hot rolling. An object of the present invention is to provide a cooling method for a continuously cast slab that can be applied to a wide range of steel types such as low carbon steel and high hardenability.

また、そのように連続鋳造中に鋳片を適切に冷却することによって、低炭素鋼から焼入れ性の高い鋼種などの幅広い鋼種に関しそのブルーム鋳片の表層下4mm厚以上にオーステナイト(以下、「γ」と略称することもある)結晶の粒界が不明瞭化された層を有するブルーム鋳片の製造方法を提供することを目的とする。   In addition, by appropriately cooling the slab during continuous casting, austenite (hereinafter referred to as “γ” below a surface layer of the bloom slab has a thickness of 4 mm or more with respect to a wide range of steel types such as low carbon steel and high hardenability. It is an object of the present invention to provide a method for producing a bloom slab having a layer in which crystal grain boundaries are obscured.

1)鋳片の曲がり防止
従来の3次冷却方法は、前記したように、切断した鋳片をAr変態点直上の温度域から冷却して、分塊圧延前に行う再加熱時の再変態を含めて組織微細化(γ粒微細化)を狙った冷却方法で、冷却をスプレー水噴射や水槽浸漬法で行っている。
1) Prevention of bending of cast slab As described above, the conventional tertiary cooling method is such that, as described above, the cut slab is cooled from the temperature range immediately above the Ar 3 transformation point, and retransformation during reheating performed before the block rolling. The cooling method is aimed at refining the structure (refining γ grains), and is performed by spray water injection or water bath immersion method.

しかし、従来の3次冷却方法は、鋳片を所定の長さに切断した後に鋳片を冷却しているので、鋳片拘束機能を有する鋳片冷却装置を特別に設置しない場合には、その方法では鋳片冷却時に鋳片拘束(サポート)が無い。   However, since the conventional tertiary cooling method cools the slab after cutting the slab into a predetermined length, if a slab cooling device having a slab restraint function is not specially installed, In the method, there is no slab restraint (support) when the slab is cooled.

さらに水槽浸漬法の場合については、鋳片表面独自の冷却コントロールが難しく、不均一冷却時に発生する鋳片の曲がりを防止することが困難であった。
このように、鋳片曲がり(蛇行)が発生する恐れがあり、鋳片切断前に冷却を行うことは、連続鋳造操業を阻害する(蛇行によって鋳片が連続鋳造装置における鋳片の移送経路から側方にはみ出して鋳片の移送が停止するなど)ことが考えられ、従来は連続鋳造機外においてバッチ方式により3次冷却を実施していた。
Furthermore, in the case of the water bath immersion method, the cooling control unique to the slab surface is difficult, and it is difficult to prevent bending of the slab that occurs during uneven cooling.
In this way, slab bending (meandering) may occur, and cooling before slab cutting impedes continuous casting operation (the slab moves from the slab transfer path in the continuous casting apparatus by meandering). It is conceivable that the transfer of the slab is stopped to the side and the like, and conventionally, the third cooling is carried out by the batch method outside the continuous casting machine.

また、スプレー冷却による鋳片表面の独自冷却を実施しても、鋳片拘束が無い状態で不均一な冷却を行うと、冷却後に鋳片が曲がってしまい、その後の鋳片の搬送時に蛇行して操業に支障をきたすおそれがあるので注意を要する。   Even if the slab surface is cooled by spray cooling, if the slab is not uniformly restrained and the slab is not evenly cooled, the slab will bend after cooling and meander during subsequent slab transport. Be careful as it may interfere with operation.

そこで、その問題を解決するため、本発明者は、通常の連続鋳造装置のピンチロール帯で鋳片の3次冷却を行い、そこに設置されているロールを冷却中の鋳片の拘束に利用することを着想した。この方法であれば鋳片を拘束しつつ冷却できるので、鋳片の曲がり発生を気にすることなく鋳片を強冷却することができるからである。   Therefore, in order to solve the problem, the present inventor performs the third cooling of the slab with a pinch roll band of a normal continuous casting apparatus, and uses the roll installed therein to restrain the slab during cooling. Inspired to do. This is because this method can cool the slab while restraining the slab, so that the slab can be strongly cooled without worrying about the bending of the slab.

但し、鋳片の曲がりは強冷却時に発生することがあるばかりでなく、拘束解放後の冷却時にも発生することがある。したがって、強冷却は鋳片の表層部のみに留め、鋳片拘束中に鋳片表層部の曲げ残留応力を解消させておく工夫が必要である。このためには、従来の知見に基づき、鋳片拘束中に鋳片の表面温度をAr変態点以上に復熱させることが効果的であるから、ピンチロール帯内で表面強冷却と復熱とを行うことができる冷却条件を見出せばよい。 However, the bending of the slab may occur not only during strong cooling but also during cooling after releasing the restraint. Therefore, it is necessary to devise a method for keeping strong cooling only in the surface layer portion of the slab and eliminating the bending residual stress in the surface portion of the slab during restraint of the slab. For this purpose, it is effective to reheat the surface temperature of the slab to the Ar 1 transformation point or higher during slab restraint based on conventional knowledge. What is necessary is just to find the cooling conditions which can perform.

2)鋳片表面割れの防止
(1)基本的な考え方
本発明に係る冷却方法は、ブルーム連鋳機に一般的に採用されている3次冷却法に関連し、鋳片表層組織の改質を従来の3次冷却時に問題とされる鋳片蛇行を防止しつつ行う方法である。本発明では、鋳片の冷却を調整して鋳片表層部の結晶組織を改質するとともに微細化し、このことによって鋳片表面の割れを防止する。
2) Prevention of slab surface cracks (1) Basic concept The cooling method according to the present invention is related to the tertiary cooling method generally employed in bloom continuous casting machines, and the surface structure of the slab is modified. Is a method in which slab meandering, which is a problem during conventional tertiary cooling, is prevented. In the present invention, the cooling of the slab is adjusted to modify the crystal structure of the surface part of the slab and refine it, thereby preventing cracks on the surface of the slab.

