JPH04224003A - Method and apparatus for casting and rolling thin slab - Google Patents

Method and apparatus for casting and rolling thin slab

Info

Publication number
JPH04224003A
JPH04224003A JP40611490A JP40611490A JPH04224003A JP H04224003 A JPH04224003 A JP H04224003A JP 40611490 A JP40611490 A JP 40611490A JP 40611490 A JP40611490 A JP 40611490A JP H04224003 A JPH04224003 A JP H04224003A
Authority
JP
Japan
Prior art keywords
rolling
thin slab
slab
coil
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40611490A
Other languages
Japanese (ja)
Other versions
JP2863013B2 (en
Inventor
Shuji Osada
長田 修次
Chikayoshi Okada
岡田 力美
Tsuzuri Nuibe
縫部 綴
Kazuaki Ezaka
江坂 一彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2406114A priority Critical patent/JP2863013B2/en
Publication of JPH04224003A publication Critical patent/JPH04224003A/en
Application granted granted Critical
Publication of JP2863013B2 publication Critical patent/JP2863013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To offer a move complete manufacturing process for a thin slab for steel plate by adding a concept necessary to deal with various sizes of formed parts and to secure high quality of the formed parts in consideration of the level of the existing equipment technology. CONSTITUTION:Method for casting and rolling a thin slab characterized by rolling a solidified part of the thin slab cast by a belt-type thin slab continuous casting machine and its neighboring cast parts gradually by a multistage in-line rolling down equipment, then, executing the finish-rolling keeping the temp. over the transformation point Ar3 is offered. Since restraint for production followed by the size of the formed part is removed by the thin slab process of this invention, the production by the thin slab process is increased drastically and peeling of scale in the time of rolling can be carried out satisfactorily and a problem on surface defect coming from process troubles is solved. Further, the quality of the formed part, too, is improved and it is possible to manufacture a kind of sot steel which requires high workability which is especially a problem in the thin slab process and applicable kinds of steel are increased remarkably.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、近年世界的規模で開発
が進められている鉄鋼製造プロセスにおける薄スラブの
鋳造・圧延方法と装置に関するものであり、薄スラブの
鋳造は、連続鋳造機で90〜30mm厚の薄スラブを鋳
造し、該スラブを直接熱間圧延機へ送り込み、ホットコ
イルを製造するものである。
[Industrial Application Field] The present invention relates to a method and apparatus for casting and rolling thin slabs in the steel manufacturing process, which has been developed on a global scale in recent years. A thin slab with a thickness of 90 to 30 mm is cast, and the slab is directly sent to a hot rolling mill to produce a hot coil.

【0002】0002

【従来の技術】従来の鉄鋼の製造プロセスにおけるスラ
ブ鋳造圧延は、溶鋼を連続鋳造機で200〜300mm
厚の厚いスラブに鋳造し、該スラブを熱間粗圧延機で5
5〜30mmに、そして熱間仕上圧延機で4〜1mm厚
を中心とするホットコイルに圧延するものであった。
[Prior Art] Slab casting and rolling in the conventional steel manufacturing process involves casting molten steel in a continuous casting machine in a thickness of 200 to 300 mm.
The slab is cast into a thick slab, and the slab is rolled in a hot rough rolling mill.
The coil was then rolled into a hot coil with a thickness of 4 to 1 mm using a hot finishing mill.

【0003】近年該薄スラブの開発は目下精力的に進め
られている段階であるが、薄スラブプロセスに対して種
々の形態が文献として公開されている。例えば、Han
s−Juergen  Ehrenberg  eta
l.(Metallurgical  Plant  
and  Technology  Vol.3(19
89)52)は、マンネスマンにおける薄スラブの鋳造
と圧延プロセスの開発結果を示し、その結果として実プ
ロセスとしての適用イメージを示した。また中村雄二郎
等(住友重機械技報Vol.37,No.110(19
89)31)は、広幅薄スラブ連続鋳造設備の開発結果
と設備構成を示している。
[0003] In recent years, the development of thin slabs is currently at a stage of vigorous progress, and various forms of thin slab processes have been published in the literature. For example, Han
s-Jurgen Ehrenberg eta
l. (Metallurgical Plant
and Technology Vol. 3 (19
89) and 52) presented the development results of the thin slab casting and rolling process in Mannesmann, and as a result showed an image of its application as an actual process. Also, Yujiro Nakamura et al. (Sumitomo Heavy Industries Technical Report Vol. 37, No. 110 (19
89) 31) shows the development results and equipment configuration of wide thin slab continuous casting equipment.

【0004】G.Holleis  etal.(St
eel  Times  November(1989
)605)はVoest−Alpineの薄スラブ鋳造
法を、また、日刊「鉄鋼新聞」(S63年3月8日号)
には、川崎製鉄・日立製作所で開発された薄スラブ連鋳
法が報道されている。これらの公開文献は枚挙にいとま
がないが、それらを要約すると、薄スラブ鋳造プロセス
の連鋳機および設備構成は図1のようにまとめられる。
[0004]G. Holleys et al. (St
eel Times November (1989
) 605) describes Voest-Alpine's thin slab casting method, and the daily ``Tekko Shimbun'' (March 8, 1963 issue)
reported on the thin slab continuous casting method developed by Kawasaki Steel and Hitachi. These published documents are too numerous to list, but to summarize them, the continuous casting machine and equipment configuration for the thin slab casting process can be summarized as shown in FIG.

【0005】まず、薄スラブ用連鋳機は、Hans−J
uergen  Ehrenbergetal.および
SMS型等の固定鋳型を用いたもの、ならびに、川崎製
鉄・日立製作所および中村雄二郎等が示しているベルト
型の移動鋳型を用いたものなど、種々の薄スラブ連鋳機
が示されている。そしてその後のプロセスでAルートで
は連鋳機から出て来たスラブは所定の長さに切断された
後そのままバッファー機能を有する保熱炉に装入され、
続いて仕上圧延される。従ってAルートでは、連鋳機の
鋳造タイミングと圧延機での圧延タイミングが直列に連
続することは不可欠であり、これが大きな特徴である。 また、連鋳機から出てきた鋳片は、切断される以外は全
く加工(例えば巻取り及び巻戻しによる曲げなど)を受
けることなく仕上圧延機に送り込まれるのも特徴である
。 一方、Bルートは、薄スラブ用連鋳機から出て来た鋳片
は、巻取機でコイルに巻き取られた後、バッファー炉と
しての保熱炉に装入され、圧延機との時間調整を行い、
しかる後、巻戻機に装着され仕上圧延されるプロセスで
ある。従って、Bルートは連鋳機による鋳造タイミング
と圧延機による圧延タイミングの調整が行なえること、
更に薄スラブであるがゆえの表面積が大きく、熱放散が
大である欠点をコイル化することにより回避しようとす
ることに特徴がある。
First, the continuous casting machine for thin slabs is Hans-J.
Uergen Ehrenbergetal. Various thin slab continuous casting machines have been shown, including those using fixed molds such as the SMS and SMS types, and those using belt-type moving molds as shown by Kawasaki Steel, Hitachi, and Yujiro Nakamura. . In the subsequent process, in Route A, the slabs that come out of the continuous casting machine are cut into predetermined lengths and then directly charged into a heat retention furnace that has a buffer function.
This is followed by finish rolling. Therefore, in route A, it is essential that the casting timing of the continuous casting machine and the rolling timing of the rolling mill are continuous in series, and this is a major feature. Another feature is that the slabs that come out of the continuous caster are sent to the finishing mill without being subjected to any processing (for example, bending by winding and unwinding) other than being cut. On the other hand, in Route B, the slabs that come out of the continuous caster for thin slabs are wound into coils in a winder, then charged into a heat retention furnace that serves as a buffer furnace, and spend time with the rolling mill. Make adjustments and
After that, it is mounted on an unwinding machine and finished rolled. Therefore, route B allows adjustment of the casting timing by the continuous caster and the rolling timing by the rolling mill.
Furthermore, it is characterized in that it attempts to avoid the disadvantages of a large surface area and large heat dissipation due to the thin slab by forming it into a coil.

