JP4525690B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4525690B2
JP4525690B2 JP2007048255A JP2007048255A JP4525690B2 JP 4525690 B2 JP4525690 B2 JP 4525690B2 JP 2007048255 A JP2007048255 A JP 2007048255A JP 2007048255 A JP2007048255 A JP 2007048255A JP 4525690 B2 JP4525690 B2 JP 4525690B2
Authority
JP
Japan
Prior art keywords
slab
mold
spray
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007048255A
Other languages
Japanese (ja)
Other versions
JP2007185713A (en
Inventor
章 山内
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007048255A priority Critical patent/JP4525690B2/en
Publication of JP2007185713A publication Critical patent/JP2007185713A/en
Application granted granted Critical
Publication of JP4525690B2 publication Critical patent/JP4525690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼の連続鋳造方法に関し、とくに、2次冷却帯上部における不均一冷却に伴う鋳片表層欠陥発生を有効に防止しうる鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting how the steel, in particular, relates to a continuous casting how the steel can effectively prevent the cast piece surface layer defect due to nonuniform cooling in the secondary cooling zone top.

鋼鋳片を水冷鋳型を用いた連続鋳造により製造する場合、溶鋼を鋳型内で凝固させながら引き抜くが、この凝固殻は、ある程度以上の冷却の不均一があると外表面が凹凸になりやすく、さらなる凝固殻成長の不均一を招く結果となり、最悪の場合、鋳型内あるいは2次冷却帯内で鋳片表面に縦割れが発生する。
このような鋳片表面の縦割れは、主に炭素含有量0.10質量%を中心とする中炭素鋼に高頻度で発生する。縦割れが発生すると、圧延工程に鋳片を送るに先立って疵、欠陥部の除去作業(以下、手入れと記す)を要することとなる。欠陥発生の傾向は鋳造速度の増加によって著しく増加する傾向にあるため、今日の一般的スラブ連続鋳造機における鋳造速度が、 例えば10年前と比較して約1.5 〜3倍に増大していることも手入れ作業増大の一要因となっている。
When steel slabs are manufactured by continuous casting using a water-cooled mold, the molten steel is pulled out while solidifying in the mold. As a result, the solidified shell grows more unevenly. In the worst case, vertical cracks occur on the surface of the slab in the mold or in the secondary cooling zone.
Such vertical cracks on the surface of the slab occur frequently in medium carbon steel mainly having a carbon content of 0.10% by mass. When vertical cracks occur, the defect and defect removal work (hereinafter referred to as “care”) is required prior to sending the slab to the rolling process. Since the tendency of defect generation tends to increase significantly with the increase in casting speed, the casting speed in today's general slab continuous casting machine has increased by about 1.5 to 3 times compared to 10 years ago, for example. This is also a factor in increasing maintenance work.

従って、 冷却不均一に伴う凝固殻成長の不均一は、 今日優れた経済性が着目されて適用が拡大されつつある直送加熱(ホットチャージ)あるいは直送圧延(ダイレクトチャージ)の適用阻害要因であると同時に、生産性向上の要件である高速鋳造化の阻害要因にもなっている。
このような連続鋳造鋳片における表面縦割れの発生を防止するためには、凝固の初期段階(以下、初期凝固と記す)において均一緩冷却を行い、凝固殻成長を均一化し、かつ、「つめ」(凝固殻の倒れ込み)の生成を抑制することが肝要であると考えられ、多くの初期凝固制御に関する技術が開示されている。
Therefore, non-uniformity of solidified shell growth due to non-uniform cooling is an obstacle to the application of direct feed heating (hot charge) or direct feed rolling (direct charge), which has been increasingly applied today due to its outstanding economic efficiency. At the same time, it is an obstacle to high-speed casting, which is a requirement for improving productivity.
In order to prevent the occurrence of surface vertical cracks in such continuous cast slabs, uniform and slow cooling is performed in the initial stage of solidification (hereinafter referred to as initial solidification), and the growth of solidified shells is made uniform. It is thought that it is important to suppress the generation of “coagulation of the solidified shell”, and many techniques relating to initial solidification control have been disclosed.

一方で、2次冷却帯における均一冷却も、 健全な鋳片を得るために極めて重要な因子であるが、ミストスプレーなど、スプレー水を均一に鋳片に噴射する冷却法があるにすぎない。   On the other hand, uniform cooling in the secondary cooling zone is also an extremely important factor for obtaining a sound slab, but there is only a cooling method such as mist spray that uniformly sprays spray water onto the slab.