前記したように、鋳片拘束中に鋳片表面を強冷却して復熱させるためには、その操作を連続鋳造中の早い段階で行う方が合理的である。例えば、鋳片の内部に未凝固の溶鋼があれば、その顕熱や潜熱を利用して一旦冷えた表層部の温度を容易に再度高めることができる。
しかし、鋳片内部に未凝固層がある状態で鋳片表面を強冷却すると鋳片表層部が収縮するため、ブルームの場合には鋳片中心部まで収縮し、中心部溶鋼が流動して中心偏析が悪化したり、復熱時に内部割れが発生したりするおそれがある。また、鋳片の曲げ矯正前であると、本発明のように強冷却した場合に鋳片コーナー部の表面温度が低下し、割れが発生することがある。したがって、これらの問題を避けるためには、鋳片中心部まで完全凝固後であって、しかも鋳片の曲げ矯正後に鋳片の強冷却を開始する必要がある。
As described above, it is more reasonable to perform the operation at an early stage during continuous casting in order to strongly cool and reheat the slab surface while restraining the slab. For example, if there is unsolidified molten steel inside the slab, the temperature of the surface layer portion once cooled can be easily increased again by utilizing the sensible heat or latent heat.
However, if the surface of the slab is strongly cooled with an unsolidified layer inside the slab, the slab surface layer shrinks, so in the case of bloom, the slab shrinks to the center of the slab and the molten steel flows in the center. There is a risk that segregation may deteriorate or internal cracks may occur during recuperation. Moreover, when it is before bending correction of a slab, when it cools strongly like this invention, the surface temperature of a slab corner part may fall and a crack may generate | occur | produce. Therefore, in order to avoid these problems, it is necessary to start the strong cooling of the slab after the solidification to the center of the slab and after the bending of the slab is straightened.

但し、鋳片強冷却の目的は、鋳片表層部の結晶組織を改質するとともに微細化することにあるので、そのためには鋳片表面温度がAr変態点以上の段階で強冷却を開始して、表層部の適当な深さまでAr変態点以下にしなければならない。一方、鋳片曲がりを防止するためには、鋳片拘束中に鋳片表面温度をAr変態点以上にまで戻さなければならない。 However, the purpose of the slab strong cooling, so is to miniaturization as well as modify the crystalline structure of the slab surface portion, the slab surface temperature to start a strong cooling in Ar 3 transformation point or more stages Thus, the Ar 1 transformation point or less must be set to an appropriate depth of the surface layer portion. On the other hand, in order to prevent slab bending, the slab surface temperature must be returned to the Ar 1 transformation point or higher during slab restraint.

そうすると、このような強冷却は鋳片の曲げ矯正後であって、かつ、完全凝固後に、鋳片の表面温度をAr変態点以上からAr変態点以下に冷却した後、再度Ar変態点以上に上昇させるように行えば良いと考えられる。 Then, such strong cooling is after straightening the slab and after complete solidification, after cooling the surface temperature of the slab from the Ar 3 transformation point to the Ar 1 transformation point, the Ar 1 transformation is performed again. It is thought that it should be done to raise it above the point.

このようにするためには、鋳片の曲げ矯正後であって、かつ、完全凝固後の極力早期に強冷却を開始し、かつ、適当な短時間で冷却を止めて内部顕熱による鋳片表層部の復熱を図らねばならない。   In order to do this, after the slab is bent and straightened, strong cooling is started as soon as possible after complete solidification, and cooling is stopped in an appropriate short time, and the slab by internal sensible heat is used. The surface layer must be reheated.

(2)具体的な鋳片冷却条件
前記したように、鋳片の曲げ矯正後であって、かつ、完全凝固後の極力早期に強冷却を開始し、かつ、適当な短時間で冷却を止めて内部顕熱による鋳片表層部の復熱を図る。このことにより、鋳片の曲がりを防止しつつ、鋳片表層部の結晶組織を改質するとともに微細化して鋳造後の鋳片表面割れと分塊圧延後の鋳片表面割れを防止するということが、本発明の基本的な考え方である。
(2) Specific slab cooling conditions As described above, after the slab is bent and straightened, strong cooling is started as soon as possible after complete solidification, and cooling is stopped in an appropriate short time. To reheat the slab surface by internal sensible heat. By this, while preventing the bending of the slab, the crystal structure of the slab surface layer is modified and refined to prevent the slab surface crack after casting and the slab surface crack after partial rolling. However, this is the basic idea of the present invention.

この考え方を具体的に実施するためには、鋳片冷却の好適な実施態様が幾つか考えられる。冷却条件によっては、上記した鋳片表面割れを防止できないばかりか、鋳片急冷却時に鋳片表層の一部分がマルテンサイト化して、復熱時の膨張によりそこに割れが発生したり、分塊圧延前の加熱時に鋳片表層と内部との熱応力によって割れが発生したりする場合があるので注意を要するからである。   In order to concretely implement this concept, several suitable embodiments of slab cooling are conceivable. Depending on the cooling conditions, not only can the above-mentioned slab surface cracks be prevented, but also a part of the slab surface layer becomes martensite during rapid cooling of the slab, and cracking occurs due to expansion during reheating, This is because a crack may occur due to the thermal stress between the slab surface and the inside during the previous heating, so care must be taken.