【0006】[0006]

【発明が解決しようとする課題】このような文献に公開
されている薄スラブプロセスは、ミニミル(年産80〜
160万Ton)を対象として考案され、かつ薄スラブ
を鋳造することにより粗圧延工程を省略し、同時に鋳造
時の顕熱の利用に重点をおいたプロセス構成になってい
る。このため、生産量を増やすために高速化し、成品の
サイズ(特に厚み、幅)を増し、高級鋼も製造可能とな
るように品質(内表面品質、材質特性)の造り込みを行
うための考え方は示されてない。更に、このままのプロ
セス構成で鋼板を鋳造・圧延した場合、生産量に制約が
生じると同時に鋼種並びに成品サイズによって圧延が出
来ない場合が多量に発生することが考えられる。
[Problems to be Solved by the Invention] The thin slab process disclosed in such documents is a mini-mill (annual production of 80~
1.6 million tons), and the process structure is designed to omit the rough rolling process by casting a thin slab, while at the same time placing emphasis on the use of sensible heat during casting. Therefore, in order to increase production volume, we need to increase speed, increase the size of finished products (particularly thickness and width), and improve quality (inner surface quality, material properties) to make it possible to manufacture high-grade steel. is not shown. Furthermore, if steel plates are cast and rolled using the same process configuration, there will be restrictions on the production volume, and at the same time, it is conceivable that rolling will not be possible in many cases depending on the steel type and product size.

【0007】本発明は、上記公知のコンセプトに更に現
行設備技術レベルを念頭においた成品サイズの造り分け
及び成品品質確保に必要なコンセプトを追加し、より完
全な鋼板の薄スラブプロセスを提供しようとするもので
ある。
[0007] The present invention aims to provide a more complete thin slab process for steel plates by adding concepts necessary for differentiating product sizes and ensuring product quality with the current equipment technology level in mind. It is something to do.

【0008】[0008]

【課題を解決するための手段】本発明になる薄スラブの
鋳造・圧延方法は、ベルト式薄スラブ連鋳機で鋳造した
薄スラブの凝固完了部とその前後に亘る鋳造部を多段式
インライン圧下設備で漸次圧延し、この後Ar3 変態
点以上の保定をして仕上圧延することを特徴とする。
[Means for Solving the Problems] The method for casting and rolling thin slabs according to the present invention involves multistage in-line rolling of the solidified part of a thin slab cast by a belt-type continuous thin slab caster and the casting parts before and after the solidified part. It is characterized in that it is gradually rolled in a facility and then finished rolled while being maintained at an Ar3 transformation point or higher.

【0009】また、本発明になる薄スラブの鋳造・圧延
装置は、ベルト式連鋳機、稠密分割ロール装置、多段式
インライン圧下設備、剪断機、コイル巻取機、巻取られ
たコイルを直ちに搬送し、所定の位置において該鋳片を
Arc変態点以上で、かつ品質確保に必要な所定時間以
上の保熱ができるコイル加熱設備を配備し、これに続い
てコイル巻戻し設備を設け、更にクロップシャーデスケ
ーリング設備及び必要に応じて設備されたエッジヒータ
ーを装備した熱間仕上圧延機を設け、目標とする成品サ
イズに熱間仕上圧延を行う装置である。
Further, the thin slab casting/rolling apparatus according to the present invention includes a belt-type continuous casting machine, a dense split roll device, a multi-stage inline reduction equipment, a shearing machine, a coil winding machine, and a coil winding machine that immediately processes the wound coil. Coil heating equipment capable of keeping the slab at a predetermined location at a temperature above the Arc transformation point and for a predetermined time required to ensure quality is installed, followed by coil unwinding equipment. This equipment is equipped with a hot finish rolling mill equipped with crop shear descaling equipment and an edge heater installed as necessary, and performs hot finish rolling to the target product size.

【0010】0010

【作用】以下に本発明の手段による作用を示す。現行熱
間仕上圧延機の入側バー厚は55〜30mmである。こ
のため、薄スラブ鋳造により熱間粗圧延工程を省略する
ためには、薄スラブ連鋳機で鋳造する鋳造厚は仕上入口
板厚の55〜30mm厚を満たす必要がある。
[Function] The function of the means of the present invention will be shown below. The entrance bar thickness of current hot finishing mills is 55 to 30 mm. Therefore, in order to omit the hot rough rolling process by thin slab casting, the casting thickness cast by the thin slab continuous caster needs to satisfy the finished entrance plate thickness of 55 to 30 mm.

【0011】しかるに、連鋳機において鋳片を鋳造する
にあたり、介在物対策からイマージョンノズルの浸漬鋳
造は不可欠であるが、このための鋳込可能な最小厚は4
5〜50mmであり、好ましくはこれ以上の鋳込厚を必
要とする。かかる背景において、生産量を拡大し、多サ
イズ製造を可能とするための条件を明示すると以下の様
になる。
However, when casting slabs in a continuous casting machine, immersion casting with an immersion nozzle is essential to prevent inclusions, but the minimum thickness that can be cast for this purpose is 4.
The casting thickness is 5 to 50 mm, preferably greater than this. Against this background, the conditions for increasing production volume and enabling multi-size manufacturing are as follows.

【0012】(イ)現行熱間仕上圧延機の入側板厚と圧
延製品の関係は表2に実施例として示すように、製品厚
に応じて仕上げ入側板厚を変える必要がある。これは現
行の熱間仕上圧延の生産性及びミル強度・クラウン制御
性から避けられないものであり、少なくともこのような
製品厚に応じた鋳片厚の造り込みが必要である。
(a) Regarding the relationship between the entrance plate thickness of the current hot finishing rolling mill and the rolled product, as shown in Table 2 as an example, it is necessary to change the finishing entrance plate thickness depending on the product thickness. This is unavoidable due to the productivity, mill strength, and crown controllability of current hot finish rolling, and it is necessary to build in the slab thickness at least in accordance with the product thickness.

