JP2004148343A - Continuous casting method by vertical bending type continuous casting apparatus and cast slab manufactured thereby - Google Patents

Continuous casting method by vertical bending type continuous casting apparatus and cast slab manufactured thereby Download PDF

Info

Publication number
JP2004148343A
JP2004148343A JP2002315154A JP2002315154A JP2004148343A JP 2004148343 A JP2004148343 A JP 2004148343A JP 2002315154 A JP2002315154 A JP 2002315154A JP 2002315154 A JP2002315154 A JP 2002315154A JP 2004148343 A JP2004148343 A JP 2004148343A
Authority
JP
Japan
Prior art keywords
slab
cooling water
surface side
continuous casting
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002315154A
Other languages
Japanese (ja)
Other versions
JP3994852B2 (en
Inventor
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002315154A priority Critical patent/JP3994852B2/en
Publication of JP2004148343A publication Critical patent/JP2004148343A/en
Application granted granted Critical
Publication of JP3994852B2 publication Critical patent/JP3994852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method capable of executing a stable casting operation by a vertical bending type continuous casting apparatus and a cast slab with high surface quality. <P>SOLUTION: The cast slab is cast so that a cooling water volume Q1(L/min) rate per unit of time in the upper surface side of the cast slab from a vertical section on and after a casting mold exit to a curving complete section by the vertical bending type continuous casting apparatus is more than the cooling water volume Q2(L/min) in the lower surface side of the cast slab or so that a cooling water volume density Qd1(L/m2/min) in the upper surface side of the cast slab is more than the cooling water volume density Qd2(L/m2/min) in the lower surface side of the cast slab. In the continuous casting method, the (2)Qd1, Qd2 and the cooling water volume density Qd3 in the short side surface of the cast slab satisfy 0.8≤ Qd1/Qd2≤2.5, and 0.3≤Qd3/ä(Qd1+ Qd2)/2}≤2.5. Further, the continuous cast slab is set ≤0.2% of an average cast slab width between the cast slab width in the upper surface side and the cast slab width in the lower surface side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造における鋳片の冷却方法、および鋳造された鋳片に関し、詳しくは、垂直曲げ型連続鋳造機を用いた鋳造における鋳片の曲げ変形時の歪みを適正に分散させるための鋳片の冷却方法、およびその方法により鋳造される鋳片に関する。
【0002】
【従来の技術】
連続鋳造において、垂直部または曲げ部での冷却水量を制御することにより品質を改善する方法としては、水量制御により鋳片の脆化温度域を回避して表面品質を改善する方法、および鋳片幅方向での冷却水量を制御することにより品質を改善する方法がある。また、丸ビレットの鋳造方法においては、鋳片の上側半周面よりも下側半周面の冷却水量密度を増加させることにより、水平方向に引き抜いた後の鋳片の曲がりを防止し、鋳片の穿孔圧延後の管内面疵の発生を防止する方法がある。
【0003】
このうち、冷却水量を制御することにより脆化温度域を回避して表面品質を改善する方法としては、例えば、以下の特許文献1〜6に開示された方法がある。
【0004】
特許文献1には、垂直曲げ型連続鋳造装置を使用し、鋳造速度が1.6m/min以上の鋳造速度で鋼のスラブ連鋳を行う場合に、鋳片が最初の曲げ部を通過する際には、その表面温度を当該鋼材の脆化温度域(700〜900℃)を超える温度域に設定し、鋳片が下流側の矯正部を通過する際には、その表面温度を脆化温度未満の温度に設定する方法が開示されている。ここで開示された方法は、鋳造速度が1.6m/min以上の高速鋳造においても鋳片の表面割れを生じることなく連続鋳造を可能とすることを図ったものである。
【0005】
特許文献2には、鋳片短辺の厚み中央部の表面温度が、連続鋳造機の曲げ位置以降で1000℃以下となり、コーナー部の表面温度が、連続鋳造機の曲げ位置および矯正位置で750℃以上となるように冷却する方法が開示されている。また、同文献には、垂直曲げ型連続鋳造機を用いて、鋳片のコーナー割れを防止する例が記載されている。
特許文献3には、厚さに対する幅の比が1.8〜10.5である鋳片を鋳造する場合に、鋳型出口直後から冷却を開始し、鋳造方向に少なくとも1.5mまでの間において、二次冷却の比水量が0.4〜0.75リットル/kg−鋼となる条件で冷却して、鋳片表面温度をA3変態点以下とし、その後復熱させて鋳片表面温度を850℃以上とした状態で曲がりを矯正する方法が開示されている。ここで開示された方法によれば、鋳造速度や鋳片サイズが変化しても、鋳片表面の横割れや横ひび割れの発生を防止でき、表面品質の良好な低合金鋼の鋳片が得られるとされている。
