JPH10109150A - Secondary cooling device for cast slab - Google Patents

Secondary cooling device for cast slab

Info

Publication number
JPH10109150A
JPH10109150A JP26615796A JP26615796A JPH10109150A JP H10109150 A JPH10109150 A JP H10109150A JP 26615796 A JP26615796 A JP 26615796A JP 26615796 A JP26615796 A JP 26615796A JP H10109150 A JPH10109150 A JP H10109150A
Authority
JP
Japan
Prior art keywords
cooling
slab
steel
temperature
control range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26615796A
Other languages
Japanese (ja)
Other versions
JP3412418B2 (en
Inventor
Kozo Ota
晃三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26615796A priority Critical patent/JP3412418B2/en
Publication of JPH10109150A publication Critical patent/JPH10109150A/en
Application granted granted Critical
Publication of JP3412418B2 publication Critical patent/JP3412418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the surface crack on a continuously cast slab of low alloy steel or 9% Ni steel by using a secondary cooling device in a top zone just below a mold with a mist cooling to both of the upper and the lower surfaces and making a cooling water quantity optimum control range and an air quantity optimum control range into the prescribed ranges. SOLUTION: In the cast slab secondary cooling device arranged in the top zone of an apparatus for producing the continuously cast slab of a steel, the cast slab 10 drawn out from the mold is forcedly cooled with each of spray nozzles 16, 18 to the upper and the lower parts of the top zone 14 during guiding through the guide constituted with rolls 12. In such a case, the mist spray devices to both of the upper and the lower surfaces having 300-600l/min/m<2> cooling water quantity optimun control range to the one side surface and 3-18 Nm<3> /min/m<2> air quantity optimum control range to the one side surface, is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造に際
して用いる鋳片2次冷却装置、特に、鋳片の横割れ、横
ヒビ割れに代表される表面割れを防止するための鋳片2
次冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab secondary cooling device used for continuous casting of steel, and more particularly to a slab 2 for preventing surface cracks such as lateral cracks and lateral cracks in a slab.
The following relates to a cooling device.

【0002】[0002]

【従来の技術】近年、鉄鋼製品の製造コスト削減の観点
より連続鋳造鋳片の直行率向上の必要性が高まっている
が、この直行率向上に対する阻害要因の一つに連続鋳造
鋳片表面に発生する横ひび割れあるいは横割れと呼ばれ
る表面割れの問題がある。以下、単に表面割れという。
2. Description of the Related Art In recent years, the necessity of improving the orthogonality of continuous cast slabs has been increasing from the viewpoint of reducing the production cost of steel products. There is a problem of surface cracks called lateral cracks or lateral cracks. Hereinafter, it is simply called a surface crack.

【0003】特に、最近では、材料特性上の要求からN
b、V、Ni、Cuなど種々の合金元素を少量 (〜1.0 %)
含有した低合金鋼の生産量が増加しているが、これらの
合金元素の添加に伴い、連続鋳造鋳片の表面割れの発生
頻度は高くなり、そのため製造コストの削減要求に対し
て、その達成率は足踏み状態が続いている。
[0003] In particular, recently, N
Small amount of various alloying elements such as b, V, Ni, Cu (~ 1.0%)
Although the production of low-alloy steel containing steel has been increasing, the frequency of surface cracks in continuous cast slabs has increased with the addition of these alloying elements. The rate remains at a standstill.

【0004】一方で、9%Ni鋼を代表とした低温用鋼
(天然液化ガスタンク用等)は、製造コストの低い、連
続鋳造法による製造が望まれているが、非常に重度の表
面割れが発生するため、鋼塊( インゴット) 法による製
造に頼らねばならない状況にある。
On the other hand, low-temperature steels represented by 9% Ni steel
(Natural liquefied gas tanks, etc.) are required to be manufactured by the continuous casting method, which has a low manufacturing cost. However, since severe surface cracking occurs, it is necessary to rely on the steel ingot (ingot) method for manufacturing. It is in.

【0005】これらの表面割れの発生原因は、連続鋳造
の2次冷却時に鋳片表面温度が熱間延性の低下するγ→
α変態温度近傍 (約750 〜850 ℃) になり、この時、鋳
片曲げや鋳片矯正といった機械的な応力を受けるためで
あることが知られている。
[0005] The cause of the occurrence of these surface cracks is that the surface temperature of the slab decreases during the secondary cooling in continuous casting, and γ →
It is known that the temperature is close to the α transformation temperature (approximately 750 to 850 ° C.), at which time mechanical stress such as slab bending and slab correction is applied.

【0006】従って、鋳片曲げ部や鋳片矯正部における
鋳片表面温度を、前述の熱間延性の低下する領域 (以下
脆化温度域) よりも低温側もしくは高温側に回避する方
法が通常採用されている。しかしながら、鋳片温度の脆
化温度域回避のみでは表面割れを皆無にすることは困難
であり、そのため鋳片表層組織に着目して表面割れを回
避すべく熱履歴を選定する技術がこれまでにいくつか開
示されている。
Therefore, a method of avoiding the slab surface temperature in the slab bending portion or the slab correction portion on the lower or higher temperature side than the above-described region where the hot ductility is reduced (hereinafter referred to as the embrittlement temperature region) is usually employed. Has been adopted. However, it is difficult to eliminate surface cracks only by avoiding the brittle temperature range of the slab temperature.Therefore, there has been a technology that focuses on the slab surface layer structure and selects the heat history to avoid surface cracks. Some are disclosed.

【0007】例えば、特公昭58−3790号公報には、2次
冷却帯の上部を強制冷却して鋳片表面温度を一旦650 〜
750 ℃に冷却することによりγ→α変態させた後に、ゆ
るやかに復熱させ、鋳片矯正部における鋳片表面温度を
脆化温度域より低温側に回避する方法が開示されてい
る。
For example, Japanese Patent Publication No. 58-3790 discloses that the upper surface of the secondary cooling zone is forcibly cooled to reduce the surface temperature of the slab once to 650-700.
A method is disclosed in which a γ → α transformation is carried out by cooling to 750 ° C., followed by a gradual recuperation to avoid a slab surface temperature in a slab correction section below the brittle temperature range.

【0008】また、特開昭63−112058号公報には、2次
冷却帯において、オーステナイトとフェライトの変態を
繰り返すことにより、表層組織を改善することで表面割
れを防止する方法が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 63-112058 discloses a method for preventing surface cracks by improving the surface structure by repeating transformation of austenite and ferrite in a secondary cooling zone. .

【0009】しかしながら、近年増加しつつある低合金
鋼では、脆化温度域が低温側に移行する、合金元素
添加に伴うスケール変化による冷却特性の変化等の理由
から、曲げ部、矯正部における温度を高温側に回避する
必要があるため、低温側回避が前提であるこれらの方法
を低合金鋼に適用すると表面割れの悪化を招く。
However, in low alloy steels, which have been increasing in recent years, the temperature in the bent portion and the straightening portion is low because the brittle temperature range shifts to the low temperature side and the cooling characteristics change due to the scale change accompanying the addition of alloying elements. Therefore, if these methods, which are based on the premise of avoiding the low-temperature side, are applied to low-alloy steel, the surface cracks are worsened.

【0010】さらに、特開昭58−224054号および同58−
224055号公報には、鋳片の両コーナ部に限定しての熱履
歴であるが、鋳型直下において鋳片表面温度を750 〜90
0 ℃まで冷却して表層組織を改善した (γ粒の微細化と
いう記述がある) 後に、鋳片曲げ部、鋳片矯正部におけ
る鋳片表面温度を800 ℃以上となるように冷却する方法
が開示されている。しかしながら、低合金鋼において
は、鋳片コーナのみならず鋳片全幅において鋳片表層組
織を改善する視点が必要である。
Further, Japanese Patent Application Laid-Open Nos.
Japanese Patent No. 224055 discloses a heat history limited to both corners of a slab, but the slab surface temperature is 750 to 90 immediately below the mold.
After cooling to 0 ° C to improve the surface layer structure (there is a description of the refinement of γ grains), a method of cooling the slab surface temperature at the slab bending section and slab correction section to 800 ° C or higher has been proposed. It has been disclosed. However, in the case of low-alloy steel, it is necessary to improve the slab surface structure not only in the slab corner but also in the entire slab width.

