JP5999294B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP5999294B2
JP5999294B2 JP2016535783A JP2016535783A JP5999294B2 JP 5999294 B2 JP5999294 B2 JP 5999294B2 JP 2016535783 A JP2016535783 A JP 2016535783A JP 2016535783 A JP2016535783 A JP 2016535783A JP 5999294 B2 JP5999294 B2 JP 5999294B2
Authority
JP
Japan
Prior art keywords
mold
slab
corner
continuous casting
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016535783A
Other languages
Japanese (ja)
Other versions
JPWO2016013186A1 (en
Inventor
章敏 松井
章敏 松井
圭吾 外石
圭吾 外石
則親 荒牧
則親 荒牧
三木 祐司
祐司 三木
暢 井上
暢 井上
和浩 竹澤
和浩 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5999294B2 publication Critical patent/JP5999294B2/en
Publication of JPWO2016013186A1 publication Critical patent/JPWO2016013186A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は、連続鋳造における鋳片の表面割れの発生を抑制した、鋼の連続鋳造方法に関するものである。   The present invention relates to a steel continuous casting method in which occurrence of surface cracks of a slab in continuous casting is suppressed.

鋼板の機械的性質の向上を目的に、Cu、Ni、Nb、VおよびTiなどの合金元素を含有した低合金鋼が、特に厚鋼板に適用されている。このような低合金鋼を、例えば垂直曲げ型連続鋳造機を用いて鋳造する場合に、鋳片の矯正部や曲げ部において鋳片の鋳造方向と直交する矩形断面の四隅(以下、コーナー部ともいう)に応力が負荷され、表面割れ、とりわけコーナー部に割れが発生しやすい。このコーナー割れは厚鋼板の表面疵の原因となりやすく、鋼板製品の歩留まりを低下させる原因となる。   Low alloy steels containing alloy elements such as Cu, Ni, Nb, V and Ti have been applied to thick steel plates in particular for the purpose of improving the mechanical properties of the steel plates. When such a low alloy steel is cast using, for example, a vertical bending type continuous casting machine, the four corners of the rectangular cross section (hereinafter referred to as the corner portion) perpendicular to the casting direction of the slab at the straightened portion or the bent portion of the slab are obtained. Stress) and surface cracks, particularly cracks at the corners are likely to occur. This corner crack is likely to cause a surface flaw of the thick steel plate, and causes a decrease in the yield of the steel plate product.

すなわち、低合金鋼の鋳片は、その凝固組織がオーステナイト相からフェライト相に変態するAr3変態点の近傍温度にて、熱間延性が著しく低下する。さらに、低合金鋼の鋳片では、2次冷却される過程において、AlNやNbCなどがオーステナイト粒界に析出し、脆化しやすい。そのために、鋳片表面、とりわけ応力が負荷されるコーナー部に割れが発生しやすい。That is, the slab of low alloy steel has a marked decrease in hot ductility at a temperature in the vicinity of the Ar 3 transformation point where the solidification structure transforms from an austenite phase to a ferrite phase. Furthermore, in the slab of low alloy steel, AlN, NbC, etc. are precipitated at the austenite grain boundaries during the secondary cooling, and are easily embrittled. For this reason, cracks are likely to occur on the surface of the slab, especially on the corner portion where stress is applied.

そこで、連続鋳造工程では、上述のコーナー割れを防止するために、2次冷却によって鋳片表面温度を制御し、鋳片凝固組織を割れにくい組織に制御することが一般に行われている。   Therefore, in the continuous casting process, in order to prevent the above-described corner cracking, it is generally performed to control the slab surface temperature by secondary cooling to control the slab solidified structure to a structure that is difficult to break.

例えば、特許文献1には、鋳片を矩形の鋳型から引き抜いた直後に鋳片の2次冷却を開始し、鋳片の表面温度を一旦Ar3変態点より低い温度に冷却した後に、Ar3変態点を超える温度に復熱させ、その後鋳片を矯正する際に、鋳片表面温度をAr3変態点より低い温度に保持する時間と鋳片表面温度が到達する最低の温度とを適切な範囲にすることによって、鋳片表面から少なくとも2mm深さまでの凝固組織を、オーステナイト粒界が不明瞭なフェライトおよびパーライトの混合組織とする技術が開示されている。For example, in Patent Document 1, secondary cooling of a slab is started immediately after the slab is drawn out of a rectangular mold, and after the surface temperature of the slab is once cooled to a temperature lower than the Ar 3 transformation point, Ar 3 When reheating to a temperature exceeding the transformation point and then straightening the slab, the time required to maintain the slab surface temperature below the Ar 3 transformation point and the lowest temperature that the slab surface temperature can reach are appropriately set. By making the range, a technique is disclosed in which the solidified structure from the slab surface to a depth of at least 2 mm is a mixed structure of ferrite and pearlite in which the austenite grain boundary is unclear.

また、特許文献2には、凝固シェル厚が10mm以上15mm以下のところで鋳型による1次冷却を終了して2次冷却を開始し、鋳片全面の表面温度を鋳型を出てから2分以内の間に一旦600℃以上Ar3点以下の範囲まで低下させ、曲げ部における鋳片表面温度および矯正部における鋳片表面温度の両者が850℃以上となるように2次冷却を行う技術が開示されている。Patent Document 2 discloses that when the solidified shell thickness is 10 mm or more and 15 mm or less, the primary cooling by the mold is finished and the secondary cooling is started, and the surface temperature of the entire surface of the slab is within 2 minutes from the exit of the mold. In the meantime, a technique is disclosed in which the temperature is once lowered to a range of 600 ° C. or higher and below the Ar 3 point, and secondary cooling is performed so that both the slab surface temperature in the bent portion and the slab surface temperature in the straightened portion become 850 ° C. ing.

