JP6269543B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP6269543B2
JP6269543B2 JP2015053105A JP2015053105A JP6269543B2 JP 6269543 B2 JP6269543 B2 JP 6269543B2 JP 2015053105 A JP2015053105 A JP 2015053105A JP 2015053105 A JP2015053105 A JP 2015053105A JP 6269543 B2 JP6269543 B2 JP 6269543B2
Authority
JP
Japan
Prior art keywords
slab
mold
less
continuous casting
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053105A
Other languages
Japanese (ja)
Other versions
JP2016172265A (en
Inventor
則親 荒牧
則親 荒牧
圭吾 外石
圭吾 外石
章敏 松井
章敏 松井
智也 小田垣
智也 小田垣
暢 井上
暢 井上
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015053105A priority Critical patent/JP6269543B2/en
Publication of JP2016172265A publication Critical patent/JP2016172265A/en
Application granted granted Critical
Publication of JP6269543B2 publication Critical patent/JP6269543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片の横割れに代表される表面割れを防止する鋼の連続鋳造方法に関する。   The present invention relates to a steel continuous casting method for preventing surface cracks typified by transverse cracks in a slab.

近年、鉄鋼製品の製造コスト削減の観点から、連続鋳造で製造される鋳片の直行率向上の必要性が高まっているが、直行率向上を阻害する要因の1つとして、鋳片表面に発生する横割れと呼ばれる表面割れがある。   In recent years, from the viewpoint of reducing the manufacturing cost of steel products, the need to improve the straightness rate of slabs manufactured by continuous casting has increased, but this has occurred on the slab surface as one of the factors that hinders the improvement of the straightness rate. There are surface cracks called transverse cracks.

最近では、材料特性上の要求からNb、V、Ni、Cuなどの様々な合金元素を含有した低合金鋼の生産量が増加している。合金元素の添加に伴い、鋳片の表面割れの発生頻度が高くなり、製造コストの削減の要求に対して、その達成率は足踏み状態が続いている。連続鋳造の2次冷却時に鋳片の表面温度が、金属組織がγからαに変態するときの変態温度(約750〜850℃)近傍になって、鋳片の熱間延性が低下する。このとき鋳片に、曲げや矯正といった機械的な応力が生じることで、低合金鋼の鋳片に表面割れが発生することが知られている。従って、表面割れの発生を抑えるべく、鋳片の曲げ部や矯正部において、鋳片の表面温度を、熱間延性が低下する温度領域(以下適宜「脆化温度域」と呼ぶ)よりも低温側もしくは高温側とする方法が通常行われる。   Recently, the production of low alloy steels containing various alloy elements such as Nb, V, Ni, and Cu has been increasing due to demands on material properties. With the addition of alloy elements, the frequency of occurrence of surface cracks in the slab increases, and the achievement rate continues to be at a standstill in response to demands for reducing manufacturing costs. During secondary cooling of continuous casting, the surface temperature of the slab becomes close to the transformation temperature (about 750 to 850 ° C.) when the metal structure transforms from γ to α, and the hot ductility of the slab decreases. At this time, it is known that surface cracks occur in the slab of low alloy steel due to mechanical stress such as bending or straightening occurring in the slab. Therefore, in order to suppress the occurrence of surface cracks, the surface temperature of the slab is lower than the temperature range where the hot ductility is lowered (hereinafter referred to as “embrittlement temperature range” as appropriate) in the bent part and the straightened part of the slab. The method of making the side or the high temperature side is usually performed.

しかしながら、鋳片の表面温度を脆化温度域から回避させるだけでは、鋳片に発生する表面割れを皆無にすることは困難であり、鋳片の表層組織に着目した鋳片冷却履歴に関する技術が提案されている。特許文献1には、凝固シェル厚がある程度薄い状態で、鋳型による1次冷却を終了し、2次冷却を開始し、鋳片全面の表面温度を鋳型を出てから長くとも2分以内の間に一旦600℃以上Ar3点[℃]以下の範囲まで低下させ、次いで、連続鋳造機の曲げ部及び矯正部における鋳片表面温度の両者が850℃以上となるように前記2次冷却を行う発明が提案されている。この発明によって、特許文献1では、スラブ表層組織の割れ感受性低減(γ粒界の不明瞭な組織)と、垂直曲げ型連続鋳造機の曲げ部及び矯正部における脆化温度域の高温側回避との両立が可能となり、鋳片の表面割れが効果的に解消され、その結果、鋳片のノースカーフ化・無手入れ化、鋳片の直行率向上が達成されると記載されている。   However, it is difficult to eliminate surface cracks that occur in the slab simply by avoiding the surface temperature of the slab from the embrittlement temperature range, and there is a technology related to the slab cooling history that focuses on the surface layer structure of the slab. Proposed. In Patent Document 1, primary cooling by the mold is finished with the solidified shell thickness being somewhat thin, secondary cooling is started, and the surface temperature of the entire surface of the slab is within 2 minutes at the longest after leaving the mold. The temperature is once lowered to a range of 600 ° C. or higher and Ar 3 point [° C.] or lower, and then the secondary cooling is performed so that both the slab surface temperature in the bending portion and the straightening portion of the continuous casting machine are 850 ° C. or higher. Has been proposed. According to this invention, in Patent Document 1, reduction in cracking sensitivity of the slab surface structure (unclear structure of γ grain boundaries) and avoidance of the high temperature side of the embrittlement temperature range in the bending part and the straightening part of the vertical bending type continuous casting machine, It is described that the surface cracks of the slab can be effectively eliminated, and as a result, no scarfing / care of the slab and improvement in the straightness rate of the slab are achieved.

特開平9−225607号公報JP 9-225607 A

特許文献1では、鋳片の表面割れが効果的に解消されるとされており、本発明者らは、特許文献1に記載されている方法で鋳片を製造する実験を行った結果、確かに、表面割れの発生をある程度防止できることを確認したものの、鋳片引き抜き速度によっては、特に、鋳片での横割れの発生を完全に防止できない場合があることも確認した。   In patent document 1, it is said that the surface crack of a slab is effectively eliminated, and as a result of conducting an experiment for manufacturing a slab by the method described in patent document 1, the present inventors have confirmed that Although it was confirmed that the occurrence of surface cracks could be prevented to some extent, it was also confirmed that the occurrence of lateral cracks in the slab could not be completely prevented depending on the slab drawing speed.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、普通鋼はもちろん、近年、増加しつつある表面割れ感受性の高い、Ni、Cu、V、Nbなどを含有する低合金鋼を連続鋳造する場合であっても、鋳片の横割れを確実に防止する鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is low alloy containing Ni, Cu, V, Nb, etc., which are increasing in surface cracking sensitivity in recent years as well as ordinary steel. Even when steel is continuously cast, it is to provide a continuous casting method of steel that reliably prevents lateral cracking of a slab.