【0013】(ロ)本発明者等の研究によると、薄スラ
ブで薄鋼板を製造する場合、熱間圧延での圧下率が小さ
いため、熱延板の組成が粗大のままで残り、熱延板の強
度が不足したり延性及び靱性が劣化する。その上、冷延
・焼鈍後も集合組織が不適で、機械的性質も劣化するこ
とが解明された。これを回避するためには、第1に熱間
圧延での圧下率が60%以上必要であることが判明した
が、このためには約20〜1mmまでなる熱延製品厚に
対して、この条件を満たす必要があり、連鋳機からでる
鋳片厚の下限はここに制約が生じる。
(b) According to the research conducted by the present inventors, when manufacturing thin steel sheets using thin slabs, the reduction ratio during hot rolling is small, so the composition of the hot rolled sheets remains coarse and the hot rolling The strength of the plate becomes insufficient or the ductility and toughness deteriorate. Furthermore, it was found that even after cold rolling and annealing, the texture was inappropriate and the mechanical properties deteriorated. In order to avoid this, it was found that the reduction ratio in hot rolling must be 60% or more, but for this purpose, the thickness of the hot rolled product is approximately 20 to 1 mm. It is necessary to satisfy the following conditions, and there is a restriction on the lower limit of the thickness of the slab that comes out of the continuous casting machine.

【0014】(ハ)薄スラブ化により増大する表面積に
よる熱放散を回避するのに有効なコイル巻取化のために
は、現在の巻取設備能力から厚み80mmが限界である
。このためからも連鋳機出口厚は80mm以下であるこ
とが必要である。
(c) For effective coil winding to avoid heat dissipation due to the increased surface area due to thinning of the slab, a thickness of 80 mm is the limit based on the current winding equipment capacity. For this reason as well, it is necessary that the continuous casting machine outlet thickness be 80 mm or less.

【0015】これらの条件を満たし、かつ、ベルト式薄
スラブ連鋳機で鋳造を可能とするには、連鋳機内に多段
のインライン圧下設備を必要とする。本発明における多
段インライン圧下は、連鋳機内で鋳片が高温で変形抵抗
が小さい凝固完了部とその前方の部分を圧下する所謂凝
固後圧下法および未凝固圧下法を連続して行うもので、
こられ未凝固圧下法および凝固後圧下法の組合せにより
最大圧下量約40mmを確保できる。このため熱間圧延
成品としての最大厚20mmを成品品質確保(熱間圧延
率60%の確保)に必要な鋳片厚50mmを出せる最大
鋳込厚は90mmである。一方、インライン圧下法で最
も圧下し易い圧下量は15〜20mmであるが、浸漬鋳
造で45〜50mmの最小厚を鋳込んだ後、インライン
圧下すると30mmの鋳片となる。
[0015] In order to satisfy these conditions and to enable casting with a belt-type continuous thin slab caster, a multi-stage inline reduction equipment is required within the continuous caster. The multi-stage in-line rolling in the present invention involves successively performing the so-called post-solidification rolling method and unsolidified rolling method in which the solidified part and the part in front of the solidified part where the slab is at high temperature and has low deformation resistance are rolled down in a continuous casting machine.
By combining the unsolidified rolling method and the post-solidified rolling method, a maximum rolling reduction of about 40 mm can be secured. Therefore, the maximum casting thickness that can produce a slab thickness of 50 mm, which is necessary to ensure product quality (ensuring a hot rolling rate of 60%) with a maximum thickness of 20 mm as a hot rolled product, is 90 mm. On the other hand, the easiest reduction amount in the in-line reduction method is 15 to 20 mm, but if the minimum thickness of 45 to 50 mm is cast by immersion casting and then in-line reduction, the slab becomes 30 mm.

【0016】従って、90〜45mm厚で鋳込んだ鋳片
をインライン圧下設備により圧延し、目標とする熱間仕
上圧延厚に応じた鋳片厚にして連鋳機から出すことは不
可能である。そこで本発明における凝固完了部とその前
後域を圧延する多段インライン圧下法の意義を詳述する
と次の通りである。
[0016] Therefore, it is impossible to roll a slab cast to a thickness of 90 to 45 mm using in-line rolling equipment, and then remove the slab from the continuous casting machine with the thickness corresponding to the target hot finish rolling thickness. . Therefore, the significance of the multi-stage in-line rolling method of rolling the solidified part and the regions before and after the solidified part in the present invention will be explained in detail as follows.

【0017】〈凝固後圧下・未凝固圧下のメタラジカル
メリットと、その時の圧下条件〉凝固完了部とその下流
近傍部の圧下作用・効果は、次の様にまとめられる。
<Metalradical merits of post-solidification rolling/non-solidifying rolling and rolling conditions at that time> The rolling actions and effects of the solidified area and its downstream vicinity can be summarized as follows.

【0018】(1)鋼中に固溶状態で存在する第2元素
がMnS,TiC,AIN等として微細析出するのを、
該圧下により析出を促進させ、次工程の軟質材製造に必
要な圧延前保定時間の短縮を狙うこと。
(1) The fine precipitation of the second element existing in solid solution in steel as MnS, TiC, AIN, etc.
The aim is to promote precipitation through this rolling and shorten the pre-rolling holding time required for the next process of producing soft material.

【0019】(2)同様に1200℃前後の高温時の圧
延であるのでMnSの析出を大きく促進させて、900
〜1200℃に存在する鋼の第二領域の脆化割れを回避
してコイル巻取時等における脆化割れを防止すること。
(2) Similarly, since rolling is carried out at a high temperature of around 1200°C, the precipitation of MnS is greatly promoted,
To avoid embrittlement cracks in the second region of steel that exist at temperatures up to 1200°C and prevent embrittlement cracks during winding of a coil, etc.

【0020】(3)パイプ材等の製品厚が厚いものに対
して、1200℃付近で約30%の該圧下を加えること
により、数mmの粗大γの再結晶を起こさせて数百μに
し、靱性を向上させるものである。
(3) For thick products such as pipe materials, by applying a reduction of about 30% at around 1200°C, coarse γ of several mm is recrystallized and reduced to several hundred microns. , which improves toughness.

【0021】具体的な条件としては、以下のように例示
される。(1)連続焼鈍用AI−K鋼・・・上記(1)
目的 断面平均温度が1200℃以下の温度域で、圧下率5〜
50%の圧延。 (2)上記以外の加工用冷延鋼板・・・上記(1)目的
断面平均温度が1300〜1000℃の温度域で、圧下
率5%以上の凝固後圧下。 (3)Mn/S<20の材料・・・上記(2)の効果目
的 表面温度が1200℃以上の条件で、圧下率5%以上の
圧延。
[0021] Specific conditions are exemplified as follows. (1) AI-K steel for continuous annealing...(1) above
In a temperature range where the average temperature of the target section is 1200℃ or less, the reduction rate is 5~
50% rolling. (2) Cold-rolled steel sheets for processing other than those mentioned above: (1) Post-solidification reduction with a reduction rate of 5% or more in a temperature range where the average temperature of the target section is 1300 to 1000°C. (3) Material with Mn/S<20: Rolling with a rolling reduction of 5% or more under conditions where the objective surface temperature of (2) above is 1200°C or more.