特許第3702807号Patent No. 3702807 特許第3058079号Patent No. 3058079

しかしながら、上記した従来技術は、以下の問題点を抱えていた。
即ち、特許文献1及び特許文献2に記載の技術では、2次冷却スプレーから鋳片に噴射された後に鋳片を伝って流れる、垂れ水の影響が懸念される。とりわけ、鋳造速度が遅くなると、垂れ水が鋳片表面の冷却に影響して、例えば伝熱解析等により鋳片表面温度を定量的に制御することが困難になる場合があった。
However, the above-described conventional technology has the following problems.
That is, in the techniques described in Patent Document 1 and Patent Document 2, there is a concern about the influence of dripping water flowing through the slab after being sprayed from the secondary cooling spray to the slab. In particular, when the casting speed becomes slow, dripping water affects the cooling of the slab surface, and it may be difficult to quantitatively control the slab surface temperature by, for example, heat transfer analysis.

さらに、特許文献2に記載の技術は、鋳片全面の温度をAr3変態点以下に低下させるために、多量のスプレー水を噴射せざるを得ない。鋳造厚みが大きい場合には更に多量のスプレー水が必要となるが、あまりに多量のスプレー水を噴射すると、鋳片の幅方向に温度バラツキが生じやすく、鋳片表層下での内部割れの発生が懸念されることになる。Furthermore, in the technique described in Patent Document 2, in order to reduce the temperature of the entire surface of the slab to the Ar 3 transformation point or less, a large amount of spray water must be injected. If the casting thickness is large, a larger amount of spray water is required, but if too much spray water is sprayed, temperature fluctuations are likely to occur in the width direction of the slab, and internal cracks occur under the surface of the slab. It will be a concern.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、従来、2次冷却による鋳片組織の制御のみでは十分に解消されなかった鋳片の表面割れを、適切な形状の鋳造空間を有する鋳型を用いつつ2次冷却にて鋳片コーナー部の温度を制御することによって確実に抑制し、特にコーナー割れのない高品質なスラブを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to form a surface crack of a slab, which has not been sufficiently solved only by controlling the slab structure by secondary cooling, in an appropriate shape. An object of the present invention is to provide a high-quality slab that is reliably suppressed by controlling the temperature of the slab corner portion by secondary cooling while using a mold having a casting space, and that is particularly free from corner cracks.

本発明の要旨構成は、次のとおりである。
(1)溶鋼を鋳型に装入し、該鋳型から直接鋳片を引き抜く連続鋳造方法において、
一対の鋳型長辺と一対の鋳型短辺とで区画される矩形空間の四隅を、前記鋳型長辺側の長さaに対する前記鋳型短辺側の長さbの比b/aが3.0以上6.0以下となる直角三角形状に取り除いた鋳造空間を有する、鋳型を用いて、
前記鋳型の直下から曲げ矯正点に至る前において、前記鋳片の少なくともコーナー部の表面温度を、一旦Ar3点以下まで低下し、次いで、少なくとも該コーナー部の表面温度を800℃以上にしてから前記曲げ矯正点を800℃以上で通過させることを特徴とする鋼の連続鋳造方法。
The gist configuration of the present invention is as follows.
(1) In a continuous casting method in which molten steel is charged into a mold and a slab is drawn directly from the mold,
At the four corners of the rectangular space defined by the pair of mold long sides and the pair of mold short sides, the ratio b / a of the length b on the mold short side to the length a on the mold long side is 3.0 or more and 6.0. Using the casting mold, which has the casting space removed in the shape of a right triangle that becomes
Before reaching the bending correction point from directly below the mold, the surface temperature of at least the corner portion of the slab is once lowered to Ar 3 point or less, and then at least the surface temperature of the corner portion is set to 800 ° C. or higher. A method for continuous casting of steel, wherein the bending correction point is passed at 800 ° C or higher.

(2)前記比b/aが4.0超である前記(1)に記載の鋼の連続鋳造方法。 (2) The steel continuous casting method according to (1), wherein the ratio b / a is greater than 4.0.

(3)前記鋳型長辺側の長さaが4〜6mmおよび、前記鋳型短辺側の長さbが12〜36mmであることを特徴とする、前記(1)または(2)に記載の鋼の連続鋳造方法。 (3) The length a on the mold long side is 4 to 6 mm, and the length b on the mold short side is 12 to 36 mm, according to (1) or (2), Steel continuous casting method.

本発明に従って、適切な形状の鋳造空間が区画された鋳型を用いつつ、2次冷却により鋳片コーナー部の温度を制御することによって、連続鋳造鋳片のコーナー割れを防止し、高品質のスラブを提供することが可能となる。   According to the present invention, by using a mold in which a casting space of an appropriate shape is partitioned, the temperature of the slab corner portion is controlled by secondary cooling, thereby preventing corner cracking of the continuous cast slab, and high quality slab Can be provided.

連続鋳造機を示す図である。It is a figure which shows a continuous casting machine. 鋳片コーナー部の結晶組織を示す模式図である。It is a schematic diagram which shows the crystal structure of a slab corner part. 鋳片コーナー部の結晶組織を示す模式図である。It is a schematic diagram which shows the crystal structure of a slab corner part. 鋳型を示す模式図である。It is a schematic diagram which shows a casting_mold | template. 鋳型における面取り形状と鋳片コーナー部での応力との関係を示すグラフである。It is a graph which shows the relationship between the chamfering shape in a casting_mold | template, and the stress in a slab corner part.

以下、本発明の連続鋳造方法について、図面を参照して、詳しく説明する。
さて、溶鋼は、例えば図1に示すような、垂直曲げ型の連続鋳造機を用いて連続鋳造されるが、その際、特に曲げ矯正点での矯正時に鋳片コーナー部で表面割れを誘発させないために、適切な形状の鋳造空間が区画された鋳型を用いるとともに、鋳型直下の冷却帯において適切な冷却パターンを経ることが肝要である。
Hereinafter, the continuous casting method of the present invention will be described in detail with reference to the drawings.
Now, the molten steel is continuously cast using a vertical bending type continuous casting machine as shown in FIG. 1, for example, but at this time, surface cracks are not induced at the corner of the slab, particularly during straightening at a bending straightening point. Therefore, it is important to use a mold in which a casting space of an appropriate shape is partitioned and to pass an appropriate cooling pattern in a cooling zone immediately below the mold.