通常、鋼の連続鋳造では、上下方向の振動を鋳型に与えつつ溶鋼を鋳型に注入し、鋳型内の溶鋼表面にモールドパウダーを投入しており、該モールドパウダーが溶融して形成される溶融スラグを凝固シェルと鋳型内壁との間に流入させ、振動と溶融スラグとによって凝固シェルが鋳型に焼き付くことを防止する。振動によって、先端部が変形を受けることになる凝固シェルを鋳型から引き抜くことで得られる鋳片には、表面にオシレーションマークと呼ばれる凹凸面が形成される。   Usually, in continuous casting of steel, molten steel is poured into the mold while applying vertical vibration to the mold, and mold powder is poured into the molten steel surface in the mold, and the molten slag formed by melting the mold powder Is caused to flow between the solidified shell and the inner wall of the mold to prevent the solidified shell from being seized into the mold by vibration and molten slag. An uneven surface called an oscillation mark is formed on the surface of a slab obtained by pulling out from the mold a solidified shell whose tip is subject to deformation by vibration.

鋳型に与える振動について、鋳型の上死点から下死点までの振幅や振動数は、鋳片引き抜き速度に応じて適宜変更することが一般的である。本発明者らは、特許文献1に記載されている方法を適用して鋳片を製造する場合において、特に、鋳片での横割れの発生を完全に防止できない理由を検討し、その理由は前記オシレーションマークにあると推察した。そして、本発明者らは、特許文献1に記載されている方法を適用したとしても、鋳型に与える振動や鋳型から出た直後の鋳片の冷却方法によっては、オシレーションマークに起因して鋳片の表面に形成される谷部の深さが大きくなる傾向になり、深さが大きくなる場合には、谷部を起点に横割れが生じることを確認し、本発明の完成に至った。   Regarding the vibration applied to the mold, the amplitude and frequency from the top dead center to the bottom dead center of the mold are generally appropriately changed according to the slab drawing speed. In the case of producing a slab by applying the method described in Patent Document 1, the present inventors particularly examined the reason why the occurrence of transverse cracks in the slab cannot be completely prevented. I guessed it was in the oscillation mark. And even if the present inventors apply the method described in Patent Document 1, depending on the vibration applied to the mold and the cooling method of the slab immediately after coming out of the mold, the casting is caused by the oscillation mark. The depth of the trough formed on the surface of the piece tends to increase, and when the depth increases, it was confirmed that transverse cracks occurred starting from the trough, and the present invention was completed.

本発明の要旨は以下の通りである。
[1]垂直曲げ型連続鋳造機の鋳型内に溶鋼を注入しつつ、前記鋳型を鋳造方向に振動させながら前記鋳型を冷却して、厚みが9〜20mmとなる凝固シェルを形成し、該凝固シェルを引き抜いて鋳片を鋳造する鋼の連続鋳造方法であって、前記鋳型の振動は振幅が6mm以下、振動数が100[回/分]以上であり、前記鋳型の出口から前記鋳片が1つ目のロールに接触するまでの間は、下記式(1)で表される比水量Hが0.4[l/kg−鋳片]未満となる条件で前記鋳片に水を吹き付け、次いで、前記鋳片の表面温度がAr3点[℃]以下となるまで前記鋳片を冷却した後に、前記鋳片を復熱させることにより、少なくとも垂直曲げ型連続鋳造機の曲げ部では、前記鋳片の表面温度がAc3点[℃]以上とすることを特徴とする鋼の連続鋳造方法。
H=Q/(W×T×Vc×ρ) (1)
ここで、Qは、前記鋳型の長辺から形成された鋳片の表面に吹き付ける水量[l/分]であり、Wは、鋳片幅[m]であり、Tは、鋳片厚み[m]であり、Vcは、鋳片引き抜き速度[m/分]であり、ρは、鋳片の密度[kg/m]である。
[2]前記鋳型の振動の1周期のうち、鋳造方向を正とした鋳型の速度Vm[m/分]が前記鋳片引き抜き速度Vc[m/分]以上となる時間tnと前記速度Vmが前記鋳片引き抜き速度Vc未満となる時間tpとの合計時間に対する前記時間tnの割合で表される指数NSRが30%以下であることを特徴とする[1]に記載の鋼の連続鋳造方法。
The gist of the present invention is as follows.
[1] While injecting molten steel into a mold of a vertical bending type continuous casting machine, the mold is cooled while vibrating the mold in the casting direction to form a solidified shell having a thickness of 9 to 20 mm. A continuous casting method of steel in which a slab is cast by pulling out a shell, wherein the vibration of the mold has an amplitude of 6 mm or less and a frequency of 100 [times / minute] or more, and the slab is removed from an outlet of the mold. Until contact with the first roll, water is sprayed on the slab under the condition that the specific water amount H represented by the following formula (1) is less than 0.4 [l / kg-slab], Next, after cooling the slab until the surface temperature of the slab becomes Ar 3 point [° C.] or less, the slab is reheated, so that at least in the bending portion of the vertical bending die continuous casting machine, The surface temperature of the piece is Ac3 point [° C.] or higher. Continue casting method.
H = Q / (W × T × Vc × ρ) (1)
Here, Q is the amount of water [l / min] sprayed on the surface of the slab formed from the long side of the mold, W is the slab width [m], and T is the slab thickness [m. Vc is the slab drawing speed [m / min], and ρ is the density [kg / m 3 ] of the slab.
[2] Of one cycle of the mold vibration, the time tn when the mold speed Vm [m / min] with the casting direction being positive becomes equal to or higher than the slab drawing speed Vc [m / min] and the speed Vm are The steel continuous casting method according to [1], wherein an index NSR represented by a ratio of the time tn to a total time with the time tp at which the slab drawing speed Vc is less than 30% is 30% or less.

本発明によれば、鋳型から引き抜かれた直後の鋳片表面の平坦化を促進でき、延いては、矯正部以降の鋳片表面の谷部を浅くすることが可能となる。適正な熱履歴と前記谷部を浅くすることによって、鋳片に発生し得る横割れを確実に防止できる。   According to the present invention, it is possible to promote the flattening of the surface of the slab immediately after being drawn out from the mold, and as a result, it becomes possible to shallow the valley of the surface of the slab after the correction portion. By making the appropriate heat history and the trough shallow, transverse cracks that can occur in the slab can be reliably prevented.

垂直曲げ型連続鋳造機を示す図である。It is a figure which shows a vertical bending type continuous casting machine. 比水量H[l/kg−鋳片]と谷部の深さ[mm]との関係を示すグラフである。It is a graph which shows the relationship between specific water quantity H [l / kg-slab] and the depth of a trough [mm]. 谷部の深さ[mm]と横割れ個数[個/m]との関係を示すグラフである。It is a graph which shows the relationship between the depth [mm] of a trough part, and the number of transverse cracks [piece / m < 2 >].

本発明は、垂直曲げ型連続鋳造機の鋳型内に溶鋼を注入しつつ、鋳型を振動させながら鋳型を冷却して、凝固シェルを形成し、該凝固シェルを引き抜いて形成される鋳片が、鋳型を出てから、少なくとも1つ目のロールに接触するまでの間は、鋳片を弱冷却することで、ロールによる鋳片表面の平坦化を促進するものである。垂直曲げ型連続鋳造機を図1に示し、図1を参照して、本発明の実施形態の一例を説明する。   In the present invention, the molten steel is poured into the mold of the vertical bending type continuous casting machine, the mold is cooled while vibrating the mold, the solidified shell is formed, and the slab formed by pulling out the solidified shell comprises: After leaving the mold and before coming into contact with at least the first roll, the slab is weakly cooled to promote flattening of the slab surface by the roll. A vertical bending type continuous casting machine is shown in FIG. 1, and an example of an embodiment of the present invention will be described with reference to FIG.