そこで、発明者らは、特許文献4に見られるγ粒界不明瞭組織を鋳片表層部に存在させ、鋳片表層部数mmを高温延性のある組織に改質することを目指して、連続鋳造機内で行う冷却の必要条件を調査した。ここで、「γ粒界不明瞭組織」とは、γ粒界が不明瞭なフェライトおよびパーライトの混合組織であって、具体的には、高温側からAr変態点よりも低温側に鋳片が冷却される際に、フェライトがγ粒界に粒状に生成した状態の凝固組織を意味する。このγ粒界不明瞭組織が形成された鋳片の表面は、割れに対する鋼に固有の限界応力が大きくなる。 Accordingly, the inventors have made a continuous casting in order to make the γ grain boundary unclear structure found in Patent Document 4 exist in the slab surface layer part and to modify the slab surface layer part number mm to a structure having high-temperature ductility. The requirements for cooling in-flight were investigated. Here, the “γ grain boundary unclear structure” is a mixed structure of ferrite and pearlite in which the γ grain boundary is unclear, and specifically, a slab from the high temperature side to the low temperature side from the Ar 3 transformation point. This means a solidified structure in a state where ferrite is formed in a granular form at the γ grain boundary when is cooled. On the surface of the slab where the γ grain boundary indistinct structure is formed, the critical stress inherent to the steel against cracking increases.

本発明では、連続鋳造機内で鋳片表層部4mm厚以上にγ粒界不明瞭組織を存在させることが好ましい。そのようなγ粒界不明瞭組織を有する鋳片は、分塊圧延工程へ供給され、分塊工程で加熱・圧延される際に発生することがある鋳片表面の割れ発生を抑制するために好ましいからである。   In the present invention, it is preferable that a γ grain boundary unclear structure exists in a continuous casting machine at a thickness of 4 mm or more in the slab surface layer. In order to suppress the occurrence of cracks on the surface of the slab, which is generated when such a slab having a γ grain boundary unclear structure is supplied to the block rolling process and heated and rolled in the block forming process. It is because it is preferable.

特許文献4に記載の方法は、鋳片が鋳型から出た直後の2次冷却帯で鋳片表面温度をAr変態点以下に一旦急冷却し、さらにそれを内部溶鋼の顕熱を利用してAr変態点以上に急復熱させて、鋳片表層部数mm厚にγ粒界不明瞭組織を存在させ、高温延性のある組織を形成させる方法である。 In the method described in Patent Document 4, the slab surface temperature is rapidly cooled to the Ar 3 transformation point or less once in the secondary cooling zone immediately after the slab comes out of the mold, and the slab is further utilized by sensible heat of the internal molten steel. In this method, the structure is rapidly reheated to an Ar 3 transformation point or more so that a γ grain boundary indistinct structure exists in the slab surface layer part thickness of several mm to form a structure having high temperature ductility.

しかし、鋳型直下での急冷却の場合、鋳片表面温度が高温(1100℃近傍)なので、スプレーの熱伝達係数が小さいために超強冷却でないと十分な冷却速度を確保することができない、一方、ピンチロール帯での冷却の場合、鋳片表面温度が900℃近傍に低下しているために、スプレーの熱伝達係数が大きく、相対的に穏やかな冷却でも鋳片表面の冷却速度を高くすることが可能という利点がある。急冷却・急復熱によって割れが発生し易い鋼種では、この利点を活かして鋳片表層部の組織改善を行うことが、鋳片の表面割れを抑制するために効果的である。   However, in the case of rapid cooling directly under the mold, the slab surface temperature is high (near 1100 ° C.), so the heat transfer coefficient of the spray is small, so a sufficient cooling rate cannot be secured unless super strong cooling is performed. In the case of cooling in the pinch roll zone, since the slab surface temperature is lowered to around 900 ° C., the heat transfer coefficient of the spray is large, and the slab surface cooling rate is increased even with relatively gentle cooling. There is an advantage that it is possible. For steel types that are susceptible to cracking due to rapid cooling and rapid recovery heat, it is effective to improve the structure of the slab surface layer by taking advantage of this advantage in order to suppress surface cracks in the slab.

そのための条件を後述するように種々実験調査した結果、連続鋳造中の鋳片に、鋳片の曲げ矯正後であって、かつ、その完全凝固後にスプレー水を、強冷却時の冷却水量密度を、鋳片表面積当たり350〜1400L/min・mの範囲とし、かつ、鋳片表面積当たりの冷却水量を水量密度×噴射時間で650〜1680L/mとすることが好ましいことを把握した。 As a result of various experimental investigations as described below for the conditions for that, as a result of slab bending during continuous casting, spray water after straightening of the slab and after complete solidification, the cooling water density at the time of strong cooling It was understood that it is preferable to set the range of 350 to 1400 L / min · m 2 per surface area of the slab and to set the amount of cooling water per surface area of the slab to 650 to 1680 L / m 2 in terms of water density × injection time.

さらに、従来の3次冷却方法では、冷却ゾーンを数mに渡って設定することが一般的であるが、本発明では連続鋳造機内のピンチロール帯内に、鋳込み方向への長さで1m以下の範囲に複数のスプレーを設けて、冷却時間を短くすることが好ましいことも確認した。   Furthermore, in the conventional tertiary cooling method, the cooling zone is generally set over several meters, but in the present invention, the length in the casting direction is 1 m or less in the pinch roll band in the continuous casting machine. It was also confirmed that it is preferable to provide a plurality of sprays in the range to shorten the cooling time.

以上の知見に基づき完成された本発明は次のとおりである。
(1)溶鋼を連続鋳造してブルーム鋳片を製造する際の鋳片冷却方法であって、連続鋳造中に鋳片の曲げ矯正後であって、かつ、完全凝固後にスプレー水を噴射することによって、該鋳片の表面温度をAr変態点以上からAr変態点以下に冷却した後、再度Ar変態点以上に上昇させ、前記スプレー水を噴射するにあたり、鋳片表面積当たりの冷却水量密度を350L/min・m 以上1400L/min・m 以下とし、かつ、該冷却水量密度×冷却水噴射時間の値を650L/m 以上1700L/m 以下に調整して行うことを特徴とする、連続鋳造中のブルーム鋳片の冷却方法。
The present invention completed based on the above knowledge is as follows.
(1) A method of cooling a slab when continuously casting molten steel to produce a bloom slab, wherein the slab is bent during straight casting and spray water is sprayed after complete solidification. Then, after cooling the surface temperature of the slab from the Ar 3 transformation point to the Ar 1 transformation point, the temperature is raised again to the Ar 1 transformation point and the spray water is sprayed. the density was 350L / min · m 2 or more 1400L / min · m 2 or less, and characterized by performing by adjusting the value of the cooling water density × coolant injection time 650L / m 2 or more 1700L / m 2 or less A method for cooling a bloom slab during continuous casting.