また、特許文献4には、垂直曲げ型連続鋳造機を用い、断面形状が長方形で厚さが80〜120mmの鋳片を鋳造するに際して、鋳型出側から鋳造方向の3mまでの間において、鋳片の二次冷却に用いる全水量の50〜60%を用いる条件で鋳片を冷却し、かつ、鋳片の両側の長辺の単位面積当たりの水量密度を300〜500リットル/m分とする条件で冷却する方法が開示されており、鋳造速度が3〜5m/分の高速鋳造の際に、湯面レベル変動および鋳片表面の縦割れの発生を防止できるとされている。
【0006】
特許文献5には、垂直曲げ型連続鋳造機を用いて鋳造する際に、鋳型出側の下方の垂直部の長さをH、垂直部の最終のガイドロールから垂直部の下端までの長さをLとし、L=0.5〜2.0m、L/H=0.5〜0.9とし、かつ、垂直部での鋳片短辺部面の単位面積当たりの二次冷却水量を20リットル/m以下の条件で鋳造する薄鋳片の連続鋳造方法が開示されており、高速鋳造時の縦割れ性ブレークアウトの発生を防止できるとされている。
さらに、特許文献6には、垂直曲げ型または湾曲型連続鋳造機にて、鋳片を製造するに際して、凝固シェル厚さが10〜15mmのところで鋳型による1次冷却を終了して二次冷却を開始し、鋳片全面の表面温度を鋳型を出てから長くとも2分以内に一旦600℃以上Ar3変態点以下の範囲まで低下させ、次いで、曲げ部および矯正部における鋳片表面温度が850℃以下となるように2次冷却を行い、鋳片の表面品質の改善を行う方法が開示されている。
【0007】
前記の文献に開示された方法においては、応力が発生する曲げ部および矯正部での鋳片表面温度を脆化温度域から回避させることにより、表面割れを抑制しようとしている。
【0008】
しかしながら、曲げ部で生じる応力により鋳片が変形することによる表面割れについては考慮されていない。
【特許文献1】
特開平6−246411号公報(特許請求の範囲、図6)
【特許文献2】
特開平10−43850号公報(特許請求の範囲、段落[0012]〜[0015])
【特許文献3】
特開2001−138019号公報(特許請求の範囲、段落[0035]〜[0042])
【特許文献4】
特開2001−191158号公報(特許請求の範囲、段落[0011]および[0044])
【特許文献5】
特開2001−96346号公報(特許請求の範囲、段落[0042])
【特許文献6】
特開平9−225607号公報(特許請求の範囲、段落[0063])
【0009】
【発明が解決しようとする課題】
鋳片は垂直部から曲げ部に進入する時、短辺は上面側に対し下面側が上方にずれる剪断変形を、長辺上面側は幅方向の引っ張り変形を、そして長辺下面側は鋳造長手方向の引っ張り変形を受ける。これらの変形のうちで、短辺の剪断変形は、剪断状縦割れを、長辺上面側の幅方向引っ張り変形は、縦割れによる開口部を発生し、顕著な場合には、凝固シェルが破断するブレークアウトに到る。それらに対し、長辺下面側が受ける鋳造長手方向の引っ張り変形による悪影響は、比較的小さい。
【0010】
ここに、本発明の課題は、鋳片の曲げによる変形を、変形による影響の比較的小さい鋳片の長辺下面側に集中させることにより、曲げ変形にともなう問題を解消し、安定操業を達成できる連続鋳造方法、および前記方法により製造される表面品質の優れた鋳片を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上述の課題を達成するために、前記した従来の問題点について検討を加え、下記の(a)および(b)の知見を得た。
(a)垂直曲げ型連続鋳造機を用いた連続鋳造において、垂直部から曲げ部における鋳片の長辺下面側の冷却を長辺上面側の冷却に比して弱め、長辺下面側の凝固シェルの強度を低下させて、曲げにともなう変形を集中させることにより、曲げ変形に起因する鋳片のブレークアウトや表面品質欠陥が防止され、鋳片の横断面形状も改善される。
(b)垂直部から曲げ部における鋳片上面側の単位面積および単位時間当たりの冷却水量密度と鋳片下面側の単位面積および単位時間当たりの冷却水量密度との平均値に対する、鋳片短辺側の単位面積および単位時間当たりの冷却水量密度の比率を所定の範囲に調整することによっても、曲げ変形に起因する鋳片のブレークアウトや表面品質欠陥が防止され、鋳片の断面形状が改善される。
【0012】
本発明は、上記の知見に基づき完成させたものであり、その要旨は、下記の(1)および(2)に示す連続鋳造方法ならびに(3)に示す連続鋳造鋳片にある。
【0013】
(1)垂直部および湾曲部を有する垂直曲げ型連続鋳造機の、鋳型出口以降の2次冷却帯において、垂直部から曲げ完了部までの、鋳片上面側の単位時間当たりの冷却水量Q1(リットル/min)が鋳片下面側の単位時間当たりの冷却水量Q2(リットル/min)よりも多いか、または、鋳片上面側の単位面積および単位時間当たりの冷却水量密度Qd1(リットル/m/min)が、鋳片下面側の単位面積および単位時間当たりの冷却水量密度Qd2(リットル/m/min)よりも多い連続鋳造方法(以下の説明においては、「第1発明」という)。
【0014】
(2)垂直部および湾曲部を有する垂直曲げ型連続鋳造機の、鋳型出口以降の2次冷却帯において、垂直部から曲げ完了部までの、鋳片上面側の単位面積および単位時間当たりの冷却水量密度Qd1(リットル/m/min)、鋳片下面側の単位面積および単位時間当たりの冷却水量密度Qd2(リットル/m/min)および鋳片短辺片側の単位面積および単位時間当たりの冷却水量密度Qd3(リットル/m/min)が、下記の(1)式および(2)式により表される関係を満足する連続鋳造方法(以下、「第2発明」という)。
【0015】
0.8≦Qd1/Qd2≦2.5 ・・・・・・・・・・(1)
0.3≦Qd3/{(Qd1+Qd2)/2}≦2.5 ・・・(2)
(3)鋳片上面側の鋳片幅W1および鋳片下面側の鋳片幅W2が下記の(3)式により表される関係を満足する、垂直曲げ型連続鋳造機により鋳造された鋳片(以下、「第3発明」という)。
(W1−W2)/{(W1+W2)/2}≦0.002 ・・・(3)
本発明において「2次冷却帯」とは、鋳型内における1次冷却の後、鋳片が切断されるまでの間におけるスプレーによる鋳片の水冷帯をいう。
【0016】
「垂直部から曲げ完了部までの冷却水量」とは、鋳型出口以降の垂直部から曲げ完了部までの全区間にわたって冷却水が供給される場合、および鋳型出口以降の垂直部から曲げ完了部までの区間の一部の区間において冷却水が供給される場合の双方を含む。
「垂直部から曲げ完了部までの冷却水量密度」とは、上記の冷却水量を、実際に冷却水を供給している区間の鋳片面の表面積で除した値をいう。
【0017】
【発明の実施の形態】
(A)本発明の作用および効果
本発明は、前記したとおり、垂直部から曲げ部における鋳片の長辺下面側の冷却を相対的に弱めることにより、長辺下面側の凝固シェルの強度を低下させて、曲げにともなう変形を鋳片下面側に負担させることにより、曲げ変形に起因する鋳片のブレークアウトや表面品質欠陥の発生といった問題を回避するものである。
【0018】
上記の作用および効果は、前記第1発明に規定されるように、垂直部から曲げ完了部に到る2次冷却帯の冷却水量または冷却水量密度を、鋳片下面側よりも鋳片上面側で増加させることにより、達成される。
【0019】
また、これらの作用および効果は、第2発明に規定されるように、垂直部から曲げ完了部までの間の2次冷却帯の鋳片上面側の冷却水量密度Qd1と鋳片下面側の冷却水量密度Qd2との比、および、鋳片上面側の冷却水量密度Qd1と鋳片下面側の冷却水量密度Qd2の平均値に対する鋳片短辺側の冷却水量密度Qd3の比率が、それぞれ、前記(1)式および(2)式で表される関係を満足するように、冷却水量密度を制御することによっても達成される。