垂直曲げ型連続鋳造機1は、鋳型5と、該鋳型5の上方に設置されるタンディッシュ2と、前記鋳型5の下方には、複数並べて配置されている、サポートロール6と、複数のガイドロール7と、ガイドロール7の間に設置されピンチロール8と、を有する。   The vertical bending type continuous casting machine 1 includes a mold 5, a tundish 2 installed above the mold 5, a plurality of support rolls 6 arranged below the mold 5, and a plurality of guides. It has a roll 7 and a pinch roll 8 installed between the guide rolls 7.

図示を省略してあるが、タンディッシュ2の上方には、溶鋼11を収容する取鍋が設置される。取鍋の底部からタンディッシュ2に溶鋼11が注入される。タンディッシュ2の底部には、スライディングノズル3が取り付けられた浸漬ノズル4が設置されており、タンディッシュ2内に所定量の溶鋼11を滞在させた状態で浸漬ノズル4を介して溶鋼11が鋳型5に注入される。鋳型5には冷却水路が形成されており、該冷却水路に冷却水を通過させている。これにより、鋳型5の内面から溶鋼11が抜熱され凝固し、凝固シェル13が形成され、凝固シェル13の内部には、溶鋼11からなる未凝固層14が形成される。   Although not shown, a ladle for containing the molten steel 11 is installed above the tundish 2. Molten steel 11 is poured into the tundish 2 from the bottom of the ladle. An immersion nozzle 4 to which a sliding nozzle 3 is attached is installed at the bottom of the tundish 2, and the molten steel 11 is cast through the immersion nozzle 4 in a state where a predetermined amount of molten steel 11 stays in the tundish 2. 5 is injected. A cooling water channel is formed in the mold 5, and the cooling water is passed through the cooling water channel. Thereby, the molten steel 11 is extracted from the inner surface of the mold 5 and solidified to form a solidified shell 13, and an unsolidified layer 14 made of the molten steel 11 is formed inside the solidified shell 13.

サポートロール6、ガイドロール7及びピンチロール8は、鋳片12の支持に適する上下1組のロールセットから構成されている。ガイドロール7で鋳片12を支持しつつ、ピンチロール8が鋳片12を挟み込みながら回転して、凝固シェル13と内部に未凝固層14とを有する鋳片12が引き抜かれる。図1に示すように、垂直曲げ型連続鋳造機1では、鋳片12が鋳型5から鉛直方向下方に直線的に引き抜かれ、次いで鋳型5の下方で適宜曲がり、曲げられた鋳片12が矯正され水平方向に引き抜かれるように、ガイドロール7及びピンチロール8が複数配置されている。   The support roll 6, the guide roll 7, and the pinch roll 8 are composed of one set of upper and lower roll sets suitable for supporting the cast slab 12. While the slab 12 is supported by the guide roll 7, the pinch roll 8 rotates while sandwiching the slab 12, and the slab 12 having the solidified shell 13 and the unsolidified layer 14 inside is pulled out. As shown in FIG. 1, in the vertical bending die continuous casting machine 1, the slab 12 is drawn linearly downward from the mold 5 in the vertical direction, and then bent appropriately below the mold 5, and the bent slab 12 is corrected. A plurality of guide rolls 7 and pinch rolls 8 are arranged so as to be pulled out in the horizontal direction.

鋳片2を挟んで上面側及び下面側に分割された二次冷却ゾーン17a,17b,17c,17d,17eが、鋳型5の直下から鋳造方向に沿ってこの順で設置されている。二次冷却ゾーン17aは、鋳型5と1つ目のサポートロール6との間で鋳片12を冷却するものである。二次冷却ゾーン17dの開始位置が、直線的に引き抜かれている鋳片12を曲げる曲げ部となっており、二次冷却ゾーン17eの途中で、曲げられた鋳片12を水平方向に引き抜かれるように、鋳片12を矯正する矯正部が設けられている。   Secondary cooling zones 17a, 17b, 17c, 17d, and 17e divided on the upper surface side and the lower surface side with the slab 2 interposed therebetween are installed in this order along the casting direction from directly below the mold 5. The secondary cooling zone 17 a cools the slab 12 between the mold 5 and the first support roll 6. The starting position of the secondary cooling zone 17d is a bent portion that bends the slab 12 drawn linearly, and the bent slab 12 is pulled out horizontally in the middle of the secondary cooling zone 17e. Thus, the correction part which corrects the slab 12 is provided.

二次冷却ゾーン17dと17eとの間で、図示を省略してあるが、二次冷却ゾーンを適宜設けてあり、各二次冷却ゾーンには、それぞれ独立して二次冷却水量を調整できるように、水スプレーノズルあるいはエアーミストスプレーノズルなどのスプレーノズルが、ガイドロール7及びピンチロール8の各々の間に設けられている。ガイドロール7で鋳片12が支持され搬送されている間に、二次冷却ゾーン17a〜17eで凝固シェル13が適切に冷却され且つ復熱し、未凝固層14の凝固が進み、鋳片12の凝固が完了する。   Although illustration is omitted between the secondary cooling zones 17d and 17e, secondary cooling zones are appropriately provided so that the amount of secondary cooling water can be adjusted independently in each secondary cooling zone. In addition, a spray nozzle such as a water spray nozzle or an air mist spray nozzle is provided between the guide roll 7 and the pinch roll 8. While the slab 12 is supported and conveyed by the guide roll 7, the solidified shell 13 is appropriately cooled and reheated in the secondary cooling zones 17 a to 17 e, the solidification of the unsolidified layer 14 proceeds, and the slab 12 Solidification is complete.

ガイドロール7の下流には、搬送ロール9が複数並べられており、該搬送ロール9の上方には、鋳片12の引き抜き速度Vcと同期し、鋳片12を切断するガス切断機10が設置されている。切断された鋳片12aは、次工程へ送られることになる。   A plurality of transport rolls 9 are arranged downstream of the guide roll 7, and a gas cutting machine 10 for cutting the slab 12 is installed above the transport roll 9 in synchronization with the drawing speed Vc of the slab 12. Has been. The cut slab 12a is sent to the next process.

図示を省略してあるが、鋳型5に注入された溶鋼11の湯面上にモールドパウダーが投入され、該モールドパウダーが溶鋼11の熱で溶融することで、溶融スラグが溶鋼11の湯面上に生成される。加えて、鋳型5には、鋳造方向に沿って上下に鋳型5を振動させる装置が取り付けられており(図示せず)、該装置で鋳型5を振動させ、鋳型5の内壁と凝固シェル13との隙間を形成し、該隙間に前記溶融スラグを流入させている。これにより、鋳型5の内壁に凝固シェル13が焼き付くことを防止している。   Although not shown, mold powder is poured onto the molten steel 11 poured into the mold 5, and the mold powder is melted by the heat of the molten steel 11, so that molten slag is formed on the molten steel 11. Is generated. In addition, a device for vibrating the mold 5 up and down along the casting direction is attached to the mold 5 (not shown), and the mold 5 is vibrated by the device so that the inner wall of the mold 5 and the solidified shell 13 The molten slag is caused to flow into the gap. Thereby, the solidified shell 13 is prevented from being burned onto the inner wall of the mold 5.