)前記スプレー水の噴射を鋳片の完全凝固後から鋳造方向下流側に3m以上10m以下の範囲内において、鋳造方向に1m以内の区間でのみ行うことを特徴とする、上記(1)に記載の連続鋳造中のブルーム鋳片の冷却方法。
(2) in the range inject after complete solidification of the slab in the casting direction downstream side of the inclusive 3m 10 m of the spray water, and performing only an interval within 1m in the casting direction, the (1) The method for cooling a bloom slab during continuous casting as described in 1.

)上記(1)または(2)に記載した鋳片冷却方法を用いることを特徴とする、オーステナイト結晶粒界不明瞭化層を鋳片表層下に4mm厚以上を有するブルーム鋳片の製造方法。
( 3 ) Production of a bloom slab having an austenite grain boundary obscuring layer having a thickness of 4 mm or more below the slab surface layer, characterized by using the slab cooling method described in (1) or (2 ) above. Method.

本発明により、幅広い鋼種にわたり、連続鋳造鋳片の冷却時や熱間圧延時における疵の発生、および冷却時の鋳片の変形の双方が抑制され、γ粒界不明瞭組織を表層に有するブルーム鋳片を安定的に製造することが実現される。   According to the present invention, over a wide range of steel types, both the generation of flaws during cooling of continuous cast slabs and hot rolling, and deformation of the slabs during cooling are suppressed, and the bloom has a γ grain boundary unclear structure in the surface layer. Stable production of the slab is realized.

本発明に係る連続鋳造条件を設定するための試験装置の構成を概念的に示す斜視図である。It is a perspective view which shows notionally the structure of the test apparatus for setting the continuous casting conditions based on this invention. 図1に示される試験装置を用いた実験の作業内容を示すフローチャートである。It is a flowchart which shows the work content of the experiment using the test apparatus shown by FIG. 図1に示される試験装置を用いて行われた冷却実験における温度推移データを示すグラフである。It is a graph which shows the temperature transition data in the cooling experiment conducted using the test apparatus shown by FIG. 図1に示される試験装置におけるスプレー冷却中のインゴット表面近傍における熱電対の設置場所を概念的に示す側面図である。It is a side view which shows notionally the installation place of the thermocouple in the vicinity of the ingot surface during spray cooling in the test apparatus shown by FIG. 鋳片表層部の組織改質深さと冷却水における噴射時間および水量密度の積との関係を示すグラフである。It is a graph which shows the relationship between the structure | tissue modification depth of a slab surface layer part, and the product of the injection time in cooling water, and a water quantity density. 実施例において使用した連続鋳造装置の構造を概念的に示す側面図であり、(A)は全体構成を示す図であって、(B)は冷却部近傍の部分拡大図である。It is a side view which shows notionally the structure of the continuous casting apparatus used in the Example, (A) is a figure which shows the whole structure, (B) is the elements on larger scale near a cooling part. 本発明に係る製造方法により製造された鋳片および従来技術に係る連続鋳造により製造された鋳片のそれぞれについて、各部における割れ個数を指数化した割れ発生指数を比較したグラフである。It is the graph which compared the crack occurrence index which indexed the number of cracks in each part about each of the slab manufactured by the manufacturing method concerning the present invention, and the slab manufactured by the continuous casting concerning a prior art. 図1に示される試験装置を用いて、冷却を適用する試験条件で行われた冷却実験により得られた鋼片の断面観察画像である。It is a cross-sectional observation image of the steel piece obtained by the cooling experiment performed on the test conditions which apply cooling using the test apparatus shown by FIG. 図1に示される試験装置を用いて、冷却を適用しない試験条件で行われた冷却実験により得られた鋼片の断面観察画像である。It is a cross-sectional observation image of the steel piece obtained by the cooling experiment performed on the test conditions which do not apply cooling using the test apparatus shown in FIG.

本発明の実施対象鋼は、連続鋳造鋳片の冷却時に、フェライト・パーライト変態、ベイナイト変態する全ての鋼種であって、特に、質量%で、C:0.03〜0.45%、Si:0.001〜3.0%、Mn:0.3〜1.5%、P:0.1%以下、S:0.1%以下、Al:0.1%以下を含有し、残部Feおよび不純物である鋼が例示される。   The subject steels of the present invention are all steel types that undergo ferrite-pearlite transformation and bainite transformation when cooling a continuous cast slab, and in particular, by mass%, C: 0.03-0.45%, Si: 0.001-3.0%, Mn: 0.3-1.5%, P: 0.1% or less, S: 0.1% or less, Al: 0.1% or less, the balance Fe and Examples of the steel are impurities.

そのほか、前記した各成分を基本的に含有し、さらに前記Feに代えて、質量%で、Nb:0.03〜0.05%、V:0.002%以下、Mo:0.05〜0.30%のうちの一種または二種以上を含有する鋼に本発明を適用すると、表面割れ防止効果が一層顕著に現われる。   In addition, each component described above is basically contained, and in place of the Fe, in mass%, Nb: 0.03 to 0.05%, V: 0.002% or less, Mo: 0.05 to 0 When the present invention is applied to a steel containing one or more of 30%, the effect of preventing surface cracking appears more remarkably.

鋳造には通常のブルーム連続鋳造装置を用いれば良いが、より具体的には、鋳片サイズ220〜370×220〜600mmで、鋳造速度は0.3〜2.0m/minが例示される。   A normal bloom continuous casting apparatus may be used for casting. More specifically, the slab size is 220 to 370 × 220 to 600 mm, and the casting speed is 0.3 to 2.0 m / min.