なお、図1において、符号1は取鍋2内に装入した溶鋼である。該溶鋼1は、取鍋2からロングノズル3、タンディッシュ4そして浸漬ノズル5を介して、水冷鋳型6内に供給される。この水冷鋳型6にて冷却された溶鋼1は、凝固殻を生成しながら鋳型6の出側へ導かれて鋳型6から引き抜かれ、鋳型6直下の2次冷却帯7にてさらに冷却されて凝固殻の成長を促進される。2次冷却帯7の出側において、鋳片は湾曲を強制されて水平方向に導かれてから、引き抜き矯正帯(曲げ部)8において曲げの矯正がなされて連続鋳造鋳片9となる。   In FIG. 1, reference numeral 1 denotes molten steel charged in the ladle 2. The molten steel 1 is supplied into a water-cooled mold 6 from a ladle 2 through a long nozzle 3, a tundish 4 and an immersion nozzle 5. The molten steel 1 cooled by the water-cooled mold 6 is guided to the outlet side of the mold 6 while forming a solidified shell, and is pulled out of the mold 6, and further cooled in the secondary cooling zone 7 immediately below the mold 6 to be solidified. Promoted shell growth. On the exit side of the secondary cooling zone 7, the slab is forced to bend and guided in the horizontal direction, and then the bending is corrected in the drawing straightening zone (bending portion) 8 to form the continuous casting slab 9.

ここで、発明者らは、図1に示した垂直曲げ型連続鋳造機にて鋳造された鋳片について、表面割れの観察を実施した。鋳片の割れは、下面コーナー及びその近傍(図2参照)に集中して発生している。なお、鋳片の下面側とは、垂直曲げ連鋳機の湾曲帯の曲げの外側、すなわち水平帯で下面となる長辺面側をいう。この割れ部をエッチングにて組織観察すると、図2に模式にて示すように、旧オーステナイト粒界に沿って割れが発生していることがわかった。これらの調査結果から、鋳片下面でのコーナー割れは、曲げ部での応力負荷によって発生すると考え、2次冷却条件を種々変更する実験を行った。   Here, the inventors observed surface cracks on the slab cast by the vertical bending die continuous casting machine shown in FIG. The cracks of the slab are concentrated at the lower surface corner and the vicinity thereof (see FIG. 2). In addition, the lower surface side of a slab means the outer side of the bending of the curved belt of a vertical bending continuous casting machine, ie, the long side surface side which becomes a lower surface in a horizontal belt. When the structure of this crack was observed by etching, it was found that cracks occurred along the prior austenite grain boundaries, as schematically shown in FIG. From these investigation results, it was considered that corner cracks occurred on the bottom surface of the slab due to the stress load at the bent part, and experiments were conducted to variously change the secondary cooling conditions.

すなわち、種々の2次冷却条件にて伝熱解析を用いた実験を行ったところ、鋳型直下から曲げ部に入るまでの間に、鋳片コーナー部の表面温度を、一旦Ar3点以下に低下させ、その後、曲げ部に入るまでの間に、鋳片コーナー部の表面温度を2次冷却によって制御すれば、鋳片コーナー部の割れが低減することが分かった。
しかしながら、依然として、いくつかの鋳片では相変わらず下面側にコーナー割れが残存しており、これらコーナー割れの周囲の凝固組織を観察すると、図3に模式で示すように、鋳片表層は旧オーステナイト粒界の不明瞭なフェライト−パーライトの混合組織が得られつつあるものの、旧オーステナイト粒界も一部に残存している。そして、コーナー割れは、残存している旧オーステナイト粒界に沿って発生していることが判明した。
That is, when an experiment using heat transfer analysis was conducted under various secondary cooling conditions, the surface temperature of the slab corner was temporarily reduced below the Ar 3 point from immediately under the mold until entering the bent part. Then, it was found that if the surface temperature of the slab corner portion is controlled by secondary cooling before entering the bent portion, cracking of the slab corner portion is reduced.
However, some of the slabs still have corner cracks on the lower surface side, and when the solidification structure around these corner cracks is observed, the slab surface layer is made of prior austenite grains as schematically shown in FIG. Although a mixed structure of ferrite and pearlite with unclear boundaries is being obtained, the prior austenite grain boundaries remain in part. Then, it was found that corner cracks occurred along the remaining old austenite grain boundaries.

さらに、この現象を水モデル実験や数値解析手法を用いて調査・整理したところ、2次冷却水の垂れ水が影響していることが分かった。すなわち、2次冷却水はスプレーから鋳片に向かって噴射された後に、一部の水が鋳片表面を伝って流れ、いわゆる垂れ水となって鋳片の冷却に寄与する。この垂れ水は、鋳造速度や鋳造幅、さらには鋳片表面温度など鋳造条件が変化すると、その量も変化するため、垂れ水の影響を正確に評価することは非常に困難である。このような垂れ水が鋳片温度に影響を及ぼし、鋳片が想定以上に冷却された結果、凝固組織の一部に旧オーステナイト粒界が残存し、曲げ部の応力負荷に伴って旧オーステナイト粒界に沿う割れが発生したものと考えられた。   Furthermore, when this phenomenon was investigated and arranged using water model experiments and numerical analysis techniques, it was found that the secondary cooling water drooped. That is, after the secondary cooling water is sprayed from the spray toward the slab, a part of the water flows along the slab surface and becomes so-called dripping water, contributing to cooling of the slab. Since the amount of dripping water changes when the casting conditions such as casting speed, casting width and slab surface temperature change, it is very difficult to accurately evaluate the influence of dripping water. Such dripping water affects the slab temperature, and as a result of cooling the slab more than expected, old austenite grain boundaries remain in a part of the solidified structure, and the old austenite grains are accompanied by the stress load of the bending part. It was thought that cracks along the boundary occurred.