鋳型5の振動によって、鋳型5が下方(鋳造方向)へ向かう際の速度Vmが、鋳片引き抜き速度Vcよりも大きい場合が生じる。その際、溶鋼11の湯面上に生成された溶融スラグのうち、高粘性部分が凝固シェル13の先端部を押し曲げることになる。先端部が押し曲げられた後、凝固シェル13が鋳型から引き抜かれることになるが、その間でも鋳型5を動かす振動が繰り返されていて、先端部が再び押し曲げられる。これにより、凝固シェル13の表面に周期的な凹凸面が形成される。但し、サポートロール6、ガイドロール7及びピンチロール8によって凝固シェル13の表面が押され、凹凸面の平坦化が行われる。よって、最終的には、鋳片12(鋳片12a)の表面はある程度平坦となっているものの、鋳片12aの表面には、その幅方向に沿って谷部が形成される。谷部が深くなると、鋳片12aの横割れに繋がる。   Due to the vibration of the mold 5, the speed Vm when the mold 5 is directed downward (in the casting direction) may be larger than the slab drawing speed Vc. At that time, the high-viscosity portion of the molten slag generated on the molten metal surface of the molten steel 11 pushes and bends the tip of the solidified shell 13. After the tip portion is pushed and bent, the solidified shell 13 is pulled out from the mold, but during that time, the vibration that moves the mold 5 is repeated, and the tip portion is pushed and bent again. Thereby, a periodic uneven surface is formed on the surface of the solidified shell 13. However, the surface of the solidified shell 13 is pushed by the support roll 6, the guide roll 7, and the pinch roll 8, and the uneven surface is flattened. Therefore, although the surface of the slab 12 (slab 12a) is finally flat to some extent, a trough is formed on the surface of the slab 12a along the width direction. If the trough becomes deeper, it will lead to lateral cracking of the slab 12a.

本発明では、鋳型5に与える振動の振幅を6mm以下とし且つ振動数を100[回/分]以上とし、更には、鋳型5での冷却によって厚みが9〜20mmとなる凝固シェル13を形成し、少なくとも、鋳片12が1つ目のサポートロール6に接触するまでの間に、鋳片12に吹付ける水の量を抑えている。これにより、本発明は、鋳型5直下でのサポートロール6による凝固シェル13の表面の平坦化を促進し、鋳片12aの表面の谷部の深さを抑えている。   In the present invention, the amplitude of vibration applied to the mold 5 is set to 6 mm or less, the frequency is set to 100 [times / min] or more, and the solidified shell 13 having a thickness of 9 to 20 mm is formed by cooling with the mold 5. At least until the slab 12 comes into contact with the first support roll 6, the amount of water sprayed on the slab 12 is suppressed. Thereby, this invention accelerates | stimulates the planarization of the surface of the solidification shell 13 by the support roll 6 just under the casting_mold | template 5, and suppresses the depth of the trough part of the surface of the slab 12a.

振動数を100[回/分]以上とすることで、振動の周期(=1/振動数)を小さくし、周期[分/回]と鋳片引き抜き速度[m/分]とを乗算して算出される凹凸面の隣接する頂部または谷部の間隔を小さくするとともに、振幅を6mm以下とすることで、谷部の深さを抑えている。また、凝固シェル13の厚みが9mm未満だと、溶鋼11の静圧に耐えることができずブレークアウトする可能性が生じる。また、厚みが20mmを超えると、凝固シェル13の表面温度を弱冷却した状態としても、凝固シェル13が厚すぎて、サポートロール6による凝固シェル13の表面の平坦化が促進されにくくなる上に、鋳片12の表面温度をAr3点[℃]以下とし、鋳片12を復熱させ、鋳片12の表面温度をAc3点[℃]以上とすることによる、鋳片12の金属組織の改善効果が得にくい。   By setting the frequency to 100 [times / minute] or more, the period of vibration (= 1 / frequency) is reduced, and the period [minute / time] is multiplied by the slab drawing speed [m / minute]. The depth of the troughs is suppressed by reducing the interval between the tops or troughs adjacent to the calculated uneven surface and by setting the amplitude to 6 mm or less. On the other hand, if the thickness of the solidified shell 13 is less than 9 mm, the static pressure of the molten steel 11 cannot be withstood and a breakout may occur. On the other hand, if the thickness exceeds 20 mm, the solidified shell 13 is too thick even if the surface temperature of the solidified shell 13 is weakly cooled, and it is difficult to promote the flattening of the surface of the solidified shell 13 by the support roll 6. The metal structure of the slab 12 is improved by setting the surface temperature of the slab 12 to Ar 3 point [° C.] or less, reheating the slab 12 and setting the surface temperature of the slab 12 to Ac 3 point [° C.] or more. It is difficult to obtain an effect.

厚みが9〜20mmとなる凝固シェル13を有する鋳片12が、鋳型5からサポートロール6に接触するまでの間は、下記式(1)で表される比水量Hが0.4[l/kg−鋳片]未満となる条件で、二次冷却ゾーン17aで鋳片12に冷却水を吹き付け、鋳片12の表面を冷却する。
H=Q/(W×T×Vc×ρ) (1)
Until the slab 12 having the solidified shell 13 having a thickness of 9 to 20 mm comes into contact with the support roll 6 from the mold 5, the specific water amount H represented by the following formula (1) is 0.4 [l / Cooling water is sprayed on the slab 12 in the secondary cooling zone 17a under the condition of less than kg-slab], and the surface of the slab 12 is cooled.
H = Q / (W × T × Vc × ρ) (1)

Hは、比水量[l/kg−鋳片]であり、Qは、鋳型5の長辺から形成された鋳片12の表面に吹き付ける水量[l/分]であり、Wは、鋳片12の幅[m]であり、Tは、鋳片12の厚み[m]であり、Vcは、鋳片12の引き抜き速度[m/分]であり、ρは、鋳片の密度[kg/m]である。二次冷却ゾーン17aでの鋳片12の冷却は、鋳片12の単位質量[kg]当たりに吹付ける水量[l]を制限したもので、いわゆる弱冷却に相当する。厚みが比較的薄い且つ弱冷却された状態の凝固シェル13の表面をサポートロール6で押すことによって、厚みが抑えられた鋳片12に形成される凹凸面のロールによる平坦化が効果的に促進され、鋳片12の表面の谷部が浅くなる。なお、比水量Hは、0.01[l/kg−鋳片]以上であることが望ましい。比水量Hが過少であると、凝固シェルがバルジングを起こし、内部割れやブレークアウトが生じるからである。 H is the specific water amount [l / kg-slab], Q is the amount of water [l / min] sprayed on the surface of the slab 12 formed from the long side of the mold 5, and W is the slab 12. , T is the thickness [m] of the slab 12, Vc is the drawing speed [m / min] of the slab 12, and ρ is the density of the slab [kg / m] 3 ]. The cooling of the slab 12 in the secondary cooling zone 17a limits the amount of water [l] sprayed per unit mass [kg] of the slab 12, and corresponds to so-called weak cooling. By pressing the surface of the solidified shell 13 in a relatively thin and weakly cooled state with the support roll 6, it is possible to effectively promote the flattening of the uneven surface formed on the slab 12 with a reduced thickness by the roll. Thus, the valley on the surface of the slab 12 becomes shallow. The specific water amount H is desirably 0.01 [l / kg-slab] or more. This is because if the specific water amount H is too small, the solidified shell bulges, causing internal cracks and breakout.