本発明においては、鋳片内部が完全凝固後であって、その鋳片の曲がり矯正後のピンチロール帯に3次冷却装置を設けて鋳片表面を一旦冷却し、さらにそれを直ぐ復熱させる操作を行う。   In the present invention, the inside of the slab is completely solidified, and a tertiary cooling device is provided in the pinch roll band after the bending of the slab is corrected to once cool the surface of the slab and to reheat it immediately. Perform the operation.

このような条件は、次のようにして把握した。
図1に示す試験装置を用いて、冷却条件と鋳片表層組織改質との関係を調査した。実験における作業内容をフローチャートとして図2に示した。
Such conditions were grasped as follows.
Using the test apparatus shown in FIG. 1, the relationship between the cooling conditions and the slab surface structure modification was investigated. The work contents in the experiment are shown as a flowchart in FIG.

表1に示す組成の溶鋼(A,B,C)を各1.0トン溶解し、その溶鋼を図1に示すように315mm×435mmのインゴットになるように鋳造し、型抜き後に図1に示す冷却試験装置へ搬送して、インゴット表面の冷却実験を行った。その冷却条件を纏めて、表2に示す。   Each molten steel (A, B, C) having the composition shown in Table 1 is melted by 1.0 ton, and the molten steel is cast into a 315 mm × 435 mm ingot as shown in FIG. It conveyed to the cooling test apparatus shown, and the cooling experiment of the ingot surface was conducted. The cooling conditions are summarized in Table 2.

図1に示す冷却実験装置は、連続鋳造における鋳片の移動を模擬するための駆動装置1、ブルーム鋳片2、冷却スプレー3、および冷却スプレーが取り付けられて駆動装置により上下方向に所定の速度で移動可能な昇降フレーム4で構成されている。冷却スプレー流量と冷却スプレーを昇降するフレームの昇降速度を変化させることで、噴射スプレーピッチならびに鋳片移動速度を模擬する。   The cooling experimental apparatus shown in FIG. 1 is provided with a driving device 1, a bloom slab 2, a cooling spray 3, and a cooling spray for simulating the movement of a slab in continuous casting, and a predetermined speed in the vertical direction by the driving device. It is comprised by the raising / lowering flame | frame 4 which can be moved by. The spray spray pitch and the slab moving speed are simulated by changing the cooling spray flow rate and the raising / lowering speed of the frame for raising and lowering the cooling spray.

本発明に係る冷却には、水と空気との混合スプレーを用い、スプレー噴射開始時のインゴット表面温度は850〜1050℃とした。連続鋳造における鋳片移動中の温度変化を模擬するために、スプレーを0.7〜2.5m/minの速度で1ストロークを250mmとして往復移動させつつ、鋳片の温度変化を、鋳片表面へ溶着させた熱電対と、鋳片内部へ埋め込んだ熱電対とを用いて連続的に測定した。   For the cooling according to the present invention, a mixed spray of water and air was used, and the ingot surface temperature at the start of spray injection was 850 to 1050 ° C. In order to simulate the temperature change during slab movement in continuous casting, the temperature change of the slab is measured by reciprocating the spray with a stroke of 250 mm at a speed of 0.7 to 2.5 m / min. The measurement was continuously performed using a thermocouple welded to the inside of the slab and a thermocouple embedded in the slab.

鋼種Aについて、インゴット表面積当たりの冷却水量密度を995L/min・mとし、スプレー移動速度を2.5m/minで1ストロークを250mmとして往復移動させつつ、スプレー噴射を84秒間行った場合、図3に示す温度推移となった。この場合、鋳造速度を0.7m/minとして考えると、スプレーピッチが70mmのスプレー噴射による冷却領域を鋳片が84秒間すなわち980cm移動したことに相当する。 For steel type A, the density of cooling water per ingot surface area is 995 L / min · m 2 , the spray moving speed is 2.5 m / min, one stroke is 250 mm, and the spray is sprayed for 84 seconds. The temperature transition shown in FIG. In this case, assuming that the casting speed is 0.7 m / min, this corresponds to the slab moving for 84 seconds, that is, 980 cm in the cooling region by spray injection with a spray pitch of 70 mm.

図3に示す、冷却実験中の温度推移データを解析することで、スプレー条件(水量、冷却時間、鋳造速度)と鋳片表層組織改質の関係を整理することができ、最適冷却条件を推定することが可能となる。図3に示す鋳片表面に溶着させた熱電対の温度と鋳片表面から22mmの深さの位置に設置した熱電対とを用いて、スプレーの熱伝達を推定した。なお、鋳片表面に溶着させた熱電対は、スプレー噴射終了後の復熱状態を推定するためのものである。図4にスプレー冷却中のインゴット表面近傍における熱電対の設置場所を概念的に示す。   By analyzing the temperature transition data during the cooling experiment shown in Fig. 3, the relationship between spray conditions (water volume, cooling time, casting speed) and slab surface structure modification can be organized, and optimum cooling conditions are estimated. It becomes possible to do. The heat transfer of the spray was estimated using the temperature of the thermocouple welded to the slab surface shown in FIG. 3 and the thermocouple installed at a depth of 22 mm from the slab surface. The thermocouple welded to the slab surface is for estimating the recuperated state after the end of spray injection. FIG. 4 conceptually shows the location of the thermocouple in the vicinity of the ingot surface during spray cooling.

図3に示すように、冷却開始により鋳片表面温度は急激に低下し、冷却スプレー停止後Ar点以上に復熱していることが鋳片表面に溶着した熱電対データより判る。スプレー噴射中は、直接スプレー水の噴射を受けるため、スプレー水の沸騰状態を測定するため100℃近傍で推移しているが、スプレー停止後は、冷却水の影響を受けないため、鋳片表面の復熱状態が予測できる。 As shown in FIG. 3, it can be seen from the thermocouple data welded to the surface of the slab that the slab surface temperature suddenly decreases due to the start of cooling, and that the heat is recovered to at least one Ar point after the cooling spray is stopped. During spray injection, it is directly sprayed with spray water, so it has moved around 100 ° C to measure the boiling state of spray water. Can be predicted.