従って、垂れ水の影響を完璧に考慮に入れて鋳片温度を制御することができれば、凝固組織を完全なものにすることができる可能性も考えられるが、非常に緻密な解析に基づいたスプレー制御や設備メンテナンスを要することが想定され、工業的規模の製造においては現実的でない。
また、一般に、垂直曲げ型連続鋳造機は、曲げ部に入るまでの垂直部長さが例えば3.5m程度と短い鋳造機である。かように、曲げ部に入るまでの距離が短い連続鋳造機では、一旦Ar3点以下に温度を低下させる際に、垂れ水等の影響で過度に鋳片が冷却されると、その後、曲げ部に入るまでの間に復熱させるための時間を稼ぐことが難しく、凝固組織が不完全となることも想定される。
Therefore, if the slab temperature can be controlled taking into account the influence of dripping water, it is possible that the solidified structure can be perfected, but a spray based on a very detailed analysis is possible. It is assumed that control and equipment maintenance are required, and it is not realistic in industrial scale manufacturing.
In general, the vertical bending type continuous casting machine is a casting machine having a short vertical part length of, for example, about 3.5 m before entering the bending part. Thus, in a continuous casting machine with a short distance to enter the bending portion, when the slab is excessively cooled by the influence of dripping water or the like when the temperature is once lowered to the Ar 3 point or less, the bending is thereafter performed. It is difficult to earn time for reheating before entering the part, and the solidified tissue is assumed to be incomplete.

このような事情から、2次冷却スプレー水量のみを制御して鋳片表面温度をコントロールし、割れの発生しない完全な凝固組織に制御することは困難と考え、発明者らは2次冷却条件の規制に加えて、更なるコーナー部割れの抑制技術について検討を行った。
ここで、発明者らは、鋳片コーナー部への応力負荷に着目した。すなわち、図3に示したように、2次冷却条件を規制することで凝固組織は改善され、コーナー部割れの程度も図2と比較すると軽微なものとなるため、2次冷却条件に加えて、曲げ・矯正時にコーナー部にかかる応力を低減できれば、コーナー割れの発生を防止できる可能性があると考えた。
Under such circumstances, it is difficult to control the surface temperature of the slab by controlling only the amount of secondary cooling spray water, and to achieve a completely solidified structure free from cracks. In addition to the regulations, we investigated further technology for suppressing cracks at the corners.
Here, the inventors paid attention to the stress load on the slab corner. That is, as shown in FIG. 3, the solidification structure is improved by regulating the secondary cooling conditions, and the degree of cracking at the corners is lighter than that in FIG. 2, so in addition to the secondary cooling conditions If the stress applied to the corner during bending and straightening can be reduced, it was thought that corner cracking could be prevented.

そこで、応力計算等による検討を行った結果、鋳片を、その鋳造方向と直交する矩形断面の四隅の角部を取除いた面取り形状とすることにより、鋳片のコーナー部での応力負荷を軽減できることを知見した。そして、鋳片の四隅を面取り形状とするには、矩形断面の鋳型の同様に矩形である鋳造空間の四隅(の直角部)を直角三角形状に取り除いて面取り形状とした、鋳型を用いて鋳造を行うことが肝要である。以下、このような面取り形状とした鋳造空間を有する鋳型を、チャンファーモールドとも称する。   Therefore, as a result of study by stress calculation, etc., the slab was made chamfered by removing the corners of the four corners of the rectangular cross section perpendicular to the casting direction, thereby reducing the stress load at the corner of the slab. It was found that it can be reduced. And to make the four corners of the slab chamfered, cast using a mold that has a chamfered shape by removing the four corners of the rectangular casting space (the right-angle part) into a right triangle like a rectangular cross-section mold. It is important to do. Hereinafter, a mold having a casting space having such a chamfered shape is also referred to as a chamfer mold.

ここで、チャンファーモールドについて、例えば特許文献3に、四隅に角落とし部を設けることが記載されている。この特許文献3に記載の技術は、鋳片コーナー部での凝固シェルの成長を正常化しコーナー部の凝固遅れによる鋳片内部欠陥を防止することを目的にしている。従って、特許文献3に記載されているチャンファーの形状が、本発明で所期する鋳片の表面割れの防止にも適しているかは不明である。すなわち、特許文献3に記載の技術では、鋼の凝固初期段階において、矩形断面の鋳型におけるコーナー部の凝固が他の部分よりも進みやすく、凝固収縮によって凝固シェルと鋳型の矩形コーナー部との間に生じたエアギャップが結果的に凝固遅れをまねいて内部欠陥となりやすかったものを、鋳型のコーナー部をチャンファー形状(面取り形状)にすることにより、コーナー部の鋳型冷却の程度をコーナー部以外の鋳型冷却に近い状態とするものである。具体的には、鋳造空間の四隅を各隅相互で均等に取除いたチャンファー形状を与えるものであるが、かようなチャンファーモールドを用いても図2に示したような、コーナー部の表面割れを抑制することはできなかった。
特許第4864559号
Here, as for the chamfer mold, for example, Patent Document 3 describes providing corner drop portions at four corners. The technique described in Patent Document 3 aims to normalize the growth of the solidified shell at the corner portion of the slab and prevent defects in the slab due to the solidification delay of the corner portion. Therefore, it is unclear whether the shape of the chamfer described in Patent Document 3 is suitable for preventing the surface crack of the slab as expected in the present invention. That is, in the technique described in Patent Document 3, the solidification of the corner portion of the rectangular cross-section mold is easier to proceed than the other portions in the initial stage of solidification of the steel, and the solidification shell and the rectangular corner portion of the mold are separated by solidification shrinkage. In the case where the air gap that occurred in the mold caused a solidification delay and was likely to become an internal defect, the corner portion of the mold was made into a chamfer shape (chamfered shape), so that the degree of mold cooling at the corner portion other than the corner portion was reduced. This is a state close to mold cooling. Specifically, it gives a chamfer shape in which the four corners of the casting space are evenly removed from each other, but even if such a chamfer mold is used, as shown in FIG. Surface cracking could not be suppressed.
Japanese Patent No. 4864559