【0011】一方、9%Ni鋼を代表とするγ相凝固鋼は
熱応力に対する割れ感受性が厳しいため、表層組織を改
善する方法は適さない。例えば、特公平5−4169号公報
には、Niを5〜10%含有する低温用鋼の2次冷却に際し
て、鋳片表面温度が1150〜950 ℃の領域において、鋳片
表面の冷却速度を20℃/分以下とする方法が開示されて
いる。
On the other hand, a γ-phase solidified steel typified by 9% Ni steel has a severe cracking susceptibility to thermal stress, so that a method of improving the surface layer structure is not suitable. For example, Japanese Patent Publication No. Hei 5-4169 discloses that, during secondary cooling of low-temperature steel containing 5 to 10% of Ni, the cooling rate of the slab surface is set to 20 in the region where the slab surface temperature is 1150 to 950 ° C. A method of lowering the temperature to ° C / min or less is disclosed.

【0012】この方法自体は、γ相凝固鋼 (9%Ni鋼)
を鋳造する上で必要な条件であると推定されるが、冷却
水量を小さくせざるを得ないため、パウダー堆積による
焼き付き、マシンへの熱負荷増大、鋳片内部割れ感受性
増大の問題は免れず、鋳造機会の多い低合金鋼に適用す
るのは得策ではない。
[0012] This method itself is a gamma-phase solidified steel (9% Ni steel).
It is presumed that it is a necessary condition for casting steel, but since the amount of cooling water must be reduced, problems such as seizure due to powder accumulation, increase in heat load on the machine, and increase in susceptibility to internal slab cracks are inevitable. However, it is not advisable to apply it to low alloy steels with many casting opportunities.

【0013】[0013]

【発明が解決しようとする課題】このように、鋳片表面
割れを防止するための2次冷却方式はこれまでにもいく
つか提案されており、合金元素を含有しない普通鋼には
威力を発揮してきたが、Nb、V、Ni、Cu等を含有する低
合金鋼、γ相凝固鋼 (9%Ni鋼) 等の鋳造においては依
然として上述したように欠点を抱えており、鋳片表面割
れの効果的な解決策はまだ見出されていない。
As described above, several secondary cooling systems for preventing the slab surface cracks have been proposed so far, and are effective for ordinary steel containing no alloying element. However, casting of low-alloy steel containing Nb, V, Ni, Cu, etc., γ-phase solidified steel (9% Ni steel), etc. still has the drawbacks as described above, No effective solution has yet been found.

【0014】上述の低合金鋼と9%Ni鋼のようなγ相凝
固鋼では最適な熱履歴は異なり、これらの鋼種を一つの
2次冷却パターンで鋳造するのは困難である。実際、従
来技術にも、鋼種による冷却パターンの使い分けを示唆
するような内容が見受けられる。
The optimum thermal history differs between the low alloy steel and the gamma phase solidified steel such as 9% Ni steel, and it is difficult to cast these steel types in one secondary cooling pattern. In fact, the prior art also shows contents suggesting the proper use of cooling patterns depending on the type of steel.

【0015】一方、鋼種によって鋳片表面割れを防止す
るための2次冷却方法は異なるが設備コスト削減の観点
より、一つの2次冷却装置で異なる2次冷却パターンに
対応すのが望ましい。しかしながら、従来の技術では、
一つの2次冷却装置で各最適パターンに対応するための
対策は完成されていない。
On the other hand, the secondary cooling method for preventing the slab surface cracks differs depending on the type of steel, but it is desirable that one secondary cooling device corresponds to different secondary cooling patterns from the viewpoint of equipment cost reduction. However, in the prior art,
A measure for coping with each optimum pattern with one secondary cooling device has not been completed.

【0016】ここに、本発明の課題は、Nb、V、Ni、Cu
等を含有する低合金鋼、γ相凝固鋼(9%Ni鋼) 等の鋳
造においも共通して採用できる鋳片2次冷却装置を提供
することである。
Here, the object of the present invention is to provide Nb, V, Ni, Cu
It is an object of the present invention to provide a slab secondary cooling device that can be commonly used in casting of low alloy steel containing, etc., γ phase solidified steel (9% Ni steel), and the like.

【0017】より具体的には、本発明の課題は、近年、
増加しつつある表面割れ感受性の高い、Nb、V、Ni、Cu
など種々の合金元素を含有した低合金鋼、およびγ相凝
固鋼(9%Ni鋼) の表面割れを防止するための鋳片2次
冷却装置を提供することである。
More specifically, the object of the present invention is to
Increasing surface crack susceptibility, Nb, V, Ni, Cu
It is an object of the present invention to provide a slab secondary cooling device for preventing surface cracks of low alloy steel containing various alloying elements and gamma phase solidified steel (9% Ni steel).

【0018】さらに本発明の具体的な課題は、低合金鋼
に対しては、鋳片表層組織改善と鋳片高温曲げ、高温矯
正を可能とする熱履歴を実現できるとともに、γ相凝固
鋼 (9%Ni鋼) に対しては、上部緩冷却による熱応力低
減と鋳片高温曲げ、高温矯正を可能とする熱履歴を実現
できる、連続鋳造に用いる鋳片2次冷却装置を提供する
ことにある。
Further, a specific object of the present invention is to provide a low-alloy steel capable of improving the surface structure of a slab and realizing a heat history enabling high-temperature bending and straightening of a slab, and a γ-phase solidified steel ( (9% Ni steel), to provide a secondary cooling device for slabs used in continuous casting, which can reduce the thermal stress by gentle cooling of the upper part and realize the heat history enabling high-temperature bending and straightening of slabs. is there.

【0019】[0019]

【課題を解決するための手段】本発明者らは、低合金鋼
の表面割れ防止を目的として、鋳片表層組織改善と鋳片
高温曲げ、高温矯正を可能とする2次冷却方法に関する
発明を特願平8−36488 号として提案している。
DISCLOSURE OF THE INVENTION The present inventors have developed an invention relating to a secondary cooling method for improving the surface layer structure of a cast slab and enabling high-temperature bending and straightening of a slab for the purpose of preventing surface cracks of low alloy steel. It is proposed as Japanese Patent Application No. 8-36488.

【0020】本発明は、上記先願に開示された発明を改
良、発展させたものでであり、9%Ni鋼のようなγ相凝
固鋼にも対応できるように改良を加えたものである。ま
ず、低合金鋼の表面割れ防止のための2次冷却パターン
の考え方および、γ相凝固鋼 (9%Ni鋼) の2次冷却の
考え方を説明する。
The present invention is an improvement and development of the invention disclosed in the above-mentioned prior application, and is improved so as to be applicable to a γ-phase solidified steel such as 9% Ni steel. . First, the concept of the secondary cooling pattern for preventing surface cracking of low alloy steel and the concept of the secondary cooling of gamma phase solidified steel (9% Ni steel) will be described.

【0021】図1に、低合金鋼およびγ相凝固鋼 (9%
Ni鋼) の表面割れを防止するための冷却履歴を従来法の
冷却履歴と合わせて示す。冷却曲線Aは低合金鋼を対象
とした最適な2次冷却パターンである。この冷却パター
ンの特徴は以下の3点である。
FIG. 1 shows low alloy steel and gamma phase solidified steel (9%
The cooling history for preventing surface cracking of Ni steel) is shown together with the cooling history of the conventional method. Cooling curve A is an optimal secondary cooling pattern for low alloy steel. This cooling pattern has the following three features.