【0022】この効果として例えば、実施例の加工用A
I−K鋼において、断面平均温度が1250℃で圧下率
10%の凝固後圧下を行うことにより、次の効果が得ら
れる。ランクフォード値(平均値):約0.1〜0.2
の向上 伸び:約1〜2%の向上 降伏応力:約1〜2kg/mm2 の低下次に凝固完了
部近傍の未凝固部圧下の作用効果は次の様にまとめられ
る。凝固完了直前部は半凝固状態であるので、 (1)低荷重で圧延でき、且つ、 (2)各圧下ロール間鋳片にテンションを付与しながら
圧延すれば半凝固部の流動を抑制して成分偏析を防止し
、更に、 (3)センターポロシティの軽減と解消と、(4)中心
割れの解消と、 (5)等軸晶の形成による凝固組織の微細化を計ること
、ができる。
As an example of this effect, for example, the processing A of the embodiment
In I-K steel, the following effects can be obtained by performing post-solidification reduction at a cross-sectional average temperature of 1250° C. and a reduction rate of 10%. Lankford value (average value): approximately 0.1 to 0.2
Improved elongation: about 1 to 2% Improvement Yield stress: Decrease of about 1 to 2 kg/mm2 Next, the effects of reducing the unsolidified area near the solidified area can be summarized as follows. Since the part just before solidification is completed is in a semi-solidified state, (1) it can be rolled with a low load, and (2) if it is rolled while applying tension to the slab between each reduction roll, the flow in the semi-solidified part can be suppressed. In addition to preventing component segregation, it is also possible to (3) reduce and eliminate center porosity, (4) eliminate center cracks, and (5) refine the solidified structure by forming equiaxed crystals.

【0023】即ち(3)のセンターポロシティについて
は、鋳片の凝固過程において液体から固体へ凝固する時
に生じる体積凝縮によって起こるが、収縮体積分を圧延
により補償することにより軽減し、ひいては解消するも
のである。
That is, the center porosity (3) is caused by volume condensation that occurs when the slab solidifies from a liquid to a solid during the solidification process, but it can be reduced and even eliminated by compensating for the shrinkage volume by rolling. It is.

【0024】(4)の中心割れについては、クレーター
エンド(凝固完了点)において(3)と同様に液体から
固定へ凝固する時、局部的封じ込めが発生すると、その
部分に溶鋼が供給されず線状あるいは面状の割れとして
発生する。これを該圧延により体積補償すると同時に上
下凝固部を圧着させるものである。
Regarding the central crack in (4), when local confinement occurs when solidifying from liquid to solid at the crater end (solidification completion point) as in (3), molten steel is not supplied to that part and the line It occurs as a shaped or planar crack. The volume is compensated by this rolling, and at the same time, the upper and lower solidified parts are pressed together.

【0025】(5)については、圧下により凝固核が生
成され、等軸晶の形成が促進される。これにより、粗大
な凝固組織が微細化方向へ向かう。
Regarding (5), solidification nuclei are generated by rolling down and the formation of equiaxed crystals is promoted. This causes the coarse solidified structure to become finer.

【0026】具体的な条件としては、連鋳機内において
、凝固率が0.5〜1.0mmの間にある鋳片を複数の
圧下ロール(多段インライン圧下ロール)により総圧下
量が1分間に0.5〜2.0mmとなるよう圧下する。 これによって表1に示す様な効果が得られる。
[0026] Specifically, in a continuous caster, slabs with a solidification rate between 0.5 and 1.0 mm are rolled down by a plurality of reduction rolls (multi-stage inline reduction rolls) with a total reduction amount of 1 minute. Roll down to 0.5 to 2.0 mm. As a result, effects as shown in Table 1 can be obtained.

【0027】[0027]

【表1】[Table 1]

【0028】次に本発明におけるベルト式薄スラブ連鋳
機においては、短辺もベルトに同期して移動できる機能
が好ましい。これは、鋳片品質の確保並びに操業性の点
から不可欠であるが、30〜90mmの薄鋳片の幅は圧
延によっては大きく変更できない。そのため、要求され
る種々の製品幅に対応した造り込みは連鋳機での鋳込段
階で行う必要がある。そのため公知の竪ロールを配置し
た幅圧延法で製造されている薄鋼板の600〜2200
mmの現行の製品幅範囲に対して、厚みが30〜90m
mの鋳片の場合、製品の幅のロット毎に連鋳機の鋳造を
一旦停止し、鋳造幅の変更作業を必要とすることになる
Next, in the belt-type continuous thin slab casting machine of the present invention, it is preferable that the short sides also be moved in synchronization with the belt. This is essential from the viewpoint of ensuring slab quality and operability, but the width of a thin slab of 30 to 90 mm cannot be changed significantly by rolling. Therefore, it is necessary to create products corresponding to various required product widths at the casting stage using a continuous casting machine. Therefore, 600~2200
Thickness is 30-90m compared to the current product width range of mm.
In the case of a slab of m, it is necessary to temporarily stop casting in the continuous caster and change the casting width for each lot of product width.

【0029】しかし、本課題を、本発明では特開昭63
−183757号、特開昭63−264252号、特開
昭63−264251号公報などに記載の発明を本連鋳
プロセスに導入することにより解消するものである。
[0029] However, in the present invention, this problem has been solved by
This problem can be solved by introducing the inventions described in JP-A-183757, JP-A-63-264252, JP-A-63-264251, etc. into the present continuous casting process.

【0030】このように本発明は、前述の多段インライ
ン圧下設備と上記連鋳機により従来の公知プロセスでは
対処できない範囲の製品サイズが良好な内部品質で製造
可能となり、高品質で且つ飛躍的に生産量を増大させる
[0030] As described above, the present invention makes it possible to manufacture products with good internal quality in a range of product sizes that cannot be handled by conventional known processes by using the multi-stage inline reduction equipment and the continuous casting machine described above. Increase production.

【0031】更に本発明者等は、公知プロセスである図
1によるAルートプロセスで製造された熱延製品並びに
冷延製品を詳細に調査したところ、製品表面にスケール
疵が多数存在することを見出した。そして、その原因は
このプロセスにおいて、現在のデスケーリング設備では
仕上圧延前に完全に鋳片表面に存在するスケールを除去
できないことによる。従来の厚手連鋳プロセスでは、鋳
片のスケールにVertical  Scale  B
reaker(VSB)などにより加工を付与し、鉄母
材から剥離されやすくした後、デスケーリング設備によ
りスケール除去している。しかるにAルートプロセスで
は、鋳片は鋳造後何の加工も受けないでそのままデスケ
ーリングを受ける。本発明者等は、鋳造のままの鋳片上
のスケールは粒界部分を中心にスケールが根深く侵入し
ていることを見出した。同時にこのようなスケールを剥
離しやすくするには、鋳片表面に曲げ歪や引張・幅方向
圧延歪を加えることが有利であることを見出した。従来
のVSBはこの点からも有効であるが、薄スラブプロセ
スでは鋳片厚が薄いためVSBをかけると鋳片は幅方向
に挫屈しやすい。本発明者等は、この問題を解決するに
は、図1のBルートのように鋳片を鋳造直後に巻取り、
巻戻して表面に曲げ歪を与えることが最も有効であるこ
とを見出した。
[0031] Further, the present inventors investigated in detail hot-rolled products and cold-rolled products manufactured by the A route process shown in FIG. 1, which is a known process, and found that there were many scale defects on the product surface. Ta. The reason for this is that in this process, current descaling equipment cannot completely remove scale present on the surface of the slab before finish rolling. In the conventional thick continuous casting process, Vertical Scale B is applied to the scale of the slab.
After applying processing using a reaker (VSB) or the like to make it easier to peel off from the iron base material, the scale is removed using descaling equipment. However, in the A route process, the slab is directly descaled without undergoing any processing after casting. The present inventors have discovered that scale on an as-cast slab penetrates deeply into grain boundaries. At the same time, we have found that it is advantageous to apply bending strain, tensile strain, and rolling strain in the width direction to the surface of the slab in order to facilitate the peeling off of such scales. Conventional VSB is effective in this respect as well, but in the thin slab process, the slab is thin, so when VSB is applied, the slab tends to buckle in the width direction. The present inventors believe that in order to solve this problem, the slab is wound up immediately after casting as shown in route B in Fig. 1.
We have found that it is most effective to apply bending strain to the surface by unwinding.