そこで、本発明の目的に適合する鋳型の面取り形状を明らかにすべく、鋭意検討を重ねた結果、特許文献3に記載の条件とは異なる新たな形状規定が必要であることが判明した。ここに、チャンファーモールドにおける面取り部について、矩形鋳造空間の各隅の直角部分を直角三角形状に取り除く面取りを行う場合に、図4にチャンファーモールドの上面図を示すように、該直角三角形を鋳型長辺11側の長さaに対する鋳型短辺12側の長さbの比b/aで規定し、この比b/aが鋳片のコーナー部における応力負荷に及ぼす影響について応力計算を行った。その計算結果を、面取り前の矩形モールドでの応力を100としたときの指数に整理して、図5に示す。   Therefore, as a result of intensive studies to clarify the chamfering shape of the mold suitable for the object of the present invention, it has been found that a new shape regulation different from the conditions described in Patent Document 3 is necessary. Here, when chamfering is performed on the chamfered portion of the chamfer mold by removing the right-angled portions of the corners of the rectangular casting space into a right-angled triangle shape, the right-angled triangle is shown in FIG. The ratio b / a of the length b on the mold short side 12 to the length a on the mold long side 11 side is specified, and the stress calculation is performed on the effect of this ratio b / a on the stress load at the corner of the slab. It was. The calculation results are shown in FIG. 5, organized as an index when the stress in the rectangular mold before chamfering is taken as 100.

図5に示すように、まず、チャンファーモールドとすることによって鋳片のコーナー部への応力負荷が、矩形モールドと比較して小さくなることが分かる。特に、比b/aが3〜6の範囲において、鋳片コーナー部の応力負荷が低減する傾向にあることが分かる。更に、鋳型長辺1側の長さaが小さいほど鋳片コーナー部の応力負荷が小さくなることも分かった。   As shown in FIG. 5, it can be seen that the stress load on the corner portion of the slab is first reduced by using the chamfer mold as compared with the rectangular mold. In particular, it can be seen that when the ratio b / a is in the range of 3 to 6, the stress load at the slab corner tends to be reduced. Further, it was also found that the stress load at the slab corner portion becomes smaller as the length a on the mold long side 1 side is smaller.

上述した知見の下、前記比b/aが1〜8の種々の鋳型を用いた連続鋳造において、鋳片が曲げ部に入るまでの間に、鋳片コーナー部の表面温度を一旦Ar3点以下に低下させ、その後曲げ部に入るまでの間に、鋳片コーナー部の表面温度を800℃以上にし、曲げ部を800℃以上で通過する条件にて2次冷却を行ったところ、比b/aが3〜6の鋳型を用いた場合に、鋳片コーナー部の表面割れを確実に抑制することができた。
なお、比b/aが3〜6の鋳型を用いても、鋳片コーナー部の表面温度がAr3点以下まで低下していない場合、曲げ部に入るまでの間に800℃以上になっていない場合、そして曲げ部の通過温度が800℃に至らない場合には、凝固組織に旧オーステナイト粒界が多く残存してしまうため、コーナー割れ発生率を十分に低減することはできない。
Under the above-described knowledge, in continuous casting using various molds having the ratio b / a of 1 to 8, the surface temperature of the slab corner is temporarily changed to Ar 3 point until the slab enters the bending part. When the surface temperature of the slab corner is set to 800 ° C. or higher and the secondary cooling is performed at a temperature of 800 ° C. or higher before the bending portion is entered. When a mold with / a of 3 to 6 was used, surface cracks at the slab corner could be reliably suppressed.
In addition, even if a mold having a ratio b / a of 3 to 6 is used, if the surface temperature of the slab corner portion is not lowered to the Ar 3 point or lower, it is 800 ° C. or higher before entering the bent portion. In the case where the bending temperature does not reach 800 ° C., a large amount of prior austenite grain boundaries remain in the solidified structure, so that the rate of occurrence of corner cracks cannot be sufficiently reduced.

さらに、鋳型における比b/aは、4超であることが好ましい。なぜなら、比b/aが4以下の場合は、図5に示したように、b/aが4超〜6の場合と比較して、若干ではあるが、コーナー部にかかる応力負荷が高くなるためである。   Furthermore, the ratio b / a in the mold is preferably more than 4. This is because when the ratio b / a is 4 or less, as shown in FIG. 5, the stress load applied to the corner portion is slightly higher than when b / a is greater than 4 to 6, Because.

また、鋳型長辺側の長さaが4〜6mmおよび、鋳型短辺側の長さbが12〜36mmであることが好ましい。なぜなら、図5に示したように、長辺側の長さaが短くなるほどコーナー部にかかる応力負荷は低減傾向にあり、長辺側の長さaが7mmの場合においては、4〜6mmの場合と比較して、やや応力負荷が大きくなる傾向にあるためである。   Further, the length a on the long side of the mold is preferably 4 to 6 mm, and the length b on the short side of the mold is preferably 12 to 36 mm. This is because, as shown in FIG. 5, the stress load applied to the corner portion tends to decrease as the length a on the long side decreases, and the length a on the long side is 7 mm. This is because the stress load tends to be slightly larger than the case.