【0022】凝固シェル厚が10mm以上15mm以下のとこ
ろで1次冷却を終了し、2次冷却を開始する。 鋳片全面の表面温度を、鋳型を出てから多くとも2分
以内の間に、一旦、600℃以上Ar3 点以下の範囲 (鋳型
直下のミニマム温度 Tm)まで低下させる。 曲げ部における鋳片の表面温度、矯正部における鋳片
の表面温度 (それぞれTb、Tuと表示) の両者が850 ℃以
上となるように2次冷却を行う。
When the thickness of the solidified shell is 10 mm or more and 15 mm or less, the primary cooling is completed, and the secondary cooling is started. The surface temperature of the entire slab is once reduced to a range of 600 ° C. or more and 3 points or less of Ar (minimum temperature Tm immediately below the mold) within at most 2 minutes after leaving the mold. Secondary cooling is performed so that both the surface temperature of the slab in the bent portion and the surface temperature of the slab in the straightening portion (indicated as Tb and Tu, respectively) are 850 ° C. or more.

【0023】の効果により、鋳片表層部は図2(b) に
示すようなγ粒界の不明瞭な組織が生成する。これは、
一旦Ar3 点以下の温度とすることで粒界部分に母相結晶
方位と無関係に粒界フェライトが析出するために、等方
成長し、粒状の形態となるためである。実際の鋳造装置
において表面割れが発生した鋳片の表層組織は必ずとい
っていい程、図2(a) に示すようなγ粒界が鮮明な割れ
感受性の高い組織であり、割れはγ粒界に沿って発生し
ていることが多い。このγ粒界を不明瞭にすることで、
割れ感受性は著しく低減される。
By the effect of the above, an unclear structure of γ grain boundaries is generated in the surface layer of the slab as shown in FIG. 2 (b). this is,
This is because, once the temperature is lower than the Ar 3 point, the grain boundary ferrite precipitates at the grain boundary portion irrespective of the parent phase crystal orientation, so that it grows isotropically and becomes a granular form. The surface layer structure of a slab having a surface crack in an actual casting apparatus is almost always a structure with a sharp γ grain boundary as shown in FIG. 2 (a) and a high crack susceptibility. Often occurs along. By obscuring this γ grain boundary,
Crack susceptibility is significantly reduced.

【0024】さらに、、の両方の効果により、鋳片
が迅速に復熱し、曲げ部、矯正部における鋳片表面温度
≧850 ℃が容易に得られる。これは、シェル厚10mm以上
15mm以下の早い段階で、2次冷却を開始し、鋳型を出て
から2分以内の早い段階で強冷却を終了することで鋳片
の復熱能が十分に確保されるためである。
Further, due to both effects, the slab quickly recovers heat, and a slab surface temperature of 850 ° C. at the bent portion and the straightening portion can be easily obtained. This is shell thickness 10mm or more
This is because secondary cooling is started at an early stage of 15 mm or less, and strong cooling is ended at an early stage within 2 minutes after leaving the mold, so that the recuperation capability of the slab is sufficiently ensured.

【0025】一方、シェル厚10〜15mmが確保されればブ
レークアウト等の操業トラブルは発生しない。曲げ部、
矯正部における鋳片表面温度を高温側に回避する必要が
あるのは次の理由による。
On the other hand, if a shell thickness of 10 to 15 mm is secured, no operating trouble such as breakout occurs. Bending part,
The reason why it is necessary to avoid the slab surface temperature on the high temperature side in the straightening section is as follows.

【0026】図3は、実際の製造ラインにおいて鋳片表
面割れ発生頻度の高い含Ni鋼の高温延性をその鋼組成と
共に示す図である。図中、グラフ上の「%」量はNi含有
量を表す。この例ではNi等の合金を数%含有することに
より、脆化温度域が普通鋼のそれよりも低温側に移動す
る (普通鋼の脆化温度域が750 〜850 ℃であるのに対
し、含Ni鋼のそれは600 〜850 ℃) 。このため、低合金
鋼では脆化域高温側回避が必要である。
FIG. 3 is a diagram showing the high-temperature ductility of Ni-containing steel, which has a high frequency of occurrence of slab surface cracking in an actual production line, together with its steel composition. In the figure, the “%” amount on the graph represents the Ni content. In this example, the embrittlement temperature range moves to a lower temperature side than that of ordinary steel by containing several percent of alloys such as Ni. (The embrittlement temperature range of ordinary steel is 750 to 850 ° C, It is 600-850 ° C for Ni-containing steel). For this reason, it is necessary to avoid the high temperature side of the embrittlement region in low alloy steel.

【0027】さらに、Niを少量含有すると、サブスケー
ルと呼ばれる層が鋳片表面にところどころで固着しやす
くなり、サブスケールのある部分とない部分で冷却の不
均一を生じやすい。曲げ部、矯正部で鋳片表面温度を脆
化温度域より低温側に回避する方法ではこの冷却の不均
一を助長させてしまい、この点からも高温側回避が必要
である。
Further, when a small amount of Ni is contained, a layer called a sub-scale tends to adhere to the surface of the slab in some places, and uneven cooling is likely to occur in a portion with and without a sub-scale. In the method of avoiding the slab surface temperature at a lower temperature than the embrittlement temperature range in the bent portion and the straightening portion, this cooling non-uniformity is promoted. From this point, it is necessary to avoid the high temperature side.

【0028】図1の冷却曲線Fはγ相凝固鋼 (9%Ni
鋼) を対象とした最適な2次冷却パターンである。この
冷却パターンの特徴は鋳型直下より極力、徐々に鋳片表
面温度を低下させて、曲げ部、矯正部の温度を900 ℃以
上にする点である。図4には9%Ni鋼の高温延性を示す
が、850 ℃以下では脆化現象が顕著であり、曲げ部温度
(Tb)、矯正部温度(Tu)はそれぞれ900 ℃以上にする必要
がある。
The cooling curve F in FIG. 1 shows a gamma-phase solidified steel (9% Ni
This is the optimal secondary cooling pattern for steel). The feature of this cooling pattern is that the surface temperature of the slab is gradually lowered as much as possible below the mold, and the temperature of the bent portion and the straightening portion is set to 900 ° C. or more. Figure 4 shows the high-temperature ductility of 9% Ni steel. At 850 ° C or lower, the embrittlement phenomenon is remarkable.
(Tb) and the temperature of the straightening section (Tu) need to be 900 ° C or more.

【0029】図1の冷却曲線Bの場合、鋳型直下より徐
々に、温度を下げていくので、冷却曲線Aよりも、曲げ
部温度、矯正部温度の高温化に対しては有利である。こ
の場合、鋳片表層組織はγ粒界の鮮明な組織になるが、
この鋼種の場合、温度の効果が圧倒的に大きいため、こ
れはやむを得ない。
In the case of the cooling curve B shown in FIG. 1, the temperature is gradually lowered from immediately below the mold, and therefore, the cooling curve A is more advantageous than the cooling curve A for increasing the temperature of the bent portion and the correction portion. In this case, the surface structure of the slab becomes a clear structure of γ grain boundaries,
This is unavoidable for this type of steel because the effect of temperature is overwhelmingly large.

【0030】しかし、冷却曲線Bも、鋳型直下より徐々
に鋳片表面温度を低下させていく2次冷却パターンであ
るが、冷却曲線Fよりも鋳型直下における温度低下が大
きく、その結果、矯正温度が900 ℃未満となってしま
い、γ相凝固鋼 (9%Ni鋼) の場合には脆化温度域を高
温側に回避できない。
However, the cooling curve B is also a secondary cooling pattern in which the surface temperature of the slab is gradually lowered from immediately below the mold. Is less than 900 ° C., and in the case of γ-phase solidified steel (9% Ni steel), the brittle temperature range cannot be avoided on the high temperature side.

【0031】冷却曲線C〜Eは従来法の冷却曲線であ
る。冷却曲線Cは本発明と同様に、鋳型直下で強冷却を
行い、その後復熱させる冷却パターンであるが、2次冷
却がシェル厚15mm以上のところより開始され、鋳片の復
熱能が確保されにくい場合である。冷却曲線Dは鋳型直
下で強冷却を行い、曲げ部、矯正部で鋳片表面温度の低
温側に回避する冷却パターン、冷却曲線Eは同Dよりも
さらに強冷却を行い、表面組織をベイナイト変態させる
冷却パターンであるが、冷却曲線D、Eではともに冷却
不均一が発生しやすく、低合金鋼、9%Ni鋼には不適当
である。
The cooling curves CE are the cooling curves of the conventional method. Cooling curve C is a cooling pattern in which intense cooling is performed immediately below the mold and then reheated, as in the present invention. However, secondary cooling is started when the shell thickness is 15 mm or more, and the recuperation ability of the slab is ensured. This is difficult. Cooling curve D performs strong cooling immediately below the mold, and a cooling pattern that avoids the lower side of the slab surface temperature at the bending portion and straightening portion. Cooling curve E performs stronger cooling than that of D, and transforms the surface structure to bainite transformation. The cooling curves D and E tend to cause uneven cooling, and are not suitable for low alloy steel and 9% Ni steel.

【0032】次に、鋼種により最適な2次冷却パターン
が異なる理由を以下に述べる。図5(a) 〜(c) にそれぞ
れγ粒生成機構を示す状態図と低合金鋼とγ相凝固鋼
(9%Ni鋼) の凝固形態の模式図とを示す。
Next, the reason why the optimum secondary cooling pattern differs depending on the type of steel will be described below. FIGS. 5 (a) to 5 (c) show the phase diagram showing the gamma grain formation mechanism, the low alloy steel and the gamma solidified steel, respectively.
(9% Ni steel) and a schematic view of a solidification form of the same.

【0033】通常の低合金鋼は図5(b) に示すように凝
固形態がδ相凝固であり、図5(a)からも分かるよう
に、δ相で完全凝固後にγ相に変態するためγ粒界と最
終凝固位置が無関係で、γ粒界にはP、S等の不純物が
あまり偏析しない。従って、熱応力に対する割れ感受性
はそれほど高くなく、表層組織を改善するための熱履歴
(鋳型直下で強冷却する) を与える冷却曲線Aが鋳片の
表面割れ感受性を低くするのに最適である。
As shown in FIG. 5 (b), ordinary low-alloy steel has a solidification form of δ phase solidification, and as can be seen from FIG. 5 (a), it is transformed into γ phase after complete solidification in δ phase. The γ grain boundary and the final solidification position are irrelevant, and impurities such as P and S do not segregate much at the γ grain boundary. Therefore, crack susceptibility to thermal stress is not so high, and thermal history to improve surface texture
(Cooling directly below the mold) is most suitable for lowering the susceptibility of the slab to surface cracking.

【0034】一方、γ相凝固鋼 (9%Ni鋼) は、図5
(a) および図5(c) に示すように、γ粒界と最終凝固位
置が一致するためγ粒界にP、S等の不純物の偏析が発
生し、粒界が著しく脆弱であり、熱応力に対する割れ感
受性が非常に高い。従って、この場合は鋳型直下で強冷
却を実施する冷却パターンは不利であり、鋳型直下から
極力緩冷却を指向する冷却曲線Fが最適である。
On the other hand, gamma phase solidified steel (9% Ni steel)
As shown in (a) and FIG. 5 (c), since the final solidification position coincides with the γ grain boundary, segregation of impurities such as P and S occurs at the γ grain boundary, and the grain boundary is extremely fragile. Very high crack sensitivity to stress. Therefore, in this case, a cooling pattern in which strong cooling is performed directly below the mold is disadvantageous, and a cooling curve F that directs cooling as slowly as possible from directly below the mold is optimal.

【0035】本発明者らは上述の鋼種に応じた最適な2
次冷却パターンを得るためには、以下に示すように、鋳
型直下に位置するトップゾーンにおける2次冷却装置の
設備仕様が極めて重要であることを知見した。
The present inventors have determined that the optimum 2 according to the above steel type
In order to obtain the next cooling pattern, it has been found that the equipment specifications of the secondary cooling device in the top zone located immediately below the mold are extremely important, as described below.

【0036】低合金鋼の表面割れ防止に最適な冷却曲線
Aを得るために、鋳型直下のトップゾーンにおける2次
冷却装置の冷却能力として以下の条件を必要とする。 冷却均一性のために天地面ともミスト冷却とする。 冷却水量最適制御範囲を片面300 〜600 L/min/m2とす
る。 エアー量最適制御範囲を片面3〜18 Nm3/min/m2 とす
る。
In order to obtain the optimum cooling curve A for preventing surface cracking of low alloy steel, the following conditions are required as the cooling capacity of the secondary cooling device in the top zone immediately below the mold. Mist cooling is applied to both the top and bottom for uniform cooling. The cooling water optimum control range and one side 300 ~600 L / min / m 2 . The optimum air amount control range is 3 to 18 Nm 3 / min / m 2 on one side.

【0037】図6は鋳型直下の強冷却ゾーン数を種々変
更して、上部強冷却パターンを実施した結果である。こ
こで、1ゾーンとはトップゾーンにおいてのみ強冷却し
た場合、2ゾーンとはトップゾーンとその次のセカンド
ゾーンにおいて強冷却した場合、3ゾーンとは、トップ
ゾーン、セカンドゾーン、サードゾーンにおいて強冷却
した場合である。鋳型直下の強冷却ゾーン数が少なく、
早めに強冷却を終了した方が脆化域の高温側回避がしや
すく、特に鋳型直下のトップゾーンだけに強冷却を限定
すると曲げ部、矯正部において、安定して脆化域を高温
側に回避でき、図1の冷却曲線Aの冷却パターンを実現
することが可能である。一般に、鋳型長は0.7 〜0.9m、
垂直曲げ型連鋳機の垂直部は2.5 〜3.0mであることか
ら、曲げ部で脆化域を高温側に回避するためには強冷却
用トップゾーンの長さは0.8 〜1.0m程度が適当である。
FIG. 6 shows the result of performing the upper strong cooling pattern by variously changing the number of strong cooling zones immediately below the mold. Here, one zone is strongly cooled only in the top zone, two zones are strongly cooled in the top zone and the second zone next thereto, and three zones are strongly cooled in the top zone, the second zone, and the third zone. This is the case. There are few strong cooling zones just below the mold,
It is easier to avoid the high temperature side of the embrittlement zone by ending the strong cooling early.Especially, if the strong cooling is limited only to the top zone immediately below the mold, the embrittlement zone is stably shifted to the high temperature side in the bent part and straightening part. This can be avoided, and the cooling pattern of the cooling curve A in FIG. 1 can be realized. Generally, the mold length is 0.7-0.9m,
Since the vertical part of the vertical bending type continuous casting machine is 2.5 to 3.0 m, the length of the top zone for strong cooling should be about 0.8 to 1.0 m to avoid the embrittlement zone on the high temperature side at the bent part It is.

【0038】なお、湾曲型連鋳機の場合は曲げ部温度は
気にしなくて良いので、トップゾーンの長さは1.0 〜1.
5m程度あってもよい。強冷却ゾーンをトップゾーンに限
定した場合の2次冷却エアー量、水量と鋳片表層組織、
表面割れの関係を図7に示す。冷却水量範囲を片面300
〜600 L/min/m2、エアー量範囲を片面3〜18Nm3/min/m2
とすることでγ粒界が不明瞭な組織を得、かつ、曲げ部
温度、矯正温度を脆化域の高温側に回避することが可能
で、効果的に表面割れを防止することが可能である。
In the case of a curved continuous caster, the length of the top zone is 1.0 to 1.
It may be about 5m. When the strong cooling zone is limited to the top zone, the secondary cooling air amount, water amount and slab surface layer structure,
FIG. 7 shows the relationship between surface cracks. Cooling water range 300 per side
~ 600 L / min / m 2 , air volume range 3 ~ 18Nm 3 / min / m 2 on one side
As a result, it is possible to obtain a structure in which the γ grain boundaries are indistinct, and to avoid the bending portion temperature and the correction temperature on the high temperature side of the embrittlement region, and it is possible to effectively prevent surface cracking. is there.

【0039】冷却水量が当該範囲より小さい場合、所望
とする表層組織は得られず、γ粒界の鮮明な割れ感受性
の高い組織となってしまう。冷却水量が当該範囲より大
きい場合は冷却の不均一が発生し、熱応力による割れが
発生しやすい。
If the cooling water amount is smaller than the above range, a desired surface layer structure cannot be obtained, and the structure of the γ grain boundary becomes clear and highly sensitive to cracking. If the amount of cooling water is larger than the above range, uneven cooling occurs, and cracks due to thermal stress tend to occur.

【0040】エアー量範囲が当該範囲より小さい場合、
冷却の不均一が発生し、熱応力による割れを助長する。
エアー量範囲を当該範囲より大きくすることは、設備技
術的にかなり大がかりなものを必要とし、連続鋳造のト
ップゾーンとしては現実的でない。
When the air amount range is smaller than the range,
Non-uniform cooling occurs and promotes cracking due to thermal stress.
Making the air amount range larger than the range requires a considerably large equipment technology and is not practical as a top zone for continuous casting.

【0041】トップゾーンにおける2次冷却装置の構成
条件として上記3点を具備することにより、表層組織の
改善と曲げ部、矯正部における表面温度高温側回避 (冷
却曲線Aを得ること) が可能であり、低合金鋼の表面割
れを解消することができる。
By providing the above three points as the constituent conditions of the secondary cooling device in the top zone, it is possible to improve the surface structure and avoid the surface temperature on the high temperature side (obtain the cooling curve A) in the bent portion and the straightened portion. Yes, surface cracks of low alloy steel can be eliminated.

【0042】一方、γ相凝固鋼 (9%Ni鋼) の表面割れ
防止に最適な冷却曲線Fを得るために、鋳型直下のトッ
プゾーンにおける2次冷却装置の設備仕様として以下の
条件が必要である。冷却水量最適制御範囲を片側20〜10
0 L/min/m2とする。
On the other hand, in order to obtain the optimum cooling curve F for preventing surface cracking of γ-phase solidified steel (9% Ni steel), the following conditions are required as equipment specifications of the secondary cooling device in the top zone immediately below the mold. is there. The optimum control range of the cooling water amount is 20 to 10 on one side.
And 0 L / min / m 2.

【0043】図8はトップゾーンの冷却水量を種々変更
して、鋳片曲げ部温度、矯正温度との関係を示した結果
(トップゾーン以降の冷却パターンは図1の冷却曲線F
の条件が極力得られるように、水量調整した) である
が、冷却水量範囲を20〜100 L/min/m2とすることで、鋳
片曲げ部温度(Tb)は900 ℃を超え、脆化温度域が高温側
に回避することが可能であり、図1の冷却曲線Fの冷却
パターンを実現することが可能であり、その時に横ひび
割れの発生も防止できる。
FIG. 8 shows the relationship between the slab bending portion temperature and the correction temperature by variously changing the amount of cooling water in the top zone.
(Refer to the cooling curve F in Fig. 1 for the cooling pattern after the top zone.
As conditions are as much as possible to obtain, is a the amount of water adjusted), the cooling water amount ranges With 20~100 L / min / m 2, cast pieces bend temperature (Tb) is above 900 ° C., brittle The formation temperature range can be avoided on the high temperature side, and the cooling pattern of the cooling curve F in FIG. 1 can be realized. At that time, the occurrence of lateral cracks can also be prevented.

【0044】冷却水量が当該範囲より小さい場合、割れ
は防止できるが、熱負荷によりロール曲がりが発生し、
冷却水量が当該範囲より大きい場合、鋳片表面に横ひび
割れが発生する。
If the cooling water amount is smaller than the above range, cracking can be prevented, but roll bending occurs due to heat load,
If the cooling water amount is larger than the range, lateral cracks occur on the slab surface.

【0045】また、このような低水量で鋳造する場合、
クーリンググリッド構造のトップゾーンでは、パウダー
が堆積し焼き付きによるブレークアウト等のトラブルを
起こしやすいので、トップゾーンの構造はロール構造に
した方が良い。なお、このような低水量範囲では冷却の
不均一が生じにくいので、ミストスプレーは必ずしも必
要条件ではない。
When casting with such a low water content,
In the top zone of the cooling grid structure, powder is likely to accumulate and cause troubles such as breakout due to burn-in. Therefore, the structure of the top zone should be a roll structure. Note that mist spraying is not always a necessary condition, since cooling is not likely to be uneven in such a low water amount range.

【0046】上述の知見より、図1の冷却曲線A、Fの
2つの冷却パターンを不具合なく得るためにはトップゾ
ーンにおける2次冷却装置の冷却水量制御範囲として20
〜100 L/min/m2、300 〜600 L/min/m2という大きく異な
った範囲を制御しなければならない。しかし、このよう
に異なった制御範囲を一つの冷却水配管系統で行うと、
制御性が悪くなり、冷却水量の変動を引き起こし、スラ
ブ品質に悪影響を及ぼす場合がある。
From the above-mentioned findings, in order to obtain the two cooling patterns of the cooling curves A and F in FIG. 1 without any trouble, the cooling water amount control range of the secondary cooling device in the top zone is set at 20.
~100 L / min / m 2, 300 ~600 L / min / m must be controlled very different range of 2. However, when such different control ranges are performed by one cooling water piping system,
Poor controllability may cause a fluctuation in the amount of cooling water, which may adversely affect slab quality.

【0047】そこで、本発明者らは図9および図10にそ
れぞれ示すようにトップゾーンに大流量冷却水配管系統
の1冷却系統の場合と、大流量の冷却水配管系統と小流
量の冷却水配管系統の2冷却系統の場合について、それ
ぞれの最適な水量制御範囲で鋳造試験を実施した。その
結果、制御性が大幅に向上し、冷却水量の変動は皆無と
なり、低合金鋼、9%Ni鋼の両者で良好な表面品質を得
ることができた。ここに、本発明は、以上のような知見
に基づいて完成されたものであって、次の通りである。
Therefore, the present inventors, as shown in FIG. 9 and FIG. 10, respectively, have one cooling system of a large flow cooling water piping system in the top zone, a large cooling water piping system and a small cooling water piping system. For two cooling systems of the piping system, casting tests were performed in the respective optimal water flow control ranges. As a result, controllability was greatly improved, and there was no fluctuation in the amount of cooling water, and good surface quality could be obtained with both the low alloy steel and the 9% Ni steel. Here, the present invention has been completed based on the above findings, and is as follows.

【0048】(1) 鋼の連続鋳造スラブを製造するための
連続鋳造用トップゾーンにおける鋳片2次冷却装置であ
って、天地両面ミストスプレー装置を具備し、該ミスト
スプレー装置が、片面300 L/min/m2以上600 L/min/m2
下の冷却水量最適制御範囲を持ち、片面3Nm3/min/m2
上18Nm3/min/m2以下のエアー量最適制御範囲を持つこと
を特徴とする鋳片2次冷却装置。
(1) A slab secondary cooling device in a top zone for continuous casting for producing a continuous casting slab of steel, comprising a top and bottom double-sided mist spraying device, wherein the mist spraying device is 300 L on one side. / min / m 2 or more and 600 L / min / m 2 or less for the optimal control range of cooling water, and 3Nm 3 / min / m 2 or more for one side 18 Nm 3 / min / m 2 or less Characteristic slab secondary cooling device.

【0049】(2) 鋼の連続鋳造スラブを製造するための
連続鋳造用トップゾーンにおける鋳片2次冷却装置であ
って、片面300 L/min/m2以上600 L/min/m2以下の冷却水
量最適制御範囲を有する冷却系統と片面20L/min/m2以上
100 L/min/m2以下の冷却水量最適制御範囲を有する冷却
系統の2種類の冷却系統を具備し、大流量冷却系統側は
天地両面ミスト冷却であり、片面3Nm3/min/m2以上18Nm
3/min/m2以下のエアー量最適制御範囲を持つことを特徴
とする鋳片2次冷却装置。
(2) A slab secondary cooling apparatus in a continuous casting top zone for producing a steel continuous casting slab, wherein one side of the slab is 300 L / min / m 2 or more and 600 L / min / m 2 or less. cooling system and one surface 20L / min / m 2 or more with a cooling water optimum control range
Equipped with two types of cooling systems with a cooling water amount optimal control range of 100 L / min / m 2 or less, the large flow cooling system side is top-bottom double-sided mist cooling, and single-sided 3 Nm 3 / min / m 2 or more 18Nm
A slab secondary cooling device characterized by having an air amount optimal control range of 3 / min / m 2 or less.