【0020】
第1発明の方法は、垂直部から曲げ完了部までの2次冷却帯において、鋳片の曲げ後に鋳片の上面側になる面と、曲げ後に鋳片の下面側になる面とにおける平均の冷却水量(リットル/min)の比、または平均の冷却水量密度(リットル/m/min)の比を制御する最も簡便な方法である。
【0021】
第1発明の方法においては、垂直部から曲げ完了部までの区間において、鋳片の上面側の方が鋳片の下面側よりも、平均の冷却水量または平均の冷却水量密度が多ければ良く、前記の区間において、局部的に鋳片下面側の冷却水量または冷却水量密度が上面側よりも多いか、または鋳片下面側と上面側とで冷却水量または冷却水量密度が同じであっても構わない。
【0022】
第2発明の方法は、鋳片長辺の上面および下面の平均の冷却水量密度に加えて、鋳片短辺側の平均の冷却水量密度を併せて制御し、相対的に長辺下面側の凝固シェルの強度を低下させ、鋳片の変形による歪みを長辺下面側に負担させる方法である。
【0023】
本発明者は、第1発明または第2発明の方法を実施することにより、鋳片上面側の鋳片幅W1と鋳片下面側の鋳片幅W2との差(W1−W2)が小さくなる改善効果を見出した。
【0024】
垂直曲げ型連続鋳造機による鋳造においては、垂直部下部での曲げ変形に際し、鋳片横断面が、鋳片上面側の鋳片幅W1が鋳片下面側の鋳片幅W2よりも大きい「逆台形」に変形し、矯正後の成品鋳片においてもその形状が保持される。
【0025】
この逆台形への変形は、鋳片製造時の目標規定幅への的中精度を低下させるばかりでなく、鋭角となる鋳片上面側コーナー部が圧延後にスジ模様となって残留するなど、品質上の問題となっていた。第1発明または第2発明の方法は、この逆台形への変形を抑制する効果を有する。
【0026】
第3発明は、第1発明または第2発明を実施することにより得られる、逆台形への変形が抑えられた鋳片、すなわち、「鋳片上面側の鋳片幅W1と鋳片下面側の鋳片幅W2との差(W1−W2)が、両者の平均値の0.2%以下である、垂直曲げ型連続鋳造機を用いて鋳造された鋳片」である。
(B)本発明における数値限定の理由
第1発明において、鋳片上面側の冷却水量Q1が下面側の冷却水量Q2よりも小さくなるか、または鋳片上面側の冷却水量密度Qd1が下面側の冷却水量密度Qd2よりも小さくなると、鋳片の長辺下面の凝固シェルの強度が長辺上面の凝固シェルの強度よりも高くなり、発明の目的が達成されなくなる。なお、Q1とQ2の比Q1/Q2、またはQd1とQd2の比Qd1/Qd2の値は、1.2〜2.0に調整することが好ましい。
【0027】
第2発明において、Qd1/Qd2の値が0.8未満であると、長辺上面の凝固シェルの強度が長辺下面の凝固シェルの強度に比べて明確に低下するので、鋳片短辺の冷却水量密度Qd3と(Qd1+Qd2)/2の比、Qd3/{(Qd1+Qd2)/2}の値をいかに調整しても、曲げ変形にともなう歪みを長辺下面側に集中させることは難しくなる。
【0028】
一方、Qd1/Qd2の値が2.5を超えて大きくなると、長辺下面側の冷却水量密度が低くなり過ぎて、下面側の凝固シェルの最低限の強度を確保することが難しくなり、しかも、同時に長辺上面側の冷却水量密度が過多となり、過冷却による表面割れの発生など、他の問題が発生する恐れもある。Qd1/Qd2の値の好ましい範囲は、1.0〜2.2であり、さらに好ましい範囲は、1.2〜2.0である。
【0029】
また、第2発明において、Qd3/{(Qd1+Qd2)/2}の値が0.3未満となると、鋳片短辺の凝固シェルの強度が不足し、曲げ変形時に鋳片短辺に剪断歪みが集中し、割れなどの欠陥やブレークアウトを引き起こす危険性が高まる。Qd3/{(Qd1+Qd2)/2}の値が2.5を超えて大きくなる場合には、曲げ変形にともなう歪みが短辺にほとんど分配されなくなるため、本発明の目的を達成するためには、長辺上面側および下面側の冷却水量密度の比Qd1/Qd2の値の制御精度を極めて高くしなければならなくなり、実操業における種々の制約への対応や操業条件のばらつきを吸収することが困難となる。Qd3/{(Qd1+Qd2)/2}の値の好ましい範囲は、0.4〜1.5である。
【0030】
なお、本発明の実施において、鋳片が変形を受ける曲げ部や矯正部における鋳片温度を、鋳造材質固有の脆化温度を避けるよう、2次冷却の強さを調整する必要があることは、言うまでもない。
【0031】
第3発明において、(W1−W2)を、W1とW2の平均値の0.2%以下としたのは、前記のとおり、第1発明または第2発明を実施することにより得られる鋳片の横断面の形状から規定したものである。
【0032】
【実施例】
本発明の連続鋳造方法および鋳造された鋳片の効果を確認するため、各種の試験条件を変更して鋳造試験を行った。
【0033】
図1は、試験に用いた垂直曲げ型連続鋳造機の概略を模式的に示す図である。タンディッシュ1内の溶鋼2は、タンディッシュ底部に取り付けられた浸漬ノズル3を通して鋳型4内に供給される。溶鋼2は鋳型により一次冷却されて凝固シェル10を形成し、凝固シェルはその厚みを次第に増加させながら、鋳型下方に引き抜かれて鋳片11を形成する。鋳片は垂直部5を通過後、曲げ部6にて曲げられ、その後、矯正されて水平部に至る。
【0034】
この時、鋳片は、鋳型内で一次冷却された後、垂直部および曲げ部を含む二次冷却帯7にて、さらに複数の水冷ノズル12により二次冷却される。なお、符号8は、鋳片上面側の冷却帯であり、符号9は、鋳片下面側の冷却帯である。
【0035】
曲げ部では、曲率半径が無限大の区間、すなわち垂直部から複数段に分けて湾曲部を規定の曲率半径に変化させてゆく。図示しないが、鋳片が、無限大の曲率半径から最初の有限の曲率半径の区間に入って曲げられる位置を曲げ開始点といい、曲率半径が規定の曲率半径に達し、曲率半径が変化しなくなる位置を曲げ完了点という。
試験には、垂直部長さ:3m、曲げ半径:60〜11.75mの多点曲げ方式の垂直曲げ型スラブ連続鋳造機を用いた。
【0036】
表1に、試験に用いた鋼番号およびその化学組成を示す。
【0037】
【表1】

Figure 2004148343
【0038】
表2に、試験条件として、鋼種、鋳片サイズ、鋳造速度および二次冷却条件を、また試験結果として、鋳片形状をまとめて示した。なお、表2中の鋳片形状の測定結果は、各試験番号で鋳造された鋳片について、その長手方向の5〜10箇所についての測定結果を平均した値である。
【0039】
【表2】
Figure 2004148343
【0040】
炭素含有量:0.04〜0.60質量%の普通鋼を用い、鋳片厚さ:210〜230mm、鋳片幅:800〜1850mmの鋳片を鋳造速度:0.8〜1.6m/minにて鋳造し、その結果を評価した。
【0041】
試験番号1〜5は、本発明例についての試験であり、試験番号6〜10は、本発明で規定する範囲を外れる比較例の試験である。
【0042】
試験番号1〜5は、少なくとも第1発明で規定する条件を満足する冷却条件下にて鋳造されており、その結果、鋳造された鋳片の横断面形状は、逆台形への変形が抑制されており、第3発明で規定する条件を満足している。
【0043】
特に、第1発明で規定する条件および第2発明で規定する条件の双方を余裕をもって満足する試験番号2および4は、鋳片形状の逆台形への変形が極めて少なく、特に良好な横断面形状を呈した。
【0044】
これに対して、試験番号6〜10は、第1発明で規定する条件および第2発明で規定する条件のいずれをも満足しない冷却条件で鋳造されたものであり、その結果、鋳片の横断面形状は、いずれも逆台形への変形が進行しており、第3発明で規定する条件を外れている。
【0045】
特に、表2中の*B式で表される値が第2発明の(1)式で規定する範囲を外れ、しかも、*C式の値が(2)式で規定される範囲の上限に位置する試験番号8は、鋳片の横断面形状の逆台形化が極度に進行し、極めて劣った形状となっている。
次に、本発明の連続鋳造方法による鋳片品質の改善効果を確認するため、試験番号4および9に示される条件にて、炭素含有量:0.5質量%の普通鋼を鋳造し、その鋳片から製造した熱延コイルのエッジ近傍におけるスジ模様疵の発生率を調査した。
【0046】
図2は、コイルエッジ近傍のスジ疵発生率におよぼす本発明法実施の効果を示す図である。なお、スジ疵発生率は、鋳造スラブ数に対するスジ疵発生スラブ数の割合を百分率にて表示したものである。
【0047】
本発明法を実施することにより、コイルエッジ近傍のスジ疵の発生率は約半減しており、本発明による鋳片品質改善効果が確認された。
【0048】
【発明の効果】
本発明の方法によれば、鋳片の曲げによる変形を、変形による影響の小さい鋳片の長辺下面側に負担させることにより、曲げ変形にともなう表面品質の悪化やブレークアウトの問題を解消し、安定操業を達成できる。本発明の方法により鋳造された鋳片は、鋳片の横断面形状の逆台形化が抑制され、また、熱延コイルの段階においてもスジ疵を低減できる。
【図面の簡単な説明】
【図1】垂直曲げ型連続鋳造機の概略を模式的に示す図である。
【図2】コイルエッジ近傍のスジ疵発生率におよぼす本発明法の効果を示す図である。
【符号の説明】
1:タンディッシュ、
2:溶鋼、
3:浸漬ノズル、
4:鋳型、
5:垂直部、
6:曲げ部、
7:二次冷却帯、
8:鋳片上面側の冷却帯、
9:鋳片下面側の冷却帯
10:凝固シェル、
11:鋳片[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for cooling a slab in continuous casting, and a cast slab, and in particular, for appropriately dispersing distortion during bending deformation of a slab in casting using a vertical bending type continuous casting machine. The present invention relates to a method for cooling a slab and a slab cast by the method.
[0002]
[Prior art]
In continuous casting, as a method of improving the quality by controlling the amount of cooling water in the vertical portion or the bent portion, a method of improving the surface quality by avoiding the brittle temperature range of the slab by controlling the amount of water, and slab There is a method of improving quality by controlling the amount of cooling water in the width direction. Also, in the method of casting a round billet, by increasing the cooling water flow density of the lower half of the slab than the upper half of the slab, to prevent bending of the slab after drawing in the horizontal direction, There is a method for preventing the occurrence of flaws on the inner surface of the pipe after piercing and rolling.
[0003]
Among them, as a method of improving the surface quality by controlling the amount of cooling water to avoid the embrittlement temperature range, for example, there are methods disclosed in Patent Documents 1 to 6 below.
[0004]
Patent Literature 1 discloses that when a slab passes through an initial bending portion when a slab is continuously cast at a casting speed of 1.6 m / min or more using a vertical bending type continuous casting apparatus. , The surface temperature is set to a temperature range exceeding the brittle temperature range (700 to 900 ° C.) of the steel material, and when the slab passes through the straightening section on the downstream side, the surface temperature is set to the brittle temperature. A method for setting the temperature below is disclosed. The method disclosed herein is intended to enable continuous casting without causing surface cracks of the slab even at a high casting speed of 1.6 m / min or more.
[0005]
In Patent Document 2, the surface temperature at the center of the thickness of the short side of the slab becomes 1000 ° C. or less after the bending position of the continuous casting machine, and the surface temperature of the corner portion becomes 750 at the bending position and the correcting position of the continuous casting machine. A method of cooling to a temperature of not less than ° C. is disclosed. Further, the document describes an example of preventing a corner crack of a slab by using a vertical bending type continuous casting machine.
Patent Document 3 discloses that when casting a slab having a width to thickness ratio of 1.8 to 10.5, cooling is started immediately after the mold exit, and the casting direction is reduced to at least 1.5 m in the casting direction. Then, cooling is performed under the condition that the specific water volume of the secondary cooling is 0.4 to 0.75 liter / kg-steel, the slab surface temperature is set to the A3 transformation point or lower, and then the slab is reheated to reduce the slab surface temperature to 850. There is disclosed a method of correcting a bend at a temperature of not less than ° C. According to the method disclosed herein, even if the casting speed or the slab size changes, the occurrence of lateral cracks and lateral cracks on the slab surface can be prevented, and a low-alloy steel slab with good surface quality can be obtained. It is supposed to be.
Also, in Patent Document 4, when casting a slab having a rectangular cross section and a thickness of 80 to 120 mm using a vertical bending type continuous casting machine, the casting is performed from the mold exit side to 3 m in the casting direction. The slab is cooled under the condition of using 50 to 60% of the total water amount used for the secondary cooling of the slab, and the water density per unit area of the long side on both sides of the slab is 300 to 500 liter / m 2 min. A method of cooling under the following conditions is disclosed, and it is described that during high-speed casting at a casting speed of 3 to 5 m / min, fluctuations in the molten metal level and the occurrence of vertical cracks on the surface of the slab can be prevented.
[0006]
Patent Document 5 discloses that when casting using a vertical bending type continuous casting machine, the length of the vertical portion below the mold exit side is H, the length from the last guide roll of the vertical portion to the lower end of the vertical portion. Is L, L = 0.5 to 2.0 m, L / H = 0.5 to 0.9, and the amount of secondary cooling water per unit area of the short side surface of the slab at the vertical portion is 20. A continuous casting method of a thin slab cast under a condition of 1 liter / m 2 or less is disclosed, and it is described that occurrence of vertical crack breakout at the time of high speed casting can be prevented.
Further, in Patent Document 6, when a slab is manufactured by a vertical bending type or curved type continuous casting machine, primary cooling by a mold is finished at a solidified shell thickness of 10 to 15 mm to perform secondary cooling. Starting, the surface temperature of the entire slab is once reduced to a range of 600 ° C. or more and the Ar3 transformation point or less within 2 minutes at most after leaving the mold, and then the slab surface temperature in the bent portion and the straightening portion is reduced to 850 ° C. A method of performing secondary cooling to improve the surface quality of a slab as described below is disclosed.
[0007]
In the method disclosed in the above-mentioned document, the surface cracks at the bending portion and the straightening portion where the stress is generated are avoided from the embrittlement temperature range so as to suppress the surface crack.
[0008]
However, no consideration is given to surface cracks caused by deformation of the slab due to the stress generated at the bent portion.
[Patent Document 1]
JP-A-6-246411 (Claims, FIG. 6)
[Patent Document 2]
JP-A-10-43850 (Claims, paragraphs [0012] to [0015])
[Patent Document 3]
JP 2001-138019 A (Claims, paragraphs [0035] to [0042])
[Patent Document 4]
JP 2001-191158 A (claims, paragraphs [0011] and [0044])
[Patent Document 5]
JP 2001-96346 A (claims, paragraph [0042])
[Patent Document 6]
JP-A-9-225607 (Claims, paragraph [0063])
[0009]
[Problems to be solved by the invention]
When the slab enters the bent part from the vertical part, the short side undergoes shear deformation in which the lower side is shifted upward with respect to the upper side, the upper side of the long side undergoes tensile deformation in the width direction, and the lower side of the long side is the casting longitudinal direction. Subject to tensile deformation. Among these deformations, the shear deformation on the short side generates a shear-like vertical crack, and the tensile deformation on the long side in the width direction generates an opening due to a vertical crack. To reach a breakout. On the other hand, adverse effects due to tensile deformation in the casting longitudinal direction on the lower side of the long side are relatively small.
[0010]
Here, an object of the present invention is to solve the problem associated with bending deformation and achieve stable operation by concentrating the deformation of the slab due to bending on the lower surface side of the long side of the slab that is relatively less affected by the deformation. An object of the present invention is to provide a continuous casting method that can be performed and a slab having excellent surface quality produced by the method.
[0011]
[Means for Solving the Problems]
The present inventor studied the above-mentioned conventional problems in order to achieve the above-mentioned problems, and obtained the following findings (a) and (b).
(A) In continuous casting using a vertical bending type continuous casting machine, the cooling of the lower side of the long side of the slab from the vertical portion to the bent portion is weakened compared to the cooling of the upper side of the long side, and the lower side of the long side solidifies. By reducing the strength of the shell and concentrating the deformation due to bending, breakout and surface quality defects of the slab due to bending deformation are prevented, and the cross-sectional shape of the slab is also improved.
(B) The short side of the slab with respect to the average value of the cooling water amount density per unit area and unit time on the slab upper surface side and the unit area and cooling water amount density per unit time on the slab lower surface side from the vertical part to the bent part. By adjusting the ratio of the cooling water amount density per unit area and unit time to the predetermined range, breakout and surface quality defects due to bending deformation are prevented, and the cross-sectional shape of the slab is improved. Is done.
[0012]
The present invention has been completed based on the above findings, and the gist of the present invention resides in a continuous casting method shown in the following (1) and (2) and a continuous cast slab shown in (3).
[0013]
(1) In a secondary cooling zone after a mold outlet of a vertical bending type continuous casting machine having a vertical portion and a curved portion, a cooling water amount Q1 per unit time on a slab upper surface side from a vertical portion to a completed bending portion ( Liter / min) is larger than the cooling water amount Q2 (liter / min) per unit time on the slab lower surface side, or the cooling water amount density Qd1 (liter / m 2) per unit area and unit time on the slab upper surface side. / Min) is larger than the cooling water volume density Qd2 (liter / m 2 / min) per unit area and unit time on the lower surface side of the slab (hereinafter, referred to as “first invention”).
[0014]
(2) Cooling per unit area and unit time on the upper surface side of the slab from the vertical portion to the completed bending portion in the secondary cooling zone after the exit of the mold in the vertical bending type continuous casting machine having the vertical portion and the curved portion. The water density Qd1 (liter / m 2 / min), the cooling water density Qd2 (liter / m 2 / min) per unit area and unit time on the lower side of the slab and the unit area and unit time per unit time on one side of the short side of the slab A continuous casting method in which the cooling water volume density Qd3 (liter / m 2 / min) satisfies the relationship represented by the following equations (1) and (2) (hereinafter, referred to as “second invention”).
[0015]
0.8 ≦ Qd1 / Qd2 ≦ 2.5 (1)
0.3 ≦ Qd3 / {(Qd1 + Qd2) / 2} ≦ 2.5 (2)
(3) A slab cast by a vertical bending type continuous casting machine in which the slab width W1 on the slab upper surface side and the slab width W2 on the slab lower surface side satisfy the relationship represented by the following expression (3). (Hereinafter, referred to as “third invention”).
(W1−W2) / {(W1 + W2) / 2} ≦ 0.002 (3)
In the present invention, the “secondary cooling zone” refers to a water cooling zone of the slab by spraying after the primary cooling in the mold until the slab is cut.
[0016]
`` The amount of cooling water from the vertical part to the completed bending part '' means when cooling water is supplied over the entire section from the vertical part after the mold outlet to the bending completed part, and from the vertical part after the mold outlet to the bending completed part. And the case where the cooling water is supplied in some sections of the section of the above.
“The cooling water amount density from the vertical portion to the completed bending portion” refers to a value obtained by dividing the above cooling water amount by the surface area of the slab surface in the section where cooling water is actually supplied.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
(A) Functions and Effects of the Present Invention As described above, the present invention reduces the strength of the solidified shell on the long side lower surface side by relatively weakening the cooling on the long side lower surface side from the vertical portion to the bent portion. It is intended to avoid the problems such as breakout of the slab and occurrence of surface quality defects due to the bending deformation by lowering the load and applying the deformation accompanying the bending to the lower side of the slab.
[0018]
As described in the first aspect of the present invention, the above-described operation and effect are as follows: the cooling water amount or the cooling water amount density of the secondary cooling zone from the vertical portion to the completed bending portion is set to the slab upper surface side rather than the slab lower surface side. Is achieved by increasing the
[0019]
Further, as described in the second invention, these actions and effects are as follows: the cooling water flow rate density Qd1 on the slab upper surface side and the cooling on the slab lower surface side of the secondary cooling zone from the vertical portion to the completed bending portion. The ratio of the cooling water amount density Qd2 on the slab short side to the average value of the cooling water amount density Qd1 on the slab upper surface side and the average value of the cooling water amount density Qd2 on the slab lower surface side, respectively, is ( This can also be achieved by controlling the cooling water density so as to satisfy the relationship represented by the expressions (1) and (2).
[0020]
In the secondary cooling zone from the vertical portion to the completed bending portion, the method of the first invention provides an average of a surface on the upper surface side of the slab after bending the slab and a surface on the lower surface side of the slab after bending. This is the simplest method for controlling the ratio of the cooling water amount (liter / min) or the ratio of the average cooling water amount density (liter / m 2 / min).
[0021]
In the method of the first invention, in the section from the vertical portion to the completed bending portion, the upper surface side of the slab is better than the lower surface side of the slab, if the average cooling water amount or the average cooling water amount density is larger, In the section, the cooling water amount or the cooling water density on the slab lower surface side may be locally greater than the upper surface side, or the cooling water amount or the cooling water amount density may be the same on the slab lower surface side and the upper surface side. Absent.
[0022]
In the method of the second invention, the average cooling water density on the short side of the slab is controlled in addition to the average cooling water density on the upper and lower surfaces of the long side of the slab, and the solidification on the lower side of the long side is relatively controlled. This is a method in which the strength of the shell is reduced and strain due to deformation of the cast piece is borne on the lower side of the long side.
[0023]
The inventor reduces the difference (W1-W2) between the slab width W1 on the slab upper surface side and the slab width W2 on the slab lower surface side by implementing the method of the first invention or the second invention. I found an improvement effect.
[0024]
In the casting by the vertical bending type continuous casting machine, the slab width W1 on the slab upper surface side is larger than the slab width W2 on the slab lower surface side in bending deformation at the lower portion of the vertical portion. It is transformed into a “trapezoidal shape”, and its shape is maintained in the corrected cast slab.
[0025]
This inverted trapezoidal deformation not only reduces the accuracy of hitting the target specified width at the time of slab production, but also reduces the quality such as the sharp corner of the slab upper surface corner remaining as a streak pattern after rolling. Was a problem. The method of the first invention or the second invention has an effect of suppressing the deformation into the inverted trapezoid.
[0026]
A third invention is a slab obtained by carrying out the first invention or the second invention, in which the deformation into an inverted trapezoid is suppressed, that is, “the slab width W1 on the slab upper surface side and the slab width on the slab lower surface side. "A slab cast using a vertical bending type continuous casting machine, wherein the difference (W1-W2) from the slab width W2 is 0.2% or less of the average value of the two."
(B) Reasons for numerical limitation in the present invention In the first invention, the cooling water amount Q1 on the slab upper surface side is smaller than the cooling water amount Q2 on the lower surface side or the cooling water amount density Qd1 on the slab upper surface side is lower than the cooling water amount Qd1 on the lower surface side. If the cooling water flow rate density is lower than Qd2, the strength of the solidified shell on the lower side of the long side of the slab becomes higher than the strength of the solidified shell on the upper side of the long side, and the object of the invention cannot be achieved. The value of the ratio Q1 / Q2 of Q1 and Q2 or the ratio Qd1 / Qd2 of Qd1 and Qd2 is preferably adjusted to 1.2 to 2.0.
[0027]
In the second invention, when the value of Qd1 / Qd2 is less than 0.8, the strength of the solidified shell on the upper surface of the long side is clearly reduced as compared with the strength of the solidified shell on the lower surface of the long side. No matter how the ratio of the cooling water density Qd3 to (Qd1 + Qd2) / 2 or the value of Qd3 / {(Qd1 + Qd2) / 2} is adjusted, it becomes difficult to concentrate the strain accompanying the bending deformation on the lower surface of the long side.
[0028]
On the other hand, when the value of Qd1 / Qd2 exceeds 2.5 and becomes large, the cooling water density on the long side lower surface side becomes too low, and it becomes difficult to secure the minimum strength of the solidified shell on the lower surface side, and At the same time, the cooling water volume density on the upper surface side of the long side becomes excessive, and other problems such as occurrence of surface cracks due to overcooling may occur. A preferable range of the value of Qd1 / Qd2 is 1.0 to 2.2, and a more preferable range is 1.2 to 2.0.
[0029]
In the second aspect, when the value of Qd3 / {(Qd1 + Qd2) / 2} is less than 0.3, the strength of the solidified shell on the short side of the slab is insufficient, and the shear strain on the short side of the slab during bending deformation is reduced. Concentration increases the risk of causing defects such as cracks and breakouts. When the value of Qd3 / {(Qd1 + Qd2) / 2} is larger than 2.5, the distortion accompanying the bending deformation is hardly distributed to the short side, and therefore, in order to achieve the object of the present invention, It is necessary to make the control accuracy of the value of the ratio Qd1 / Qd2 of the cooling water density on the upper surface side and the lower surface side of the long side extremely high, and it is difficult to cope with various restrictions in actual operation and absorb variations in operating conditions. It becomes. A preferable range of the value of Qd3 / {(Qd1 + Qd2) / 2} is 0.4 to 1.5.
[0030]
In the practice of the present invention, it is necessary to adjust the strength of the secondary cooling so that the slab temperature in the bent portion or the straightening portion where the slab undergoes deformation is changed so as to avoid the embrittlement temperature inherent to the casting material. Needless to say.
[0031]
In the third invention, (W1−W2) is set to 0.2% or less of the average value of W1 and W2 as described above, because the cast slab obtained by implementing the first invention or the second invention is as described above. It is defined from the shape of the cross section.
[0032]
【Example】
In order to confirm the effects of the continuous casting method and the cast slab of the present invention, casting tests were performed with various test conditions changed.
[0033]
FIG. 1 is a view schematically showing an outline of a vertical bending type continuous casting machine used for the test. The molten steel 2 in the tundish 1 is supplied into a mold 4 through an immersion nozzle 3 attached to the bottom of the tundish. The molten steel 2 is primarily cooled by a mold to form a solidified shell 10, which is drawn down under the mold to form a slab 11 while gradually increasing its thickness. After passing through the vertical portion 5, the slab is bent at the bending portion 6, and then straightened to reach the horizontal portion.
[0034]
At this time, the slab is primarily cooled in the mold, and then secondarily cooled by a plurality of water cooling nozzles 12 in the secondary cooling zone 7 including the vertical portion and the bent portion. Reference numeral 8 denotes a cooling zone on the slab upper surface side, and reference numeral 9 denotes a cooling zone on the slab lower surface side.
[0035]
In the bent portion, the curved portion is divided into a plurality of steps from the section where the radius of curvature is infinite, that is, the vertical portion, and the curved portion is changed to a specified radius of curvature. Although not shown, the position at which the slab is bent into the section of the first finite radius of curvature from the infinite radius of curvature is called a bending start point, the radius of curvature reaches the specified radius of curvature, and the radius of curvature changes. The position where it disappears is called the bending completion point.
For the test, a vertical bending type slab continuous casting machine of a multipoint bending method having a vertical portion length of 3 m and a bending radius of 60 to 11.75 m was used.
[0036]
Table 1 shows the steel numbers used in the tests and their chemical compositions.
[0037]
[Table 1]
Figure 2004148343
[0038]
Table 2 shows steel types, slab sizes, casting speeds and secondary cooling conditions as test conditions, and slab shapes as test results. In addition, the measurement result of the slab shape in Table 2 is a value obtained by averaging the measurement results of 5 to 10 locations in the longitudinal direction of the slab cast by each test number.
[0039]
[Table 2]
Figure 2004148343
[0040]
Carbon content: 0.04 to 0.60 mass% of ordinary steel, slab thickness: 210 to 230 mm, slab width: 800 to 1850 mm Casting speed: 0.8 to 1.6 m / min and the result was evaluated.
[0041]
Test Nos. 1 to 5 are tests on the examples of the present invention, and Test Nos. 6 to 10 are tests on comparative examples out of the range defined by the present invention.
[0042]
Test Nos. 1 to 5 are cast under cooling conditions that satisfy at least the conditions specified in the first invention, and as a result, the cross-sectional shape of the cast slab is suppressed from being transformed into an inverted trapezoid. And satisfies the condition defined in the third invention.
[0043]
In particular, in Test Nos. 2 and 4, which satisfy both the conditions specified in the first invention and the conditions specified in the second invention with a margin, the deformation of the slab into an inverted trapezoid is extremely small, and a particularly good cross-sectional shape is obtained. Was presented.
[0044]
In contrast, Test Nos. 6 to 10 were cast under cooling conditions that did not satisfy any of the conditions specified in the first invention and the conditions specified in the second invention. In each of the surface shapes, the deformation into an inverted trapezoid has progressed, which is outside the conditions defined in the third invention.
[0045]
In particular, the value represented by the formula * B in Table 2 is out of the range defined by the formula (1) of the second invention, and the value of the formula * C is set to the upper limit of the range defined by the formula (2). In Test No. 8, which is located, the trapezoidal cross-sectional shape of the slab is extremely trapezoidal and extremely inferior.
Next, in order to confirm the effect of improving the slab quality by the continuous casting method of the present invention, ordinary steel having a carbon content of 0.5% by mass was cast under the conditions shown in Test Nos. 4 and 9. The occurrence rate of streak pattern flaws near the edge of the hot rolled coil manufactured from the slab was investigated.
[0046]
FIG. 2 is a diagram showing the effect of the method of the present invention on the rate of occurrence of streak flaws near the coil edge. The streak flaw occurrence rate is a percentage of the number of streak flaw occurrence slabs to the number of cast slabs.
[0047]
By performing the method of the present invention, the occurrence rate of streak flaws in the vicinity of the coil edge was reduced by about half, and the effect of improving the quality of the slab according to the present invention was confirmed.
[0048]
【The invention's effect】
According to the method of the present invention, the deformation of the slab due to bending is borne on the lower side of the long side of the slab which is less affected by the deformation, thereby solving the problem of surface quality deterioration and breakout due to bending deformation. , Can achieve stable operation. In the cast slab cast by the method of the present invention, the trapezoidal cross-sectional shape of the cast slab is suppressed from being inverted and the streak flaws can be reduced even at the stage of the hot-rolled coil.