垂直曲げ型連続鋳造機により、表1に示す組成を有する、割れ感受性の高い低合金鋼を鋳造した。この鋼のAr3変態点は725℃である。鋳造条件は、鋳造厚み220〜300mm、鋳造幅1400〜2100mmおよび鋳造速度0.60〜2.50m/minの範囲であった。この条件での連続鋳造において、表2に示す種々の面取り部形状を有する鋳型を製作して用いた。比較として矩形の鋳型を使用する連続鋳造を、鋳造条件を同じくして実施した。
2次冷却水量は鋳造厚み、鋳造幅、鋳造速度に応じて変化させたが、鋳片コーナー部の表面温度を、曲げ部に入るまでに一旦、Ar3変態点以下に低下させ、その後、曲げ部に入るまでの間に復熱させて800℃以上にして曲げ部を800℃以上で通過するように伝熱解析を用いて調整した。比較として、鋳片コーナー部の温度が本発明の条件を満たさない鋳造も実施した。
なお、曲げ部通過時の鋳片温度は、熱電対や放射温度計を用いて測定することで確認した。鋳造後の鋳片は、鋳片表面の割れの観察を容易にするために、ショットブラストにより鋳片表面の酸化物を除去し、その後、カラーチェック(染色浸透探傷試験)を行って、コーナー部の割れ有無を調査した。そして、コーナー割れ発生率として、コーナー割れ鋳片本数/調査鋳片本数×100%で評価した。また、鋳片コーナー部から30mm角の凝固組織観察用サンプルを切り出し、観察面を研磨後、3%ナイタール腐食を行い、光学顕微鏡により凝固組織を観察した。
A low alloy steel having a composition shown in Table 1 and having high cracking sensitivity was cast by a vertical bending type continuous casting machine. The Ar 3 transformation point of this steel is 725 ° C. Casting conditions were a casting thickness of 220 to 300 mm, a casting width of 1400 to 2100 mm, and a casting speed of 0.60 to 2.50 m / min. In continuous casting under these conditions, molds having various chamfered shapes shown in Table 2 were manufactured and used. For comparison, continuous casting using a rectangular mold was performed under the same casting conditions.
The amount of secondary cooling water was changed according to the casting thickness, casting width, and casting speed, but the surface temperature of the slab corner was once lowered below the Ar 3 transformation point before entering the bending part, and then bent. The heat was reheated before entering the part, adjusted to 800 ° C. or higher, and adjusted using heat transfer analysis so that the bent part passed at 800 ° C. or higher. For comparison, casting was also performed in which the temperature at the corner of the slab did not satisfy the conditions of the present invention.
In addition, the slab temperature at the time of a bending part passage was confirmed by measuring using a thermocouple and a radiation thermometer. In order to facilitate observation of cracks on the surface of the slab, the cast slab is removed by shot blasting to remove the oxide on the surface of the slab, and then a color check (dye penetrant flaw detection test) is performed. The presence or absence of cracks was investigated. And it evaluated by the number of corner crack slabs / the number of investigation slabs x100% as a corner crack occurrence rate. Further, a 30 mm square sample for solidification structure observation was cut out from the corner of the slab, the observation surface was polished, 3% nital corrosion was performed, and the solidification structure was observed with an optical microscope.

Figure 0005999294
Figure 0005999294

これらの評価結果を表2に示す。なお、本発明例及び比較例ともに、各水準で10チャージ(1チャージは約300トン)の鋳造量を対象として評価している。   These evaluation results are shown in Table 2. Note that both the inventive example and the comparative example are evaluated for a casting amount of 10 charges (one charge is about 300 tons) at each level.

Figure 0005999294
Figure 0005999294

比較例1及び2は、矩形モールドを用い、鋳片コーナー部温度も本発明を満たさない条件にて製造された例である。この場合、コーナー部の割れ発生率は9.4〜10.8%と高位であった。これらの凝固組織を観察したところ、図2で示したような旧オーステナイト粒界が明瞭な組織であった。   Comparative Examples 1 and 2 are examples in which a rectangular mold was used and the slab corner temperature was manufactured under conditions that did not satisfy the present invention. In this case, the crack occurrence rate at the corner was as high as 9.4 to 10.8%. When these solidification structures were observed, the prior austenite grain boundaries as shown in FIG. 2 were clear structures.

比較例3及び4は、矩形モールドを用い、鋳片コーナー温度は本発明を満たす条件である。この場合、コーナー割れ発生率は4.7〜5.2%であり、比較例1及び2と比較すると低位ではあるものの、更なる改善を要するレベルであった。これらの凝固組織は、図3で示したように、一部に旧オーステナイト粒界が残存する組織であった。   Comparative Examples 3 and 4 use a rectangular mold, and the slab corner temperature is a condition that satisfies the present invention. In this case, the corner crack occurrence rate was 4.7 to 5.2%, which was lower than that of Comparative Examples 1 and 2, but at a level requiring further improvement. As shown in FIG. 3, these solidified structures were structures in which some prior austenite grain boundaries remained.

比較例5〜12は、チャンファーモールドを用い、鋳片コーナー温度は本発明を満たさない条件である。この場合も、コーナー割れ発生率は5.3〜7.3%となり、改善が必要なレベルであった。これらの凝固組織も、図2で示したような旧オーステナイト粒界が明瞭な組織であった。
比較例13〜15は、チャンファーモールドを用い、鋳辺コーナー温度も本発明を満たす条件である。但し、チャンファー部の形状について、長辺側の長さaと短辺側の長さbの比b/aは本発明を満たさない条件である。この場合も、コーナー割れ発生率は3.8〜4.5%となり、改善が必要なレベルであった。
Comparative Examples 5 to 12 use a chamfer mold, and the slab corner temperature is a condition that does not satisfy the present invention. Also in this case, the corner crack occurrence rate was 5.3-7.3%, which was a level that needed improvement. These solidified structures were also structures with clear prior austenite grain boundaries as shown in FIG.
In Comparative Examples 13 to 15, a chamfer mold is used, and the casting corner temperature is also a condition that satisfies the present invention. However, with respect to the shape of the chamfer portion, the ratio b / a of the length a on the long side and the length b on the short side is a condition that does not satisfy the present invention. Also in this case, the corner crack occurrence rate was 3.8 to 4.5%, which was a level that needed improvement.

一方、発明例1〜8は、チャンファーモールドを用い、鋳片コーナー温度が本発明を満たすように2次冷却スプレーを調整した条件である。これらについては、コーナー割れ発生率はいずれも1.4%以下と良好であった。これらの凝固組織を観察したところ、図3に示したような一部に旧オーステナイト粒界が残存する組織であり、比較例3及び4と同様の凝固組織であった。つまり、凝固組織が一部不完全であっても、チャンファーモールドを併用することにより、コーナー割れ発生を防止できることが確認できた。   On the other hand, Invention Examples 1 to 8 are conditions in which a chamfer mold is used and the secondary cooling spray is adjusted so that the slab corner temperature satisfies the present invention. As for these, the incidence of corner cracks was as good as 1.4% or less. When these solidified structures were observed, the former austenite grain boundaries remained in a part as shown in FIG. 3 and were the same solidified structures as in Comparative Examples 3 and 4. That is, it was confirmed that corner cracking can be prevented by using a chamfer mold even if the solidified structure is partially incomplete.