【0050】[0050]

【発明の実施の形態】以下、本発明の実施例の形態を説
明する。図11(a) 、(b) 、(c) は本発明にかかる鋳片2
次冷却装置をトップゾーンに設ける態様の説明図であ
り、図11(a) はトップゾーンがロール構造の場合を、図
11(b) はクーリンググリッド構造の場合を、そして図11
(c) は大流量冷却系統16、18および小流量冷却系統のス
プレーノズル17、19を備えた場合をそれぞれ示す。
Embodiments of the present invention will be described below. FIGS. 11 (a), (b) and (c) show the slab 2 according to the present invention.
It is an explanatory view of an embodiment in which the next cooling device is provided in the top zone, FIG.
11 (b) shows the case of the cooling grid structure, and FIG.
(c) shows the case where large flow cooling systems 16 and 18 and small flow cooling system spray nozzles 17 and 19 are provided, respectively.

【0051】図11(a) では、鋳型 (図示せず) から引き
出された鋳片10はロール12から構成されるガイドを経て
案内される間にトップゾーン14の天地においてそれぞれ
スプレーノズル16、18によって強冷却される。スプレー
ノズル16、18はそれぞれ図9の天地側に接続されてい
る。
In FIG. 11 (a), a slab 10 drawn from a mold (not shown) is sprayed at the top and bottom of a top zone 14 while being guided through a guide composed of rolls 12, respectively. It is strongly cooled by. The spray nozzles 16 and 18 are respectively connected to the top and bottom sides in FIG.

【0052】トップゾーン14は一般には鋳型直下より2
m前後のローラーエプロンあるいはグリーングリッドの
1セグメント分の領域をいい、特に本発明の場合、曲げ
領域に行くまでに十分な復熱が行われる領域であれば十
分である。天地側の各スプレーノズルの間の距離は一般
には1のガイドロールを挟んだ領域の間であればよい。
図11(b) はガイドロールに代えてクーリンググリッド20
を設けた例を示すもので、その他の構造は図11(a) の場
合に同じである。
In general, the top zone 14 is located two meters below the mold.
m means a region for one segment of a roller apron or a green grid. In particular, in the case of the present invention, a region in which sufficient recuperation is performed before reaching a bending region is sufficient. Generally, the distance between the spray nozzles on the top and bottom sides may be between the regions sandwiching one guide roll.
Fig. 11 (b) shows the cooling grid 20 instead of the guide roll.
This is an example in which the structure is provided, and the other structures are the same as those in the case of FIG. 11 (a).

【0053】ここに、1冷却系統による冷却の場合に
は、図9に示す通りであり、天地いずれも大流量冷却水
系統によるミスト冷却を行う。2冷却系統の場合は図10
に示す通りであり、鋼種に応じて大流量冷却水系統によ
る冷却と小流量冷却水系統による冷却を使い分けるので
ある。
Here, in the case of cooling by one cooling system, as shown in FIG. 9, mist cooling is performed by a large-flow cooling water system in all directions. Fig. 10 for two cooling systems
The cooling by the large flow cooling water system and the cooling by the small flow cooling water system are selectively used depending on the type of steel.

【0054】本発明にかかる連続鋳造用トップゾーンに
おける2次冷却装置は、300 L/min/m2以上600 L/min/m2
以下の冷却水供給能力を有するため、トップゾーンの冷
却のみで鋳片表面温度を600 ℃以上Ar3 点未満まで冷却
することができる。また、3Nm3/min/m2以上18Nm3/min/
m2以下のエアー量供給能力を有するミストスプレー装置
を具備するため、強冷却に伴う冷却の不均一も生じな
い。これにより、鋳片表層部は割れ感受性の低いγ粒界
の不明瞭な組織が幅方向均一に生成する。
The secondary cooling device in the continuous casting top zone according to the present invention is 300 L / min / m 2 or more and 600 L / min / m 2 or more.
Since it has the following cooling water supply capacity, it is possible to cool the slab surface temperature to 600 ° C. or more and less than the Ar 3 points only by cooling the top zone. Further, 3Nm 3 / min / m 2 or more 18 Nm 3 / min /
Since a mist spray device having an air supply capacity of m 2 or less is provided, there is no uneven cooling caused by strong cooling. Thereby, in the surface layer portion of the slab, an unclear structure of the γ grain boundary having low crack susceptibility is uniformly generated in the width direction.

【0055】さらに、トップゾーンのみで表層組織改善
のための強冷却を終了することができるので、これ以降
は鋳片復熱の冷却パターンに移行することができ、曲げ
部、矯正部における鋳片表面温度を脆化域の高温側に回
避することが可能である。
Further, since the strong cooling for improving the surface layer structure can be completed only in the top zone, the cooling pattern of the slab reheating can be shifted to the slab slab in the bent portion and the straightening portion thereafter. It is possible to avoid surface temperatures on the hot side of the embrittlement zone.

【0056】これにより、図1の冷却曲線Aの冷却パタ
ーンが得られ、低合金鋼の鋳片表面割れが解消される。
As a result, the cooling pattern of the cooling curve A in FIG. 1 is obtained, and cracks on the slab surface of the low alloy steel are eliminated.

【0057】さらに、本発明にかかる連続鋳造用トップ
ゾーンにおける2次冷却装置は、300 L/min/m2以上600
L/min/m2以下の冷却水量最適制御範囲を有する冷却系統
と、20L/min/m2以上100 L/min/m2以下の冷却水量最適制
御範囲を有する冷却系統との2種類の冷却系統を具備す
るため、上述のような低合金鋼の鋳片表面割れ防止の効
果はもとより、γ相凝固鋼 (9%Ni鋼) の表面割れを防
止するための冷却パターンを安定して得ることができ
る。
Further, the secondary cooling device in the continuous casting top zone according to the present invention is 300 L / min / m 2 or more and 600 L / min / m 2 or more.
Two cooling of a cooling system having a L / min / m 2 or less cooling water optimum control range, and 20L / min / m 2 or more 100 L / min / m 2 cooling system having the following cooling water optimum control range Because of the system, it is necessary to obtain a stable cooling pattern for preventing surface cracking of γ-phase solidified steel (9% Ni steel), in addition to the effect of preventing the slab surface cracking of low alloy steel as described above. Can be.

【0058】つまり、20L/min/m2以上100 L/min/m2以下
の冷却水最適制御範囲を有するため、図1の冷却曲線F
に示すように、鋳型直下より徐々に鋳片表面温度を低下
させるパターンが可能である。このような冷却効果で曲
げ部、矯正部における鋳片表面温度を900 ℃以上にする
ことができ、γ相凝固鋼 (9%Ni鋼) の鋳片表面割れが
解消される。
That is, since the cooling water has an optimum control range of 20 L / min / m 2 or more and 100 L / min / m 2 or less, the cooling curve F in FIG.
As shown in (1), a pattern in which the surface temperature of the slab is gradually lowered from immediately below the mold is possible. With such a cooling effect, the slab surface temperature in the bent portion and the straightened portion can be made 900 ° C. or higher, and the slab surface crack of γ-phase solidified steel (9% Ni steel) is eliminated.

【0059】また、トップゾーン構造はロール構造とし
た方が、焼き付きによるブレークアウト等のトラブルも
生じない。さらに、本発明にかかる鋳片2次冷却装置
は、合金元素を含有しない普通鋼に対しても適用可能で
あり、鋳片表面割れを解消することができる。
When the top zone structure is a roll structure, troubles such as breakout due to image sticking do not occur. Furthermore, the slab secondary cooling device according to the present invention can be applied to ordinary steel containing no alloying element, and can eliminate slab surface cracks.