ところで、本発明者らの調査研究によれば、 鋳型内ならびに2次冷却帯における均一冷却を達成したとしても、鋳造速度が2m/minを超えるような高速鋳造において、次に述べる理由で鋳片の均一冷却が阻害される場合が頻繁に発生する。すなわち、鋳型内から排出され鋳片に不均一に付着したモールドフラックスによる、1)鋳片表面のスケール生成速度の増加、2)鋳片表面のスケールおよびモールドフラックス混合層の融点の低下に伴う付着性強化、という機構で鋳片表面に酸化スケール層の薄い箇所、 厚い箇所の不均一が生じてしまうことによる、鋳片の不均一冷却である。   By the way, according to the research conducted by the present inventors, even when uniform cooling is achieved in the mold and in the secondary cooling zone, in the high speed casting in which the casting speed exceeds 2 m / min, the slab has the following reason. Often, the uniform cooling of the air is hindered. That is, due to the mold flux discharged from the mold and adhering unevenly to the slab, 1) Increase in the scale generation speed of the slab surface, 2) Adhesion accompanying the decrease in the scale of the slab surface and the melting point of the mold flux mixed layer This is non-uniform cooling of the slab due to non-uniformity of thin and thick oxide scale layers on the surface of the slab.

酸化スケールは凝固殻に比較しておおよそ一桁小さい熱伝導率を有し、鋳型以降の2次冷却帯において伝熱抵抗層として不均一冷却の原因となる。この冷却の不均一性は、 鋳片の表面縦割れや、あるいは非定常バルジングに伴う鋳型内湯面変動の原因のひとつとなり、鋼の連続鋳造プロセスにおける高品質維持ならびに安定操業の阻害要因として作用する。図3はこのような場合の鋳片付着モールドフラックスの量と鋳片表面品質との相関関係を示すグラフである。ここで、図3の横軸のデータは、熱延加熱炉前の鋳片短辺表面スケールを採取して、含有されるCaO の濃度から算出した値を用いた。   The oxide scale has a thermal conductivity approximately one order of magnitude smaller than that of the solidified shell, and causes non-uniform cooling as a heat transfer resistance layer in the secondary cooling zone after the mold. This non-uniform cooling is one of the causes of surface cracks in the slab and fluctuations in the mold surface due to unsteady bulging, and acts as an obstacle to maintaining high quality and stable operation in the continuous casting process of steel. . FIG. 3 is a graph showing the correlation between the amount of slab adhesion mold flux and the slab surface quality in such a case. Here, for the data on the horizontal axis in FIG. 3, a value calculated from the concentration of CaO contained by collecting the slab short side surface scale before the hot rolling furnace was used.

本発明は、かかる2次冷却帯での不均一冷却の原因となる鋳片表面のモールドフラックスと酸化スケールの混合層を有効に除去しうる鋼の連続鋳造方法を提供することを目的とする。 The present invention aims to provide a continuous casting how the steel can effectively remove the mixed layer of mold flux and oxidation scale causative slab surface uneven cooling in such a secondary cooling zone .

本発明は、鋼の連続鋳造方法において、鋳型から最初の鋳片サポートロールまでの間で、直線状のスプレーパターンを形成するノズルを用いて、2m/min以上の鋳造速度の鋳片表面に10N/cm 以上22N/cm 以下の衝突圧で水噴流を衝突させることにより、前記鋳片表面に付着したモールドフラックスおよび酸化皮膜を除去することを特徴とする鋼の連続鋳造方法である The present invention relates to a continuous casting method of steel, using a nozzle that forms a linear spray pattern between the mold and the first slab support roll , on the slab surface at a casting speed of 2 m / min or more. A continuous casting method of steel , wherein a mold jet and an oxide film adhering to the surface of the slab are removed by causing a water jet to collide at a collision pressure of / cm 2 or more and 22 N / cm 2 or less .

本発明によれば、鋼の連続鋳造において、鋳型から2次冷却帯の入口になる最初の鋳片サポートロールまでの間で鋳片表面に不均一に付着した、2次冷却帯での冷却不均一助長因子となる、フラックスおよび酸化皮膜を除去するようにしたから、以降の2次冷却帯におけるスプレー冷却が均一化かつ強化されて、鋳片の凝固不均一あるいは局所的な凝固遅れを解消し、縦割れ等の鋳片表面の欠陥ならびに非定常バルジング等の操業不安定因子を低減させることができるという優れた効果を奏する。   According to the present invention, in continuous casting of steel, the non-cooling in the secondary cooling zone that adheres unevenly to the slab surface between the mold and the first slab support roll that becomes the inlet of the secondary cooling zone. Since the flux and oxide film, which are a uniform facilitating factor, are removed, spray cooling in the subsequent secondary cooling zone is made uniform and strengthened, eliminating uneven solidification of the slab or local solidification delay. The present invention has an excellent effect that it can reduce defects on the surface of the slab such as vertical cracks and unstable factors such as unsteady bulging.