【0032】公知文献でのBルートの目的とする所は、
鋳造鋳片の熱放散を回避し、顕熱の有効利用であったが
、本発明はそれ以外に完璧なデスケーリングにとっても
この巻取り、巻戻し機能が必要不可欠であることを強調
する。
[0032] The purpose of route B in the known literature is:
Although the heat dissipation of the cast billet was avoided and sensible heat was effectively used, the present invention emphasizes that this winding and unwinding function is also essential for perfect descaling.

【0033】更に、本発明は熱間仕上圧延に入るまでに
完全にデスケーリングを行うための最良方法として、仕
上圧延の前に連鋳機出口点で巻き取られた鋳片を巻き戻
しするが、該巻戻し鋳片を速やかにデスケーリングする
ことを見出した。従って、巻戻し設備と、デスケーリン
グ設備は可能な限り仕上圧延機に接近させることが望ま
しい。
Furthermore, the present invention provides the best method for completely descaling before hot finishing rolling, by unwinding the cast slab at the exit point of the continuous caster before finishing rolling. It was discovered that the rewound slab can be rapidly descaled. Therefore, it is desirable that the unwinding equipment and the descaling equipment be located as close to the finishing mill as possible.

【0034】次は、製品の材質特性を目標とする特性に
するための手段である。すなわち薄スラブプロセスでは
前記(ロ)にも示した様に熱間圧延の圧下率が小さいた
め、熱延板の組織が粗大のままで残り、鋼種によっては
強度あるいは延性及び靱性に不足を生じる。そのための
必要手段は前述の圧下率の確保であるが、高延性、並び
に絞り性を要求される鋼種に対しては、更にMnSを始
めとした析出物の形態制御、及びハイテン材ではTi、
Nb等の析出硬化元素の固溶維持が必要となる。
[0034] Next is a means for making the material characteristics of the product the target characteristics. That is, in the thin slab process, as shown in (b) above, the reduction ratio in hot rolling is small, so the structure of the hot rolled sheet remains coarse, resulting in insufficient strength, ductility, and toughness depending on the steel type. The necessary means for this purpose is to secure the aforementioned rolling reduction ratio, but for steel types that require high ductility and drawability, it is also necessary to control the morphology of precipitates such as MnS, and for high tensile strength materials, it is necessary to control the morphology of precipitates such as Ti,
It is necessary to maintain a solid solution of precipitation hardening elements such as Nb.

【0035】この点に関し、本発明者等はこれらの析出
物の形態制御及び固溶維持には、連鋳片を連鋳機の出側
で巻取装置で巻取ったあと、仕上圧延機前面で巻き戻す
間の保定温度と保定時間コントロールで制御可能である
ことを見出した。そしてこの保定時間はその材料のAr
3 点以上の温度であることを基本とし、かつ、その温
度及び保定時間は、鋼種によって異なることを見出した
ことである。従来の公知の文献によると、鋳片を巻き取
った後、巻き戻す間は連鋳−圧延間のバッファー用保熱
炉としての活用以外何の目的も付加されていなかったが
、本発明はこの保熱炉に鋼種に応じて必要な温度で必要
な時間の間、該コイルを保定できるようにし、鋼種に応
じて必要な析出物の形態制御及び固溶維持を行おうとす
るものである。
Regarding this point, the present inventors have discovered that in order to control the form of these precipitates and maintain solid solution, after the continuous slab is wound up with a winding device on the exit side of the continuous casting machine, It was found that this can be controlled by controlling the holding temperature and holding time during unwinding. And this retention time is the Ar of the material.
It was found that the temperature is basically 3 or more points, and that the temperature and holding time differ depending on the steel type. According to conventionally known documents, after the slab is rolled up, there is no additional purpose for the period during which it is unrolled other than to use it as a buffer heat retention furnace between continuous casting and rolling. The purpose is to enable the coil to be held in a heat retention furnace at a required temperature for a required period of time depending on the steel type, and to control the form of precipitates and maintain solid solution depending on the steel type.

【0036】薄肉連続鋳造では、冷却速度が遅いため、
鋼中の第二元素は固溶状態で凍結されるが、析出も微細
に分散した状態で起こる。この場合固溶状態と言っても
熱延後の巻取保持によって微細析出物となる場合が多い
ので、熱延後の材質は硬化する。このため軟質冷延鋼板
を造るためにはA3 変態点以上の高温で保定し、高温
で微細に析出するMnS,TiC,AINのような析出
物を成長粗大化させて、強度への影響を低下させること
が必要である。
[0036] In thin-wall continuous casting, since the cooling rate is slow,
Although the second element in steel is frozen in a solid solution state, precipitation also occurs in a finely dispersed state. In this case, although it is said to be in a solid solution state, it often becomes fine precipitates due to the coiling and holding after hot rolling, so the material after hot rolling hardens. Therefore, in order to produce soft cold-rolled steel sheets, it is necessary to maintain the temperature at a high temperature above the A3 transformation point, and allow precipitates such as MnS, TiC, and AIN, which are finely precipitated at high temperatures, to grow and coarsen to reduce their effect on strength. It is necessary to do so.

【0037】このため条件としては次の(A)、(B)
例が主体となる。 (A)連続焼鈍用AI−K鋼コイル全長、全断面を保熱
炉で1050℃以上、15分以上保定できるようにする
。 (B)上記以外の加工用冷鋼板用鋼コイル全長、全断面
を保熱炉で1050〜1200℃、10分以上保定でき
るようにする。
[0037] Therefore, the following conditions (A) and (B) are required.
Examples are the main focus. (A) The entire length and entire cross section of the AI-K steel coil for continuous annealing can be maintained at 1050° C. or higher for 15 minutes or longer in a heat retention furnace. (B) The entire length and entire cross section of the steel coil for cold steel sheets for processing other than those mentioned above can be maintained at 1050 to 1200°C for 10 minutes or more in a heat retention furnace.

【0038】これにより具体例〔2〕に示している様に
、降伏応力が低く、ランクフォード値(平均値)の高い
軟質冷延鋼板が得られる。
As a result, as shown in Example [2], a soft cold-rolled steel sheet having a low yield stress and a high Lankford value (average value) can be obtained.

【0039】そこで前記保熱炉は単なるバッファー炉で
はなく、積極的な保温・加熱機能を有することを特徴と
する。そして、図2に示す様に、単なる3〜5分と言う
移動時間でのシュミレーションの結果でも存在するよう
なエッジ部及びトップ鋳片部の低温部の温度を高温に確
保し、全断面の温度を均一化し、成品の材質特性を全長
、全幅にわたって均一化する機能を有せしめるものであ
る。
[0039] Therefore, the heat retention furnace is not just a buffer furnace, but is characterized in that it has active heat retention and heating functions. As shown in Figure 2, we ensured that the temperature of the edge and top slab parts at a high temperature was maintained at a high temperature, which was also present in the simulation results with a moving time of only 3 to 5 minutes, and the temperature of the entire cross section was maintained at a high temperature. It has the function of making the material properties of the finished product uniform over the entire length and width.

【0040】なお、鋳片エッジ部のわずかな温度の補償
は熱間仕上圧延前面に設置するエッジヒーターによって
も可能である。このエッジヒーターの設置は生産量、鋼
種及び鋼種構成などにより必要に応じて設置されれば有
効な品質保証設備となる。
[0040] It is also possible to compensate for the slight temperature at the edge of the slab by using an edge heater installed in front of the hot finish rolling. If this edge heater is installed as necessary depending on production volume, steel type, steel type composition, etc., it will become an effective quality assurance equipment.

【0041】以上、本発明の主要な技術手段を記したが
、他の手段である連鋳機におけるバルジング防止用稠密
分割ロールと冷却設備、鋳片の剪断設備、ダミーバー引
抜装置、デスケーリング設備等は当該業界での周知技術
を採用するものである。
The main technical means of the present invention have been described above, but other means include dense split rolls for preventing bulging in a continuous caster, cooling equipment, slab shearing equipment, dummy bar pulling equipment, descaling equipment, etc. This method employs well-known technology in the industry.

【0042】また本発明の対象とする熱間仕上圧延機は
、鉄鋼一貫メーカーで広く採用されている連続多段仕上
圧延機であってもよいし、ステッケルミルの様な単独圧
延設備でもよい。特に、前者においてクロップシャー、
ランアウトテーブル、コイラーを始めとした仕上圧延機
としての必要設備を付帯させることは当然の前提である
The hot finishing mill to which the present invention is applied may be a continuous multi-stage finishing mill that is widely used in integrated steel manufacturers, or may be a single rolling facility such as a Steckel mill. In particular, in the former, Cropshire,
It is a natural premise that necessary equipment for a finishing rolling mill, such as a runout table and a coiler, be included.

【0043】[0043]

【実施例】以下に本発明の実施例を説明する。本発明の
実施例は図3に示す如く、ベルト式薄スラブ連鋳機1と
、それに関連して以下の設備を配置したプロセスである
。すなわち、厚み90〜30mm、幅600〜2200
mmの鋳片を鋳造するベルト式薄スラブ連鋳機1に、例
えばベルトに同期して移動し、かつ鋳片幅を変更できる
移動短辺(図示せず)並びに二次冷却帯において鋳片品
質を充分に確保するバルジング防止用稠密分割ロール4
と冷却設備(気水冷却装置)2及び目標とする仕上圧延
厚に応じて鋳片厚みを凝固完了部とその前後近傍部を多
段に圧延するインラン圧下設備3を装備し、該連鋳機1
の出側には、鋳片の移動速度に同期しながら迅速に、か
つ所定の長さに鋳片を切断できる剪断設備5並びにダミ
ーバー引抜き装置7および一段あるいは数段のコイル巻
取装置6とコイル移載機(吊上げ式)9を配置する。 更に、該設備の後方に該コイル巻取装置6で巻き取られ
たコイルを該コイル移載機9から受け、直ちにまたは保
温式コイルボックス貨車14から装入できる均熱・加熱
機能を有し、該鋳片のAr3 変態点以上で、かつ品質
確保に必要な所定時間以上の保定ができるトンネル型の
コイル加熱炉8を配備し、所定時間のコイル保定が完了
した後に移載機13によりデスケーリング設備および必
要に応じて設置されたエッジヒーターを装備した熱間仕
上圧延機10の入側に配置したコイル巻戻設備11に装
着し、該コイルを巻き戻す。そしてディレーテーブル1
2出側でデスケーリングを行い、必要に応じてエッジ加
熱を行った後、目標とする成品サイズに熱間仕上圧延を
行う薄スラブの鋳造圧延プロセスである。なお、熱間仕
上圧延機の前面には、上記機能の設備以外にバー接合設
備、幅調整設備等の仕上圧延に付加される設備の配置は
何ら妨げるものではない。
[Examples] Examples of the present invention will be described below. As shown in FIG. 3, the embodiment of the present invention is a process in which a belt-type thin slab continuous casting machine 1 and the following equipment are arranged in relation to it. That is, thickness 90-30mm, width 600-2200mm
A belt-type thin slab continuous caster 1 that casts slabs of mm in diameter is used, for example, to control slab quality at a movable short side (not shown) that moves in synchronization with the belt and can change slab width, as well as at a secondary cooling zone. Dense split roll 4 for preventing bulging to ensure sufficient
The continuous casting machine 1 is equipped with cooling equipment (air-water cooling equipment) 2, and in-run rolling equipment 3 that rolls the solidified part and the parts in the vicinity before and after it in multiple stages to reduce the thickness of the slab according to the target finish rolling thickness.
On the outlet side, there is a shearing equipment 5 that can quickly cut the slab into a predetermined length while synchronizing with the moving speed of the slab, a dummy bar pulling device 7, and one or several stages of coil winding devices 6 and coils. A transfer machine (lifting type) 9 is arranged. Furthermore, the equipment has a soaking/heating function that allows the coil wound by the coil winding device 6 to be received from the coil transfer machine 9 and loaded immediately or from the heat-retaining coil box freight car 14 at the rear of the equipment. A tunnel-type coil heating furnace 8 capable of holding the slab above the Ar3 transformation point and for a predetermined time required to ensure quality is installed, and after the coil holding for the predetermined time is completed, the transfer machine 13 descales the slab. The coil is unwound by being attached to a coil unwinding equipment 11 disposed on the entry side of a hot finishing rolling mill 10 equipped with equipment and an edge heater installed as necessary. and delay table 1
2. This is a thin slab casting and rolling process in which descaling is performed on the exit side, edge heating is performed as necessary, and then hot finish rolling is performed to the target finished product size. Note that, in addition to the equipment for the above-mentioned functions, there is no restriction on the arrangement of equipment added to finishing rolling, such as bar joining equipment and width adjustment equipment, on the front side of the hot finishing rolling mill.

【0044】図3の連鋳機1における鋳造条件は次の通
りである。 鋳造厚:50mm,  コイル厚:50〜35mm鋳造
幅:700〜2100mm 鋳造速度:max10m/min 機長:30m インラインリダクション能力:max15mm鋼種:A
I−K ここで、幅可変・移動短辺設備は特開昭63−1837
57号、特開昭63−264252号公報に記載の設備
であり、インラインリダクション圧下設備3は圧下能力
max400Tonのテンション圧延可能なセグメント
3基よりなる凝固完了部とその前後の未凝固部及び凝固
部の圧延により、max15mmの圧延能力を持たせた
ものである。
The casting conditions in the continuous casting machine 1 shown in FIG. 3 are as follows. Casting thickness: 50mm, Coil thickness: 50-35mm Casting width: 700-2100mm Casting speed: max 10m/min Machine length: 30m Inline reduction capacity: max 15mm Steel type: A
I-K Here, the width variable/moving short side equipment is disclosed in Japanese Patent Application Laid-open No. 63-1837.
No. 57, JP-A No. 63-264252, the in-line reduction rolling equipment 3 includes a solidified part consisting of three tension-rollable segments with a maximum reduction capacity of 400 tons, an unsolidified part before and after the solidified part, and a solidified part. By rolling, it has a maximum rolling capacity of 15 mm.

【0045】〔1〕生産能力図3の設備において、鋳造
厚50mmをそのまま巻き取り、熱間仕上圧延機で圧延
した場合の生産量と、鋳造厚は50mmだがインライン
リダクションで圧延し、熱延成品厚に応じてスラブコイ
ル厚を50〜30mmに圧延した場合の生産量を、実際
の操業における生産実績で検証した。なお、この場合の
熱延製品厚に応じたスラブコイル厚は表2に示す。且つ
この場合の製品幅は700〜2100mmに鋳造時に造
り分けて製造された。
[1] Production Capacity In the equipment shown in Figure 3, the production volume when a casting with a thickness of 50 mm is rolled as it is and rolled with a hot finishing mill, and the production volume when a casting with a thickness of 50 mm is rolled with in-line reduction and a hot-rolled product is produced. The production volume when rolling the slab coil to a thickness of 50 to 30 mm was verified based on production results in actual operations. In addition, the slab coil thickness according to the hot-rolled product thickness in this case is shown in Table 2. In this case, the width of the product was 700 to 2100 mm during casting.

【0046】[0046]

【表2】[Table 2]

【0047】生産実績でみると、   スラブコイル厚50mm単サイズの場合     
       3万Ton/月  スラブコイル厚50
〜30mmに調整した場合    37万Ton/月と
なり、インラインリダクションの設置により薄スラブプ
ロセス対象生産量が約10倍以上となり、薄スラブプロ
セス適用鋼種が飛躍的に増大することが検証される。
[0047] Looking at the production results, in the case of a single size slab coil with a thickness of 50 mm
30,000 tons/month Slab coil thickness 50
When adjusted to ~30mm, it becomes 370,000 tons/month, which proves that the installation of inline reduction will increase the production volume for the thin slab process by more than 10 times, and dramatically increase the number of steel types applicable to the thin slab process.

【0048】〔2〕図3に示す設備で鋳造速度10mm
/min、鋳片幅1200mmに鋳造した鋳造厚50m
m鋳片をインラインリダクション圧下設備3により35
mmのコイル厚にした後、走間切断機により10m長の
スラブとし、該コイルを前記箱型加熱炉に装入し、直ち
に熱間圧延機で製品厚5.0mmに圧延することにより
、図1のAルートをシュミレートした試験(これをAル
ートと呼ぶ)と、図3のコイル巻取装置6で40ton
づつのコイルに巻き取り、直ちに同巻取装置を逆転させ
巻戻しを行い、定常部を走間切断機により10m長のス
ラブを取り、直ちに箱型加熱炉に装入し、直ちに熱間圧
延機で製品厚3.0mmに圧延することにより図1のB
ルートをシュミレートした試験(これをBルートと呼ぶ
)と、更に、図3のコイル巻取装置6で40tonコイ
ルに巻き取った後、保熱カバーをかけ20分間保定し、
しかる後巻取装置を逆転させ巻戻しを行い、定常部を走
間切断機により10mの長さのスラブを取り、直ちに箱
型加熱炉に装入し、直ちに熱間圧延機で成品厚5.0m
mに圧延した本発明をシュミレートした試験(本発明ル
ートと呼ぶ)の3ルートの試験を各10スラブづつ行い
、表面欠陥の調査と冷延・焼鈍後の機械的性質を調査し
た。この場合の詳細製造条件と製造結果は表3及び表4
に示す通りである。
[2] Casting speed 10 mm using the equipment shown in Figure 3
/min, casting thickness 50m cast to slab width 1200mm
m slab is reduced to 35 m by in-line reduction equipment 3.
After making the coil thickness 5.0 mm, it was cut into a 10 m long slab using a running cutting machine, and the coil was charged into the box-shaped heating furnace and immediately rolled to a product thickness of 5.0 mm using a hot rolling mill. A test simulating the A route in Figure 1 (this is called the A route) and the coil winding device 6 in Figure 3 were used to test 40 tons.
The winding device is immediately reversed to unwind the coil, and the steady section is cut into a 10m long slab using a running cutter. Immediately it is charged into a box-shaped heating furnace, and immediately transferred to a hot rolling machine. B in Figure 1 was obtained by rolling the product to a thickness of 3.0 mm.
In a test simulating the route (this is called route B), the coil was wound into a 40 ton coil using the coil winding device 6 shown in Fig. 3, and then covered with a heat insulating cover and held for 20 minutes.
After that, the winding device is reversed to perform unwinding, and the steady section is cut into a 10 m long slab using a running cutting machine. Immediately, the slab is charged into a box-shaped heating furnace, and immediately heated to a hot rolling mill to reduce the thickness of the finished product to 5.5 m. 0m
Three routes (referred to as the "invention route") were conducted on 10 slabs each, simulating the present invention rolled to a thickness of 100 mm, and the surface defects and mechanical properties after cold rolling and annealing were investigated. Detailed manufacturing conditions and manufacturing results in this case are shown in Tables 3 and 4.
As shown.

【0049】[0049]

【表3】[Table 3]

【0050】[0050]

【表4】[Table 4]

【0051】この結果、前述のようにAルート材は鋳造
時の生成したスケールの剥奪が充分行えないため、冷延
板でのスケール疵発生率が高い。
As a result, as mentioned above, the A root material cannot sufficiently remove the scale generated during casting, resulting in a high occurrence rate of scale defects in cold-rolled sheets.

【0052】これに対して、巻取り、巻戻ししてコイル
に加工を加えたBルート材及び本発明ルート材のスケー
ル疵は激減し、良好な成品が得られる。
On the other hand, the scale defects of the B root material and the root material of the present invention, which are processed into coils by winding and unwinding, are drastically reduced, and good products can be obtained.

【0053】また、前述したコイルの高温保定の効果は
Bルート材と本発明ルート材の比較より得られる。即ち
、Bルート材と本発明ルート材はAI−Kであったため
、1050℃で20分の保定時間の差をつけたが、これ
によりMnSの析出制御が出来、ランクフォード値(平
均値)が著しく向上し、伸びも良くなり、薄スラブプロ
セスで製造が困難と言われる低降伏応力の軟質材が製造
できることが判明した。
Further, the above-mentioned effect of maintaining the high temperature of the coil can be obtained by comparing the B root material and the root material of the present invention. That is, since the root material B and the root material of the present invention were AI-K, a difference of 20 minutes in holding time was made at 1050°C, which made it possible to control the precipitation of MnS, and the Lankford value (average value) It has been found that it is possible to produce a soft material with low yield stress, which is said to be difficult to produce using a thin slab process.

【0054】[0054]

【発明の効果】以上、本発明の薄スラブプロセスにより
、成品サイズに伴う生産制約が解除されるため、薄スラ
ブプロセスによる生産量が飛躍的に増大する上、圧延時
にスケールの剥離も充分行え、プロセス上の問題からく
る表面欠陥問題は解消する。更に、成品の品質も向上し
、薄スラブプロセスで特に問題とされている軟質材で高
加工性を要求される鋼種も製造可能となり、適用鋼種を
著しく増大させる。
[Effects of the Invention] As described above, the thin slab process of the present invention removes the production constraints associated with the product size, so the production volume by the thin slab process can be dramatically increased, and the scale can be removed sufficiently during rolling. Surface defect problems caused by process problems are eliminated. Furthermore, the quality of the finished product is improved, and it becomes possible to manufacture steel types that require high workability from soft materials, which are a particular problem in the thin slab process, significantly increasing the number of applicable steel types.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】公知の薄スラブ製造プロセスの例を示す図であ
る。
FIG. 1 shows an example of a known thin slab manufacturing process.

【図2】鋳造から圧延前までのスラブコイルの温度変化
の例を示す図である。
FIG. 2 is a diagram showing an example of temperature changes in a slab coil from casting to before rolling.

【図3】本発明の薄スラブの鋳造・圧延設備の例を示す
図である。
FIG. 3 is a diagram showing an example of thin slab casting/rolling equipment of the present invention.

【符号の説明】[Explanation of symbols]

1  ベルト式薄スラブ連鋳機 2  冷却設備 3  インライン圧下設備 4  稠密分割ロール 5  剪断設備 6  コイル巻取装置 7  ダミーバー引抜き装置 8  トンネル型コイル加熱炉 9  コイル移載機 10  熱間仕上圧戻機 11  コイル巻戻設備 12  ディレーテーブル 13  移載機 14  保温式コイルボックス貨車 1 Belt type thin slab continuous casting machine 2 Cooling equipment 3 In-line reduction equipment 4 Dense split roll 5 Shearing equipment 6 Coil winding device 7 Dummy bar extraction device 8 Tunnel type coil heating furnace 9 Coil transfer machine 10 Hot finishing press back machine 11 Coil unwinding equipment 12 Delay table 13 Transfer machine 14 Insulated coil box freight car

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ベルト式薄スラブ連鋳機で鋳造した薄
スラブの凝固完了部とその前後に亘る鋳造部を多段式イ
ンライン圧下設備で漸次圧延し、この後Ar3変態点以
上の保定をして仕上圧延することを特徴とする薄スラブ
の鋳造・圧延方法。
[Claim 1] The solidified part of a thin slab cast by a belt-type thin slab continuous caster and the cast parts before and after the solidified part are gradually rolled in a multi-stage inline rolling equipment, and then maintained at the Ar3 transformation point or higher. A thin slab casting and rolling method characterized by finish rolling.
【請求項2】  ベルト式連鋳機、稠密分割ロール装置
、多段式インライン圧下設備、剪断機、コイル巻取機、
更にこれに続いてコイル巻取機で巻き取られたコイルを
直ちに搬送し、所定の位置において該コイルをArc変
態点以上で、かつ品質確保に必要な所定時間以上の保熱
ができるコイル加熱設備を順次配置し、これに続いてコ
イル巻戻し設備を設け、更にクロップシャー、デスケー
リング設備及び必要に応じて設置されたエッジヒーター
を装備した熱間仕上圧延機を設け、目標とする成品サイ
ズに熱間仕上圧延を行う薄スラブの鋳造・圧延装置。
[Claim 2] Belt type continuous casting machine, dense split roll device, multi-stage inline reduction equipment, shearing machine, coil winding machine,
Furthermore, following this, coil heating equipment is capable of immediately conveying the coil wound by the coil winding machine and keeping the coil at a predetermined position at a temperature above the Arc transformation point and for a predetermined time period necessary to ensure quality. This is followed by a coil unwinding facility, followed by a hot finishing mill equipped with a crop shear, descaling facility, and an edge heater installed as necessary to achieve the target product size. Thin slab casting and rolling equipment that performs hot finish rolling.
JP2406114A 1990-12-25 1990-12-25 Casting and rolling method for thin slab Expired - Lifetime JP2863013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406114A JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406114A JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Publications (2)

Publication Number Publication Date
JPH04224003A true JPH04224003A (en) 1992-08-13
JP2863013B2 JP2863013B2 (en) 1999-03-03

Family

ID=18515738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406114A Expired - Lifetime JP2863013B2 (en) 1990-12-25 1990-12-25 Casting and rolling method for thin slab

Country Status (1)

Country Link
JP (1) JP2863013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538836A (en) * 2007-09-13 2010-12-16 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Compact flexible continuous strip production equipment for continuous, semi-continuous and batch operation
CN104438326A (en) * 2014-10-17 2015-03-25 武汉钢铁(集团)公司 Rolling technology for high-carbon steel in thin slab casting and rolling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122107A (en) * 1982-01-18 1983-07-20 Hitachi Ltd Continuous and direct sheet rolling plant
JPS597464A (en) * 1982-07-06 1984-01-14 Kawasaki Steel Corp Method and device for continuous casting of thin steel plate
JPS62187505A (en) * 1986-02-12 1987-08-15 Kawasaki Steel Corp Method and installation for producing hot steel strip
JPS62270257A (en) * 1986-05-19 1987-11-24 Sumitomo Heavy Ind Ltd Apparatus for producing continuously rulled stock for metal sheet
JPH01130859A (en) * 1987-11-17 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Strip manufacturing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122107A (en) * 1982-01-18 1983-07-20 Hitachi Ltd Continuous and direct sheet rolling plant
JPS597464A (en) * 1982-07-06 1984-01-14 Kawasaki Steel Corp Method and device for continuous casting of thin steel plate
JPS62187505A (en) * 1986-02-12 1987-08-15 Kawasaki Steel Corp Method and installation for producing hot steel strip
JPS62270257A (en) * 1986-05-19 1987-11-24 Sumitomo Heavy Ind Ltd Apparatus for producing continuously rulled stock for metal sheet
JPH01130859A (en) * 1987-11-17 1989-05-23 Ishikawajima Harima Heavy Ind Co Ltd Strip manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538836A (en) * 2007-09-13 2010-12-16 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Compact flexible continuous strip production equipment for continuous, semi-continuous and batch operation
CN104438326A (en) * 2014-10-17 2015-03-25 武汉钢铁(集团)公司 Rolling technology for high-carbon steel in thin slab casting and rolling

Also Published As

Publication number Publication date
JP2863013B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
RU2383634C2 (en) Procedure for production of electro-technical flat bar with oriented grain
JP3553975B2 (en) Method and apparatus for the production of steel strip or sheet
US20070199631A1 (en) Method for producing a hot strip from a steel which has a high manganese content
JP5350253B2 (en) Method for producing flat steel products from boron microalloyed multiphase steels
US9144839B2 (en) Method for producing microalloyed tubular steel in combined casting-rolling installation and microalloyed tubular steel
JP2010508433A (en) Method for producing a flat steel product from steel forming a composite phase microstructure
EP1157138B9 (en) Cold rolled steel
JP2001525253A (en) Method and apparatus for producing high strength steel strip
KR20190077201A (en) Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet and method for manufacturing the same
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
KR20190078408A (en) Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
WO2021052312A1 (en) Martensitic steel strip and manufacturing method therefor
KR20030064761A (en) Method of providing steel strip to order
TW202024356A (en) Thin steel sheet manufacturing apparatus and thin steel sheet manufacturing method
US20120305212A1 (en) Process and device for producing hot-rolled strip from silicon steel
JP3190319B2 (en) Twin roll continuous casting machine
JP2863013B2 (en) Casting and rolling method for thin slab
JP2010508436A (en) Process for producing flat steel products from aluminum alloyed multiphase steels
WO2019132425A1 (en) Non-oriented electrical steel sheet having small variation in mechanical property and thickness and manufacturing method therefor
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
US20220088654A1 (en) Combined casting and rolling installation and method for operating the combined casting and rolling installation
US20050199319A1 (en) High strength steel product with improved formability and steel manufacturing process
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13