JP3058079B2 - Steel continuous casting method - Google Patents

Steel continuous casting method

Info

Publication number
JP3058079B2
JP3058079B2 JP8036488A JP3648896A JP3058079B2 JP 3058079 B2 JP3058079 B2 JP 3058079B2 JP 8036488 A JP8036488 A JP 8036488A JP 3648896 A JP3648896 A JP 3648896A JP 3058079 B2 JP3058079 B2 JP 3058079B2
Authority
JP
Japan
Prior art keywords
slab
cooling
temperature
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8036488A
Other languages
Japanese (ja)
Other versions
JPH09225607A (en
Inventor
晃三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8036488A priority Critical patent/JP3058079B2/en
Publication of JPH09225607A publication Critical patent/JPH09225607A/en
Application granted granted Critical
Publication of JP3058079B2 publication Critical patent/JP3058079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造方
法、特に、鋳片の横割れ、横ヒビ割れに代表される表面
割れを防止した鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel, and more particularly to a method for continuously casting steel in which surface cracks such as lateral cracks and lateral cracks in slabs are prevented.

【0002】[0002]

【従来の技術】近年、鉄鋼製品の製造コスト削減の観点
より連続鋳造鋳片の直行率向上の必要性が高まっている
が、この直行率向上に対する阻害要因の一つに連続鋳造
鋳片表面に発生する横ヒビ割れあるいは横割れと呼ばれ
る表面割れの問題がある。
2. Description of the Related Art In recent years, the necessity of improving the orthogonality of continuous cast slabs has been increasing from the viewpoint of reducing the production cost of steel products. There is a problem of lateral cracking or surface cracking called lateral cracking.

【0003】最近では、材料特性上の要求からNb、V、
Ni、Cuなど種々の合金元素を含有した低合金鋼の生産量
が増加しているが、これらの合金元素の添加に伴い、連
続鋳造鋳片の表面割れの発生頻度は高くなり、製造コス
トの削減の要求に対して、その達成率は足踏み状態が続
いている。
Recently, Nb, V,
The production of low-alloy steel containing various alloying elements such as Ni and Cu is increasing, but with the addition of these alloying elements, the frequency of surface cracks in continuous cast slabs has increased, leading to lower production costs. In response to the demand for reduction, the achievement rate has been at a standstill.

【0004】これらの表面割れは、連続鋳造の2次冷却
時に鋳片表面温度が熱間延性の低下するγ→α変態温度
近傍 (約750 〜850 ℃) になり、この時、鋳片曲げや鋳
片矯正といった機械的な応力を受けることにより発生す
ることが知られている。
[0004] These surface cracks cause the surface temperature of the slab to be close to the γ → α transformation temperature (about 750 to 850 ° C) at which the hot ductility decreases during the secondary cooling in continuous casting. It is known that this occurs due to mechanical stress such as slab correction.

【0005】従って、鋳片曲げ部や鋳片矯正部における
鋳片表面温度を、前述の熱間延性の低下する領域 (以下
脆化温度域) よりも低温側もしくは高温側に回避する方
法が通常採用されている。しかしながら、鋳片温度の脆
化温度域回避のみでは表面割れを皆無にすることは困難
であり、これまでに鋳片表層組織に着目した鋳片冷却履
歴に関する技術がいくつか開示されている。
[0005] Therefore, a method of avoiding the slab surface temperature in the slab bending portion or the slab straightening portion to a lower or higher temperature side than the above-mentioned region where the hot ductility is reduced (hereinafter referred to as embrittlement temperature region) is usually employed. Has been adopted. However, it is difficult to eliminate surface cracks only by avoiding the brittle temperature range of the slab temperature, and several techniques relating to the slab cooling history focusing on the slab surface layer structure have been disclosed.

【0006】例えば、特公昭58−3790号公報には、2次
冷却帯の上部を強制冷却して鋳片表面温度を一旦650 〜
750 ℃に冷却することによりγ→α変態させた後に、ゆ
るやかに復熱させ、鋳片矯正部における鋳片表面温度を
脆化温度域より低温側に回避する方法が開示されてい
る。
For example, Japanese Patent Publication No. 58-3790 discloses that the upper surface of a secondary cooling zone is forcibly cooled to reduce the surface temperature of a slab to 650 ° C.
A method is disclosed in which a γ → α transformation is carried out by cooling to 750 ° C., followed by a gradual recuperation to avoid a slab surface temperature in a slab correction section below the brittle temperature range.

【0007】また、特開昭58−224054号公報、特開昭58
−224055号公報には、鋳片の両コーナ部に限定しての熱
履歴であるが、鋳型直下において鋳片表面温度を750 〜
900℃まで冷却して表層組織の改善をした (γ粒の微細
化という記述がある) 後に、鋳片曲げ部、鋳片矯正部に
おける鋳片表面温度を800 ℃以上となるように冷却する
方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 58-224054,
Japanese Patent No. 224055 discloses a heat history limited to both corners of a slab, but the slab surface temperature is 750 to 750 to just below the mold.
After cooling to 900 ° C to improve the surface layer structure (there is a description of refining γ grains), cool the slab surface at the slab bending section and slab correction section to 800 ° C or higher. Is disclosed.

【0008】このように、鋳片表面割れの防止方法はこ
れまでにもいくつか提案されており、合金元素を含有し
ない普通鋼には威力を発揮するものの、Ni、Cu、V、Nb
等を含有する低合金鋼の鋳造においては依然として上述
したような欠点を抱えており、鋳片表面割れの効果的な
解決策はまだ見出されていない。
[0008] As described above, several methods for preventing slab surface cracks have been proposed so far, and although they are effective for ordinary steel containing no alloying element, Ni, Cu, V, Nb
However, the casting of low alloy steels containing the same still has the above-mentioned drawbacks, and no effective solution to the slab surface crack has yet been found.

【0009】[0009]

【発明が解決しようとする課題】ここに、本発明の目的
は、普通鋼はもちろん、近年、増加しつつある表面割れ
感受性の高い、Ni、Cu、V、Nb等を含有する低合金鋼の
連続鋳造においても鋳片表面割れを効果的に回避できる
連続鋳造方法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to provide not only ordinary steel but also low alloy steel containing Ni, Cu, V, Nb, etc., which have a high surface cracking susceptibility which has been increasing in recent years. An object of the present invention is to provide a continuous casting method capable of effectively avoiding a slab surface crack even in continuous casting.

【0010】[0010]

【課題を解決するための手段】ところで、上述のような
Ni、Cu、Nb、V等を含有する低合金鋼では、脆化温度
域が低温側に移行する、合金元素添加に伴うスケール
変化による冷却特性の変化等の理由から、曲げ部、矯正
部における温度を高温側に回避せざるを得なくなってき
た。例えば、Niを少量含有すると、サブスケールと呼ば
れる層が鋳片表面にところどころで固着し易くなり、サ
ブスケールのある部分とない部分で冷却の不均一を生じ
やすい。曲げ部、矯正部で鋳片表面温度を脆化温度域よ
り低温側に回避する方法では、この冷却の不均一を助長
させてしまうこととなり、前述の特公昭58−3790号公報
の開示する方法は、低合金鋼には適用することが困難で
あることが判明した。
Means for Solving the Problems By the way, as described above,
In low alloy steel containing Ni, Cu, Nb, V, etc., the embrittlement temperature range shifts to the low temperature side, the cooling characteristics change due to scale change due to alloying element addition, etc., in the bent part, straightening part The temperature has to be avoided on the high temperature side. For example, when a small amount of Ni is contained, a layer called a sub-scale is likely to adhere to the slab surface in some places, and uneven cooling is likely to occur in a portion where a sub-scale is present and in a portion where no sub-scale is present. In the method of avoiding the slab surface temperature at a lower temperature side than the embrittlement temperature range in the bending portion and the straightening portion, this uneven cooling is promoted, and the method disclosed in the above-mentioned Japanese Patent Publication No. 58-3790 is disclosed. Has proven difficult to apply to low alloy steels.