本発明では、鋳型から2次冷却帯の入口になる最初の鋳片サポートロールまでの間で鋳片表面に不均一に付着した、2次冷却帯での冷却不均一助長因子となる、フラックス(モールドフラックス)および酸化皮膜(酸化スケール)を除去するようにしたから、以降の2次冷却帯におけるスプレー冷却が均一化かつ強化されて、鋳片の凝固不均一あるいは局所的な凝固遅れを解消し、縦割れ等の鋳片表面の欠陥ならびに操業不安定因子を低減させることができる。   In the present invention, a flux (non-uniform cooling promoting factor in the secondary cooling zone, which is unevenly adhered to the slab surface between the mold and the first slab support roll that becomes the entrance of the secondary cooling zone, (Mold flux) and oxide film (oxide scale) are removed, and spray cooling in the subsequent secondary cooling zone is made uniform and strengthened to eliminate uneven solidification of the slab or local solidification delay. In addition, defects on the surface of the slab such as vertical cracks and operational instability factors can be reduced.

フラックスおよび酸化皮膜の除去手段としては、あらゆる物理的方法が適用できる。例えば、鋳片表面に高圧水を吹付ける方法(高圧水スプレーによる方法)、鋳片表面を凹凸を付与したロールで押圧する方法、鋳片表面を高高温強度合金ワイヤのブラシで擦る方法などが挙げられる。しかし、ランニングコスト、効果の確実性、メンテナンスの容易さ、設備工事の簡便さ、さらには付加的効果として高衝突力スプレーによる冷却強化による連鋳機の生産性向上効果などを勘案すると、高圧水スプレーによる方法が好ましい。   Any physical method can be applied as means for removing the flux and oxide film. For example, a method of spraying high pressure water on the surface of the slab (a method using high pressure water spray), a method of pressing the surface of the slab with a roll having unevenness, a method of rubbing the surface of the slab with a brush of high-temperature strength alloy wire, etc. Can be mentioned. However, considering the running cost, the certainty of the effect, the ease of maintenance, the ease of equipment construction, and the additional effect of improving the productivity of the continuous caster by strengthening the cooling with high impact force spray, A spray method is preferred.

この高圧水スプレーによる方法は、連続鋳造装置を、例えば図1に示すように、鋳型1から最初の鋳片サポートロール4(1st)までの間の鋳片5表面に水噴流を衝突させる高圧水スプレーノズル(高圧水吹付け手段)2を配設したものとすることにより、実施することができる。ただし、鋳片表面での水噴流の衝突圧が10N/cm未満では、鋳型1から排出されてきた鋳片5に付着しているフラックスと酸化皮膜の混合層6を破壊、除去しえないため、鋳片表面での水噴流の衝突圧が10N/cm以上になるように、高圧水スプレーノズル2のノズル型式、噴射距離、ノズル背圧、噴射水量などのスプレー条件を決定して吹付けを行う必要がある。 In this high-pressure water spray method, as shown in FIG. 1, for example, high-pressure water is applied to the surface of the slab 5 between the mold 1 and the first slab support roll 4 (1st). It can be carried out by providing the spray nozzle (high pressure water spraying means) 2. However, if the impinging pressure of the water jet on the slab surface is less than 10 N / cm 2 , the mixed layer 6 of the flux and oxide film adhering to the slab 5 discharged from the mold 1 cannot be destroyed or removed. Therefore, spray conditions such as the nozzle type of the high-pressure water spray nozzle 2, the spray distance, the nozzle back pressure, and the amount of water spray are determined so that the impinging pressure of the water jet on the slab surface is 10 N / cm 2 or more. It is necessary to attach.

高衝突圧を得るためのノズル型式としては、例えば図2(A) に示すようなほぼ直線状のスプレーパターンを形成するデスケーリングタイプのものが好ましい。これに対し図1に示しているような通常の2次冷却用スプレーノズル3は、例えば図2(B) に示すような楕円状に広がったスプレーパターンを形成するフラットタイプのものであり、このフラットタイプのノズルでは10N/cm以上の衝突圧を得ることは困難である。 A nozzle type for obtaining a high collision pressure is preferably a descaling type that forms a substantially linear spray pattern as shown in FIG. On the other hand, the normal secondary cooling spray nozzle 3 as shown in FIG. 1 is a flat type that forms an elliptical spray pattern as shown in FIG. It is difficult to obtain a collision pressure of 10 N / cm 2 or more with a flat type nozzle.

なお、本発明では、前記衝突圧の上限について厚さ10数〜20mm程度の高温の凝固殻(凝固シェル)に対して必要以上の衝突圧力を付与することは、シェル破断による漏鋼事故など、操業に与えるダメージも懸念されるため、可能な限り避けるべきである。
また、本発明は、とくに鋳造速度(鋳片引抜速度)が2m/min以上の高速鋳造操業において、その効果が顕著に発現するため、かかる高速鋳造操業時に実施する。
In the present invention, as to the upper limit of the collision pressure, applying a collision pressure more than necessary to a high-temperature solidified shell (solidified shell) having a thickness of about 10 to 20 mm is a steel leakage accident due to shell breakage, etc. , Damage to operations is also a concern and should be avoided as much as possible.
The present invention, in particular casting speed (cast strip withdrawing speed) faster casting work than 2m / min, because the effect is prominently expressed, performed at such a high speed casting campaign.

図1に示した形態の連続鋳造装置により、炭素0.11質量%を含有する割れ感受性の高い中炭素鋼を、溶鋼過熱度25K、鋳造速度2.4 m/minの鋳造条件で鋳造するにあたり、高圧水スプレーノズル2として、図2(A),(B) のスプレーパターンをそれぞれ形成するデスケーリングタイプA、フラットタイプBの2種類を用い、表1に示す種々の条件で鋳片に水噴流を吹付けた。噴射水量は各条件とも鋳片幅1mにつき70L/min とした。   In the continuous casting machine of the form shown in Fig. 1, high-pressure water spray is used to cast medium carbon steel containing 0.11% by mass of carbon with high cracking sensitivity under casting conditions of molten steel superheat 25K and casting speed 2.4 m / min. Two types of descaling type A and flat type B, which form the spray patterns shown in FIGS. 2 (A) and 2 (B), are used as nozzles 2, and water jets are sprayed onto the slab under various conditions shown in Table 1. It was. The amount of water jetted was 70 L / min per slab width for each condition.

各条件ごとに2次冷却帯出側で調査した鋳片の縦割れ発生による品質一次不合格指数(条件C1を基準とする)を表1に示す。水噴流の鋳片衝突圧を10N/cm2未満としたためにフラックスと酸化皮膜の混合層6を破壊、除去しえなかった比較例(条件C1〜C3)では、条件C3において若干の改善は認められるものの、十分な品質を得ることができていない。これに対し、水噴流の鋳片衝突圧を10N/cm以上としてフラックスと酸化皮膜の混合層を破壊、除去しえた本発明の実施例(条件E1〜E3)では、著しい品質改善効果を得ることができた。 Table 1 shows the quality primary failure index (based on condition C1) due to the occurrence of vertical cracks in the slab investigated on the outlet side of the secondary cooling zone for each condition. In the comparative example (conditions C1 to C3) in which the mixed layer 6 of the flux and oxide film could not be broken and removed because the slab impingement pressure of the water jet was less than 10 N / cm 2 , a slight improvement was observed in the condition C3. However, sufficient quality has not been obtained. On the other hand, in the embodiment (conditions E1 to E3 ) of the present invention in which the mixed layer of the flux and the oxide film was destroyed and removed by setting the slab impact pressure of the water jet to 10 N / cm 2 or more, a remarkable quality improvement effect was obtained. I was able to.

Figure 0004525690
Figure 0004525690

また、上記と同じ試行条件で炭素0.04質量%を含有する一般的な低炭素鋼を鋳造したところ、比較例においては2次冷却帯での非定常バルジング起因の鋳型内湯面変動が散見されたのに対し、実施例においては2次冷却帯での均一強冷却化が促進されてシェル厚が増加し、非定常バルジングが抑制されたため、かかる鋳型内湯面変動は皆無であった。   In addition, when a general low carbon steel containing 0.04% by mass of carbon was cast under the same trial conditions as described above, in the comparative example, there were some fluctuations in the mold surface due to unsteady bulging in the secondary cooling zone. On the other hand, in the examples, uniform strong cooling in the secondary cooling zone was promoted, the shell thickness was increased, and unsteady bulging was suppressed.

本発明の1実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of the present invention. 本発明に係る高圧水スプレー(A)と通常の2次冷却用スプレー(水スプレーまたはミストスプレー)(B)とのスプレーパターン比較図である。It is a spray pattern comparison figure of the high-pressure water spray (A) which concerns on this invention, and the normal secondary cooling spray (water spray or mist spray) (B). 本発明の基礎とした鋳片表面の残存フラックス量と縦割れ不良発生による品質不合格指数との相関関係を示すグラフである。It is a graph which shows the correlation with the amount of residual flux of the slab surface and the quality rejection index by the vertical crack defect generation | occurrence | production based on this invention.

符号の説明Explanation of symbols

1 鋳型(水冷銅板鋳型)
2 高圧水スプレーノズル(高圧水吹付け手段)
3 通常の2次冷却用スプレー(水スプレーまたはミストスプレー)ノズル
4 鋳片サポートロール
5 鋳片(連続鋳造鋳片)
6 フラックス(モールドフラックス)と酸化皮膜の混合層
1 Mold (Water-cooled copper plate mold)
2 High-pressure water spray nozzle (high-pressure water spraying means)
3 Normal secondary cooling spray (water spray or mist spray) nozzle 4 Casting support roll 5 Casting (continuous casting cast)
6 Mixed layer of flux (mold flux) and oxide film

Claims (1)

鋼の連続鋳造方法において、鋳型から最初のサポートロールまでの間で、直線状のスプレーパターンを形成するノズルを用いて、2m/min以上の鋳造速度の鋳片表面に10N/cm 以上22N/cm 以下の衝突圧で水噴流を衝突させることにより、前記鋳片表面に付着したモールドフラックスおよび酸化皮膜を除去することを特徴とする鋼の連続鋳造方法。 In the continuous casting method of steel, a nozzle that forms a linear spray pattern between the mold and the first support roll is used, and the surface of the slab with a casting speed of 2 m / min or more is 10 N / cm 2 or more and 22 N / A continuous casting method of steel , wherein a mold flux and an oxide film adhering to the surface of the slab are removed by causing a water jet to collide with a collision pressure of cm 2 or less .
JP2007048255A 2007-02-28 2007-02-28 Steel continuous casting method Expired - Lifetime JP4525690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048255A JP4525690B2 (en) 2007-02-28 2007-02-28 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048255A JP4525690B2 (en) 2007-02-28 2007-02-28 Steel continuous casting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002073419A Division JP2003275852A (en) 2002-03-18 2002-03-18 Method and apparatus for continuously casting steel

Publications (2)

Publication Number Publication Date
JP2007185713A JP2007185713A (en) 2007-07-26
JP4525690B2 true JP4525690B2 (en) 2010-08-18

Family

ID=38341234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048255A Expired - Lifetime JP4525690B2 (en) 2007-02-28 2007-02-28 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4525690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180622B (en) * 2016-07-18 2018-11-16 中冶赛迪工程技术股份有限公司 A kind of dynamic judgment method and system of secondary cooling nozzle of continuous casting working condition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229268A (en) * 1983-06-08 1984-12-22 Nippon Steel Corp Descaling method of continuous casting billet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229268A (en) * 1983-06-08 1984-12-22 Nippon Steel Corp Descaling method of continuous casting billet

Also Published As

Publication number Publication date
JP2007185713A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP4525690B2 (en) Steel continuous casting method
JP2003275852A (en) Method and apparatus for continuously casting steel
JP2005279691A (en) Secondary cooling method for continuously cast slab
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP2011224607A (en) Continuous casting method of metal
JP4720640B2 (en) Continuous casting method
JP2001191158A (en) Continuous casting method of steel
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP2006181583A (en) Method for producing continuously cast slab
JP4035117B2 (en) Hot rolling method for high Si content steel sheet with good surface properties
JPH11320060A (en) Method for continuous light reduction rolling for cast slab of billet and equipment therefor
JPS59229268A (en) Descaling method of continuous casting billet
JPH0218936B2 (en)
JP4923643B2 (en) Steel continuous casting method
JPH0673734B2 (en) Method for preventing surface defects on billet slabs
JP3878335B2 (en) Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet
JP3802848B2 (en) Hot rolling method for Si-containing steel sheet
JP2000158109A (en) Thin billet continuous casting method
CN115625199B (en) Method for improving ultrathin strip steel surface roll marks
JP2005177841A (en) Slab continuous casting method
JPH11169904A (en) Method for suppressing generation of scale defect at time of hot finish rolling and device therefor
JP2004167586A (en) Method for manufacturing steel sheet having excellent surface property and steel sheet
JP3223914B2 (en) Cooling method of round billet
KR20020001452A (en) A method for manufacturing stainless steel slabs reducing m type sliver defect
JP4821071B2 (en) Steel plate manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term