二次冷却ゾーン17aを通過して弱冷された鋳片12に対し、次いで、二次冷却ゾーン17bで冷却水の量を適宜調整(多く)して鋳片12を強冷し、鋳片12の表面温度(凝固シェル13の温度)をAr3点[℃]以下とすることが望ましい。二次冷却ゾーン17cで、吹付ける冷却水の量を減少させるなどして、少なくとも二次冷却ゾーン17dの開始位置(曲げ部)では、鋳片12の表面温度がAc3点[℃]以上となるように鋳片12を復熱させることが望ましい。これにより、凝固シェル13の金属組織が変態する。なお、冷却水を吹付けないで、鋳片12の表面温度がAc3点[℃]以上となるように鋳片12を復熱させてもよい。   For the slab 12 that has been weakly cooled after passing through the secondary cooling zone 17a, the slab 12 is then strongly cooled by appropriately adjusting (increasing) the amount of cooling water in the secondary cooling zone 17b. It is desirable that the surface temperature (temperature of the solidified shell 13) be set to Ar3 point [° C.] or less. The surface temperature of the slab 12 becomes Ac3 point [° C.] or higher at least at the start position (bending portion) of the secondary cooling zone 17d by reducing the amount of cooling water sprayed in the secondary cooling zone 17c. It is desirable to reheat the slab 12 as described above. Thereby, the metal structure of the solidified shell 13 is transformed. Note that the slab 12 may be reheated without spraying the cooling water so that the surface temperature of the slab 12 becomes Ac3 point [° C.] or higher.

凝固シェル13の温度をAr3点[℃]以下とすることによって、凝固シェル13は、割れ感受性の低いγ粒界が不明瞭なフェライト−パーライト組織となる。二次冷却ゾーン17bでの強冷を早期に終了し、二次冷却ゾーン17cで凝固シェル13をAc3点[℃]以上となるように復熱させれば、凝固シェル13の温度を脆化域から高温側とすることができる上に、γ粒を微細化させた組織を生成させることができる。これにより、曲げ部において応力が掛っても、割れ感受性を低下させることができる。   By setting the temperature of the solidified shell 13 to Ar 3 point [° C.] or less, the solidified shell 13 has a ferrite-pearlite structure in which the γ grain boundary with low cracking sensitivity is unclear. If the strong cooling in the secondary cooling zone 17b is terminated early and the solidified shell 13 is reheated to the Ac3 point [° C.] or higher in the secondary cooling zone 17c, the temperature of the solidified shell 13 is reduced to the embrittlement region. In addition to the high temperature side, a structure in which the γ grains are refined can be generated. Thereby, even if stress is applied to the bent portion, the crack sensitivity can be reduced.

二次冷却ゾーン17bでは、鋳片12の表面温度(凝固シェル13の温度)を600℃以上とすることが望ましい。表面温度が600℃以上であれば、鋳片の曲げ・矯正に要する力が小さくなるからである。また、二次冷却ゾーン17cでは、鋳片12の表面温度を1100℃以下とすることが望ましい。表面温度が過大であると、凝固シェルがバルジングを起こし、内部割れやブレークアウトが生じる可能性が高くなるからである。   In the secondary cooling zone 17b, the surface temperature of the slab 12 (the temperature of the solidified shell 13) is preferably 600 ° C. or higher. This is because if the surface temperature is 600 ° C. or higher, the force required for bending and straightening the slab becomes small. In the secondary cooling zone 17c, it is desirable that the surface temperature of the slab 12 be 1100 ° C. or lower. This is because if the surface temperature is excessive, the solidified shell bulges and the possibility of internal cracks and breakout increases.

鋳型5に与えられる振動は、振動の1周期のうち、鋳造方向を正とした鋳型5の速度Vm[m/分]が鋳片引き抜き速度Vc[m/分]以上となる時間tnと、速度Vmが鋳片引き抜き速度Vc未満となる時間tpと、の合計時間に対する時間tnの割合で表される指数NSRが30%以下であることが好ましい。振動は、正弦波で表される単振動でもよいが、振動を、非正弦波とし、30%以下となる指数(割合)NSRを満たせば、その振動は、振幅が6mm以下、振動数が100[回/分]以上となりやすい。   The vibration applied to the mold 5 includes a time tn at which the speed Vm [m / min] of the mold 5 with the casting direction being positive is equal to or higher than the slab drawing speed Vc [m / min] in one cycle of vibration, and the speed The index NSR represented by the ratio of the time tn to the total time of the time tp when Vm is less than the slab drawing speed Vc is preferably 30% or less. The vibration may be a simple vibration represented by a sine wave. However, if the vibration is a non-sine wave and satisfies an index (ratio) NSR of 30% or less, the vibration has an amplitude of 6 mm or less and a vibration frequency of 100. [Times / minute] or more.

なお、振動の振幅や振動数は、鋳片引き抜き速度Vcを考慮して適宜定めること望ましい。鋳片引き抜き速度Vcを大きくする際には、指数NSRを一定に維持するために、鋳片引き抜き速度Vcに比例して振動数を大きくする。また、振幅は、3mm以上であることが望ましい。振幅が過少であると、振動数を増しても、指数NSRが、鋳片の引き抜きに応じた十分な大きさとなりにくいからである。また、振動数は、300回/分以下であることが望ましい。振動数が過大であると、振動加速度が過大となり、設備負荷も過大となるからである。   Note that the amplitude and frequency of vibration are preferably determined as appropriate in consideration of the slab drawing speed Vc. When increasing the slab drawing speed Vc, the frequency is increased in proportion to the slab drawing speed Vc in order to keep the index NSR constant. The amplitude is desirably 3 mm or more. This is because, if the amplitude is too small, the index NSR is unlikely to be sufficiently large according to the drawing of the slab even if the frequency is increased. The frequency is preferably 300 times / minute or less. This is because if the frequency is excessive, the vibration acceleration is excessive and the equipment load is excessive.