[Brief description of the drawings]
FIG. 1 is a view schematically showing an outline of a vertical bending type continuous casting machine.
FIG. 2 is a diagram showing the effect of the method of the present invention on the rate of occurrence of streak flaws near the coil edge.
[Explanation of symbols]
1: Tundish,
2: molten steel,
3: immersion nozzle,
4: mold,
5: vertical part,
6: bending part,
7: Secondary cooling zone,
8: Cooling zone on the slab upper surface side
9: Cooling zone on the lower side of the slab 10: Solidified shell
11: Slab

Claims (3)

垂直部および湾曲部を有する垂直曲げ型連続鋳造機の、鋳型出口以降の2次冷却帯において、垂直部から曲げ完了部までの、鋳片上面側の単位時間当たりの冷却水量Q1(リットル/min)が鋳片下面側の単位時間当たりの冷却水量Q2(リットル/min)よりも多いか、または、鋳片上面側の単位面積および単位時間当たりの冷却水量密度Qd1(リットル/m/min)が、鋳片下面側の単位面積および単位時間当たりの冷却水量密度Qd2(リットル/m/min)よりも多いことを特徴とする連続鋳造方法。In a vertical cooling type continuous casting machine having a vertical portion and a curved portion, in a secondary cooling zone after a mold exit, a cooling water amount Q1 (liter / min) per unit time on a slab upper surface side from a vertical portion to a completed bending portion. ) Is larger than the cooling water amount Q2 (liter / min) per unit time on the slab lower surface side, or the cooling water amount density Qd1 (liter / m 2 / min) per unit area and unit time on the slab upper surface side. Is larger than the cooling water amount density Qd2 (liter / m 2 / min) per unit area and unit time on the slab lower surface side. 垂直部および湾曲部を有する垂直曲げ型連続鋳造機の、鋳型出口以降の2次冷却帯において、垂直部から曲げ完了部までの、鋳片上面側の単位面積および単位時間当たりの冷却水量密度Qd1(リットル/m/min)、鋳片下面側の単位面積および単位時間当たりの冷却水量密度Qd2(リットル/m/min)および鋳片短辺片側の単位面積および単位時間当たりの冷却水量密度Qd3(リットル/m/min)が、下記の(1)式および(2)式により表される関係を満足することを特徴とする連続鋳造方法。
0.8≦Qd1/Qd2≦2.5 ・・・・・・・・・・(1)
0.3≦Qd3/{(Qd1+Qd2)/2}≦2.5 ・・・(2)
In a vertical cooling type continuous casting machine having a vertical portion and a curved portion, in a secondary cooling zone after a mold outlet, a cooling water amount density Qd1 per unit area and unit time on a slab upper surface side from a vertical portion to a completed bending portion. (Liter / m 2 / min), density of cooling water per unit area and unit time on the lower surface side of slab Qd2 (liter / m 2 / min) and density of cooling water per unit area and unit time on one side of short side of slab A continuous casting method wherein Qd3 (liter / m 2 / min) satisfies the relationship represented by the following equations (1) and (2).
0.8 ≦ Qd1 / Qd2 ≦ 2.5 (1)
0.3 ≦ Qd3 / {(Qd1 + Qd2) / 2} ≦ 2.5 (2)
鋳片上面側の鋳片幅W1および鋳片下面側の鋳片幅W2が下記の(3)式により表される関係を満足することを特徴とする、垂直曲げ型連続鋳造機により鋳造された鋳片。
(W1−W2)/{(W1+W2)/2}≦0.002 ・・・(3)
The slab width W1 on the slab upper surface side and the slab width W2 on the slab lower surface side satisfy the relationship represented by the following formula (3), and were cast by a vertical bending type continuous casting machine. Slab.
(W1−W2) / {(W1 + W2) / 2} ≦ 0.002 (3)
JP2002315154A 2002-10-30 2002-10-30 Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby Expired - Fee Related JP3994852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315154A JP3994852B2 (en) 2002-10-30 2002-10-30 Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315154A JP3994852B2 (en) 2002-10-30 2002-10-30 Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby

Publications (2)

Publication Number Publication Date
JP2004148343A true JP2004148343A (en) 2004-05-27
JP3994852B2 JP3994852B2 (en) 2007-10-24

Family

ID=32459239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315154A Expired - Fee Related JP3994852B2 (en) 2002-10-30 2002-10-30 Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby

Country Status (1)

Country Link
JP (1) JP3994852B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253481A (en) * 2009-04-21 2010-11-11 Jfe Steel Corp Surface crack preventing method for continuously cast slab
CN106670415A (en) * 2016-12-23 2017-05-17 首钢总公司 High-carbon boron-containing steel slab continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253481A (en) * 2009-04-21 2010-11-11 Jfe Steel Corp Surface crack preventing method for continuously cast slab
CN106670415A (en) * 2016-12-23 2017-05-17 首钢总公司 High-carbon boron-containing steel slab continuous casting method

Also Published As

Publication number Publication date
JP3994852B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
JP4786473B2 (en) Manufacturing method of slabs with excellent surface quality
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP6269543B2 (en) Steel continuous casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP4899629B2 (en) Billet continuous casting method
JP7147477B2 (en) Continuous casting method for billet slab
JPH038864B2 (en)
JP7047495B2 (en) Continuous casting method of slabs
JP2014111268A (en) Method for cooling cast piece in early stage of casting
JP4684204B2 (en) How to end continuous casting
JP5094154B2 (en) Slab cooling method in continuous casting machine
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JP2001062551A (en) Continuous casting method
JP5896067B1 (en) Method for producing slabs using a continuous casting machine
JP4561755B2 (en) Method for continuous casting of steel containing B and N
CN115697587A (en) Continuous casting method
JP2001191158A (en) Continuous casting method of steel
JP4692164B2 (en) Continuous casting method of high carbon steel
JP7355285B1 (en) Continuous steel casting method
JP5195636B2 (en) Manufacturing method of continuous cast slab
TWI784570B (en) continuous casting method
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs
WO2023190018A1 (en) Method for continuous casting of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3994852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees