JP2863013B2 - Casting and rolling method for thin slab - Google Patents

Casting and rolling method for thin slab

Info

Publication number
JP2863013B2
JP2863013B2 JP2406114A JP40611490A JP2863013B2 JP 2863013 B2 JP2863013 B2 JP 2863013B2 JP 2406114 A JP2406114 A JP 2406114A JP 40611490 A JP40611490 A JP 40611490A JP 2863013 B2 JP2863013 B2 JP 2863013B2
Authority
JP
Japan
Prior art keywords
rolling
slab
casting
coil
thin slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2406114A
Other languages
Japanese (ja)
Other versions
JPH04224003A (en
Inventor
修次 長田
力美 岡田
綴 縫部
一彬 江坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2406114A priority Critical patent/JP2863013B2/en
Publication of JPH04224003A publication Critical patent/JPH04224003A/en
Application granted granted Critical
Publication of JP2863013B2 publication Critical patent/JP2863013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、近年世界的規模で開発
が進められている鉄鋼製造プロセスにおける薄スラブの
鋳造・圧延方法に関するものであり、薄スラブの鋳造
は、連続鋳造機で90〜30mm厚の薄スラブを鋳造
し、該スラブを直接熱間圧延機へ送り込み、ホットコイ
ルを製造するものである。
The present invention relates, are those related to thin slab casting-rolling how of in the steel manufacturing process developed in recent years on a global scale is underway, casting of thin slabs, in a continuous casting machine A thin slab having a thickness of 90 to 30 mm is cast, and the slab is directly sent to a hot rolling mill to produce a hot coil.

【0002】[0002]

【従来の技術】従来の鉄鋼の製造プロセスにおけるスラ
ブ鋳造圧延は、溶鋼を連続鋳造機で200〜300mm
厚の厚いスラブに鋳造し、該スラブを熱間粗圧延機で5
5〜30mmに、そして熱間仕上圧延機で4〜1mm厚
を中心とするホットコイルに圧延するものであった。
2. Description of the Related Art In conventional slab casting and rolling in a steel manufacturing process, molten steel is cast by a continuous casting machine to 200 to 300 mm.
Cast into a thick slab, the slab is 5
It was rolled to a hot coil centered at 4 to 1 mm thick with a hot finishing mill at 5 to 30 mm.

【0003】近年該薄スラブの開発は目下精力的に進め
られている段階であるが、薄スラブプロセスに対して種
々の形態が文献として公開されている。例えば、Han
s−Juergen Ehrenberg etal.
(Metallurgical Plant and
Technology Vol.3(1989)52)
は、マンネスマンにおける薄スラブの鋳造と圧延プロセ
スの開発結果を示し、その結果として実プロセスとして
の適用イメージを示した。また中村雄二郎等(住友重機
械技報Vol.37,No.110(1989)31)
は、広幅薄スラブ連続鋳造設備の開発結果と設備構成を
示している。
[0003] In recent years, the development of the thin slab is currently in a vigorous stage, but various forms of the thin slab process have been published as documents. For example, Han
s-Juergen Ehrenberg et al.
(Metallurgical Plant and
Technology Vol. 3 (1989) 52)
Showed the results of Mannesmann's development of casting and rolling processes for thin slabs, and consequently showed the application image as a real process. Yujiro Nakamura et al. (Sumitomo Heavy Industries Technical Report Vol. 37, No. 110 (1989) 31)
Shows the development results and equipment configuration of the wide and thin slab continuous casting equipment.

【0004】G.Holleis etal.(Ste
el Times November(1989)60
5)はVoest−Alpineの薄スラブ鋳造法を、
また、日刊「鉄鋼新聞」(S63年3月8日号)には、
川崎製鉄・日立製作所で開発された薄スラブ連鋳法が報
道されている。これらの公開文献は枚挙にいとまがない
が、それらを要約すると、薄スラブ鋳造プロセスの連鋳
機および設備構成は図1のようにまとめられる。
[0004] Holleis et al. (Ste
el Times November (1989) 60
5) is a thin slab casting method of Voest-Alpine,
In addition, the daily newspaper “Steel Newspaper” (March 8, 1988)
The thin slab continuous casting method developed at Kawasaki Steel and Hitachi, Ltd. has been reported. Although there are many publications in these publications, in summary, the continuous caster and equipment configuration of the thin slab casting process can be summarized as shown in FIG.

【0005】まず、薄スラブ用連鋳機は、Hans−J
uergen Ehrenbergetal.およびS
MS型等の固定鋳型を用いたもの、ならびに、川崎製鉄
・日立製作所および中村雄二郎等が示しているベルト型
の移動鋳型を用いたものなど、種々の薄スラブ連鋳機が
示されている。そしてその後のプロセスでAルートでは
連鋳機から出て来たスラブは所定の長さに切断された後
そのままバッファー機能を有する保熱炉に装入され、続
いて仕上圧延される。従ってAルートでは、連鋳機の鋳
造タイミングと圧延機での圧延タイミングが直列に連続
することは不可欠であり、これが大きな特徴である。ま
た、連鋳機から出てきた鋳片は、切断される以外は全く
加工(例えば巻取り及び巻戻しによる曲げなど)を受け
ることなく仕上圧延機に送り込まれるのも特徴である。
一方、Bルートは、薄スラブ用連鋳機から出て来た鋳片
は、巻取機でコイルに巻き取られた後、バッファー炉と
しての保熱炉に装入され、圧延機との時間調整を行い、
しかる後、巻戻機に装着され仕上圧延されるプロセスで
ある。従って、Bルートは連鋳機による鋳造タイミング
と圧延機による圧延タイミングの調整が行なえること、
更に薄スラブであるがゆえの表面積が大きく、熱放散が
大である欠点をコイル化することにより回避しようとす
ることに特徴がある。
First, a continuous caster for thin slabs is a Hans-J
uergen Ehrenbergetal. And S
Various thin slab continuous casters are shown, such as those using a fixed mold such as an MS mold, and those using a belt-type moving mold shown by Kawasaki Steel, Hitachi, Ltd., and Yujiro Nakamura. In the subsequent process, in the route A, the slab coming out of the continuous casting machine is cut into a predetermined length, and then directly charged into a heat retaining furnace having a buffer function, followed by finish rolling. Therefore, in the route A, it is indispensable that the casting timing of the continuous casting machine and the rolling timing of the rolling mill are continuous in series, which is a great feature. It is also characterized in that a slab coming out of a continuous casting machine is sent to a finishing mill without any processing (for example, bending by winding and unwinding) except for cutting.
On the other hand, in the route B, the slab coming out of the continuous casting machine for thin slabs is wound into a coil by a winder, and then charged into a heat retaining furnace as a buffer furnace, and the time required for the rolling mill is reduced. Make adjustments,
Thereafter, it is a process of being mounted on a rewinding machine and subjected to finish rolling. Therefore, the route B can adjust the casting timing by the continuous casting machine and the rolling timing by the rolling mill,
Further, it is characterized in that a thin slab having a large surface area and a large heat dissipation is intended to be avoided by coiling.

【0006】[0006]

【発明が解決しようとする課題】このような文献に公開
されている薄スラブプロセスは、ミニミル(年産80〜
160万Ton)を対象として考案され、かつ薄スラブ
を鋳造することにより粗圧延工程を省略し、同時に鋳造
時の顕熱の利用に重点をおいたプロセス構成になってい
る。このため、生産量を増やすために高速化し、成品の
サイズ(特に厚み、幅)を増し、高級鋼も製造可能とな
るように品質(内表面品質、材質特性)の造り込みを行
うための考え方は示されてない。更に、このままのプロ
セス構成で鋼板を鋳造・圧延した場合、生産量に制約が
生じると同時に鋼種並びに成品サイズによって圧延が出
来ない場合が多量に発生することが考えられる。
The thin slab process disclosed in such a document is a mini mill (with an annual production of 80 to 80).
1.6 million Ton), and the rough rolling step is omitted by casting a thin slab, and at the same time, the process configuration is focused on using sensible heat during casting. For this reason, the concept of speeding up to increase production, increasing the size (particularly thickness and width) of products, and building in quality (inner surface quality, material properties) so that high-grade steel can be manufactured Is not shown. Further, when the steel sheet is cast and rolled with the process configuration as it is, it is considered that the production amount is restricted, and at the same time, a large number of cases where the rolling cannot be performed depending on the steel type and the product size occur.

【0007】本発明は、上記公知のコンセプトに更に現
行設備技術レベルを念頭においた成品サイズの造り分け
及び成品品質確保に必要なコンセプトを追加し、より完
全な鋼板の薄スラブプロセスを提供しようとするもので
ある。
The present invention seeks to provide a more complete steel sheet slab process by adding a concept necessary for product size separation and product quality assurance in consideration of the current facility technology level in addition to the above-mentioned known concept. Is what you do.

【0008】[0008]

【課題を解決するための手段】本発明になる薄スラブの
鋳造・圧延方法は、ベルト式薄スラブ連鋳機で鋳造した
薄スラブをインライン圧下設備で圧延した後、コイル巻
取装置で巻取り、この巻取ったコイルをAr3変態点以
上に保定し、この保定したコイルを巻戻して仕上圧延を
行う方法において、前記ベルト式薄スラブ連鋳機で鋳造
した薄スラブの凝固完了部及びその下流側近傍部を圧下
率5〜50%の範囲内で前記インライン圧下設備で漸次
圧延することを特徴とする。
The method of casting and rolling a thin slab according to the present invention comprises rolling a thin slab cast by a belt-type thin slab continuous casting machine in an in-line press-down facility and winding it by a coil winding device. A method in which the wound coil is retained at the Ar3 transformation point or higher, and the retained coil is rewound and finish-rolled, wherein the solidified portion of the thin slab cast by the belt-type thin slab continuous caster and downstream thereof are provided. It characterized the gradual rolling child in the line pressure equipment side vicinity within a reduction ratio of 5-50%.

【0009】また、本発明方法を実施する薄スラブの鋳
造装置は、ベルト式連鋳機、稠密分割ロール装置、多段
式インライン圧下設備、剪断機、コイル巻取機、巻取ら
れたコイルを直ちに搬送し、所定の位置において該鋳片
をArc変態点以上で、かつ品質確保に必要な所定時間
以上の保熱ができるコイル加熱設備を配備し、これに続
いてコイル巻戻し設備を設け、更にクロップシャーデス
ケーリング設備及び必要に応じて設備されたエッジヒー
ターを装備した熱間仕上圧延機を設け、目標とする成品
サイズに熱間仕上圧延を行う装置とすればよい。
Further, casting of a thin slab for carrying out the method of the present invention.
ZoSo location is a belt type continuous caster, dense divided rolls apparatus, multistage inline pressure equipment, shears, coil winder, immediately transports the wound coil, Arc transform the said template piece at a predetermined position Provide coil heating equipment that can maintain heat for more than a predetermined time required for quality assurance, followed by coil rewinding equipment, and furthermore, crop sharpening equipment and edge equipment as necessary. A hot finish rolling mill equipped with a heater may be provided to perform hot finish rolling to a target product size .

【0010】[0010]

【作用】以下に本発明の手段による作用を示す。現行熱
間仕上圧延機の入側バー厚は55〜30mmである。こ
のため、薄スラブ鋳造により熱間粗圧延工程を省略する
ためには、薄スラブ連鋳機で鋳造する鋳造厚は仕上入口
板厚の55〜30mm厚を満たす必要がある。
The operation of the present invention will be described below. The incoming bar thickness of current hot finishing mills is 55 to 30 mm. For this reason, in order to omit the hot rough rolling step by thin slab casting, the casting thickness cast by the thin slab continuous caster needs to satisfy the thickness of 55 to 30 mm of the finish inlet plate thickness.

【0011】しかるに、連鋳機において鋳片を鋳造する
にあたり、介在物対策からイマージョンノズルの浸漬鋳
造は不可欠であるが、このための鋳込可能な最小厚は4
5〜50mmであり、好ましくはこれ以上の鋳込厚を必
要とする。かかる背景において、生産量を拡大し、多サ
イズ製造を可能とするための条件を明示すると以下の様
になる。
However, in casting a slab in a continuous caster, immersion casting of an immersion nozzle is indispensable for measures against inclusions.
5 to 50 mm, and preferably requires a greater casting thickness. Against this background, the conditions for expanding the production volume and enabling multi-size production are as follows.

【0012】(イ)現行熱間仕上圧延機の入側板厚と圧
延製品の関係は表2に実施例として示すように、製品厚
に応じて仕上げ入側板厚を変える必要がある。これは現
行の熱間仕上圧延の生産性及びミル強度・クラウン制御
性から避けられないものであり、少なくともこのような
製品厚に応じた鋳片厚の造り込みが必要である。
(A) As shown in Table 2 as an embodiment, the relationship between the incoming side plate thickness and the rolled product of the current hot finishing mill requires changing the finished incoming side plate thickness in accordance with the product thickness. This is unavoidable due to the current productivity of hot finish rolling and the controllability of mill strength and crown, and it is necessary to produce at least such a slab thickness according to the product thickness.

【0013】(ロ)本発明者等の研究によると、薄スラ
ブで薄鋼板を製造する場合、熱間圧延での圧下率が小さ
いため、熱延板の組成が粗大のままで残り、熱延板の強
度が不足したり延性及び靱性が劣化する。その上、冷延
・焼鈍後も集合組織が不適で、機械的性質も劣化するこ
とが解明された。これを回避するためには、第1に熱間
圧延での圧下率が60%以上必要であることが判明した
が、このためには約20〜1mmまでなる熱延製品厚に
対して、この条件を満たす必要があり、連鋳機からでる
鋳片厚の下限はここに制約が生じる。
(B) According to a study by the present inventors, when a thin steel sheet is manufactured from a thin slab, the reduction ratio in hot rolling is small, so that the composition of the hot rolled sheet remains coarse, and the hot rolled sheet remains. The strength of the plate is insufficient, and the ductility and toughness are deteriorated. In addition, it was revealed that the texture was inappropriate even after cold rolling and annealing, and that the mechanical properties were also deteriorated. In order to avoid this, firstly, it was found that the rolling reduction in hot rolling was required to be 60% or more. However, for this purpose, for a hot-rolled product thickness of about 20 to 1 mm, The condition must be satisfied, and the lower limit of the slab thickness from the continuous caster is restricted here.

【0014】(ハ)薄スラブ化により増大する表面積に
よる熱放散を回避するのに有効なコイル巻取化のために
は、現在の巻取設備能力から厚み80mmが限界であ
る。このためからも連鋳機出口厚は80mm以下である
ことが必要である。
(C) For coil winding effective for avoiding heat dissipation due to the increased surface area due to the thinning of the slab, the thickness of the coil is limited to 80 mm from the current capacity of the winding equipment. For this reason, it is necessary that the outlet thickness of the continuous caster is 80 mm or less.

【0015】これらの条件を満たし、かつ、ベルト式薄
スラブ連鋳機で鋳造を可能とするには、連鋳機内に多段
のインライン圧下設備を必要とする。本発明における多
段インライン圧下は、連鋳機内で鋳片が高温で変形抵抗
が小さい凝固完了部とその前方の部分を圧下する所謂凝
固後圧下法および未凝固圧下法を連続して行うもので、
こられ未凝固圧下法および凝固後圧下法の組合せにより
最大圧下量約40mmを確保できる。このため熱間圧延
成品としての最大厚20mmを成品品質確保(熱間圧延
率60%の確保)に必要な鋳片厚50mmを出せる最大
鋳込厚は90mmである。一方、インライン圧下法で最
も圧下し易い圧下量は15〜20mmであるが、浸漬鋳
造で45〜50mmの最小厚を鋳込んだ後、インライン
圧下すると30mmの鋳片となる。
In order to satisfy these conditions and to enable casting with a belt-type thin slab continuous caster, a multi-stage in-line press-down facility is required in the continuous caster. The multi-stage in-line rolling in the present invention is to continuously perform a so-called post-solidification rolling method and a non-solidifying rolling method in which a slab is heated at a high temperature and deformation resistance is reduced in a continuous casting machine and a portion in front of the solidified completed portion is reduced.
The maximum reduction amount of about 40 mm can be secured by the combination of the uncoagulation reduction method and the post-coagulation reduction method. For this reason, the maximum casting thickness capable of providing a slab thickness of 50 mm necessary for ensuring product quality (securing a hot rolling rate of 60%) with a maximum thickness of 20 mm as a hot-rolled product is 90 mm. On the other hand, the amount of rolling that is most easily reduced by the in-line rolling method is 15 to 20 mm. However, after casting a minimum thickness of 45 to 50 mm by immersion casting, the in-line rolling results in a slab of 30 mm.

【0016】従って、90〜45mm厚で鋳込んだ鋳片
をインライン圧下設備により圧延し、目標とする熱間仕
上圧延厚に応じた鋳片厚にして連鋳機から出すことは不
可能である。そこで本発明における凝固完了部とその前
後域を圧延する多段インライン圧下法の意義を詳述する
と次の通りである。
Therefore, it is impossible to roll a slab cast with a thickness of 90 to 45 mm by an in-line rolling reduction machine to a slab thickness corresponding to a target hot finish rolling thickness and to output the slab from a continuous casting machine. . Therefore, the significance of the multi-stage in-line rolling method for rolling the solidified portion and the region before and after the solidified portion in the present invention is as follows.

【0017】〈凝固後圧下・未凝固圧下のメタラジカル
メリットと、その時の圧下条件〉凝固完了部とその下流
近傍部の圧下作用・効果は、次の様にまとめられる。
<Metaradical merit under post-coagulation reduction / uncoagulation reduction and reduction conditions at that time> The reduction effect and effect of the coagulation completed portion and the downstream vicinity thereof are summarized as follows.

【0018】(1)鋼中に固溶状態で存在する第2元素
がMnS,TiC,AIN等として微細析出するのを、
該圧下により析出を促進させ、次工程の軟質材製造に必
要な圧延前保定時間の短縮を狙うこと。
(1) The fact that the second element present as a solid solution in steel is finely precipitated as MnS, TiC, AIN, etc.
The purpose of this reduction is to promote precipitation and shorten the retention time before rolling required for the production of a soft material in the next step.

【0019】(2)同様に1200℃前後の高温時の圧
延であるのでMnSの析出を大きく促進させて、900
〜1200℃に存在する鋼の第二領域の脆化割れを回避
してコイル巻取時等における脆化割れを防止すること。
(2) Similarly, since the rolling is performed at a high temperature of about 1200 ° C., the precipitation of MnS is greatly promoted, and
Avoiding embrittlement cracking in the second region of steel existing at ~ 1200 ° C to prevent embrittlement cracking during coil winding and the like.

【0020】(3)パイプ材等の製品厚が厚いものに対
して、1200℃付近で約30%の該圧下を加えること
により、数mmの粗大γの再結晶を起こさせて数百μに
し、靱性を向上させるものである。
(3) By applying a pressure of about 30% at about 1200 ° C. to a thick product such as a pipe material, recrystallization of a coarse γ of several mm occurs to several hundred μ. , To improve toughness.

【0021】具体的な条件としては、以下のように例示
される。(1)連続焼鈍用AI−K鋼・・・上記(1)
目的 断面平均温度が1200℃以下の温度域で、圧下率5〜
50%の圧延。 (2)上記以外の加工用冷延鋼板・・・上記(1)目的 断面平均温度が1300〜1000℃の温度域で、圧下
率5%以上の凝固後圧下。 (3)Mn/S<20の材料・・・上記(2)の効果目
的 表面温度が1200℃以上の条件で、圧下率5%以上の
圧延。
Specific conditions are exemplified as follows. (1) AI-K steel for continuous annealing: The above (1)
Purpose In the temperature range where the cross-sectional average temperature is 1200 ° C or less,
50% rolling. (2) Cold-rolled steel sheet for processing other than the above-mentioned ... (1) Purpose Rolling after solidification with a rolling reduction of 5% or more in a temperature range where the average cross-sectional temperature is 1300 to 1000 ° C. (3) Material of Mn / S <20: Effect of the above (2) Rolling with a rolling reduction of 5% or more under the condition that the surface temperature is 1200 ° C or more.

【0022】この効果として例えば、実施例の加工用A
I−K鋼において、断面平均温度が1250℃で圧下率
10%の凝固後圧下を行うことにより、次の効果が得ら
れる。ランクフォード値(平均値):約0.1〜0.2
の向上 伸び:約1〜2%の向上 降伏応力:約1〜2kg/mm2 の低下 次に凝固完了部近傍の未凝固部圧下の作用効果は次の様
にまとめられる。凝固完了直前部は半凝固状態であるの
で、 (1)低荷重で圧延でき、且つ、 (2)各圧下ロール間鋳片にテンションを付与しながら
圧延すれば半凝固部の流動を抑制して成分偏析を防止
し、更に、 (3)センターポロシティの軽減と解消と、 (4)中心割れの解消と、 (5)等軸晶の形成による凝固組織の微細化を計るこ
と、ができる。
As an effect of this, for example, the processing A
In the I-K steel, the following effects can be obtained by performing the reduction after solidification at an average cross-sectional temperature of 1250 ° C. and a reduction of 10%. Rankford value (average value): about 0.1 to 0.2
Elongation: Improvement of about 1 to 2% Yield stress: Reduction of about 1 to 2 kg / mm 2 Next, the effects of reducing the unsolidified portion near the solidification completed portion are summarized as follows. Since the portion immediately before the solidification is in a semi-solid state, (1) rolling can be performed with a low load, and (2) rolling can be performed while applying tension to the slab between the rolling rolls to suppress the flow in the semi-solid portion. Component segregation can be prevented, and (3) reduction and elimination of center porosity, (4) elimination of center cracks, and (5) miniaturization of a solidified structure by formation of equiaxed crystals.

【0023】即ち(3)のセンターポロシティについて
は、鋳片の凝固過程において液体から固体へ凝固する時
に生じる体積凝縮によって起こるが、収縮体積分を圧延
により補償することにより軽減し、ひいては解消するも
のである。
That is, the center porosity of (3) is caused by volume condensation that occurs when solidifying from a liquid to a solid during the solidification process of a slab, but is reduced by compensating for the shrinkage volume by rolling, and is thus eliminated. It is.

【0024】(4)の中心割れについては、クレーター
エンド(凝固完了点)において(3)と同様に液体から
固定へ凝固する時、局部的封じ込めが発生すると、その
部分に溶鋼が供給されず線状あるいは面状の割れとして
発生する。これを該圧延により体積補償すると同時に上
下凝固部を圧着させるものである。
Regarding the center crack of (4), when local confinement occurs when solidifying from liquid to solid at the crater end (solidification completion point) as in (3), molten steel is not supplied to that part, and It occurs as a shape or plane crack. This is volume-compensated by the rolling and, at the same time, the upper and lower solidified portions are pressed.

【0025】(5)については、圧下により凝固核が生
成され、等軸晶の形成が促進される。これにより、粗大
な凝固組織が微細化方向へ向かう。
With regard to (5), solidification nuclei are generated by the reduction, and the formation of equiaxed crystals is promoted. As a result, the coarse solidified structure moves in the direction of miniaturization.

【0026】具体的な条件としては、連鋳機内におい
て、凝固率が0.5〜1.0mmの間にある鋳片を複数
の圧下ロール(多段インライン圧下ロール)により総圧
下量が1分間に0.5〜2.0mmとなるよう圧下す
る。これによって表1に示す様な効果が得られる。
As a specific condition, in a continuous casting machine, a slab having a solidification ratio of 0.5 to 1.0 mm is subjected to a total reduction amount of one minute by a plurality of reduction rolls (multi-stage in-line reduction rolls). Roll down to 0.5-2.0 mm. As a result, the effects shown in Table 1 can be obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】次に本発明におけるベルト式薄スラブ連鋳
機においては、短辺もベルトに同期して移動できる機能
が好ましい。これは、鋳片品質の確保並びに操業性の点
から不可欠であるが、30〜90mmの薄鋳片の幅は圧
延によっては大きく変更できない。そのため、要求され
る種々の製品幅に対応した造り込みは連鋳機での鋳込段
階で行う必要がある。そのため公知の竪ロールを配置し
た幅圧延法で製造されている薄鋼板の600〜2200
mmの現行の製品幅範囲に対して、厚みが30〜90m
mの鋳片の場合、製品の幅のロット毎に連鋳機の鋳造を
一旦停止し、鋳造幅の変更作業を必要とすることにな
る。
Next, in the belt-type thin slab continuous caster of the present invention, a function that the short side can move in synchronization with the belt is preferable. This is indispensable from the viewpoint of ensuring the quality of the slab and operability, but the width of the thin slab of 30 to 90 mm cannot be largely changed by rolling. For this reason, it is necessary to perform the forming corresponding to various required product widths at the casting stage in the continuous casting machine. Therefore, 600 to 2200 of a thin steel plate manufactured by a width rolling method in which a known vertical roll is arranged.
30-90m for the current product width range of mm
In the case of the m cast slab, it is necessary to temporarily stop the casting of the continuous casting machine for each lot of the product width and change the casting width.

【0029】しかし、本課題を、本発明では特開昭63
−183757号、特開昭63−264252号、特開
昭63−264251号公報などに記載の発明を本連鋳
プロセスに導入することにより解消するものである。
However, this problem is solved in the present invention by
SUMMARY OF THE INVENTION This problem is solved by introducing the inventions described in JP-A-183775, JP-A-63-264252 and JP-A-63-264251 into the continuous casting process.

【0030】このように本発明は、前述の多段インライ
ン圧下設備と上記連鋳機により従来の公知プロセスでは
対処できない範囲の製品サイズが良好な内部品質で製造
可能となり、高品質で且つ飛躍的に生産量を増大させ
る。
As described above, according to the present invention, the above-described multi-stage in-line rolling equipment and the continuous caster can produce a product size within a range that cannot be dealt with by a conventionally known process, with good internal quality, and achieve high quality and dramatically. Increase production.

【0031】更に本発明者等は、公知プロセスである図
1によるAルートプロセスで製造された熱延製品並びに
冷延製品を詳細に調査したところ、製品表面にスケール
疵が多数存在することを見出した。そして、その原因は
このプロセスにおいて、現在のデスケーリング設備では
仕上圧延前に完全に鋳片表面に存在するスケールを除去
できないことによる。従来の厚手連鋳プロセスでは、鋳
片のスケールにVertical Scale Bre
aker(VSB)などにより加工を付与し、鉄母材か
ら剥離されやすくした後、デスケーリング設備によりス
ケール除去している。しかるにAルートプロセスでは、
鋳片は鋳造後何の加工も受けないでそのままデスケーリ
ングを受ける。本発明者等は、鋳造のままの鋳片上のス
ケールは粒界部分を中心にスケールが根深く侵入してい
ることを見出した。同時にこのようなスケールを剥離し
やすくするには、鋳片表面に曲げ歪や引張・幅方向圧延
歪を加えることが有利であることを見出した。従来のV
SBはこの点からも有効であるが、薄スラブプロセスで
は鋳片厚が薄いためVSBをかけると鋳片は幅方向に挫
屈しやすい。本発明者等は、この問題を解決するには、
図1のBルートのように鋳片を鋳造直後に巻取り、巻戻
して表面に曲げ歪を与えることが最も有効であることを
見出した。
Further, the present inventors have conducted detailed investigations on hot-rolled products and cold-rolled products manufactured by the known route A process shown in FIG. 1, and found that there are many scale flaws on the product surface. Was. The reason is that in this process, the scale existing on the surface of the slab cannot be completely removed by the current descaling equipment before finish rolling. In the conventional thick continuous casting process, Vertical Scale Breeze is added to the scale of the slab.
After applying a process with an aker (VSB) or the like to make it easy to peel off from the iron base material, the scale is removed by a descaling facility. However, in the A route process,
The slab undergoes descaling without any processing after casting. The present inventors have found that the scale on the as-cast slab is deeply penetrated, centering on the grain boundary portion. At the same time, it has been found that it is advantageous to apply bending strain or tensile / width-direction rolling strain to the slab surface in order to easily peel such a scale. Conventional V
Although SB is effective from this point, in the thin slab process, the slab is easily buckled in the width direction when VSB is applied because the slab is thin. To solve this problem, we have:
It has been found that it is most effective to wind the slab immediately after casting as shown in the B route of FIG.