【0011】さらに、特開平58−224054号および同58−
224055号公報に開示する方法でも、前述のような低合金
鋼の場合には、鋳片コーナ部のみならず鋳片全幅におい
て鋳片表層組織を改善する視点が必要であるが、本発明
者らが上記公報の明細書に基づき再現試験を実施したと
ころ、表面割れ防止のために曲げ部、矯正部での鋳片表
面温度を850 ℃以上とするが、そのためには、鋳型〜鋳
型直下までの冷却条件を工夫しないと実現できないこと
が判明した。
Further, Japanese Patent Application Laid-Open Nos. 58-224054 and 58-24054
In the method disclosed in Japanese Patent No. 224055, in the case of the low-alloy steel as described above, the viewpoint of improving the slab surface layer structure not only at the slab corner but also at the entire width of the slab is necessary. When a reproduction test was performed based on the specification of the above publication, the slab surface temperature at the bent portion and the straightening portion was set to 850 ° C. or more to prevent surface cracking. It has been found that it cannot be realized unless the cooling conditions are devised.

【0012】そこで、本発明者は、冷却履歴による鋳片
表層組織の改善と、曲げ部、矯正部における鋳片表面温
度を脆化温度域の高温側に回避することに着目して、以
下のような検討を行った。
Therefore, the present inventor focused on improving the surface structure of the slab due to the cooling history and avoiding the slab surface temperature in the bent portion and the straightened portion on the high temperature side of the embrittlement temperature range. Such a study was conducted.

【0013】図1は、実際の製造ラインにおいて鋳片表
面割れ発生頻度の高い、Ni含有鋼の高温延性をその鋼組
成とともに示すグラフである。図中、グラフ上の「%」
量はNi含有量を表わす。この例ではNi等の合金を数%含
有することにより、脆化温度域が普通鋼のそれよりも低
温側に移動する (普通鋼の脆化温度域が750 〜850 ℃で
あるのに対し、含Ni鋼のそれは600 〜850 ℃) 。さら
に、鋳片表層の酸化スケールの性状変化により、冷却特
性が変化し、脆化温度域より低温側では冷却が不均一に
なりやすいことがすでに述べたように分かっている。
FIG. 1 is a graph showing the high-temperature ductility of a Ni-containing steel having a high frequency of occurrence of slab surface cracks in an actual production line together with the steel composition. "%" On the graph in the figure
The amount indicates the Ni content. In this example, the embrittlement temperature range moves to a lower temperature side than that of ordinary steel by containing several percent of alloys such as Ni. (The embrittlement temperature range of ordinary steel is 750 to 850 ° C, It is 600-850 ° C for Ni-containing steel). Furthermore, it has already been known that the cooling characteristics change due to the change in the properties of the oxide scale on the slab surface layer, and that the cooling tends to be uneven at a temperature lower than the embrittlement temperature range.

【0014】従って、このような低合金鋼を連続鋳造す
る場合、鋳片が大きな応力を受ける曲げ部、矯正部で
は、鋳片温度を脆化温度域よりも高温側すなわち850 ℃
以上に回避させる必要がある。
Therefore, when such low alloy steel is continuously cast, the temperature of the slab is higher than the embrittlement temperature range, that is, 850 ° C., in the bent portion and the straightening portion where the slab is subjected to a large stress.
It is necessary to avoid this.

【0015】しかしながら、実際の低合金鋼の鋳造実績
にもとづいて、鋳片表面温度を単に、脆化温度域より高
温側にするのみでは、表面割れを皆無にすることは、不
可能であった。曲げ部、矯正部での鋳片表面温度を脆化
温度域より高温側に回避してもなお、表面割れが発生し
た鋳片の表層組織は必ずといっていい程、図2(a) に示
すように旧オーステナイト粒界が明瞭な割れ感受性の高
い組織となっており、割れは旧オーステナイト粒界に沿
って発生していた。このような知見にもとづき、図2
(b) に示すような旧オーステナイト粒界の不明瞭な表層
組織が表面割れ感受性を鈍くするのに有効であることが
推定された。
However, based on the actual results of casting low-alloy steels, it was impossible to eliminate surface cracks by simply setting the slab surface temperature higher than the brittle temperature range. . Even if the slab surface temperature at the bent portion and the straightening portion is avoided to be higher than the embrittlement temperature range, the surface layer structure of the slab having surface cracks is almost always shown in FIG. 2 (a). Thus, the prior austenite grain boundaries had a clear structure with high crack susceptibility, and the cracks occurred along the prior austenite grain boundaries. Based on such findings, FIG.
It is presumed that the unclear surface structure of the prior austenite grain boundary as shown in (b) is effective in dulling the surface cracking susceptibility.

【0016】一方、鋳片表層組織は、鋳片熱履歴と密接
な関係があり、適正な熱履歴を選定すれば鋳片表層組織
の割れ感受性を低減できる可能性がある。そこで、鋳片
熱履歴と鋳片表層組織の相関を200kg 規模の溶鋼実験に
より調査した。溶鋼組成は 0.7%Ni鋼であった。実験は
400 ×400 ×200 mmの静止鋳型に溶鋼を鋳込んだ後、完
全凝固前に鋳片を鋳型より取り出し、ミストスプレーに
より鋳片を冷却して実施した。あらかじめ鋳ぐるんだ熱
電対あるいは放射温度計により鋳片表面部の温度履歴を
測定し、鋳片表層組織を調査した。
On the other hand, the slab surface layer structure is closely related to the slab heat history, and if an appropriate heat history is selected, the crack susceptibility of the slab surface layer structure may be reduced. Therefore, the correlation between the heat history of the slab and the surface structure of the slab was investigated by a 200 kg scale molten steel experiment. The molten steel composition was 0.7% Ni steel. The experiment is
After casting molten steel in a 400 × 400 × 200 mm static mold, the cast piece was taken out of the mold before complete solidification, and the cast piece was cooled by mist spraying. The temperature history of the surface of the slab was previously measured by using a thermocouple or a radiation thermometer that had been previously cast, and the surface structure of the slab was investigated.

【0017】図3に、各種冷却条件と鋳片表層組織の相
関を示す。ここに、そのときの冷却条件は鋳型を鋳片が
出てから2次冷却を行った時間t、鋳片表面部が2次冷
却により低下した温度Tc によって変更した。鋳片表層
組織はフェライトパーライト組織で旧γ粒界が明瞭で
ある場合、フェライトパーライト組織で旧γ粒界が不
明瞭である場合、2次冷却が強く十分に復熱しなかっ
た場合に得られたベイナイト組織の3種類に分類した。
FIG. 3 shows the correlation between various cooling conditions and the surface structure of the slab. Here, the cooling conditions at that time were changed according to the time t during which secondary cooling was performed after the slab was released from the mold, and the temperature Tc at which the surface of the slab dropped due to the secondary cooling. The surface layer structure of the slab was obtained when the old γ grain boundary was clear in the ferrite pearlite structure, when the old γ grain boundary was unclear in the ferrite pearlite structure, and when the secondary cooling was not strong enough to recover the heat. The bainite structure was classified into three types.

【0018】図3からも分かるように、割れ感受性の高
いの組織は、冷却時間に関わらず、Tc が鋼のAr3
以上の場合およびTc がAr3 点以下でも2次冷却時間が
2分より長い場合に発生した。の組織は、割れ感受性
が低いと考えられるが、冷却時間が2分以内でかつTc
が600 ℃以上Ar3 点 (γ→γ+αの変態温度) 未満の場
合に生成した。の組織はTc が600 ℃以下のときに生
成した。ただし、の組織の場合は鋳片表面温度があま
りに低下するので、鋳片温度不均一が発生しやすく、好
ましくない。の組織の中で最も好ましいのはの
γ粒界が不明瞭な組織である。なお、の組織を得るた
めには、例えば鋳型直下で0.025 〜0.090L/cm2/minの水
量密度で冷却すればよく、これは通常の冷却の2倍以上
の冷却水量に相当する。
As can be seen from FIG. 3, the structure having high crack susceptibility has a secondary cooling time of 2 minutes regardless of the cooling time when Tc is equal to or more than the Ar 3 point of steel and even when Tc is equal to or less than the Ar 3 point. Occurs when longer. Although the structure of No. 1 is considered to have low cracking susceptibility, the cooling time is within 2 minutes and the Tc
Is formed when the temperature is below 600 ° C. and below the Ar 3 point (γ → γ + α transformation temperature). The structure was formed when Tc was below 600 ° C. However, in the case of such a structure, the slab surface temperature is too low, so that the slab temperature is likely to be uneven, which is not preferable. The most preferred of the structures is a structure in which the γ grain boundaries are unclear. In order to obtain such a structure, for example, cooling may be performed at a water volume density of 0.025 to 0.090 L / cm 2 / min immediately below the mold, which corresponds to a cooling water volume which is twice or more that of ordinary cooling.

【0019】上記の知見を基に、実際の連続鋳造装置に
て冷却履歴と鋳片表層組織、鋳片表面割れ発生状況の相
関を調査した。図4に、本発明にかかる冷却パターンと
従来法の冷却パターンとを比較しながら連続鋳造鋳片の
熱履歴を示す。この熱履歴から鋳型直下からの冷却によ
り到達する鋳片表面の最低温度Tm 、曲げ部温度Tb(垂
直曲げ型連鋳機の場合) 、矯正部温度Tu を求め、鋳片
表層組織および鋳片表面割れの関係を求めた。鋳型を出
た鋳片は直ちに二次冷却を受け、次いで曲げ部、矯正部
を経て、連鋳機より引出される。図中の冷却曲線A〜E
はそれぞれ後述する場合の冷却曲線を表わす。
Based on the above findings, the correlation between the cooling history, the slab surface layer structure, and the state of occurrence of slab surface cracks was investigated using an actual continuous casting apparatus. FIG. 4 shows the thermal history of the continuously cast slab while comparing the cooling pattern according to the present invention with the cooling pattern of the conventional method. From the heat history, the minimum temperature Tm, the bending part temperature Tb (in the case of a vertical bending type continuous casting machine), and the correction part temperature Tu, which are reached by cooling from immediately below the mold, are obtained to obtain the surface structure of the slab and the slab surface. The relationship between cracks was determined. The cast slab that has exited the mold is immediately subjected to secondary cooling, and then is drawn out of the continuous casting machine through a bending section and a straightening section. Cooling curves A to E in the figure
Represents a cooling curve in a case described later.

【0020】図5にTm 、Tb の各鋳片表面温度と鋳片
表層組織、鋳片地側に発生する表面割れの関係を、図6
にTm 、Tu と鋳片表層組織、鋳片天側に発生する表面
割れの関係をそれぞれ示す。いずれの場合も溶鋼組成は
0.7%Ni−0.01%Nb鋼であった。図5、図6より、鋳片
表層組織の発生状況は図3の基礎試験結果とほぼ同等で
あり、基礎試験で割れ感受性が低いと予測されたγ粒界
が不明瞭な組織は、鋳型直下で2分以内に600 ℃≦Tm
<Ar3 点となった時に生成した。
FIG. 5 shows the relationship between the surface temperature of each slab of Tm and Tb, the surface structure of the slab, and the surface cracks generated on the slab ground side.
The relationship between Tm, Tu, the surface structure of the slab, and the surface cracks generated on the top side of the slab is shown below. In each case, the molten steel composition is
It was 0.7% Ni-0.01% Nb steel. 5 and 6, the occurrence of the surface layer structure of the slab is almost the same as the result of the basic test in FIG. 3, and the structure in which the γ grain boundaries predicted to have low cracking susceptibility in the basic test are unclear is directly below the mold. 600 ° C ≦ Tm within 2 minutes at
Generated when <Ar 3 points are reached.

【0021】但し、鋳型直下の強冷却が0.5 分未満の時
は、鋳片表面温度がAr3 点以下にならず、γ粒界が不明
瞭な組織は生成しなかった。これは、0.5 分未満の冷却
では鋳片表面温度をAr3 点以下まで下げ得る冷却能が確
保されないことによる。
However, when the strong cooling immediately below the mold was less than 0.5 minutes, the surface temperature of the slab did not become lower than the Ar 3 point, and a structure in which the γ grain boundaries were unclear was not formed. This is because a cooling capacity of lowering the slab surface temperature to the Ar 3 point or less cannot be secured by cooling for less than 0.5 minutes.

【0022】地側鋳片表面割れは、旧γ粒界が不明瞭組
織 (Tm <Ar3 点) の場合でかつ、Tb ≧850 ℃の時に
解消した。旧γ粒界が不明瞭組織でもTb <850 ℃の時
には表面割れは皆無とならず、また、前述のようにTb
≧850 ℃でも、旧γ粒界が明瞭な組織では表面割れは皆
無ではなかった (図5参照) 。天側表面割れについても
同様に旧γ粒界が不明瞭組織 (Tm <Ar3 点) で、Tu
≧850 ℃の時に解消した (図6参照) 。
The ground side slab surface cracks were eliminated when the old γ grain boundary had an unclear structure (Tm <Ar 3 points) and Tb ≧ 850 ° C. Even if the former γ grain boundary is unclear, there is no surface cracking when Tb <850 ° C.
Even at ≧ 850 ° C., there was no surface cracking in the structure with clear old γ grain boundaries (see FIG. 5). In Similarly old γ grain boundaries indistinct organization for top-side surface cracks (Tm <Ar 3 point), Tu
It disappeared when ≧ 850 ° C. (see FIG. 6).

【0023】図5、図6に示す結果から理解されるよう
に、表層組織の旧γ粒界不明瞭組織への改善と、曲げ
部、矯正部における鋳片表面温度の高温側回避とを両立
させることで、表面割れは解消できる。しかし、表層組
織をそのような不明瞭組織に改善しても曲げ部および矯
正部での鋳片表面温度が脆化温度域に入ってしまったら
表面割れは発生する。これは、表層組織の改善と高温側
回避の両者が熱的に相反するアクションであるため、実
際の連続鋳造装置での種々制約と重なると、両立ができ
にくいことによる。
As can be understood from the results shown in FIGS. 5 and 6, both the improvement of the surface layer structure to the former unclear γ grain boundary structure and the avoidance of the high temperature side of the slab surface temperature in the bent portion and the straightening portion are compatible. By doing so, surface cracks can be eliminated. However, even if the surface layer structure is improved to such an unclear structure, if the surface temperature of the slab at the bent portion and the straightening portion falls within the brittle temperature range, surface cracking occurs. This is because both the improvement of the surface layer structure and the avoidance on the high-temperature side are thermally contradictory actions, so that it is difficult to achieve both when overlapping with various restrictions in an actual continuous casting apparatus.

【0024】そのような実際の連続鋳造装置での制約と
は、例えば a) スラブを対象とした垂直曲げ型連続鋳造機は一般的
に垂直部が2〜3mであり、鋳型長さが0.7 〜0.9 mで
あることを考え合わせると、曲げ部温度、矯正部温度≧
850 ℃を実現するためには、鋳型直下の非常に短い範囲
で鋳片温度をAr点未満まで冷却する必要がある、 b) スラブを対象とした湾曲型連続鋳造機は、介在物
浮上の観点から、低速鋳造操業を行っているのが一般的
であり、この場合も、矯正部温度≧850 ℃を実現するた
めには非常に短い範囲で鋳片温度をAr3 点未満まで冷却
する必要があること等が挙げられる。
The restrictions in such an actual continuous casting apparatus include, for example: a) A vertical bending type continuous casting machine for slabs generally has a vertical portion of 2-3 m and a mold length of 0.7-0.7 m. Considering that it is 0.9 m, the temperature of the bending part and the temperature of the straightening part ≧
In order to achieve 850 ° C., it is necessary to cool the slab temperature to less than 3 points of Ar in a very short range immediately below the mold. B) The curved continuous casting machine for slabs is required to float inclusions. From the viewpoint, low-speed casting operation is generally performed, and in this case, too, it is necessary to cool the slab temperature to less than the Ar 3 point in a very short range in order to achieve the straightening section temperature ≥850 ° C. And the like.