また、鋳片内部に取付けた熱電対もスプレー冷却の影響を受けて温度が低下するので、冷却中の温度データより2次元伝熱解析を実施し、冷却の定量を実施した。
鋳片の表面におけるスプレーに対向する位置(図4中●で示される。)に熱電対を溶着して、この位置での鋳片の表面温度が約950℃になるまで放冷し、950℃に到達したときにスプレー噴射による鋳片の冷却を開始した。950℃をスプレー噴射開始温度としたのは、本発明による冷却を適用するピンチロール部での鋳片表面の温度に合わせるためである。
In addition, since the temperature of the thermocouple attached inside the slab is also affected by spray cooling, two-dimensional heat transfer analysis was performed from the temperature data during cooling, and the cooling was quantified.
A thermocouple is welded to a position on the surface of the slab facing the spray (indicated by ● in FIG. 4), and the slab is allowed to cool to 950 ° C. until the surface temperature of the slab reaches about 950 ° C. When slab was reached, cooling of the slab by spray injection was started. The reason why the spray injection start temperature is set to 950 ° C. is to match the temperature of the slab surface at the pinch roll portion to which the cooling according to the present invention is applied.

鋼種Aにおいて、冷却条件として、水量密度995L/min・m、スプレー噴射時間84秒(この時間は、鋳造速度0.7m/minスプレーピッチ70mmに相当する。)で冷却を行った場合の鋳片表層組織の観察画像を図8および図9に示す。 In steel type A, as a cooling condition, casting was performed when cooling was performed with a water density of 995 L / min · m 2 and a spray injection time of 84 seconds (this time corresponds to a casting speed of 0.7 m / min spray pitch of 70 mm). Observation images of the single surface layer structure are shown in FIGS.

図8は本発明の条件に基づき強冷却および復熱を適切に行った場合で、目標とする鋳片表層組織改質層が表層から4mmの範囲に形成されている。
一方、図9は、上記の強冷却を行わずに放冷のみで冷却することにより得られた鋼片の断面観察画像であり、鋳片表層組織において粒界が大きく明瞭であることが判る。
FIG. 8 shows a case in which strong cooling and recuperation are appropriately performed based on the conditions of the present invention, and a target slab surface layer modified layer is formed in a range of 4 mm from the surface layer.
On the other hand, FIG. 9 is a cross-sectional observation image of a steel slab obtained by cooling only by standing cooling without performing the above-described strong cooling, and it can be seen that the grain boundary is large and clear in the slab surface layer structure.

そこで、この実験により得た結果を一般的な操業条件に適用できるよう、先ず必要な表層部改質深さを調査し、次にそのような改質深さが安定して得られるような冷却条件を検討した。   Therefore, in order to be able to apply the results obtained in this experiment to general operating conditions, first the necessary surface layer reforming depth is investigated, and then cooling is performed so that such reforming depth can be stably obtained. The conditions were examined.

その結果、鋳片表層部の組織改質深さは、鋳片の表面割れを防止するためには、連続鋳造後鋳片表面から4mm以上が必要と分かった。
そのような鋳片改質深さは、鋳片内部の冷却浸透深さに関係があり、具体的には冷却中の鋳片表面温度の推移と経過時間との関係から計算により求めることができる。その計算による冷却浸透深さは、通常のスプレー噴射(具体的には、ミストスプレーまたは高圧スプレー)による冷却条件においては、鋳片表面積当たりで所定の水量密度の範囲下で、その水量密度とその密度での噴射時間との積で代表することができ、本発明における鋳片表面積当たりで所定の水量密度の範囲を350〜1400L/min・mに調整した場合には、図5に示す結果が得られた。
As a result, it was found that the structure modification depth of the slab surface layer portion should be 4 mm or more from the slab surface after continuous casting in order to prevent surface cracking of the slab.
Such slab reforming depth is related to the cooling penetration depth inside the slab, and can be obtained by calculation from the relationship between the transition of the slab surface temperature during cooling and the elapsed time. . The calculated cooling penetration depth is calculated based on the water density and the water density within a predetermined water density range per slab surface area under normal spraying conditions (specifically, mist spraying or high-pressure spraying). The product can be represented by the product of the injection time with the density, and the result shown in FIG. 5 is obtained when the range of the predetermined water density per slab surface area in the present invention is adjusted to 350 to 1400 L / min · m 2 . was gotten.

この結果から、鋳片表面積当たりで所定の水量密度の範囲を350〜1400L/min・mに調整した場合には、鋳片表面積当たりの水量密度とスプレー水噴射時間の積を650L/m以上にすることで、鋳片表層部の改質深さが4mm以上の鋳片が得られると分かった。なお、この積を1680L/m超にすると鋳片表面が冷却され過ぎて復熱が困難になっていくので、上限としては1680L/mが適当である。 From this result, when the range of the predetermined water amount density per slab surface area is adjusted to 350 to 1400 L / min · m 2 , the product of the water amount density per slab surface area and the spray water injection time is 650 L / m 2. It turned out that the slab whose modification depth of a slab surface layer part is 4 mm or more is obtained by making it above. Note that if this product exceeds 1680 L / m 2 , the surface of the slab is cooled too much and recuperation becomes difficult, so 1680 L / m 2 is appropriate as the upper limit.

また、鋳片の強冷却を行う時期は、連鋳機のピンチロール帯内で、鋳片の曲げ矯正後であって、かつ、完全凝固完了位置から鋳造方向下流側に3m〜10mの範囲が好ましい。完全凝固完了位置は、凝固伝熱解析により計算で求めることができるが、凝固完了位置の計算値は、一般的に文献等で約1m程度のバラツキ(誤差)があるので、その誤差によって未凝固層のある鋳片を強冷却により収縮させてしまう危険を確実に回避するために、完全凝固完了位置の計算値より3m経過した位置を、鋳片の強冷却を行う範囲の下限とする。   Moreover, the time for performing strong cooling of the slab is within a range of 3 m to 10 m in the pinch roll band of the continuous casting machine after the slab is bent and corrected, and from the complete solidification completion position to the downstream side in the casting direction. preferable. The complete solidification completion position can be calculated by solidification heat transfer analysis, but the calculated value of the solidification completion position generally has a variation (error) of about 1 m in the literature. In order to surely avoid the danger of shrinking the slab with a layer due to strong cooling, the position 3 m after the calculated value of the complete solidification completion position is set as the lower limit of the range in which the slab is strongly cooled.