<実験>
図1に示す構成の垂直曲げ型連続鋳造機1を用いて、厚鋼板となる鋳片12を複数回連続鋳造した。各連続鋳造において、二次冷却ゾーン17aにおける比水量Hを[l/kg−鋳片]を適宜変更して、比水量Hと谷部の深さ[mm]との関係、及び、谷部の深さ[mm]と横割れの個数[個/m]との関係を調べた。鋳片12の幅Wは2100mmとし、厚みTは300mmとするように、鋳型5を構成した。
<Experiment>
A slab 12 to be a thick steel plate was continuously cast a plurality of times by using the vertical bending type continuous casting machine 1 having the configuration shown in FIG. In each continuous casting, the specific water amount H in the secondary cooling zone 17a is appropriately changed as [l / kg-slab], and the relationship between the specific water amount H and the depth of the valley [mm] The relationship between the depth [mm] and the number of transverse cracks [pieces / m 2 ] was examined. The mold 5 was configured so that the width W of the slab 12 was 2100 mm and the thickness T was 300 mm.

溶鋼11の組成は、C含有量が0.08〜0.14質量%、Mn含有量が1.60質量%、Cu含有量が0.10〜0.15質量%、Ni含有量が0.30〜0.35質量%であり、残部はFeと不可避的不純物からなり、鋳片12の密度ρは7800[kg/m]である。溶鋼11に、Cu、Nbが含有されており、該溶鋼11から得られる鋳片12は、表面割れの感受性が高いといえる。また、Ar3点は850℃であり、Ac3点は900℃となった。これらの値は、線膨張計による実測で求めた。二次冷却ゾーン17bで鋳片12の表面温度がAr3点[℃]以下となり、且つ、二次冷却ゾーン17cで、鋳片12の表面温度がAc3点[℃]以上となるように、鋳片12に吹付ける冷却水の量を調整した。また、鋳型5の出口において凝固シェル13の厚みを9mmとした。凝固シェル13を形成する際に鋳型5に供給する冷却水の量、及び、二次冷却ゾーン17b,17cで鋳片12に吹付けられる冷却水の量は、適宜、事前に伝熱凝固計算で求めておいた。 The composition of the molten steel 11 is such that the C content is 0.08 to 0.14 mass%, the Mn content is 1.60 mass%, the Cu content is 0.10 to 0.15 mass%, and the Ni content is 0.00. The balance is 30 to 0.35% by mass, the balance is Fe and inevitable impurities, and the density ρ of the slab 12 is 7800 [kg / m 3 ]. It can be said that the molten steel 11 contains Cu and Nb, and the slab 12 obtained from the molten steel 11 is highly sensitive to surface cracks. Moreover, Ar3 point was 850 degreeC and Ac3 point became 900 degreeC. These values were obtained by actual measurement with a linear dilatometer. The slab is such that the surface temperature of the slab 12 is not more than Ar3 point [° C.] in the secondary cooling zone 17b and the surface temperature of the slab 12 is not less than Ac3 point [° C] in the secondary cooling zone 17c. The amount of cooling water sprayed on 12 was adjusted. In addition, the thickness of the solidified shell 13 at the outlet of the mold 5 was 9 mm. The amount of cooling water supplied to the mold 5 when forming the solidified shell 13 and the amount of cooling water sprayed on the slab 12 in the secondary cooling zones 17b and 17c are appropriately calculated in advance by heat transfer solidification calculation. I asked for it.

実験においては、鋳片引き抜き速度Vcは、0.8m/分とし、鋳型5に与える振動の振幅は6mmとし、振動数は100[回/分]とした。鋳型5から、鋳片12が最初に接触することになるサポートロール6までの距離を1mとした。実験の各連続鋳造においては、鋳型5の長辺から形成された鋳片12の表面に吹き付ける水量Q[l/分]を適宜変更して、前述の式(1)で表される比水量Hを、0.20〜0.80[l/kg−鋳片]の範囲で変更した。   In the experiment, the slab drawing speed Vc was 0.8 m / min, the amplitude of vibration applied to the mold 5 was 6 mm, and the frequency was 100 [times / min]. The distance from the mold 5 to the support roll 6 with which the slab 12 first comes into contact was 1 m. In each continuous casting of the experiment, the amount of water Q [l / min] sprayed onto the surface of the slab 12 formed from the long side of the mold 5 is appropriately changed, and the specific water amount H represented by the above-described formula (1). Was changed in the range of 0.20 to 0.80 [l / kg-slab].

鋳片12は、ピンチロール8などによって表面が平坦化されているが、振動に起因した谷部はわずかながら残存している。谷部の深さ[mm]については、鋳片12aの表面をレーザー距離計を用いて測定し、鋳片12aの平坦な面を基準として、平坦な面から最も深い谷部となる深さを、谷部の深さ[mm]とした。横割れの個数[個/m]について、鋳片12aを酸洗し、浸透探傷検査によって鋳片12aの表面のクラックを観察し、1mm以上の長さのものを横割れと特定し、鋳片12aの表面の単位面積当たりの横割れの個数を、横割れの個数[個/m]とした。 The surface of the slab 12 is flattened by a pinch roll 8 or the like, but a valley portion due to vibration remains slightly. About the depth [mm] of the trough, the surface of the slab 12a is measured using a laser distance meter, and the depth from the flat surface to the deepest trough is measured using the flat surface of the slab 12a as a reference. The depth of the trough was set to [mm]. For the number of transverse cracks [pieces / m 2 ], the slab 12a is pickled, the cracks on the surface of the slab 12a are observed by penetrant flaw inspection, and those having a length of 1 mm or more are identified as transverse cracks. The number of transverse cracks per unit area on the surface of the piece 12a was defined as the number of transverse cracks [pieces / m 2 ].

比水量H[l/kg−鋳片]と谷部の深さ[mm]との関係を図2に示し、谷部の深さ[mm]と横割れ個数[個/m]との関係を図3に示す。図2のグラフから、比水量Hを抑えるほど、谷部の深さ[mm]が抑えられていることがわかり、二次冷却ゾーン17aで弱冷することにより、鋳片12の表面の平坦化が効果的に促進されていることがわかる。また、比水量Hを0.4[l/kg−鋳片]とした場合における谷部の深さは、最大で0.5mmとなり、比水量Hを0.4[l/kg−鋳片]以下とする場合には、谷部の深さを0.5mm以下とすることができていることがわかる。そして、図3のグラフから、谷部の深さが0.5mm以下の場合には、横割れ個数は0[個/m]とすることができていることがわかる。よって、比水量Hを0.4[l/kg−鋳片]以下とすることにより、横割れの個数[個/m]を効果的に抑えることが確認できた。 The relationship between the specific water amount H [l / kg-slab] and the depth [mm] of the valley is shown in FIG. 2, and the relationship between the depth [mm] of the valley and the number of transverse cracks [pieces / m 2 ]. Is shown in FIG. From the graph of FIG. 2, it can be seen that the depth [mm] of the valley portion is suppressed as the specific water amount H is suppressed, and the surface of the slab 12 is flattened by being weakly cooled in the secondary cooling zone 17a. It can be seen that is effectively promoted. Further, the depth of the trough when the specific water amount H is 0.4 [l / kg-slab] is 0.5 mm at the maximum, and the specific water amount H is 0.4 [l / kg-slab]. In the case of the following, it can be seen that the depth of the valley portion can be 0.5 mm or less. From the graph of FIG. 3, it can be seen that the number of transverse cracks can be set to 0 [piece / m 2 ] when the depth of the valley is 0.5 mm or less. Therefore, it was confirmed that the number of transverse cracks [pieces / m 2 ] was effectively suppressed by setting the specific water amount H to 0.4 [l / kg-slab] or less.

本発明によれば、鋳型から引き抜かれた直後の鋳片表面の平坦化を促進でき、延いては、矯正部以降の鋳片表面の谷部を浅くすることが可能となる。適正な熱履歴と前記谷部を浅くすることによって、鋳片に発生し得る横割れを確実に防止できる。   According to the present invention, it is possible to promote the flattening of the surface of the slab immediately after being drawn out from the mold, and as a result, it becomes possible to shallow the valley of the surface of the slab after the correction portion. By making the appropriate heat history and the trough shallow, transverse cracks that can occur in the slab can be reliably prevented.

(1)鋳型5の出口において凝固シェル13の厚み、(2)鋳片12の厚みT、(3)鋳片引き抜き速度Vc、(4)振動数などの振動の条件、そして、(5)二次冷却ゾーン17bでの鋳片12の表面温度がAr3点[℃]以下を満たすか、あるいは、二次冷却ゾーン17cでの鋳片12の表面温度がAc3点[℃]以上を満たすか、についての条件を適宜変更した以外は実験と同様にして鋳片12aを複数回連続鋳造した(試験No.1〜32)。各連続鋳造においては、実験と同様にして、比水量Hを[l/kg−鋳片]を適宜変更して、比水量Hと谷部の深さ[mm]との関係、及び、谷部の深さ[mm]と横割れの個数[個/m]との関係を調べた。前記(1)〜(5)の条件及び谷部の深さ[mm]と横割れの個数[個/m]を表1に示す。 (1) thickness of the solidified shell 13 at the outlet of the mold 5, (2) thickness T of the slab 12, (3) slab drawing speed Vc, (4) vibration conditions such as frequency, and (5) two Whether the surface temperature of the slab 12 in the secondary cooling zone 17b satisfies the Ar3 point [° C] or lower, or whether the surface temperature of the slab 12 in the secondary cooling zone 17c satisfies the Ac3 point [° C] or higher. The slab 12a was continuously cast a plurality of times in the same manner as in the experiment except that the conditions were appropriately changed (Test Nos. 1-32). In each continuous casting, in the same manner as in the experiment, the specific water amount H is appropriately changed as [l / kg-slab], and the relationship between the specific water amount H and the depth [mm] of the valley portion, and the valley portion The relationship between the depth [mm] and the number of transverse cracks [pieces / m 2 ] was investigated. Table 1 shows the conditions (1) to (5), the depth [mm] of the valleys, and the number of transverse cracks [pieces / m 2 ].

Figure 0006269543
Figure 0006269543

試験No.3〜11及び16〜19の連続鋳造においては、本発明を満たし、本発明例である。一方で、試験No.1及び2の連続鋳造では凝固シェル13の厚み[mm]、試験No.12〜15では振幅[mm]、試験No.20〜23では振動数[回/分]、試験No.24〜28及び32では比水量H、が本発明を満たさず、比較例である。また、試験No.29〜31では、比水量Hが0.4[l/kg−鋳片]未満の条件で鋳片12に水を吹き付けた後であっても、鋳片12の表面温度をAr3点[℃]以下とし、次いで、鋳片12の表面温度がAc3点[℃]以上となるように鋳片12を復熱させることができず、比較例である。   Test No. In continuous casting of 3 to 11 and 16 to 19, the present invention is satisfied and is an example of the present invention. On the other hand, test no. In the continuous casting of 1 and 2, the thickness of the solidified shell 13 [mm], test No. 12 to 15, the amplitude [mm], test No. 20 to 23, the vibration frequency [times / min], test No. In 24-28 and 32, the specific water amount H does not satisfy the present invention and is a comparative example. In addition, Test No. In 29-31, even after water is sprayed on the slab 12 under the condition that the specific water amount H is less than 0.4 [l / kg-slab], the surface temperature of the slab 12 is set at Ar3 point [° C.]. Then, the slab 12 cannot be reheated so that the surface temperature of the slab 12 becomes Ac3 point [° C.] or higher, which is a comparative example.

試験No.1及び2について、試験No.1では、凝固シェルが薄過ぎて、ブレークアウトが生じ、鋳片を得ることができなかった。よって、表1では、谷部の深さ[mm]及び横割れの個数[個/m]には、「−」と記載してある。試験No.2では、凝固シェルが厚過ぎて、サポートロール6による凝固シェル13の表面の平坦化が促進されず、谷部の深さの値が0.72mmであった。また、鋳片12の表面温度をAr3点[℃]以下とし、次いで、鋳片12の表面温度がAc3点[℃]以上となるように鋳片12を復熱させることができていたが、横割れ個数が7.5個/mとなった。 Test No. For Nos. 1 and 2, test no. In No. 1, the solidified shell was too thin, breakout occurred, and a slab could not be obtained. Therefore, in Table 1, “−” is described in the depth [mm] of the valleys and the number of transverse cracks [pieces / m 2 ]. Test No. In No. 2, the solidified shell was too thick, and the flattening of the surface of the solidified shell 13 by the support roll 6 was not promoted, and the depth value of the valley portion was 0.72 mm. In addition, the slab 12 could be reheated so that the surface temperature of the slab 12 was Ar 3 point [° C.] or lower and then the surface temperature of the slab 12 was Ac 3 point [° C.] or higher. The number of transverse cracks was 7.5 / m 2 .

試験No.3〜11では、本発明を満たす上に指数NSRが30%以下で、谷部の深さも0.35mm以下に抑え、横割れ個数を0にできた。試験No.16〜19では、指数NSRが30%を超えているものの、本発明を満たし、谷部の深さは0.55mm未満に抑え、横割れ個数は1.0個/m以下とすることができた。 Test No. 3 to 11, in addition to satisfying the present invention, the index NSR was 30% or less, the depth of the valley portion was suppressed to 0.35 mm or less, and the number of transverse cracks was reduced to zero. Test No. 16-19, although the index NSR exceeds 30%, the present invention is satisfied, the depth of the valley is suppressed to less than 0.55 mm, and the number of transverse cracks is 1.0 pieces / m 2 or less. did it.

試験No.12〜15では、谷部の深さは0.6mmを超え、横割れ個数は5.8個/mを超えている。試験No.20〜32では、谷部の深さは大半が0.6mmを超え、横割れ個数は、一部は3.0個/m程度となっているものの、大半が5.0個/mを超えている。 Test No. In 12 to 15, the depth of the valley is greater than 0.6 mm, transverse cracks number is over 5.8 / m 2. Test No. In 20 to 32, most of the depth of the valley portion exceeds 0.6 mm, and the number of transverse cracks is about 3.0 / m 2 , but most is 5.0 / m 2. Is over.

本発明によって、鋳型から引き抜かれた直後の鋳片の表面の平坦化を促進でき、延いては、矯正部以降の鋳片表面の谷部を浅くすることが可能となったことがわかる。適正な熱履歴と前記谷部を浅くすることによって、鋳片に発生し得る横割れを確実に防止できたこともわかる。   According to the present invention, it can be seen that the flattening of the surface of the slab immediately after being drawn out from the mold can be promoted, and as a result, the valley of the surface of the slab after the correction portion can be made shallower. It can also be seen that the appropriate thermal history and the shallow trough can reliably prevent transverse cracks that may occur in the slab.

1 垂直曲げ型連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 サポートロール
7 ガイドロール
8 ピンチロール
9 搬送ロール
10 ガス切断機
11 溶鋼
12 鋳片
12a 切断された鋳片
13 凝固シェル
14 未凝固層
17a〜17e 二次冷却ゾーン
DESCRIPTION OF SYMBOLS 1 Vertical bending type continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Support roll 7 Guide roll 8 Pinch roll 9 Conveyance roll 10 Gas cutting machine 11 Molten steel 12 Cast slab 12a Cut slab 13 Solidified shell 14 Not yet Solidified layer 17a-17e Secondary cooling zone

Claims (2)

垂直曲げ型連続鋳造機の鋳型内に溶鋼を注入しつつ、前記鋳型を鋳造方向に振動させながら前記鋳型を冷却して、厚みが9〜20mmとなる凝固シェルを形成し、該凝固シェルを引き抜いて鋳片を鋳造する鋼の連続鋳造方法であって、
前記鋳型の振動は振幅が6mm以下、振動数が100[回/分]以上であり、
前記鋳型の出口から前記鋳片が1つ目のロールに接触するまでの間は、下記式(1)で表される比水量Hが0.01[l/kg−鋳片]以上0.4[l/kg−鋳片]未満となる条件で前記鋳片に水を吹き付け、
次いで、前記鋳片の表面温度がAr3点[℃]以下となるまで前記鋳片を冷却した後に、前記鋳片を復熱させることにより、少なくとも垂直曲げ型連続鋳造機の曲げ部では、前記鋳片の表面温度がAc3点[℃]以上とすることを特徴とする鋼の連続鋳造方法。
H=Q/(W×T×Vc×ρ) (1)
ここで、Qは、前記鋳型の長辺から形成された鋳片の表面に吹き付ける水量[l/分]で
あり、
Wは、鋳片幅[m]であり、
Tは、鋳片厚み[m]であり、
Vcは、鋳片引き抜き速度[m/分]であり、
ρは、鋳片の密度[kg/m]である。
While casting molten steel into the mold of a vertical bending type continuous casting machine, the mold is cooled while vibrating the mold in the casting direction to form a solidified shell having a thickness of 9 to 20 mm, and the solidified shell is pulled out. A continuous casting method of steel for casting slabs,
The vibration of the mold has an amplitude of 6 mm or less and a vibration frequency of 100 [times / minute] or more.
From the outlet of the mold until the slab comes into contact with the first roll, the specific water amount H expressed by the following formula (1) is 0.01 [l / kg-slab] or more and 0.4. Water is sprayed on the slab under the condition of less than [l / kg-slab],
Next, after cooling the slab until the surface temperature of the slab becomes Ar 3 point [° C.] or less, the slab is reheated, so that at least in the bending portion of the vertical bending die continuous casting machine, A method for continuously casting steel, wherein the surface temperature of the piece is set to Ac3 point [° C.] or higher.
H = Q / (W × T × Vc × ρ) (1)
Here, Q is the amount of water [l / min] sprayed on the surface of the slab formed from the long side of the mold,
W is the slab width [m],
T is the slab thickness [m],
Vc is the slab drawing speed [m / min],
ρ is the density [kg / m 3 ] of the slab.
前記鋳型の振動の1周期のうち、鋳造方向を正とした鋳型の速度Vm[m/分]が前記鋳片引き抜き速度Vc[m/分]以上となる時間tnと前記速度Vmが前記鋳片引き抜き速度Vc未満となる時間tpとの合計時間に対する前記時間tnの割合で表される指数NSRが30%以下であることを特徴とする請求項1に記載の鋼の連続鋳造方法。   Of one cycle of the mold vibration, the time tn when the mold speed Vm [m / min] with the casting direction being positive becomes equal to or higher than the slab drawing speed Vc [m / min] and the speed Vm are the slab. 2. The continuous casting method for steel according to claim 1, wherein an index NSR represented by a ratio of the time tn to a total time with the time tp at which the drawing speed Vc is less than 30% is 30% or less.
JP2015053105A 2015-03-17 2015-03-17 Steel continuous casting method Active JP6269543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053105A JP6269543B2 (en) 2015-03-17 2015-03-17 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053105A JP6269543B2 (en) 2015-03-17 2015-03-17 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2016172265A JP2016172265A (en) 2016-09-29
JP6269543B2 true JP6269543B2 (en) 2018-01-31

Family

ID=57009468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053105A Active JP6269543B2 (en) 2015-03-17 2015-03-17 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP6269543B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541099A (en) * 2016-11-26 2017-03-29 湖南华菱湘潭钢铁有限公司 It is a kind of to avoid the red method for sending straight dress crackle of surface of steel plate
CN108907131B (en) * 2018-07-10 2020-07-03 邯郸钢铁集团有限责任公司 Secondary cooling control method for reducing surface cracks of head and tail blanks of slab continuous casting
CN110315049B (en) * 2019-07-25 2021-02-02 中冶赛迪工程技术股份有限公司 Continuous casting secondary cooling water control device and method
CN111069553B (en) * 2019-12-16 2021-08-31 武汉科技大学 Quality improvement method of continuous casting billet
CN114871400B (en) * 2022-06-13 2024-02-27 中天钢铁集团有限公司 Continuous casting solidification process judging method based on single-roll pressing operation and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008825B2 (en) * 1995-08-08 2000-02-14 住友金属工業株式会社 Slab surface crack suppression method
JP3058079B2 (en) * 1996-02-23 2000-07-04 住友金属工業株式会社 Steel continuous casting method
JP3705101B2 (en) * 2000-09-12 2005-10-12 住友金属工業株式会社 Continuous casting method

Also Published As

Publication number Publication date
JP2016172265A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6269543B2 (en) Steel continuous casting method
JP6421900B2 (en) Rolled H-section steel and its manufacturing method
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
JP5604946B2 (en) Steel continuous casting method
JP2008100249A (en) Continuous casting method and continuous casting equipment for steel
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5790470B2 (en) Steel continuous casting method
JP5708340B2 (en) Cooling method for continuous cast slab
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
JP3702807B2 (en) Continuous casting method
JP2018099704A (en) Continuous casting method for steel
JP5999294B2 (en) Steel continuous casting method
JP5896067B1 (en) Method for producing slabs using a continuous casting machine
JP5825087B2 (en) Continuous casting method
JP5402678B2 (en) Steel continuous casting method
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
CN115697587A (en) Continuous casting method
JP6149789B2 (en) Steel continuous casting method
JPH1190598A (en) Method for continuously casting stainless steel
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP2022175638A (en) Continuous casting method for slab
JP2004148343A (en) Continuous casting method by vertical bending type continuous casting apparatus and cast slab manufactured thereby
JP5854214B2 (en) Method for continuous casting of Si-containing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250