【0032】公知文献でのBルートの目的とする所は、
鋳造鋳片の熱放散を回避し、顕熱の有効利用であった
が、本発明はそれ以外に完璧なデスケーリングにとって
もこの巻取り、巻戻し機能が必要不可欠であることを強
調する。
The purpose of the B route in the known literature is as follows:
Although the heat dissipation of the cast slab was avoided and the sensible heat was used effectively, the present invention emphasizes that the winding and rewinding functions are indispensable for perfect descaling.

【0033】更に、本発明は熱間仕上圧延に入るまでに
完全にデスケーリングを行うための最良方法として、仕
上圧延の前に連鋳機出口点で巻き取られた鋳片を巻き戻
しするが、該巻戻し鋳片を速やかにデスケーリングする
ことを見出した。従って、巻戻し設備と、デスケーリン
グ設備は可能な限り仕上圧延機に接近させることが望ま
しい。
Further, the present invention is to unwind the slab wound at the exit point of the continuous casting machine before the finish rolling, as the best method for completely descaling before starting the hot finish rolling. It has been found that the unwound slab is quickly descaled. Therefore, it is desirable that the rewinding equipment and the descaling equipment be as close as possible to the finishing mill.

【0034】次は、製品の材質特性を目標とする特性に
するための手段である。すなわち薄スラブプロセスでは
前記(ロ)にも示した様に熱間圧延の圧下率が小さいた
め、熱延板の組織が粗大のままで残り、鋼種によっては
強度あるいは延性及び靱性に不足を生じる。そのための
必要手段は前述の圧下率の確保であるが、高延性、並び
に絞り性を要求される鋼種に対しては、更にMnSを始
めとした析出物の形態制御、及びハイテン材ではTi、
Nb等の析出硬化元素の固溶維持が必要となる。
The following is means for setting the material properties of the product to target properties. That is, in the thin slab process, as shown in (b) above, since the rolling reduction of the hot rolling is small, the structure of the hot-rolled sheet remains coarse, and depending on the type of steel, the strength or ductility and toughness are insufficient. The necessary means for that is to secure the above-mentioned rolling reduction. However, for steel types that require high ductility and drawability, further control of precipitate morphology such as MnS, and Ti,
It is necessary to maintain a solid solution of a precipitation hardening element such as Nb.

【0035】この点に関し、本発明者等はこれらの析出
物の形態制御及び固溶維持には、連鋳片を連鋳機の出側
で巻取装置で巻取ったあと、仕上圧延機前面で巻き戻す
間の保定温度と保定時間コントロールで制御可能である
ことを見出した。そしてこの保定時間はその材料のAr
3 点以上の温度であることを基本とし、かつ、その温度
及び保定時間は、鋼種によって異なることを見出したこ
とである。従来の公知の文献によると、鋳片を巻き取っ
た後、巻き戻す間は連鋳−圧延間のバッファー用保熱炉
としての活用以外何の目的も付加されていなかったが、
本発明はこの保熱炉に鋼種に応じて必要な温度で必要な
時間の間、該コイルを保定できるようにし、鋼種に応じ
て必要な析出物の形態制御及び固溶維持を行おうとする
ものである。
In this regard, the present inventors have determined that the form of these precipitates is controlled and the solid solution is maintained, after the continuous cast slab is wound by a winding device at the discharge side of the continuous caster, and then the front surface of the finishing mill is rolled. It was found that the control was possible by controlling the retention temperature and retention time during rewinding with. The retention time is determined by the Ar of the material.
It is based on the fact that the temperature is not less than three points, and that the temperature and the retention time are different depending on the steel type. According to conventional known literature, after winding the slab, during unwinding, no additional purpose was added except utilization as a buffer heat storage furnace during continuous casting-rolling,
The present invention is intended to make it possible to hold the coil in the heat retention furnace at a required temperature and for a required time according to the type of steel, and to control the form of the precipitate and maintain the solid solution required for the type of steel. It is.

【0036】薄肉連続鋳造では、冷却速度が遅いため、
鋼中の第二元素は固溶状態で凍結されるが、析出も微細
に分散した状態で起こる。この場合固溶状態と言っても
熱延後の巻取保持によって微細析出物となる場合が多い
ので、熱延後の材質は硬化する。このため軟質冷延鋼板
を造るためにはA3 変態点以上の高温で保定し、高温で
微細に析出するMnS,TiC,AINのような析出物
を成長粗大化させて、強度への影響を低下させることが
必要である。
In the thin continuous casting, since the cooling rate is low,
The second element in the steel is frozen in a solid solution state, but precipitation also occurs in a finely dispersed state. In this case, even if it is in a solid solution state, it often becomes a fine precipitate by winding and holding after hot rolling, so that the material after hot rolling hardens. Therefore in order to create a soft cold-rolled steel sheet is retention at a high temperature of at least A 3 transformation point, MnS to finely precipitated at a high temperature, TiC, grown coarse precipitates such as AIN, the effect on the strength It is necessary to lower it.

【0037】このため条件としては次の(A)、(B)
例が主体となる。 (A)連続焼鈍用AI−K鋼コイル全長、全断面を保熱
炉で1050℃以上、15分以上保定できるようにす
る。 (B)上記以外の加工用冷鋼板用鋼コイル全長、全断面
を保熱炉で1050〜1200℃、10分以上保定でき
るようにする。
Therefore, the following conditions (A) and (B)
Examples are the subject. (A) AI-K steel coil for continuous annealing The entire length and entire cross section of the coil are kept at 1050 ° C. or more for 15 minutes or more in a heat retaining furnace. (B) The entire length and entire cross section of the steel coil for a cold steel sheet for processing other than those described above can be maintained at 1050 to 1200 ° C. for 10 minutes or more in a heat retaining furnace.

【0038】これにより具体例〔2〕に示している様
に、降伏応力が低く、ランクフォード値(平均値)の高
い軟質冷延鋼板が得られる。
As a result, as shown in the specific example [2], a soft cold-rolled steel sheet having a low yield stress and a high Rank Ford value (average value) can be obtained.

【0039】そこで前記保熱炉は単なるバッファー炉で
はなく、積極的な保温・加熱機能を有することを特徴と
する。そして、図2に示す様に、単なる3〜5分と言う
移動時間でのシュミレーションの結果でも存在するよう
なエッジ部及びトップ鋳片部の低温部の温度を高温に確
保し、全断面の温度を均一化し、成品の材質特性を全
長、全幅にわたって均一化する機能を有せしめるもので
ある。
Therefore, the heat retention furnace is not a simple buffer furnace, but has an active heat retention / heating function. Then, as shown in FIG. 2, the temperatures of the low temperature portions of the edge portion and the top slab portion which are present even as a result of the simulation with the moving time of only 3 to 5 minutes are kept high, and the temperature of the entire cross section is maintained. To make the material characteristics of the product uniform over the entire length and width.

【0040】なお、鋳片エッジ部のわずかな温度の補償
は熱間仕上圧延前面に設置するエッジヒーターによって
も可能である。このエッジヒーターの設置は生産量、鋼
種及び鋼種構成などにより必要に応じて設置されれば有
効な品質保証設備となる。
The slight temperature compensation at the edge of the slab can also be made by an edge heater installed on the front surface of the hot finish rolling. The installation of the edge heater becomes an effective quality assurance facility if it is installed as required depending on the production amount, steel type and steel type configuration.

【0041】以上、本発明の主要な技術手段を記した
が、他の手段である連鋳機におけるバルジング防止用稠
密分割ロールと冷却設備、鋳片の剪断設備、ダミーバー
引抜装置、デスケーリング設備等は当該業界での周知技
術を採用するものである。
The main technical means of the present invention have been described above. Other means such as a dense split roll for preventing bulging and cooling equipment in a continuous casting machine, a slab shearing equipment, a dummy bar drawing apparatus, a descaling equipment, etc. Adopts a technique well known in the industry.

【0042】また本発明の対象とする熱間仕上圧延機
は、鉄鋼一貫メーカーで広く採用されている連続多段仕
上圧延機であってもよいし、ステッケルミルの様な単独
圧延設備でもよい。特に、前者においてクロップシャ
ー、ランアウトテーブル、コイラーを始めとした仕上圧
延機としての必要設備を付帯させることは当然の前提で
ある。
The hot finishing rolling mill to which the present invention is applied may be a continuous multi-stage finishing rolling mill widely used by an integrated steelmaker or a single rolling equipment such as a Steckel mill. In particular, in the former, it is a natural premise to add necessary equipment as a finishing mill such as a crop shear, a run-out table, and a coiler.

【0043】[0043]

【実施例】以下に本発明の実施例を説明する。本発明の
実施例は図3に示す如く、ベルト式薄スラブ連鋳機1
と、それに関連して以下の設備を配置したプロセスであ
る。すなわち、厚み90〜30mm、幅600〜220
0mmの鋳片を鋳造するベルト式薄スラブ連鋳機1に、
例えばベルトに同期して移動し、かつ鋳片幅を変更でき
る移動短辺(図示せず)並びに二次冷却帯において鋳片
品質を充分に確保するバルジング防止用稠密分割ロール
4と冷却設備(気水冷却装置)2及び目標とする仕上圧
延厚に応じて鋳片厚みを凝固完了部とその前後近傍部を
多段に圧延するインラン圧下設備3を装備し、該連鋳機
1の出側には、鋳片の移動速度に同期しながら迅速に、
かつ所定の長さに鋳片を切断できる剪断設備5並びにダ
ミーバー引抜き装置7および一段あるいは数段のコイル
巻取装置6とコイル移載機(吊上げ式)9を配置する。
更に、該設備の後方に該コイル巻取装置6で巻き取られ
たコイルを該コイル移載機9から受け、直ちにまたは保
温式コイルボックス貨車14から装入できる均熱・加熱
機能を有し、該鋳片のAr3 変態点以上で、かつ品質確
保に必要な所定時間以上の保定ができるトンネル型のコ
イル加熱炉8を配備し、所定時間のコイル保定が完了し
た後に移載機13によりデスケーリング設備および必要
に応じて設置されたエッジヒーターを装備した熱間仕上
圧延機10の入側に配置したコイル巻戻設備11に装着
し、該コイルを巻き戻す。そしてディレーテーブル12
出側でデスケーリングを行い、必要に応じてエッジ加熱
を行った後、目標とする成品サイズに熱間仕上圧延を行
う薄スラブの鋳造圧延プロセスである。なお、熱間仕上
圧延機の前面には、上記機能の設備以外にバー接合設
備、幅調整設備等の仕上圧延に付加される設備の配置は
何ら妨げるものではない。
Embodiments of the present invention will be described below. The embodiment of the present invention is shown in FIG.
And the process in which the following equipment is arranged in connection with it. That is, a thickness of 90 to 30 mm and a width of 600 to 220
In the belt type thin slab continuous caster 1 for casting a 0 mm slab,
For example, the moving short side (not shown), which moves in synchronization with the belt and can change the slab width, and the dense dividing roll 4 for preventing bulging and ensuring sufficient slab quality in the secondary cooling zone and the cooling equipment (air A water cooling device) 2 and an in-run pressure reduction device 3 for rolling the slab thickness to a multi-stage in the solidified portion and the vicinity thereof before and after the solidified portion according to the target finish rolling thickness. , Quickly synchronized with the moving speed of the slab,
In addition, a shearing equipment 5 capable of cutting a slab to a predetermined length, a dummy bar pulling-out device 7, a single-stage or several-stage coil winding device 6 and a coil transfer machine (lifting type) 9 are arranged.
Furthermore, it has a soaking / heating function of receiving the coil wound by the coil winding device 6 behind the equipment from the coil transfer machine 9 and immediately or from the insulated coil box freight car 14, A tunnel-type coil heating furnace 8 capable of holding the slab at or above the Ar 3 transformation point and for a predetermined time or more necessary for quality assurance is provided. The coil is rewound by being mounted on a coil rewinding facility 11 arranged on the entry side of a hot finishing mill 10 equipped with a scaling facility and an edge heater installed as required. And delay table 12
This is a thin slab casting and rolling process in which descaling is performed on the delivery side, edge heating is performed as necessary, and then hot finish rolling is performed to a target product size. In addition, on the front surface of the hot finish rolling mill, the arrangement of equipment added to the finish rolling such as the bar joining equipment and the width adjusting equipment other than the equipment having the above functions does not hinder at all.

【0044】図3の連鋳機1における鋳造条件は次の通
りである。 鋳造厚:50mm, コイル厚:50〜35mm 鋳造幅:700〜2100mm 鋳造速度:max10m/min 機長:30m インラインリダクション能力:max15mm 鋼種:AI−K ここで、幅可変・移動短辺設備は特開昭63−1837
57号、特開昭63−264252号公報に記載の設備
であり、インラインリダクション圧下設備3は圧下能力
max400Tonのテンション圧延可能なセグメント
3基よりなる凝固完了部とその前後の未凝固部及び凝固
部の圧延により、max15mmの圧延能力を持たせた
ものである。
The casting conditions in the continuous casting machine 1 of FIG. 3 are as follows. Casting thickness: 50 mm, coil thickness: 50 to 35 mm Casting width: 700 to 2100 mm Casting speed: max 10 m / min Machine length: 30 m Inline reduction capacity: max 15 mm Steel type: AI-K 63-1837
No. 57, JP-A-63-264252, wherein an in-line reduction rolling-down facility 3 comprises a solidification-completed section composed of three tension-rollable segments having a rolling capacity of max 400 Ton, and an unsolidified section and a solidified section before and after the solidified section. , Which has a rolling capacity of max 15 mm.

【0045】〔1〕生産能力図3の設備において、鋳造
厚50mmをそのまま巻き取り、熱間仕上圧延機で圧延
した場合の生産量と、鋳造厚は50mmだがインライン
リダクションで圧延し、熱延成品厚に応じてスラブコイ
ル厚を50〜30mmに圧延した場合の生産量を、実際
の操業における生産実績で検証した。なお、この場合の
熱延製品厚に応じたスラブコイル厚は表2に示す。且つ
この場合の製品幅は700〜2100mmに鋳造時に造
り分けて製造された。
[1] Production capacity In the equipment shown in FIG. 3, the production amount when the casting thickness of 50 mm is wound as it is and rolled by a hot finish rolling mill, and the production thickness is 50 mm but the casting thickness is rolled by in-line reduction. The production amount when the slab coil thickness was rolled to 50 to 30 mm according to the thickness was verified by the production results in actual operation. Table 2 shows the thickness of the slab coil according to the thickness of the hot-rolled product in this case. And the product width in this case was manufactured separately at the time of casting to 700 to 2100 mm.

【0046】[0046]

【表2】 [Table 2]

【0047】生産実績でみると、 スラブコイル厚50mm単サイズの場合 3万Ton/月 スラブコイル厚50〜30mmに調整した場合 37万Ton/月 となり、インラインリダクションの設置により薄スラブ
プロセス対象生産量が約10倍以上となり、薄スラブプ
ロセス適用鋼種が飛躍的に増大することが検証される。
Looking at the production results, when the slab coil thickness is 50 mm single size, 30,000 Ton / month When the slab coil thickness is adjusted to 50-30 mm, it becomes 370,000 Ton / month, and the production volume for thin slab process by installing in-line reduction Is about 10 times or more, and it is verified that the steel type to which the thin slab process is applied dramatically increases.

【0048】〔2〕図3に示す設備で鋳造速度10mm
/min、鋳片幅1200mmに鋳造した鋳造厚50m
m鋳片をインラインリダクション圧下設備3により35
mmのコイル厚にした後、走間切断機により10m長の
スラブとし、該コイルを前記箱型加熱炉に装入し、直ち
に熱間圧延機で製品厚5.0mmに圧延することによ
り、図1のAルートをシュミレートした試験(これをA
ルートと呼ぶ)と、図3のコイル巻取装置6で40to
nづつのコイルに巻き取り、直ちに同巻取装置を逆転さ
せ巻戻しを行い、定常部を走間切断機により10m長の
スラブを取り、直ちに箱型加熱炉に装入し、直ちに熱間
圧延機で製品厚3.0mmに圧延することにより図1の
Bルートをシュミレートした試験(これをBルートと呼
ぶ)と、更に、図3のコイル巻取装置6で40tonコ
イルに巻き取った後、保熱カバーをかけ20分間保定
し、しかる後巻取装置を逆転させ巻戻しを行い、定常部
を走間切断機により10mの長さのスラブを取り、直ち
に箱型加熱炉に装入し、直ちに熱間圧延機で成品厚5.
0mmに圧延した本発明をシュミレートした試験(本発
明ルートと呼ぶ)の3ルートの試験を各10スラブづつ
行い、表面欠陥の調査と冷延・焼鈍後の機械的性質を調
査した。この場合の詳細製造条件と製造結果は表3及び
表4に示す通りである。
[2] Casting speed 10 mm with the equipment shown in FIG.
/ Min, casting thickness 50m cast to a slab width of 1200mm
m slab is reduced to 35 by in-line reduction
After making the coil thickness of 10 mm, a 10 m long slab was cut by a running cutter, the coil was charged into the box-type heating furnace, and immediately rolled to a product thickness of 5.0 mm by a hot rolling mill. The test which simulated the A route of No. 1 (this is A
3), the coil winding device 6 of FIG.
Winding into n coils, immediately rewinding the winding device and rewinding, taking a slab of 10m length in the stationary part by cutting machine while running, immediately charging the box type heating furnace, and immediately hot rolling 1 was simulated by rolling to a product thickness of 3.0 mm with a machine (this is referred to as the B route), and further, after being wound into a 40-ton coil by the coil winding device 6 in FIG. Put the heat insulation cover and hold for 20 minutes, then rewind the winding device to reverse, take a slab of 10 m length in the stationary part by the cutting machine while running, immediately put it in the box heating furnace, Immediately with hot rolling mill, product thickness5.
Tests of three routes of a test simulating the present invention rolled to 0 mm (referred to as a route of the present invention) were performed for each 10 slabs, and surface defects were investigated and mechanical properties after cold rolling and annealing were investigated. Detailed production conditions and production results in this case are as shown in Tables 3 and 4.

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】この結果、前述のようにAルート材は鋳造
時の生成したスケールの剥奪が充分行えないため、冷延
板でのスケール疵発生率が高い。
As a result, as described above, since the A-root material cannot sufficiently remove the scale generated at the time of casting, the scale flaw generation rate in the cold-rolled sheet is high.

【0052】これに対して、巻取り、巻戻ししてコイル
に加工を加えたBルート材及び本発明ルート材のスケー
ル疵は激減し、良好な成品が得られる。
On the other hand, the scale flaws of the root material of the present invention and the root material of the present invention obtained by winding and rewinding and processing the coil are drastically reduced, and a good product is obtained.

【0053】また、前述したコイルの高温保定の効果は
Bルート材と本発明ルート材の比較より得られる。即
ち、Bルート材と本発明ルート材はAI−Kであったた
め、1050℃で20分の保定時間の差をつけたが、こ
れによりMnSの析出制御が出来、ランクフォード値
(平均値)が著しく向上し、伸びも良くなり、薄スラブ
プロセスで製造が困難と言われる低降伏応力の軟質材が
製造できることが判明した。
The effect of maintaining the coil at a high temperature as described above can be obtained by comparing the root material of the present invention with the root material of the invention. That is, since the B route material and the route material of the present invention were AI-K, a difference in the retention time at 1050 ° C. for 20 minutes was given. However, the precipitation of MnS could be controlled, and the Rankford value (average value) was reduced. It has been found that remarkably improved, elongation is improved, and a soft material having a low yield stress, which is said to be difficult to manufacture by a thin slab process, can be manufactured.

【0054】[0054]

【発明の効果】以上、本発明の薄スラブプロセスによ
り、成品サイズに伴う生産制約が解除されるため、薄ス
ラブプロセスによる生産量が飛躍的に増大する上、圧延
時にスケールの剥離も充分行え、プロセス上の問題から
くる表面欠陥問題は解消する。更に、成品の品質も向上
し、薄スラブプロセスで特に問題とされている軟質材で
高加工性を要求される鋼種も製造可能となり、適用鋼種
を著しく増大させる。
As described above, the thin slab process of the present invention eliminates the production constraints associated with the product size, so that the production volume of the thin slab process is dramatically increased and the scale can be sufficiently peeled off during rolling. The surface defect problem resulting from the process problem is eliminated. Furthermore, the quality of the product is improved, and a steel type requiring high workability can be manufactured with a soft material which is particularly problematic in the thin slab process, and the applicable steel type is significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】公知の薄スラブ製造プロセスの例を示す図であ
る。
FIG. 1 is a diagram showing an example of a known thin slab manufacturing process.

【図2】鋳造から圧延前までのスラブコイルの温度変化
の例を示す図である。
FIG. 2 is a diagram showing an example of a temperature change of a slab coil from casting to before rolling.

【図3】本発明の薄スラブの鋳造・圧延設備の例を示す
図である。
FIG. 3 is a diagram showing an example of a thin slab casting / rolling facility of the present invention.

【符号の説明】[Explanation of symbols]

1 ベルト式薄スラブ連鋳機 2 冷却設備 3 インライン圧下設備 4 稠密分割ロール 5 剪断設備 6 コイル巻取装置 7 ダミーバー引抜き装置 8 トンネル型コイル加熱炉 9 コイル移載機 10 熱間仕上圧戻機 11 コイル巻戻設備 12 ディレーテーブル 13 移載機 14 保温式コイルボックス貨車 DESCRIPTION OF SYMBOLS 1 Belt-type thin slab continuous caster 2 Cooling equipment 3 In-line press-down equipment 4 Dense split rolls 5 Shearing equipment 6 Coil winding device 7 Dummy bar pull-out device 8 Tunnel type coil heating furnace 9 Coil transfer machine 10 Hot finishing press release machine 11 Coil unwinding equipment 12 Delay table 13 Transfer machine 14 Insulated coil box wagon

───────────────────────────────────────────────────── フロントページの続き (72)発明者 縫部 綴 大分県大分市大字西ノ洲1番地新日本製 鐵株式会社大分製鐵所内 (72)発明者 江坂 一彬 大分県大分市大字西ノ洲1番地新日本製 鐵株式会社大分製鐵所内 (56)参考文献 特開 昭58−122107(JP,A) 特開 昭62−187505(JP,A) 特開 平1−130859(JP,A) 特開 昭59−7464(JP,A) 特開 昭62−270257(JP,A) 日本鉄鋼協会編「鉄鋼製造法(第3分 冊)加工(2)」丸善(昭47−9−30) p.606〜609 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Tsutomu Nabe, Oita, Oita, Oita, Nishi-no-su, 1 Nippon Steel Corporation Oita Works (72) Inventor Kazuaki Esaka, Oita, Oita, O-Ita, 1-Nishi-no-Su (56) References JP-A-58-122107 (JP, A) JP-A-62-187505 (JP, A) JP-A 1-130859 (JP, A) JP-A Sho 59 -7464 (JP, A) JP-A-62-270257 (JP, A) Edited by the Iron and Steel Institute of Japan, "Iron and Steel Manufacturing Process (Third Volume) Processing (2)" Maruzen (47-9-30, p. 47) p. 606-609

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ベルト式薄スラブ連鋳機で鋳造した薄ス
ラブをインライン圧下設備で圧延した後、コイル巻き装
置で巻取り、この巻取ったコイルをAr3変態点以上に
保定し、この保定したコイルを巻戻して仕上圧延を行う
方法において、前記ベルト式薄スラブ連鋳機で鋳造した
薄スラブの凝固完了部及びその下流側近傍部を圧下率5
〜50%の範囲内で前記インライン圧下設備で漸次圧延
することを特徴とする薄スラブの鋳造・圧延方法。
1. A thin slab cast by a belt-type thin slab continuous caster is rolled by an in-line reduction device, then wound by a coil winding device, and the wound coil is retained at or above the Ar3 transformation point. In the method in which the coil is rewound and the finish rolling is performed, the solidification completed portion of the thin slab cast by the belt type thin slab continuous caster and a portion near the downstream side thereof are reduced by 5%.
The line pressure gradually cast and rolling method for thin slab characterized that you rolling in facilities within the 50%.
JP2406114A 1990-12-25 1990-12-25 Casting and rolling method for thin slab Expired - Lifetime JP2863013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406114A JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406114A JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Publications (2)

Publication Number Publication Date
JPH04224003A JPH04224003A (en) 1992-08-13
JP2863013B2 true JP2863013B2 (en) 1999-03-03

Family

ID=18515738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406114A Expired - Lifetime JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Country Status (1)

Country Link
JP (1) JP2863013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003222A1 (en) * 2007-09-13 2009-03-19 Sms Demag Ag Compact flexible CSP system for continuous, semi-continuous and batch operation
CN104438326B (en) * 2014-10-17 2017-04-12 武汉钢铁(集团)公司 Rolling technology for high-carbon steel in thin slab casting and rolling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122107A (en) * 1982-01-18 1983-07-20 Hitachi Ltd Continuous and direct sheet rolling plant
JPS597464A (en) * 1982-07-06 1984-01-14 Kawasaki Steel Corp Method and device for continuous casting of thin steel plate
JPH0761488B2 (en) * 1986-02-12 1995-07-05 川崎製鉄株式会社 Manufacturing method and equipment for hot strip
JPH078420B2 (en) * 1986-05-19 1995-02-01 住友重機械工業株式会社 Equipment for continuous production of rolled thin metal sheets
JPH01130859A (en) * 1987-11-17 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Strip manufacturing equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本鉄鋼協会編「鉄鋼製造法(第3分冊)加工(2)」丸善(昭47−9−30)p.606〜609

Also Published As

Publication number Publication date
JPH04224003A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
JP5893769B2 (en) Method for producing 550 MPa class high strength weathering steel strip by strip casting method
US20070199631A1 (en) Method for producing a hot strip from a steel which has a high manganese content
US9144839B2 (en) Method for producing microalloyed tubular steel in combined casting-rolling installation and microalloyed tubular steel
JP2015516505A (en) Manufacturing method of 700MPa class high strength weathering steel by continuous strip casting method
US6841010B2 (en) Cold rolled steel
TW297788B (en)
KR20190077201A (en) Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet and method for manufacturing the same
US6978531B1 (en) Method of manufacturing hot rolled steel sheet using mini mill process
WO2021052312A1 (en) Martensitic steel strip and manufacturing method therefor
KR20190078408A (en) Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
JP2863013B2 (en) Casting and rolling method for thin slab
CN109023116B (en) Method for producing non-oriented electrical steel by adopting thin slab endless rolling
TW202024356A (en) Thin steel sheet manufacturing apparatus and thin steel sheet manufacturing method
JP3190319B2 (en) Twin roll continuous casting machine
US7288158B2 (en) Manufacturing process for producing high strength steel product with improved formability
JP4091673B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
KR20190078401A (en) Non-oriented electrical steel sheet having low deviation of mechanical property and thickness and method of manufacturing the same
US20050199319A1 (en) High strength steel product with improved formability and steel manufacturing process
JPH09108701A (en) Direct rolling process of continuous cast slab and apparatus therefor
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
CA2473765C (en) High strength steel product with improved formability and steel manufacturing process
JPH07195103A (en) Manufacture of steel sheet from thin cast billet
JPH105810A (en) Production of thin steel sheet for work with excellent forming property using continuous hot rolling process

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13