【0025】そこで、本発明者はそのような実際上の様
々な制約下においても、前記表面割れ解消のための熱履
歴を確実に得るための方法をさらに検討した。鋳型によ
る1次冷却と2次冷却では、2次冷却の方が冷却能が高
い。また、鋳片の復熱能は熱容量の大きい鋳造初期の方
が高い。これらのことより、鋳型直下の強冷却により鋳
片の十分な復熱能を確保するためには、凝固シェル厚の
小さい領域で強冷却を早めに開始し、強冷却を早めに終
了するのが効果的であるとの結論に達した。
Therefore, the present inventor further studied a method for reliably obtaining a heat history for eliminating the surface crack even under such various practical constraints. In the primary cooling and the secondary cooling using the mold, the secondary cooling has a higher cooling capacity. Further, the recuperation ability of the slab is higher in the early stage of casting having a large heat capacity. From these facts, in order to secure sufficient recuperation ability of the slab by strong cooling directly below the mold, it is effective to start strong cooling early in the region where the solidified shell thickness is small and finish strong cooling early. Was reached.

【0026】図7に図5、図6と同様の溶鋼について鋳
型直下で鋳片を強冷却して鋳片表層組織がγ粒不明瞭な
組織とする条件である 600℃≦Tm <Ar3 点にする熱履
歴において、2次冷却を開始する凝固シェル厚と曲げ部
(この例では垂直部3m) における表面温度Tb の関係
を示す。ただし、その場合、鋳型を出てからTm にいた
るまでの冷却時間=1分とする。鋳型出口におけるシェ
ル厚さは好適態様にあっては、鋳型の冷却能を調整する
ことで、具体的には冷却水量を変更することで調整すれ
ばよい。
FIG. 7 shows a condition of 600 ° C. ≦ Tm <Ar 3 points of a molten steel similar to that of FIGS. Of the solidified shell thickness and bend to start secondary cooling
The relationship of the surface temperature Tb at the vertical portion (3 m in this example) is shown. In this case, however, the cooling time from the time when the mold is released to the time when the temperature reaches Tm is 1 minute. In a preferred embodiment, the shell thickness at the mold outlet may be adjusted by adjusting the cooling capacity of the mold, specifically, by changing the amount of cooling water.

【0027】このように2次冷却を開始する凝固シェル
厚を15mm以下とすることで復熱能が確保され (早期2次
冷却開始、早期強冷却終了) 、γ粒不明瞭化組織の生成
と曲げ部温度Tb ≧850 ℃の両立が実現されやすくな
る。
By setting the thickness of the solidified shell for starting the secondary cooling to 15 mm or less in this way, recuperation capability is ensured (early secondary cooling starts, early strong cooling ends), and the formation and bending of the γ grain obscured structure It is easy to achieve compatibility of the unit temperature Tb ≧ 850 ° C.

【0028】但し、この場合は凝固シェル厚を10mm未満
にするとブレークアウト等の操業トラブルが多発し、好
ましくない。以上の知見は、垂直曲げ型連鋳機および湾
曲型連鋳機の矯正温度についても同様に適用できる。
However, in this case, if the solidified shell thickness is less than 10 mm, operation troubles such as breakouts occur frequently, which is not preferable. The above knowledge can be similarly applied to the straightening temperature of the vertical bending type continuous casting machine and the bending type continuous casting machine.

【0029】ここに、本発明の熱履歴は図4の冷却曲線
Aのように図示される。この条件は、鋳片表面の周方向
の全位置で満足するのが望ましい。また、2次冷却を開
始するシェル厚、Tm 、鋳型を出てからTm に至るまで
の時間等は連鋳機型式、連鋳機プロフィール (曲げ部位
置、矯正部位置) 、鋳造条件 (Vc 、溶鋼温度) 等によ
り決定される。
Here, the heat history of the present invention is shown as a cooling curve A in FIG. It is desirable that this condition be satisfied at all circumferential positions on the surface of the slab. The shell thickness for starting the secondary cooling, Tm, the time from leaving the mold to reaching Tm, etc. are determined by the type of the continuous caster, the profile of the continuous caster (bend position, straightening position), casting conditions (Vc, (Steel temperature).

【0030】ここに、本発明は、次の通りである。 (1) 垂直曲げ型連続鋳造機にて、鋼の鋳片を製造するに
際し、下記〜の条件で鋳片の冷却を行うことを特徴
とする連続鋳造方法。
Here, the present invention is as follows. (1) A continuous casting method characterized by cooling a slab under the following conditions when producing a slab of steel using a vertical bending type continuous casting machine.

【0031】凝固シェル厚が10mm以上15mm以下のとこ
ろで鋳型による1次冷却を終了し、2次冷却を開始す
る。 鋳片全面の表面温度を鋳型を出てから多くとも2分以
内の間に一旦600 ℃以上Ar3 点以下の範囲まで低下させ
る。 曲げ部における鋳片表面温度、矯正部における鋳片表
面温度の両者が850 ℃以上となるように2次冷却を行
う。
When the thickness of the solidified shell is 10 mm or more and 15 mm or less, the primary cooling by the mold is finished, and the secondary cooling is started. The surface temperature of the entire slab is once lowered to at least 600 ° C. and at most Ar 3 points within 2 minutes after leaving the mold. Secondary cooling is performed so that both the slab surface temperature in the bent portion and the slab surface temperature in the straightening portion are 850 ° C. or more.

【0032】(2) 湾曲型連続鋳造機にて、鋼の鋳片を製
造するに際し、下記〜の条件で鋳片の冷却を行うこ
とを特徴とする連続鋳造方法。
(2) A continuous casting method characterized by cooling a slab under the following conditions when producing a steel slab using a curved continuous caster.

【0033】凝固シェル厚が10mm以上15mm以下のとこ
ろで鋳型による1次冷却を終了し、2次冷却を開始す
る。 鋳片全面の表面温度を鋳型を出てから多くとも2分以
内の間に一旦600 ℃以上Ar3 点以下の範囲まで低下させ
る。 矯正部における鋳片表面温度が850 ℃以上となるよう
に2次冷却を行う。
When the thickness of the solidified shell is 10 mm or more and 15 mm or less, the primary cooling by the mold is finished, and the secondary cooling is started. The surface temperature of the entire slab is once lowered to at least 600 ° C. and at most Ar 3 points within 2 minutes after leaving the mold. Secondary cooling is performed so that the slab surface temperature in the straightening section becomes 850 ° C. or higher.

【0034】本発明によれば、曲げ部、矯正部における
鋳片表面温度が少なくとも850 ℃以上に制御するもので
あるが、曲げ部、矯正部における鋳片表面温度の上限に
は伝熱上の制約がある。したがって、本発明の好適態様
にあってそれぞれの上限温度は曲げ部で1300℃、矯正部
では1200℃である。
According to the present invention, the surface temperature of the slab in the bent portion and the straightening portion is controlled to at least 850 ° C., but the upper limit of the surface temperature of the slab in the bent portion and the straightening portion is limited by the heat transfer. There are restrictions. Therefore, in the preferred embodiment of the present invention, the upper limit temperature is 1300 ° C. in the bent portion and 1200 ° C. in the straightening portion.

【0035】[0035]

【発明の実施の形態】次に、本発明の実施の態様をその
作用とともに説明する。本発明は、普通鋼ばかりでな
く、近年、増加しつつある表面割れ感受性の高い、Nb、
V、Ni、Cuなど種々の合金元素を含有した低合金鋼の連
続鋳造を対象としており、本発明により鋳片の横ヒビ割
れ、横割れを防止する機構は次の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described together with their functions. The present invention is not limited to ordinary steel, Nb,
It is intended for continuous casting of low alloy steel containing various alloying elements such as V, Ni, Cu, and the like, and the mechanism for preventing lateral cracking and lateral cracking of a slab according to the present invention is as follows.

【0036】図4は本発明にかかる連続鋳造鋳片の冷却
パターン、つまり鋳片表面の熱履歴を従来法の冷却パタ
ーンと比較して示すグラフである。ここで、冷却曲線A
は本発明、同Bは鋳型直下で強冷却せずに徐々に鋳片表
面温度を低下させて、曲げ部、矯正部の温度を脆化温度
域の高温側に回避させる冷却パターン、冷却曲線Cは本
発明と同様に鋳型直下で強冷却を行い、その後、復熱さ
せる冷却パターンであるが2次冷却がシェル厚15mm以上
のところより開始されている場合、冷却曲線Dは鋳型直
下で強冷却を行い、曲げ部、矯正部で鋳片表面温度を脆
化温度域の低温側に回避する冷却パターン、冷却曲線E
は同Dよりもさらに強冷却を行い、表面組織をベイナイ
ト変態させる冷却パターンである。
FIG. 4 is a graph showing the cooling pattern of the continuous cast slab according to the present invention, that is, the heat history of the slab surface in comparison with the cooling pattern of the conventional method. Here, the cooling curve A
In the present invention, B is a cooling pattern and a cooling curve C for gradually lowering the surface temperature of the slab without strong cooling directly below the mold to avoid the temperature of the bent portion and the straightened portion on the high temperature side of the embrittlement temperature range. Is a cooling pattern in which strong cooling is performed immediately below the mold in the same manner as in the present invention, and then re-heated. If secondary cooling is started from a place where the shell thickness is 15 mm or more, the cooling curve D indicates strong cooling immediately below the mold. The cooling pattern and cooling curve E for avoiding the slab surface temperature to the lower temperature side of the embrittlement temperature range in the bent part and straightening part
Is a cooling pattern in which cooling is performed more strongly than in the case of D to transform the surface structure into bainite.

【0037】本発明によれば、図4の冷却曲線Aで示す
ように、2次冷却開始位置がシェル厚10〜15mmの位置よ
り開始されており、また、2分以内に600 ℃以上Ar3
未満まで冷却される。これにより、鋳片表層組織は割れ
感受性の低いγ粒界の不明瞭なフェライトパーライト組
織となる。この鋳型直下の強冷却は早期に開始され、早
期に終了するので、鋳片は十分な復熱能を有し、曲げ
部、矯正部における脆化域高温側回避(850℃以上) が可
能となる。これにより、鋳型表層組織の割れ感受性低減
と、曲げ部、矯正部における脆化域高温側回避の両立が
達成され、鋳片表面割れはほとんど皆無とすることが可
能である。
According to the present invention, as shown by the cooling curve A in FIG. 4, secondary cooling start position is started from the position of the shell thickness 10-15 mm, also, 600 ° C. or higher within 2 minutes Ar 3 Cool below the point. As a result, the surface layer structure of the slab becomes a ferrite pearlite structure with low susceptibility to cracking and indistinct γ grain boundaries. The strong cooling immediately below the mold starts early and ends early, so the slab has sufficient recuperation ability, and it is possible to avoid the high temperature side of the embrittlement zone in the bent part and straightening part (850 ° C or more) . As a result, it is possible to achieve both the reduction of the crack sensitivity of the surface structure of the mold and the avoidance of the high temperature side of the embrittlement zone in the bent portion and the straightening portion, and it is possible to make almost no slab surface cracks.

【0038】図4の冷却曲線B〜Eの各冷却パターンは
以下の欠点があり、本発明の優位性は明白である。冷却
曲線Bは曲げ部、矯正部において脆化温度域より高温側
回避はされているものの、鋳片表層組織が割れ感受性の
高いγ粒界の明瞭な組織となってしまい、表面割れは減
少しない。
Each of the cooling patterns B to E in FIG. 4 has the following disadvantages, and the superiority of the present invention is apparent. Although the cooling curve B avoids the higher side than the embrittlement temperature range in the bent portion and the straightened portion, the surface layer structure of the slab becomes a clear structure of γ grain boundaries having high crack sensitivity, and the surface crack does not decrease. .

【0039】冷却曲線Cは鋳型直下の強冷却により鋳片
表層組織はγ粒界の不明瞭な組織となるが、2次冷却の
開始時期が遅く、曲げ部、矯正部において脆化温度域か
らの回避がなされず、表面割れは減少しない。
The cooling curve C shows that the surface layer structure of the slab becomes indistinct in the γ grain boundary due to the strong cooling immediately below the mold, but the secondary cooling start time is late, and the bending section and the straightening section start from the brittle temperature range. Is not avoided, and surface cracking does not decrease.

【0040】冷却曲線Dは鋳型直下の強冷却により鋳片
表面組織はγ粒界の不明瞭な組織となり曲げ部、矯正部
において脆化温度域より低温側への回避がなされている
が、前記のように低合金鋼では脆化温度域が低温側に移
行する場合が多く、必ずしも得策ではない。冷却曲線E
は極度の強冷却により温度ムラが発生しやすく、熱応力
による割れが発生する。
The cooling curve D shows that the surface structure of the slab becomes an indistinct structure of the γ grain boundary due to the strong cooling immediately below the mold. As described above, in a low alloy steel, the embrittlement temperature range often shifts to a lower temperature side, which is not always advantageous. Cooling curve E
Temperature tends to be uneven due to extremely strong cooling, and cracks occur due to thermal stress.

【0041】本発明は、低合金鋼、特にNi、V、Cu、Nb
から成る群から選ばれた少なくとも1種の合金元素合計
量が2.0 %以下の低合金鋼の連続鋳造に適用する場合、
より効果的に表面割れ防止が図られ、その優れた効果が
発揮される。
The present invention is directed to low alloy steels, especially Ni, V, Cu, Nb.
When applied to the continuous casting of low alloy steel having a total amount of at least one alloy element selected from the group consisting of 2.0% or less,
Surface cracks are prevented more effectively, and the excellent effect is exhibited.

【0042】[0042]

【実施例】本例では、垂直曲げ型および湾曲型の連続鋳
造機を使用して、スラブ形状の鋳片の連続鋳造を行っ
た。表1に連続鋳造機仕様および鋳造条件を示す。
EXAMPLE In this example, continuous casting of a slab-shaped slab was performed using a vertical bending type and a bending type continuous casting machine. Table 1 shows the specifications of the continuous casting machine and the casting conditions.

【0043】2次冷却条件を種々変更させて鋳片表面の
温度履歴、表面組織、表面割れとの相関を調査した。温
度履歴は表面割れ発生頻度の高いコーナ部より100 mm位
置に鋳型直下から噛み込み式熱電対により測定した。
The secondary cooling conditions were variously changed, and the correlation between the temperature history, the surface structure, and the surface cracks on the slab surface was investigated. The temperature history was measured from below the mold at a position 100 mm from the corner where the frequency of surface cracking was high, using a bite type thermocouple.

【0044】表2に鋳造鋼種の化学成分を示す。温度履
歴、表層組織、表面割れ発生状況の相関の評価をわかり
やすくするため、鋳造鋼種には割れ発生頻度の高い鋼種
を選定した。
Table 2 shows the chemical components of the cast steel types. In order to make it easy to understand the evaluation of the correlation between the temperature history, the surface structure, and the state of occurrence of surface cracks, a steel type with a high crack occurrence frequency was selected as the cast steel type.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】表3に本発明の実施例の熱履歴、鋳片表層
組織、表面割れ発生状況をまとめ、表4に比較例および
従来例の熱履歴、鋳片表層組織、表面割れ発生状況をま
とめた。
Table 3 summarizes the heat history, the surface structure of the slab, and the state of occurrence of surface cracks in the examples of the present invention. Table 4 summarizes the heat history, the surface structure of the slab, and the state of occurrence of surface cracks in the comparative example and the conventional example. Was.

【0048】比較例1〜2、20〜21はそれぞれ垂直曲げ
型 (以下、VB型) および湾曲型 (以下、S型) 連
鋳機において、2次冷却開始シェル厚が本発明で規定す
る範囲のそれより小さかった例である。この場合、凝固
シェル強度が不十分であったため、鋳型出口でブレーク
アウトが発生してしまった。
In Comparative Examples 1-2 and 20-21, the vertical cooling type (hereinafter referred to as VB type) and the curved type (hereinafter referred to as S type) continuous casters each have a secondary cooling start shell thickness defined by the present invention. This is a smaller example. In this case, since the solidified shell strength was insufficient, breakout occurred at the exit of the mold.

【0049】比較例3〜4、22〜23はそれぞれVB型、
S型で2次冷却開始シェル厚が本発明で規定する範囲の
それより大きかった例である。この場合、鋳片表層はγ
粒界の不明瞭な割れ感受性が低いとされる組織であった
にも関わらず、2次冷却開始が遅すぎて、鋳片の復熱能
が確保できず、いずれの例でも鋳片コーナ部において矯
正部で脆化温度域を高温側に回避できなかった。その結
果、鋳片天側に深さ5mm程度のコーナ部割れが発生する
結果となってしまった。
Comparative Examples 3 to 4 and 22 to 23 are VB type, respectively.
This is an example in which the secondary cooling start shell thickness is larger than that of the range specified in the present invention in the S type. In this case, the surface layer of the slab is γ
Despite the microstructure where the susceptibility of the grain boundaries to cracking was low, the secondary cooling was started too late, and the recuperation ability of the slab could not be secured. The brittle temperature range could not be avoided on the high temperature side in the straightening section. As a result, a corner crack having a depth of about 5 mm was generated on the slab top side.

【0050】比較例5〜7はVB型で鋳型直下での強冷
却時間が短かすぎて本発明で規定するAr3 点以下への範
囲に鋳片表面温度を低下させることができなかった例で
ある。この場合、鋳片表面温度を一旦、Ar3 点以下まで
冷却する水量が確保できず、表層にγ粒界の明瞭な割れ
感受性の高い組織が生成した。その結果、鋳片天地両面
のコーナ部より100 mm位置以内 (以下コーナ部近傍) に
深さ2〜3mmと軽微ではあるが横ヒビ割れが発生した。
このコーナー近傍の横ヒビ割れ発生位置は短辺面と長辺
面の冷却の違いにより、鋳片表面にへこみが生じる位置
に相当しており、脆化温度域を高温側に回避しても割れ
は防止できなかった。
Comparative Examples 5 to 7 were VB molds in which the cooling time immediately below the mold was too short to reduce the surface temperature of the slab to the Ar 3 point or less as specified in the present invention. It is. In this case, the amount of water for temporarily cooling the slab surface temperature to the Ar 3 point or less could not be secured, and a structure having a clear susceptibility to cracking at the γ grain boundary was formed in the surface layer. As a result, a slight crack of 2-3 mm in depth was found within 100 mm from the corners on both sides of the slab (hereinafter, near the corners).
The location of the lateral crack near the corner corresponds to the location where dents occur on the slab surface due to the difference in cooling between the short side and the long side. Could not be prevented.

【0051】また、比較例24〜26はS型で鋳型直下での
強冷却時間が短かすぎて鋳片表面温度を本発明で規定す
る範囲にまで低下させることができなかった例である。
この場合も、割れ感受性の高い組織が原因でコーナ部近
傍に深さ3mm程度の軽減な横ヒビ割れが発生した。
Comparative Examples 24 to 26 are examples in which the slab surface temperature could not be reduced to the range specified in the present invention because the S type was too short to cool strongly under the mold.
In this case as well, a reduced lateral crack having a depth of about 3 mm occurred near the corner due to the structure having high crack susceptibility.

【0052】比較例8〜10はVB型において鋳型直下の
強冷却時間は本発明で規定する範囲内のそれであるが冷
却不足により、鋳型直下強冷後のミニマム温度がAr3
以下にならなかった例である。この場合、比較例5〜7
と同様の機構で鋳片天地両面のコーナ部近傍に軽微な横
ヒビ割れが発生した。
In Comparative Examples 8 to 10, in the VB type, the strong cooling time immediately below the mold was within the range specified in the present invention. However, due to insufficient cooling, the minimum temperature after the strong cooling immediately below the mold did not fall below the Ar 3 point. This is an example. In this case, Comparative Examples 5 to 7
With the same mechanism as above, slight lateral cracks occurred near the corners on both sides of the slab.

【0053】比較例27〜29はS型において鋳型直下での
強冷却時間は本発明で規定する範囲内のそれであるが冷
却不足により、鋳型直下強冷後のミニマム温度がAr3
以下にならなかった例である。この場合、比較例24〜26
と同様の機構で鋳片天側のコーナ部近傍に軽微な横ヒビ
割れが発生した。
In Comparative Examples 27 to 29, in S type, the strong cooling time immediately below the mold was within the range specified in the present invention. However, due to insufficient cooling, if the minimum temperature immediately after the strong cooling immediately below the mold was lower than the Ar 3 point. This is an example that did not exist. In this case, Comparative Examples 24-26
With the same mechanism as above, slight lateral cracking occurred near the corner on the slab top side.

【0054】比較例11〜13、30〜32はそれぞれ、VB
型、S型において鋳型直下強冷後のミニマム温度が600
℃より低温になった例である。いずれの場合も、VB
型、S型を問わず表層にはベイナイト組織が生成し、熱
応力起因と考えられる深さ20mm程度の横ヒビ割れが天地
全面に発生した。
Comparative Examples 11 to 13 and 30 to 32 were VB
The minimum temperature after strong cooling directly below the mold for molds and S molds is 600
This is an example in which the temperature is lower than ℃. In either case, VB
A bainite structure was formed on the surface layer regardless of the mold type and the S type, and lateral cracks with a depth of about 20 mm considered to be caused by thermal stress occurred on the entire top and bottom.

【0055】比較例14〜16はVB型において鋳型直下の
ミニマム温度Tm は適正範囲であるが、復熱時の水量選
択が不適正なために曲げ部温度Tb が850 ℃以下となっ
た例である。この場合、表層ではγ粒界の不明瞭な組織
が生成したが、曲げ部で脆化温度域を回避できず、鋳片
地側ほぼ全面に深さ10mm程度の横ヒビ割れが発生した。
Comparative Examples 14 to 16 are examples in which the minimum temperature Tm immediately below the mold in the VB type was within an appropriate range, but the temperature of the bent portion Tb was 850 ° C. or less due to improper selection of the amount of water during reheating. is there. In this case, an unclear structure of the γ grain boundary was formed in the surface layer, but the embrittlement temperature range could not be avoided at the bent portion, and a lateral crack having a depth of about 10 mm occurred almost entirely on the slab side.

【0056】比較例17〜19、33〜35はそれぞれ、VB
型、S型において鋳片復熱時の水量選択が不適正なため
に矯正部温度Tu が850 ℃以下となった例である。この
場合、表層ではγ粒界の不明瞭な組織が生成したが、矯
正部で脆化温度域を回避できず、鋳片天側ほぼ全面に深
さ10mm程度の横ヒビ割れが発生した。
Comparative Examples 17 to 19 and 33 to 35 were VB
In this example, the correction section temperature Tu was 850 ° C. or less due to improper selection of the amount of water at the time of slab reheating in the mold and S mold. In this case, an unclear structure of the γ grain boundary was formed in the surface layer, but the embrittlement temperature region could not be avoided in the straightening portion, and a lateral crack having a depth of about 10 mm occurred almost entirely on the slab top side.

【0057】従来例1はVB型において鋳型直下で強冷
することなしに、曲げ部、矯正部で脆化温度域を高温側
(850℃以上) に回避した例である。この場合、脆化温度
域を高温側に回避したにも関わらず、鋳片表層がγ粒界
の明瞭な割れ感受性の高い組織になっていたため、天側
のコーナ部近傍に深さ5mm程度の横ヒビ割れが散見され
た。
In the conventional example 1, the embrittlement temperature range is set to the high temperature side in the bent portion and the straightening portion without vigorously cooling immediately below the mold in the VB mold.
(850 ° C or higher). In this case, despite avoiding the embrittlement temperature range on the high temperature side, the surface layer of the slab had a structure with a clear susceptibility to cracking at the γ grain boundary. Lateral cracks were scattered.

【0058】従来例2はS型において鋳型直下で強冷却
した後に、曲げ部、矯正部で低温側に脆化温度域を回避
しようとしたものである (特公昭58−3790号公報開示の
方法の再現試験) 。しかし、鋳片天地全面に深さ30mm程
度の横ヒビ割れが頻発した。これより、表2の鋼種の脆
化温度域がかなり低温側に広がっていることが推定され
た。
In prior art example 2, after the S-type was cooled strongly just below the mold, it was attempted to avoid the embrittlement temperature range on the low-temperature side at the bending portion and the straightening portion (the method disclosed in Japanese Patent Publication No. 58-3790). Reproduction test). However, lateral cracks with a depth of about 30 mm occurred frequently on the entire surface of the slab. From this, it was estimated that the embrittlement temperature range of the steel types in Table 2 spread considerably to the lower temperature side.

【0059】なお、特開昭58−224054号公報、同58−22
4055号公報に相当する冷却条件は比較例3、4、15、1
8、22、23、34に相当するが、いずれも前述のように本
発明範囲より少なくとも一つ範囲外の条件が存在してし
まったため、表面割れが発生した。
Incidentally, Japanese Patent Application Laid-Open Nos. 58-224054 and 58-22
The cooling conditions corresponding to Japanese Patent No. 4055 are Comparative Examples 3, 4, 15, and 1.
8, 22, 23, and 34, but as described above, at least one condition out of the range of the present invention was present, so that surface cracks occurred.

【0060】これに対し、本発明の実施例1〜36では垂
直曲げ型、湾曲型のいずれの連鋳機を問わず、2次冷却
開始シェル厚、鋳型直下の強冷却時間、鋳型直下の強冷
却時のミニマム温度、曲げ部温度、矯正部温度が適正で
あったため、鋳片表層組織の割れ感受性低減と、曲げ
部、矯正部における脆化温度域の高温側回避とが両立さ
れ、表面割れのない良好な品質の鋳片を得ることができ
た。
On the other hand, in Examples 1 to 36 of the present invention, the secondary cooling start shell thickness, the strong cooling time immediately below the mold, and the strong Since the minimum temperature, bending part temperature and straightening part temperature at the time of cooling were appropriate, the reduction of crack sensitivity of the surface layer structure of the slab and the avoidance of the high temperature side of the brittle temperature range in the bent part and straightening part were compatible, and the surface cracking Slabs of good quality without blemishes were obtained.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【発明の効果】本発明により、スラブ表層組織の割れ感
受性低減 (γ粒界の不明瞭な組織) と、垂直曲げ型連鋳
機の曲げ部、矯正部、および湾曲型連鋳機の矯正部にお
ける脆化温度域の高温側回避との両立が可能となり、連
続鋳造鋳片の表面割れが効果的に解消された。その結
果、鋳片のノースカーフ化、表面無手入れ、連鋳鋳
片の直行率向上が達成され、製造コストの削減に大きく
寄与することができた。
According to the present invention, it is possible to reduce the crack sensitivity of the surface structure of the slab (structure with unclear γ grain boundaries), and to bend and straighten a vertical bending type continuous caster and a straightening part of a curved type continuous caster. And avoidance of the high temperature side of the embrittlement temperature range, and the surface cracks of the continuous cast slab were effectively eliminated. As a result, the cast slab was formed into a North Scarf, the surface was unmaintained, and the straightness ratio of the continuous cast slab was improved, thereby greatly contributing to a reduction in manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ni含有鋼の高温延性をその鋼組成とともに示す
グラフである。
FIG. 1 is a graph showing the hot ductility of a Ni-containing steel together with its steel composition.

【図2】鋳片表層組織の概念図であり、図2(a) は旧オ
ーステナイト粒界が表層部より明瞭な割れ感受性の高い
組織を、同(b) は旧オーステナイト粒界が表層部より不
明瞭な割れ感受性の低い組織をそれぞれ示す模式図であ
る。
FIG. 2 is a conceptual diagram of the surface layer structure of a slab, and FIG. 2 (a) shows a structure in which old austenite grain boundaries are clearer than the surface layer and has higher crack susceptibility, and FIG. It is a schematic diagram which respectively shows the structure | tissue with low susceptibility to cracking.

【図3】冷却条件 (鋳型を鋳片が出てから2次冷却を行
った時間、鋳片表面部が2次冷却により低下した温度T
c)と鋳片表層組織の関係をラボスケールの実験により求
めたグラフである。
FIG. 3 is a cooling condition (a time T during which secondary cooling is performed after a slab comes out of a mold, and a temperature T at which a slab surface portion is reduced by the secondary cooling).
It is the graph which calculated | required the relationship between c) and the slab surface layer structure by the experiment of a lab scale.

【図4】本発明にかかる鋳片の冷却パターンと従来法の
鋳片の冷却パターンを比較したグラフである。
FIG. 4 is a graph comparing a cooling pattern of a slab according to the present invention with a cooling pattern of a slab according to a conventional method.

【図5】鋳型直下での強冷却により冷却される温度Tm
、曲げ部温度Tb と鋳片表層組織、鋳片地側に発生す
る表面割れの関係図である。
FIG. 5: Temperature Tm of cooling by strong cooling just below the mold
FIG. 4 is a diagram showing a relationship between a bending portion temperature Tb, a slab surface layer structure, and a surface crack generated on a slab ground side.

【図6】Tm 、矯正部温度Tu と鋳片表層組織、鋳片天
側に発生する表面割れの関係図である。
FIG. 6 is a diagram showing a relationship between Tm, a correction portion temperature Tu, a slab surface layer structure, and a surface crack generated on a slab top side.

【図7】2次冷却を開始する凝固シェル厚と曲げ部にお
ける鋳片表面温度Tb の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a solidified shell thickness at which secondary cooling is started and a slab surface temperature Tb at a bent portion.

フロントページの続き (56)参考文献 特開 平2−37941(JP,A) 特開 昭58−224056(JP,A) 特開 昭58−224054(JP,A) 特開 昭61−195761(JP,A) 特開 昭55−14173(JP,A) 特開 昭53−106335(JP,A) 特開 平4−305338(JP,A) 特開 平7−90504(JP,A) 特開 昭58−224055(JP,A) 特開 平7−178526(JP,A) 特開 平9−47854(JP,A) 特開 平8−33964(JP,A) 特開 平8−10919(JP,A) 特開 平8−10920(JP,A) 特開 平6−87054(JP,A) 特開 昭63−112058(JP,A) 特開 平7−308743(JP,A) 特開 昭63−63559(JP,A) 特開 昭61−193758(JP,A) 特開 昭61−189851(JP,A) 特開 昭61−9952(JP,A) 特開 昭60−56453(JP,A) 特開 昭57−187150(JP,A) 特開 平3−193253(JP,A) 特開 昭57−121866(JP,A) 特開 昭57−11757(JP,A) 特開 昭61−189851(JP,A) 特開 昭61−195742(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/124 B22D 11/00 B22D 11/22 Continuation of front page (56) References JP-A-2-37941 (JP, A) JP-A-58-224056 (JP, A) JP-A-58-224054 (JP, A) JP-A-61-195761 (JP) JP-A-55-14173 (JP, A) JP-A-53-106335 (JP, A) JP-A-4-305338 (JP, A) JP-A-7-90504 (JP, A) 58-224055 (JP, A) JP-A-7-178526 (JP, A) JP-A-9-47854 (JP, A) JP-A-8-33964 (JP, A) JP-A-8-10919 (JP, A) A) JP-A-8-10920 (JP, A) JP-A-6-87054 (JP, A) JP-A-63-112058 (JP, A) JP-A-7-308743 (JP, A) JP-A-63 JP-A-63559 (JP, A) JP-A-61-193758 (JP, A) JP-A-61-189851 (JP, A) JP-A-61-9952 (JP, A) JP-A-60-56453 (JP, A) JP-A-57-187150 (JP, A) JP-A-3-193253 (JP, A) JP-A-57-121866 (JP, A) JP-A-57-11957 (JP, A) JP-A-61-189851 (JP, A) JP-A-61-195742 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11 / 124 B22D 11/00 B22D 11/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 垂直曲げ型連続鋳造機にて、鋼の鋳片を
製造するに際し、下記〜の条件で鋳片の冷却を行う
ことを特徴とする連続鋳造方法。 凝固シェル厚が10mm以上15mm以下のところで鋳型によ
る1次冷却を終了し、2次冷却を開始する。 鋳片全面の表面温度を鋳型を出てから多くとも2分以
内の間に一旦600 ℃以上Ar3 点以下の範囲まで低下させ
る。 曲げ部における鋳片表面温度、矯正部における鋳片表
面温度の両者が850 ℃以上となるように2次冷却を行
う。
1. A continuous casting method characterized by cooling a slab under the following conditions when a steel slab is manufactured by a vertical bending type continuous casting machine. When the thickness of the solidified shell is 10 mm or more and 15 mm or less, the primary cooling by the mold is finished, and the secondary cooling is started. The surface temperature of the entire slab is once lowered to at least 600 ° C. and at most Ar 3 points within 2 minutes after leaving the mold. Secondary cooling is performed so that both the slab surface temperature in the bent portion and the slab surface temperature in the straightening portion are 850 ° C. or more.
【請求項2】 湾曲型連続鋳造機にて、鋼の鋳片を製造
するに際し、下記〜の条件で鋳片の冷却を行うこと
を特徴とする連続鋳造方法。 凝固シェル厚が10mm以上15mm以下のところで鋳型によ
る1次冷却を終了し、2次冷却を開始する。 鋳片全面の表面温度を鋳型を出てから多くとも2分以
内の間に一旦600 ℃以上Ar3 点以下の範囲まで低下させ
る。 矯正部における鋳片表面温度が850 ℃以上となるよう
に2次冷却を行う。
2. A continuous casting method characterized by cooling a slab under the following conditions when producing a steel slab using a curved continuous caster. When the thickness of the solidified shell is 10 mm or more and 15 mm or less, the primary cooling by the mold is finished, and the secondary cooling is started. The surface temperature of the entire slab is once lowered to at least 600 ° C. and at most Ar 3 points within 2 minutes after leaving the mold. Secondary cooling is performed so that the slab surface temperature in the straightening section becomes 850 ° C. or higher.
JP8036488A 1996-02-23 1996-02-23 Steel continuous casting method Expired - Lifetime JP3058079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036488A JP3058079B2 (en) 1996-02-23 1996-02-23 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036488A JP3058079B2 (en) 1996-02-23 1996-02-23 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH09225607A JPH09225607A (en) 1997-09-02
JP3058079B2 true JP3058079B2 (en) 2000-07-04

Family

ID=12471220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036488A Expired - Lifetime JP3058079B2 (en) 1996-02-23 1996-02-23 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3058079B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160341A (en) * 2005-12-13 2007-06-28 Jfe Steel Kk Machine and method for continuously casting steel
DE102006056683A1 (en) * 2006-01-11 2007-07-12 Sms Demag Ag Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation
JP4635902B2 (en) * 2006-02-24 2011-02-23 Jfeスチール株式会社 Continuous cast slab cooling method and continuous cast slab cooling device
JP5419394B2 (en) * 2008-06-24 2014-02-19 株式会社神戸製鋼所 Slab manufacturing method
JP5381468B2 (en) * 2009-07-30 2014-01-08 新日鐵住金株式会社 Secondary cooling method in continuous casting machine
JP5505056B2 (en) * 2010-04-19 2014-05-28 新日鐵住金株式会社 Metal continuous casting method
JP5884479B2 (en) * 2011-01-31 2016-03-15 Jfeスチール株式会社 Steel continuous casting method
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method
JP5920192B2 (en) * 2012-03-01 2016-05-18 Jfeスチール株式会社 Steel continuous casting method
JP5928413B2 (en) * 2013-06-25 2016-06-01 Jfeスチール株式会社 Steel continuous casting method
JP6131833B2 (en) * 2013-11-08 2017-05-24 新日鐵住金株式会社 Method for continuous casting of Ti deoxidized steel
JP5999294B2 (en) * 2014-07-24 2016-09-28 Jfeスチール株式会社 Steel continuous casting method
JP6402533B2 (en) * 2014-08-18 2018-10-10 新日鐵住金株式会社 Continuous casting method of Ni-containing steel
JP6269543B2 (en) * 2015-03-17 2018-01-31 Jfeスチール株式会社 Steel continuous casting method
JP5896067B1 (en) 2015-04-06 2016-03-30 Jfeスチール株式会社 Method for producing slabs using a continuous casting machine
DE102017213842A1 (en) * 2017-08-08 2019-02-14 Sms Group Gmbh Method and plant for continuous casting of a metallic product
CN113843403B (en) * 2020-06-25 2023-01-20 宝山钢铁股份有限公司 Method for improving surface cracks of casting blank by using ferrite phase
CN113174467B (en) * 2021-03-23 2023-02-24 中冶南方连铸技术工程有限责任公司 Method for predicting casting blank quenching structure and method for making casting blank quenching process

Also Published As

Publication number Publication date
JPH09225607A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP3058079B2 (en) Steel continuous casting method
JP2917524B2 (en) Continuous casting of thin slabs
JP2002086252A (en) Continous casting method
JP3008825B2 (en) Slab surface crack suppression method
JP7095748B2 (en) Manufacturing method of thin sheet metal
JP2002542040A (en) A method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2001138019A (en) Continuous casting method
JPS6167549A (en) Direct hot rolling method in continuous casting
JP4398879B2 (en) Steel continuous casting method
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JP3412418B2 (en) Slab secondary cooling device
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3039369B2 (en) Method for producing Ni-containing steel
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JP2843665B2 (en) Hot work crack prevention method for continuous cast slab.
JPS63168260A (en) Hot working method for continuously cast billet
KR100414625B1 (en) Manufacturing method of high strength cold rolled enamel steel sheet with excellent fish scale resistance and adhesion
JP3042398B2 (en) How to control slab surface cracks
JP3079756B2 (en) Manufacturing method of S free cutting austenitic stainless steel
JP3285314B2 (en) Slab casting method in vertical bending type continuous casting machine
JP4728532B2 (en) Steel continuous casting method
JP4164925B2 (en) Manufacturing method of continuous cast slab
JP2518618B2 (en) Mold for continuous casting of steel
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JP3298519B2 (en) Steel sheet free of hydrogen defects and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 14

EXPY Cancellation because of completion of term