【0060】[0060]

【実施例】垂直曲げ型連続鋳造機を使用して、スラブ形
状の鋳片の連続鋳造を行った。表1に連続鋳造機仕様お
よび鋳造条件を、表2に冷却条件をそれぞれ示す。表2
に示すようにトップゾーンにおける2次冷却条件を種々
変更させて温度履歴、表層組織、表面割れとの相関を調
査した。温度履歴は表面割れ発生頻度の高いコーナより
100 mm位置に鋳型直下より噛み込み式熱電対により測定
した。
EXAMPLE A slab-shaped cast piece was continuously cast using a vertical bending type continuous casting machine. Table 1 shows the specifications of the continuous casting machine and the casting conditions, and Table 2 shows the cooling conditions. Table 2
As shown in Fig. 7, the secondary cooling conditions in the top zone were variously changed, and the correlation with the temperature history, the surface structure, and the surface crack was investigated. Temperature history is higher than corners where surface cracks occur frequently
It was measured at a position of 100 mm from below the mold with a bite type thermocouple.

【0061】表3に鋳造鋼種の化学成分を示す。対象鋼
種として低合金鋼の中でも表面割れ感受性の高い含Ni中
N鋼、γ相凝固鋼として9%Ni鋼を選定した。
Table 3 shows the chemical components of the cast steel types. Among the low-alloy steels, N-containing N steel with high surface cracking susceptibility was selected as the target steel type, and 9% Ni steel was selected as the γ-phase solidified steel.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】表4は、本発明実施例の熱履歴、鋳片表層
組織、表面割れ発生状況を、表5は、比較例の熱履歴、
鋳片表層組織、表面割れの発生状況をそれぞれまとめて
示す。
Table 4 shows the thermal history, the surface layer structure of the slab, and the state of occurrence of surface cracks in Examples of the present invention, and Table 5 shows the thermal history,
The slab surface layer structure and the state of occurrence of surface cracks are shown together.

【0066】これらの結果からも分かるように、比較例
1、2は、冷却水量が本発明の範囲内であったものの、
水スプレーを使用した鋼種Aの鋳造例である。この場
合、冷却の不均一が生じ、部分的にしか、目的とする表
層組織が得られず、また、部分的にしか脆化域も高温側
に回避できなかったので、天地両面の鋳片全面に横ひび
割れが発生した。
As can be seen from these results, in Comparative Examples 1 and 2, although the cooling water amount was within the range of the present invention,
It is a casting example of steel type A using water spray. In this case, cooling unevenness occurred, and the intended surface structure was obtained only partially, and the embrittlement area could only be partially avoided on the high-temperature side. Lateral cracks occurred.

【0067】比較例3、4はミストスプレーを使用し、
エアー量も本発明の範囲内であったものの、冷却水量が
本発明の範囲よりも小さかった鋼種Aの鋳造例である。
この場合は、鋳型直下でのミニマム温度Tm がAr3 点以
下まで低下せず、γ粒界の明瞭な感受性の高い表層組織
が生成した。これにより、エッジより80mmの位置に軽微
な横ひび割れが発生した。
In Comparative Examples 3 and 4, mist spray was used.
Although the amount of air was also within the range of the present invention, it is a casting example of steel type A in which the amount of cooling water was smaller than the range of the present invention.
In this case, the minimum temperature Tm immediately below the mold did not drop below the Ar 3 point, and a clear and sensitive surface layer structure of the γ grain boundary was formed. As a result, a slight lateral crack was generated at a position 80 mm from the edge.

【0068】比較例5はミストスプレーを使用し、エア
ー量が本発明の範囲内であったものの、冷却水量が本発
明の範囲よりも大きかった鋼種Aの鋳造例である。この
場合、Tm が600 ℃より冷い温度になったため、表層に
はベイナイト組織が生成し、熱応力起因と考えられる深
さ20mm程度の横ひび割れが天地全面に発生した。
Comparative Example 5 is a casting example of steel type A using mist spray and having an air amount within the range of the present invention but a cooling water amount larger than the range of the present invention. In this case, since Tm became a temperature lower than 600 ° C., a bainite structure was formed in the surface layer, and lateral cracks having a depth of about 20 mm considered to be caused by thermal stress occurred on the entire top and bottom.

【0069】比較例6は冷却水量は本発明の範囲内であ
ったが、エアー量が本発明の範囲より大きかった鋼種A
の鋳造例である。この場合も冷却の不均一が生じ、部分
的にしか、目的とする表層組織が得られず、また、部分
的にしか脆化域も高温側に回避できなかったので、天地
両面の鋳片全面に横ひび割れが発生した。
In Comparative Example 6, although the amount of cooling water was within the range of the present invention, the steel type A in which the amount of air was larger than the range of the present invention was used.
It is an example of casting. In this case, too, cooling was not uniform, and the desired surface layer structure was only partially obtained, and the embrittlement area could only be partially avoided on the high-temperature side. Lateral cracks occurred.

【0070】比較例7は鋼種Bの鋳造において、2冷却
系統の冷却で鋳造したものの、冷却水量が本発明の範囲
より大きかった例である。この場合、天地両面の鋳片全
面に熱応力起因と考えられる横ひび割れが発生した。
Comparative Example 7 is an example in which a steel type B was cast by cooling in a two-cooling system, but the amount of cooling water was larger than the range of the present invention. In this case, lateral cracks occurred on the entire surface of the slab on both the top and bottom, which were considered to be caused by thermal stress.

【0071】これに対し、本発明の実施例1〜8では、
鋼種Aに対しては鋳片表層組織の割れ感受性低減と曲げ
部、矯正部における脆化域高温側回避が両立され、鋼種
Bに対しては鋳片上部の熱応力低減と曲げ部、矯正部に
おける脆化域高温側回避に両立され、表面割れのない良
好な品質の鋳片を得ることができた。
On the other hand, in Examples 1 to 8 of the present invention,
For steel type A, reduction of crack susceptibility of the slab surface layer structure and avoidance of the high temperature side of the embrittlement zone in the bent portion and straightening portion are both achieved. In this case, it was possible to obtain a slab of good quality free from surface cracks and compatible with avoiding the high temperature side of the embrittlement zone.

【0072】[0072]

【表4】 [Table 4]

【0073】[0073]

【表5】 [Table 5]

【0074】[0074]

【発明の効果】本発明により、低合金鋼、9%Ni鋼の連
続鋳造鋳片の表面割れが解消された。これは、低合金鋼
に対してはスラブ表層組織の割れ感受性低減 (γ粒界の
不明瞭な組織) と曲げ部、矯正部における脆化温度域の
高温側回避の両立が可能となり、9%Ni鋼に対しては連
鋳機上部での熱応力低減と曲げ部、矯正部における脆化
温度域の高温側回避の両立が可能となったために達成さ
れたものである。その結果、鋳片のノースカーフ化、
表面無手入れ化、連鋳鋳片の直行率向上が達成され、
製造コストの削減に大きく寄与することができた。
According to the present invention, the surface cracks of the continuously cast slab of low alloy steel and 9% Ni steel have been eliminated. This means that for low alloy steels, it is possible to reduce both the susceptibility of the slab to cracking in the surface layer structure (structure with unclear γ grain boundaries) and to avoid the high temperature side of the embrittlement temperature range in the bent and straightened parts, and 9% For Ni steel, this was achieved because it was possible to both reduce the thermal stress in the upper part of the continuous casting machine and avoid the high-temperature side of the brittle temperature range in the bending and straightening sections. As a result, the slab is turned into a north calf,
No maintenance on the surface and improvement of the straightness ratio of continuous cast slabs have been achieved.
This has greatly contributed to the reduction of manufacturing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明2次冷却装置で得られる鋳片冷却パター
ンと従来の鋳片冷却パターンの比較図である。
FIG. 1 is a comparison diagram of a slab cooling pattern obtained by a secondary cooling device of the present invention and a conventional slab cooling pattern.

【図2】図2はスラブ表層組織の概念図であり、図2
(a) はγ粒界の明瞭な割れ感受性が高いとされる組織、
図2(b) はγ粒界の不明瞭な割れ感受性が低いとされる
組織を示す。
FIG. 2 is a conceptual diagram of a slab surface structure;
(a) is a structure that is apparently highly sensitive to cracking of the γ grain boundary,
FIG. 2 (b) shows a structure in which the susceptibility of the γ grain boundary to indistinct cracking is low.