また、完全凝固から長時間を経過すると鋳片表面の温度が低下して、Ar変態点の温度以下となってしまう。このため、完全凝固から10m以下の範囲に強冷却帯を設けることが好ましい。 Further, when a long time elapses after complete solidification, the temperature of the slab surface is lowered and becomes lower than the temperature of the Ar 3 transformation point. For this reason, it is preferable to provide a strong cooling zone in the range of 10 m or less from complete solidification.

なお、強冷却帯の長さは、鋳造方向に1m以下とすることが好ましい。1mを超えて強冷却すると、鋳片内部の温度が低下し過ぎて鋳片表面がAr変態点以上に上昇しなくなる場合が多く発生し得るからである。 Note that the length of the strong cooling zone is preferably 1 m or less in the casting direction. This is because, if the cooling is over 1 m, the temperature inside the slab is excessively lowered and the surface of the slab may not rise above the Ar 1 transformation point.

表3に示す組成の溶鋼80トンを、図6に示す連続鋳造機を用いて鋳造した。その鋳造条件を、表4に纏めて示す。
連続鋳造ブルーム鋳片は、鋳型8に溶鋼を注入し凝固シェルを形成させ、セグメントロールと2次冷却スプレー帯5を通過し、矯正帯6にてピンチロールにて矯正され、次工程へ搬送される。本発明による冷却は、完全凝固しさらに矯正完了した域において冷却帯7を設置することで実施した。
80 tons of molten steel having the composition shown in Table 3 was cast using the continuous casting machine shown in FIG. The casting conditions are summarized in Table 4.
The continuous cast bloom slab is made by injecting molten steel into the mold 8 to form a solidified shell, passes through the segment roll and the secondary cooling spray zone 5, is corrected by the pinch roll at the correction zone 6, and is conveyed to the next process. The The cooling according to the present invention was carried out by installing a cooling zone 7 in an area where solidification was completed and correction was completed.

この連続鋳造機の鋳片曲げ矯正の位置は32.5mであり、表3に示す溶鋼を表4の条件で鋳込む場合の凝固完了位置は、28.5mの位置である。この連続鋳造機では、冷却帯7として冷却装置を、凝固完了位置から4.5m後の位置から鋳込み方向に1.0mにわたって設けてあり、その冷却帯7における冷却装置は0.5〜1.0mの範囲で鋳込み方向の冷却帯長さ(スプレー噴射帯の長さ)を調節することができる。   The slab bending correction position of this continuous casting machine is 32.5 m, and the solidification completion position when casting molten steel shown in Table 3 under the conditions of Table 4 is a position of 28.5 m. In this continuous casting machine, a cooling device is provided as a cooling zone 7 over a distance of 4.5 m from a position 4.5 m after the solidification completion position, and the cooling device in the cooling zone 7 is 0.5-1. The cooling zone length in the casting direction (the length of the spray jet zone) can be adjusted in the range of 0 m.

この実施例においてはその冷却帯長さを0.7mに調節し、鋳造速度0.7m/minで鋳造したので、鋳片へのスプレー噴射時間は丁度1分間であり、水量密度と噴射時間との積は995L/mである。 In this embodiment, the length of the cooling zone was adjusted to 0.7 m and the casting was cast at a casting speed of 0.7 m / min. Therefore, the spray injection time onto the slab was just 1 minute, and the water density, the injection time, The product of is 995 L / m 2 .

この条件により鋳造した鋳片の分塊圧延後の表面割れ状況を、調べた結果を図7に、従来法により鋳造した鋳片と対比して示す。従来法の鋳片は、本発明による鋳造中に冷却帯7における冷却装置からのスプレー噴射を部分的に止めて鋳造した鋳片である。   FIG. 7 shows the result of examining the surface cracking state after the ingot rolling of the slab cast under these conditions, in comparison with the slab cast by the conventional method. The slab of the conventional method is a slab cast by partially stopping spray injection from the cooling device in the cooling zone 7 during casting according to the present invention.

図7の「天側」とは鋳造中、鋳片が水平に移送されたときに上面を向く鋳片の面を意味し、「地側」とはこの「天側」をなす面の対向面を意味する。「割れ発生指数」とは、鋳片1本あたりの割れ個数であり、(複数の鋳片における割れ個数の総和)/(鋳片本数)で求められる。   The “top side” in FIG. 7 means the surface of the slab that faces the upper surface when the slab is moved horizontally during casting, and the “ground side” is the opposite surface of the surface that forms this “top side”. Means. The “crack occurrence index” is the number of cracks per slab and is obtained by (total number of cracks in a plurality of slabs) / (number of slabs).

このように、冷却帯7を使って本発明に規定される条件を満たした鋳造により、鋳片の割れ発生が減少することが確認できた。   Thus, it has been confirmed that the occurrence of cracks in the slab is reduced by casting that satisfies the conditions defined in the present invention using the cooling zone 7.

1:駆動装置(鋳片移動速度を模擬)
2:ブルーム鋳片
3:冷却スプレー
4:昇降フレーム
5:セグメントロールおよび2次冷却帯
6:矯正帯(ピンチロール帯)
7:本発明冷却帯
8:鋳型
1: Drive device (simulating slab moving speed)
2: Bloom slab 3: Cooling spray 4: Lifting frame 5: Segment roll and secondary cooling zone 6: Straightening zone (pinch roll zone)
7: Invention cooling zone 8: Mold

Claims (3)

溶鋼を連続鋳造してブルーム鋳片を製造する際の鋳片冷却方法であって、
連続鋳造中に
鋳片の曲げ矯正後であって、かつ、完全凝固後にスプレー水を噴射することによって、
該鋳片の表面温度をAr変態点以上からAr変態点以下に冷却した後、
再度Ar変態点以上に上昇させ
前記スプレー水を噴射するにあたり、
鋳片表面積当たりの冷却水量密度を350L/min・m 以上1400L/min・m 以下とし、
かつ、該冷却水量密度×冷却水噴射時間の値を650L/m 以上1700L/m 以下に調整して行うこと
を特徴とする、連続鋳造中のブルーム鋳片の冷却方法。
A slab cooling method for producing a bloom slab by continuously casting molten steel,
By spraying spray water after straightening of the slab during continuous casting and after complete solidification,
After cooling the surface temperature of the slab from the Ar 3 transformation point to the Ar 1 transformation point,
Again raise it above the Ar 1 transformation point ,
In injecting the spray water,
The cooling water amount density per slab area and 350L / min · m 2 or more 1400L / min · m 2 or less,
And, the cooling water density × the value of the cooling water injection time was adjusted to 650L / m 2 or more 1700L / m 2 or less and performing, the blooming slab cooling method in the continuous casting.
前記スプレー水の噴射を、
鋳片の完全凝固後から鋳造方向下流側に3m以上10m以下の範囲内において、鋳造方向に1m以内の区間でのみ行うこと
を特徴とする、請求項1に記載の連続鋳造中のブルーム鋳片の冷却方法。
Spraying the spray water,
2. The bloom slab during continuous casting according to claim 1, wherein the slab is carried out only in a section of 1 m or less in the casting direction within a range of 3 m or more and 10 m or less on the downstream side in the casting direction after complete solidification of the slab. Cooling method.
請求項1または2に記載した鋳片冷却方法を用いることを特徴とする、オーステナイト結晶粒界不明瞭化層を鋳片表層下に4mm厚以上を有するブルーム鋳片の製造方法。
A method for producing a bloom slab having an austenite grain boundary obscuring layer having a thickness of 4 mm or more under a slab surface layer, wherein the slab cooling method according to claim 1 or 2 is used.
JP2010085384A 2010-04-01 2010-04-01 Method for cooling continuous cast bloom slab and method for manufacturing the slab Active JP5402790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085384A JP5402790B2 (en) 2010-04-01 2010-04-01 Method for cooling continuous cast bloom slab and method for manufacturing the slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085384A JP5402790B2 (en) 2010-04-01 2010-04-01 Method for cooling continuous cast bloom slab and method for manufacturing the slab

Publications (2)

Publication Number Publication Date
JP2011212736A JP2011212736A (en) 2011-10-27
JP5402790B2 true JP5402790B2 (en) 2014-01-29

Family

ID=44943032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085384A Active JP5402790B2 (en) 2010-04-01 2010-04-01 Method for cooling continuous cast bloom slab and method for manufacturing the slab

Country Status (1)

Country Link
JP (1) JP5402790B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5836248B2 (en) * 2012-10-23 2015-12-24 東亜工業株式会社 Spot welding method
CN114850423B (en) * 2022-05-21 2023-05-23 湖南华菱湘潭钢铁有限公司 Control method for corner cracks of medium-carbon manganese steel continuous casting bloom

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112058A (en) * 1986-10-28 1988-05-17 Mitsubishi Heavy Ind Ltd Continuous casting method
JPS63168260A (en) * 1986-12-30 1988-07-12 Aichi Steel Works Ltd Hot working method for continuously cast billet
JP2728999B2 (en) * 1991-12-13 1998-03-18 新日本製鐵株式会社 Continuous casting method
JPH0688125A (en) * 1992-09-09 1994-03-29 Aichi Steel Works Ltd Method for hot-working continuously cast slab and steel ingot
JP3406459B2 (en) * 1996-06-10 2003-05-12 山陽特殊製鋼株式会社 Cooling method for continuous casting bloom
JPH10216911A (en) * 1997-02-06 1998-08-18 Daido Steel Co Ltd Continuous casting apparatus
JPH11290902A (en) * 1998-04-09 1999-10-26 Nippon Steel Corp Method for preventing surface crack in hot-edging of continuously cast slab
JP3702807B2 (en) * 2001-04-11 2005-10-05 住友金属工業株式会社 Continuous casting method
JP4055440B2 (en) * 2001-06-13 2008-03-05 Jfeスチール株式会社 Direct-rolling method for continuous cast slabs
JP4209737B2 (en) * 2003-07-24 2009-01-14 山陽特殊製鋼株式会社 Cooling method for continuous casting bloom
JP5416342B2 (en) * 2007-04-13 2014-02-12 新日鐵住金株式会社 Cooling method for bloom slab

Also Published As

Publication number Publication date
JP2011212736A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
EP3246112B1 (en) Continuous casting method for slab
JP3058079B2 (en) Steel continuous casting method
JP2008100249A (en) Continuous casting method and continuous casting equipment for steel
JP6269543B2 (en) Steel continuous casting method
JP2002086252A (en) Continous casting method
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JP5708340B2 (en) Cooling method for continuous cast slab
JP3008825B2 (en) Slab surface crack suppression method
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP5416342B2 (en) Cooling method for bloom slab
JP5999294B2 (en) Steel continuous casting method
JP2002307149A (en) Continuous casting method
JP2018099704A (en) Continuous casting method for steel
JP2001138019A (en) Continuous casting method
JP4398879B2 (en) Steel continuous casting method
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JP6954514B1 (en) Continuous casting method
JP5381468B2 (en) Secondary cooling method in continuous casting machine
TWI784570B (en) continuous casting method
JPH0112561B2 (en)
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3298519B2 (en) Steel sheet free of hydrogen defects and method for producing the same
JPH10109150A (en) Secondary cooling device for cast slab
JP5477202B2 (en) Secondary cooling method in continuous casting machine
JPH101719A (en) Method for cooling continuously cast bloom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350