上記した実施例1と同様の条件での連続鋳造を行うに際し、鋳型長辺側の長さaを4〜7mmとし、鋳型短辺側の長さbとの比b/aが3.0〜6.0の範囲で、鋳型短辺側の長さbを表3に示すように変化させた鋳型を用いた。そして、コーナー部割れの発生について、実施例1の場合と同様に評価した。その結果を、表3に併記する。   When performing continuous casting under the same conditions as in Example 1, the length a on the long side of the mold is 4 to 7 mm, and the ratio b / a to the length b on the short side of the mold is 3.0 to 6.0. Within the range, a mold in which the length b on the short side of the mold was changed as shown in Table 3 was used. And generation | occurrence | production of the corner part crack was evaluated similarly to the case of Example 1. FIG. The results are also shown in Table 3.

Figure 0005999294
Figure 0005999294

発明例9〜32のうち、鋳型長辺側の長さaが4〜6mmで、且つ、b/aが4超〜6の条件においてはコーナー割れの発生を完全に抑制することができている。b/aが3〜4の場合にはわずかにコーナー割れの発生が認められたが、これらの発生率も0.6〜1.4%であり、十分に低位である。   Among Invention Examples 9 to 32, the occurrence of corner cracks can be completely suppressed when the length a on the long side of the mold is 4 to 6 mm and b / a is more than 4 to 6 . When b / a is 3 to 4, the occurrence of slight corner cracks was observed, but the incidence of these was also 0.6 to 1.4%, which is sufficiently low.

一方、鋳型長辺側の長さaが7mmの場合(発明例33〜40)には、b/aが4超〜6の条件においても若干のコーナー割れ発生が認められ、発生率は0.6〜0.9%であった。また、b/aが3〜4の条件におけるコーナー割れ発生率は1.3〜1.9%であった。これらも十分に低位な発生率である。
すなわち、鋳型長辺側長さaを4〜6mmとし、b/aを3〜6、より好ましくは4超〜6の範囲とするのが本発明の好適例であることが分かる。その際、鋳型短辺側長さbは12〜36mmとなり、より好ましくは16mm超〜36mmの範囲となる。
なお、鋳型長辺側長さaが4mmを下回る場合は、鋳型の四隅において厳しい加工精度が求められるから、実操業においては4mm以上とすることが好ましい。ちなみに、面取り部は、例えば無垢の銅板に削り出し加工を施すことによって成形することができる。
On the other hand, when the length a on the long side of the mold is 7 mm (Invention Examples 33 to 40), some corner cracks are observed even when b / a is more than 4 to 6, and the occurrence rate is 0.6 to 0.9%. Further, the corner crack occurrence rate under the condition of b / a of 3 to 4 was 1.3 to 1.9%. These are also sufficiently low occurrence rates.
That is, it is understood that a preferred example of the present invention is that the mold long side length a is 4 to 6 mm and b / a is 3 to 6, more preferably more than 4 to 6. At that time, the mold short side length b is 12 to 36 mm, more preferably more than 16 mm to 36 mm.
In addition, when the mold long side length a is less than 4 mm, severe processing accuracy is required at the four corners of the mold. Therefore, in actual operation, it is preferably 4 mm or more. Incidentally, the chamfered portion can be formed by, for example, machining a solid copper plate.

上記のとおり、本発明のチャンファーモールドを使用し、鋳片コーナー部温度を適切な範囲で制御することで、コーナー割れ発生率の低い高品質な鋳片を効率良く製造できることが確認された。
As described above, it was confirmed that a high-quality slab having a low corner crack generation rate can be efficiently manufactured by using the chamfer mold of the present invention and controlling the slab corner temperature within an appropriate range.

1 溶鋼
2 取鍋
3 ロングノズル
4 タンディッシュ
5 浸漬ノズル
6 水冷鋳型
7 2次冷却帯
8 引き抜き矯正帯(曲げ部)
9 連続鋳造鋳片
11 鋳型長辺
12 鋳型短辺
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Ladle 3 Long nozzle 4 Tundish 5 Immersion nozzle 6 Water-cooled mold 7 Secondary cooling zone 8 Drawing correction zone (bending part)
9 Continuous casting slab 11 Mold long side 12 Mold short side

Claims (3)

溶鋼を鋳型に装入し、該鋳型から直接鋳片を引き抜く連続鋳造方法において、
一対の鋳型長辺と一対の鋳型短辺とで区画される矩形空間の四隅を、前記鋳型長辺側の長さaに対する前記鋳型短辺側の長さbの比b/aが3.0以上6.0以下となる直角三角形状に取り除いた鋳造空間を有する、鋳型を用いて、
前記鋳型の直下から曲げ矯正点に至る前において、前記鋳片の少なくともコーナー部の表面温度を、一旦Ar3点以下まで低下し、次いで、少なくとも該コーナー部の表面温度を800℃以上にしてから前記曲げ矯正点を800℃以上で通過させることを特徴とする鋼の連続鋳造方法。
In a continuous casting method in which molten steel is charged into a mold and a slab is drawn directly from the mold,
At the four corners of the rectangular space defined by the pair of mold long sides and the pair of mold short sides, the ratio b / a of the length b on the mold short side to the length a on the mold long side is 3.0 or more and 6.0. Using the casting mold, which has the casting space removed in the shape of a right triangle that becomes
Before reaching the bending correction point from directly below the mold, the surface temperature of at least the corner portion of the slab is once lowered to Ar 3 point or less, and then at least the surface temperature of the corner portion is set to 800 ° C. or higher. A method for continuous casting of steel, wherein the bending correction point is passed at 800 ° C or higher.
前記比b/aが4.0超である請求項1に記載の鋼の連続鋳造方法。   The steel continuous casting method according to claim 1, wherein the ratio b / a is more than 4.0. 前記鋳型長辺側の長さaが4〜6mmおよび、前記鋳型短辺側の長さbが12〜36mmであることを特徴とする、請求項1または2に記載の鋼の連続鋳造方法。   The continuous casting method for steel according to claim 1 or 2, wherein the length a on the long side of the mold is 4 to 6 mm and the length b on the short side of the mold is 12 to 36 mm.
JP2016535783A 2014-07-24 2015-07-16 Steel continuous casting method Active JP5999294B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014150925 2014-07-24
JP2014150925 2014-07-24
PCT/JP2015/003602 WO2016013186A1 (en) 2014-07-24 2015-07-16 Method for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP5999294B2 true JP5999294B2 (en) 2016-09-28
JPWO2016013186A1 JPWO2016013186A1 (en) 2017-04-27

Family

ID=55162731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016535783A Active JP5999294B2 (en) 2014-07-24 2015-07-16 Steel continuous casting method

Country Status (5)

Country Link
JP (1) JP5999294B2 (en)
KR (1) KR101889208B1 (en)
CN (1) CN106536085B (en)
TW (1) TWI569907B (en)
WO (1) WO2016013186A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369571B2 (en) * 2015-01-15 2018-08-08 新日鐵住金株式会社 Continuous casting method for slabs
JP7188187B2 (en) * 2019-02-28 2022-12-13 Jfeスチール株式会社 Cooling method of slab
JP7284394B2 (en) * 2019-04-12 2023-05-31 日本製鉄株式会社 Steel continuous casting method
KR102638366B1 (en) * 2019-07-11 2024-02-19 제이에프이 스틸 가부시키가이샤 Secondary cooling method and device for continuous casting cast steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224055A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPH11197809A (en) * 1998-01-09 1999-07-27 Sumitomo Metal Ind Ltd Method for preventing surface crack on continuously cast slab
CN102642000A (en) * 2012-05-08 2012-08-22 首钢总公司 Slab continuous casting chamfer crystallizer narrow-face copper plate capable of effectively controlling longitudinal cracks of corners
WO2013100499A1 (en) * 2011-12-27 2013-07-04 주식회사 포스코 Continuous casting mold

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358079A (en) 1989-07-27 1991-03-13 Nec Corp Label
JP3058079B2 (en) * 1996-02-23 2000-07-04 住友金属工業株式会社 Steel continuous casting method
JP4393698B2 (en) * 1997-10-01 2010-01-06 コンカスト アクチェンゲゼルシャフト Tubular mold for continuous casting mold for continuous casting of peritectic steel
TW555601B (en) * 1999-04-22 2003-10-01 Europa Metalli Spa Ingot mold for continuous casting of molten metal, particularly for forming rectangular- or square-section steel billets
DE10051489A1 (en) * 2000-10-17 2002-04-18 Sms Demag Ag Plate mold used in the continuous casting of steel has mold plate pairs joined together at the corner joints and held together by water tanks which are connected by tensioning elements
JP3702807B2 (en) 2001-04-11 2005-10-05 住友金属工業株式会社 Continuous casting method
SI1676658T1 (en) * 2004-12-29 2008-10-31 Concast Ag Continuous steel casting plant for billets and blooms
JP4864559B2 (en) 2006-06-15 2012-02-01 株式会社神戸製鋼所 Continuous casting mold
CN201677013U (en) * 2010-05-19 2010-12-22 首钢总公司 Continuous slab casting mold
CN201744629U (en) * 2010-05-27 2011-02-16 钢铁研究总院 Narrow-face copper plate in combined crystallizer for continuous casting
CN201871696U (en) * 2010-10-27 2011-06-22 钢铁研究总院 Narrow face copper plate of crystallizer with curved structure
CN202715798U (en) * 2012-08-21 2013-02-06 钢铁研究总院 Crystallizer copper pipe used for producing octangle continuous castings
CN110264200B (en) 2019-05-29 2021-11-19 中国工商银行股份有限公司 Block chain data processing method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224055A (en) * 1982-06-23 1983-12-26 Nippon Steel Corp Method for preventing surface cracking of continuous casting ingot
JPH11197809A (en) * 1998-01-09 1999-07-27 Sumitomo Metal Ind Ltd Method for preventing surface crack on continuously cast slab
WO2013100499A1 (en) * 2011-12-27 2013-07-04 주식회사 포스코 Continuous casting mold
CN102642000A (en) * 2012-05-08 2012-08-22 首钢总公司 Slab continuous casting chamfer crystallizer narrow-face copper plate capable of effectively controlling longitudinal cracks of corners

Also Published As

Publication number Publication date
KR20170003669A (en) 2017-01-09
KR101889208B1 (en) 2018-08-16
JPWO2016013186A1 (en) 2017-04-27
TW201607642A (en) 2016-03-01
CN106536085B (en) 2019-04-19
CN106536085A (en) 2017-03-22
TWI569907B (en) 2017-02-11
WO2016013186A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6421900B2 (en) Rolled H-section steel and its manufacturing method
JP5999294B2 (en) Steel continuous casting method
US10118218B2 (en) Method for continuously casting slab
JP2016028827A (en) Steel continuous casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
KR101757548B1 (en) Method of manufacturing peritectic steel slab
JP2002086252A (en) Continous casting method
JP3702807B2 (en) Continuous casting method
CN113543907B (en) Continuous casting method for slab casting blank
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2018099704A (en) Continuous casting method for steel
JP6954514B1 (en) Continuous casting method
JP2015193040A (en) COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
KR101223107B1 (en) Apparatus for manufacturing martensitic stainless hot rolled steel strip and method for manufacturing martensitic stainless hot rolled steel strip
JP2008261036A (en) Method for cooling continuously cast bloom
JP2006205241A (en) Continuous casting method for steel
JP6149789B2 (en) Steel continuous casting method
JP2011212736A (en) Method for cooling continuously cast bloom and method for producing the bloom
JP2011152580A (en) Continuous casting method for steel
JP5045258B2 (en) Continuous casting method and continuous casting machine
JP6019989B2 (en) Secondary cooling method for continuous cast slabs
JP2015193041A (en) Cooling method of casting piece of spring steel
JP2008093705A (en) Method for continuously casting high carbon steel related to internal cracking due to heat recuperation
JP6349832B2 (en) Continuous cast slab for thick steel plate
JPH06246414A (en) Continuous casting of high carbon steel

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5999294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250