【図3】低合金鋼の高温延性を示すグラフである。FIG. 3 is a graph showing the high temperature ductility of a low alloy steel.

【図4】9%Ni鋼の高温延性を示すグラフである。FIG. 4 is a graph showing the hot ductility of 9% Ni steel.

【図5】図5(a) 〜(c) は、それぞれγ粒生成機構の状
態図とδ相凝固鋼とγ相凝固鋼の凝固形態の模式図であ
る。
FIGS. 5 (a) to 5 (c) are a phase diagram of a γ-particle generation mechanism and schematic diagrams of solidification forms of a δ-phase solidified steel and a γ-phase solidified steel, respectively.

【図6】図1−Aのパターンにおいて、冷却ゾーン数と
曲げ部温度、矯正温度の関係を示すグラフである。
FIG. 6 is a graph showing a relationship between the number of cooling zones, a bent portion temperature, and a correction temperature in the pattern of FIG. 1-A.

【図7】低合金鋼の冷却において強冷却ゾーンとトップ
ゾーンに限定した場合の2次冷却エアー量、水量と鋳片
表層組織、表面割れの関係を示す図である。
FIG. 7 is a diagram showing the relationship between the amount of secondary cooling air, the amount of water, the slab surface layer structure, and surface cracks when cooling a low alloy steel to a strong cooling zone and a top zone.

【図8】γ相凝固鋼の冷却において、トップゾーン冷却
水量と鋳片曲げ部温度、矯正温度との関係を示したグラ
フである。
FIG. 8 is a graph showing a relationship between a top zone cooling water amount, a slab bending portion temperature, and a correction temperature in cooling a γ-phase solidified steel.

【図9】トップゾーンに大流量冷却水配管系統の1冷却
系統を具備させた場合の冷却系統概念図である。
FIG. 9 is a conceptual diagram of a cooling system in a case where one cooling system of a large flow cooling water piping system is provided in a top zone.

【図10】トップゾーンに大流量の冷却水配管系統と小
流量の冷却水配管系統の2冷却系統を具備させた場合の
冷却系統概念図である。
FIG. 10 is a conceptual diagram of a cooling system in a case where a cooling water piping system having a large flow rate and a cooling water piping system having a small flow rate are provided in a top zone.

【図11】図11(a) 、(b) 、(c) は、トップゾーンがそ
れぞれロール構造、クーリンググリッド構造の場合のス
プレーノズルの設置態様の説明図であり、図11(c) は冷
却系統が2系統の場合の構造を示す説明図である。
FIGS. 11 (a), (b), and (c) are explanatory views of a spray nozzle installation mode when a top zone has a roll structure and a cooling grid structure, respectively. FIG. It is explanatory drawing which shows the structure at the time of two systems.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造スラブを製造する装置のト
ップゾーンに設ける鋳片2次冷却装置であって、天地両
面ミストスプレー装置を具備し、該ミストスプレー装置
が、片面300 L/min/m2以上600 L/min/m2以下の冷却水量
最適制御範囲を備え、片面3Nm3/min/m2以上18Nm3/min/
m2以下のエアー量最適制御範囲を備えることを特徴とす
る鋳片2次冷却装置。
1. A slab secondary cooling device provided in a top zone of a device for producing a continuously cast slab of steel, comprising a top and bottom double-sided mist spraying device, wherein the mist spraying device is 300 L / min / side on one side. m 2 or more 600 L / min / m 2 with the following amounts of cooling water optimum control range, one side 3 Nm 3 / min / m 2 or more 18 Nm 3 / min /
A slab secondary cooling device comprising an air amount optimal control range of m 2 or less.
【請求項2】 鋼の連続鋳造スラブを製造する装置のト
ップゾーンに設ける鋳片2次冷却装置であって、片面30
0 L/min/m2以上600 L/min/m2以下の冷却水量最適制御範
囲を有する大流量冷却系統と、片面20L/min/m2以上100
L/min/m2以下の冷却水量最適制御範囲を有する冷却系統
の2種類の冷却系統を具備し、前記大流量冷却系統側は
天地両面ミスト冷却であり、片面3Nm3/min/m2以上18Nm
3/min/m2以下のエアー量最適制御範囲を備えることを特
徴とする鋳片2次冷却装置。
2. A slab secondary cooling apparatus provided in a top zone of an apparatus for producing a continuously cast slab of steel, comprising:
0 L / min / m 2 or more and 600 L / min / m 2 or less, a large flow cooling system with an optimal control range, and 20 L / min / m 2 or more on one side 100
Equipped with two types of cooling systems having a cooling water amount optimal control range of L / min / m 2 or less, the large flow cooling system side is top-bottom double-sided mist cooling, and single-sided 3Nm 3 / min / m 2 or more 18Nm
A slab secondary cooling apparatus characterized by having an air amount optimal control range of 3 / min / m 2 or less.
JP26615796A 1996-10-07 1996-10-07 Slab secondary cooling device Expired - Fee Related JP3412418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26615796A JP3412418B2 (en) 1996-10-07 1996-10-07 Slab secondary cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26615796A JP3412418B2 (en) 1996-10-07 1996-10-07 Slab secondary cooling device

Publications (2)

Publication Number Publication Date
JPH10109150A true JPH10109150A (en) 1998-04-28
JP3412418B2 JP3412418B2 (en) 2003-06-03

Family

ID=17427085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26615796A Expired - Fee Related JP3412418B2 (en) 1996-10-07 1996-10-07 Slab secondary cooling device

Country Status (1)

Country Link
JP (1) JP3412418B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002016B2 (en) 2008-03-19 2011-08-23 Nucor Corporation Strip casting apparatus with casting roll positioning
US8631853B2 (en) 2008-03-19 2014-01-21 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel
CN111992686A (en) * 2020-09-03 2020-11-27 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN115090847A (en) * 2022-05-31 2022-09-23 天津钢铁集团有限公司 Spraying cooling control system and control method for corner of plate blank after being discharged from crystallizer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002016B2 (en) 2008-03-19 2011-08-23 Nucor Corporation Strip casting apparatus with casting roll positioning
US8631853B2 (en) 2008-03-19 2014-01-21 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US8875777B2 (en) 2008-03-19 2014-11-04 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US9120147B2 (en) 2008-03-19 2015-09-01 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel
CN111992686A (en) * 2020-09-03 2020-11-27 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN111992686B (en) * 2020-09-03 2021-12-17 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN115090847A (en) * 2022-05-31 2022-09-23 天津钢铁集团有限公司 Spraying cooling control system and control method for corner of plate blank after being discharged from crystallizer
CN115090847B (en) * 2022-05-31 2024-03-08 天津钢铁集团有限公司 Spray cooling control system and control method for corner of slab after exiting crystallizer

Also Published As

Publication number Publication date
JP3412418B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
JP2011047054A (en) Thin strip comprising trip steel
JP3058079B2 (en) Steel continuous casting method
JP2008183608A (en) Continuous casting method of steel
US6896034B2 (en) Method for controlling a continuous strip steel casting process based on customer-specified requirements
JP2003062647A (en) Direct rolling method for continuous cast steel piece
KR100868143B1 (en) Method of providing steel strip to order
JP2010253481A (en) Surface crack preventing method for continuously cast slab
JP5790470B2 (en) Steel continuous casting method
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JPH10109150A (en) Secondary cooling device for cast slab
JP2017131927A (en) Manufacturing method of hot-rolled steel plate
JP2001138019A (en) Continuous casting method
JP3190319B2 (en) Twin roll continuous casting machine
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP2000237858A (en) Continuous casting method
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP3042398B2 (en) How to control slab surface cracks
JP3039369B2 (en) Method for producing Ni-containing steel
JP2910180B2 (en) Direct rolling method of steel
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPH04305338A (en) Method for continuously casting billet for steel sheet
JPH0460741B2 (en)
JP2863013B2 (en) Casting and rolling method for thin slab

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees