JPS59229268A - Descaling method of continuous casting billet - Google Patents

Descaling method of continuous casting billet

Info

Publication number
JPS59229268A
JPS59229268A JP10249783A JP10249783A JPS59229268A JP S59229268 A JPS59229268 A JP S59229268A JP 10249783 A JP10249783 A JP 10249783A JP 10249783 A JP10249783 A JP 10249783A JP S59229268 A JPS59229268 A JP S59229268A
Authority
JP
Japan
Prior art keywords
slab
descaling
pressure
billet
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249783A
Other languages
Japanese (ja)
Inventor
Wataru Ohashi
渡 大橋
Osamu Tsubakihara
椿原 治
Takeshi Shoji
武志 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10249783A priority Critical patent/JPS59229268A/en
Publication of JPS59229268A publication Critical patent/JPS59229268A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To remove powder and to eliminate a black belt-like stain from a steel plate, etc. by injecting high-pressure water or high-pressure steam under a specific pressure to both surfaces in the transverse direction of a billet drawn from a casting mold in an area disposed with a secondary cooler. CONSTITUTION:The high-pressure water supplied from a device 8 for supplying high-pressure water is controlled to >=50kg/cm<2> pressure and flow rate by a control device 9. A spray header 10 which supports nozzles 5 is held by a header driving device 11 so as to traverse. The position of the nozzles 5 are changed by driving the device 11 to meet the width of a billet 3 and the water is sprayed to the top and bottom surfaces of the billet 3 from the nozzles 5 in the stage of changing the width of said billet.

Description

【発明の詳細な説明】 本発明は連続鋳造鋳片のデスケーリング方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for descaling continuously cast slabs.

周知の如く連続鋳造設備(以下連鋳設備と云う)におい
ては、溶鋼を鋳型に注入して所定の断面形状としたのち
それを鋳型に続いて配設された力゛イドロール群によっ
て連続的に引出し連続鋳造鋳片(以下鋳片と云う)の製
造が行われている。前記鋳片は鋳型内で所定厚の凝固殻
が生成されるよう冷却され(通常、1次冷却と称される
)、又鋳型よシ引出された後は、鋳片の両面に冷却媒体
を噴射する2次冷却装置によって前記凝固が促進され、
その芯部まで完全に凝固したのち所定長さに切断される
As is well known, in continuous casting equipment (hereinafter referred to as continuous casting equipment), molten steel is injected into a mold to form a predetermined cross-sectional shape, and then it is continuously drawn out by a group of force id rolls arranged following the mold. Continuously cast slabs (hereinafter referred to as slabs) are manufactured. The slab is cooled in the mold to form a solidified shell of a predetermined thickness (usually referred to as primary cooling), and after being pulled out of the mold, a cooling medium is injected onto both sides of the slab. The solidification is promoted by a secondary cooling device,
After the core is completely solidified, it is cut into a predetermined length.

近年前記連鋳設備で製造された鋳片をさらに冷却するこ
となく、あるいは若干加熱して直接、圧延工程へ送給す
る直接圧延が積極的に実施されるようになっている。
In recent years, direct rolling, in which slabs produced in the continuous casting equipment described above are directly fed to the rolling process without further cooling or after being slightly heated, has been actively carried out.

而して前記直接圧延を実施するには連鋳設備よフ出片さ
れる鋳片の濁度をその断面方向で斑なくかつ、できるだ
け高温に維持することが品質上、省エネルギー上から極
めて重要である。このため前記2次冷却装置における冷
却制御や鋳造速度制御が、鋼種やサイズ等に応じて高精
度で管理され。
Therefore, in order to carry out the above-mentioned direct rolling, it is extremely important from the viewpoint of quality and energy saving to maintain the turbidity of the slab discharged from the continuous casting equipment evenly in the cross-sectional direction and at as high a temperature as possible. be. Therefore, cooling control and casting speed control in the secondary cooling device are managed with high precision according to the steel type, size, etc.

実施例 ところが、このような管理下で#記、直接圧延で圧延さ
れた鋼板の表面に黒帯状の汚れを生じるという問題が屡
々あった。
However, under such control, there was often a problem in that black band-like stains were formed on the surface of steel sheets that were directly rolled.

そこで本発明者等は、 FItr記黒帯状の汚れの原因
を知るために、圧延機直前の鋳片(連鋳設備よシ送給さ
れた鋳片を最初に圧延する圧延機の前:/’[設置され
た周知のデスケーリング装置で該鋳片の表面に付着生成
したスケールの除去、即ちデスケーリングした後の鋳片
を云う)のスケール残留状況に調査した。この結果、前
記鋳片表面に、鋳型に用いられる潤滑剤としてのパウダ
ーが付着していることが判った。
Therefore, in order to understand the cause of the black band-like stains described in FITR, the present inventors investigated the slab immediately before the rolling mill (before the rolling mill that first rolls the slab fed from the continuous casting equipment). [Removal of scale that adhered to and formed on the surface of the slab using a well-known descaling device installed, ie, the slab after descaling] The scale remaining status was investigated. As a result, it was found that powder as a lubricant used in the mold was attached to the surface of the slab.

該ノミウダーは、鋳型と鋳片との焼付を防止するためV
C鋳型内の溶鋼表面に供給され、該焼付防止によって鋳
片の表面割れを防止し、鋳片の表面性状を良好にする等
のためのもので、完全プリメルト状、半プリメルト状、
あるいは顆粒状又は粉末状等の形態で供給される。そし
て該、パウダーは鋳型から引出される鋳片の表面に付着
しておフ、該鋳片表面に付着したパウダーは従来、2次
冷却装置配役区域を通過する際に冷却媒体、例えば冷却
水の鋳片への噴射によって除去されていると考えられて
いた。
The chisel is V in order to prevent seizure between the mold and slab.
It is supplied to the surface of the molten steel in the C mold to prevent surface cracking of the slab by preventing seizure, and to improve the surface quality of the slab.
Alternatively, it is supplied in the form of granules or powder. The powder adheres to the surface of the slab that is pulled out of the mold. Conventionally, the powder that adheres to the surface of the slab is cooled by a cooling medium, such as cooling water, when passing through a secondary cooling device casting area. It was thought that this was removed by spraying it onto the slab.

ところが前記調査結果ではメニスカスにおけるノぐウダ
ーの付着指数を100とした場合、前記圧延機直前にお
いて、5〜10程度のノぞウダーがなお鋳片の巾方向に
ほぼ均等に付着、残留していることが確認された。
However, according to the above investigation results, when the adhesion index of nozzles on the meniscus is set to 100, about 5 to 10 nozoda still adhere and remain almost evenly in the width direction of the slab just before the rolling mill. This was confirmed.

そして前記パウダーの付着した鋳片を圧延し、例えば該
圧延された熱延鋼板を酸洗すると、残留したパウダーと
、その後生成された酸化スケールとの混存物が酸と反応
し、鋼板表面に前記黒帯状の汚れを生じることが判明し
た。
Then, when the slab to which the powder has adhered is rolled and, for example, the rolled hot-rolled steel sheet is pickled, a mixture of the remaining powder and the oxidized scale that is subsequently generated reacts with the acid, and the surface of the steel sheet is It was found that the black band-like stain was produced.

本発明は上記調査からの知見をもとにして、更に、実験
を重ねた結果なされたものであシ、前記鋳片に付着した
ノぞウダーを圧延前に完全に除去し、鋳片や圧延後の成
品としての鋼板等の表面に黒帯状の汚れの発生を皆無な
らしめることを目的とし、そして本発明の要旨は連続鋳
造鋳型に続く2次冷却装置配設区域内において、前記鋳
型よシ連続的に引出される鋳片の巾方向゛の両面および
、又は厚方向の両面に50Kf/−以上の高王水もしく
は高圧気水を噴射し、デスケーリングすることを特徴と
する連続鋳造鋳片のデスケーリング方法である。゛以下
、本発明に至るまでの実験研究について詳述する。
The present invention was made based on the knowledge from the above investigation and as a result of repeated experiments. The purpose of the present invention is to completely eliminate the occurrence of black band-like stains on the surface of steel plates, etc. as finished products, and the gist of the present invention is to prevent the continuous casting mold from cooling in the secondary cooling device installation area following the continuous casting mold. A continuously cast slab characterized by descaling the continuously drawn slab by injecting high aqua regia or high pressure air water of 50 Kf/- or more onto both sides in the width direction and/or both sides in the thickness direction. This is a descaling method.゛Hereinafter, the experimental research that led to the present invention will be explained in detail.

先づ、連鋳設備の2次冷却装置配設区域内において鋳片
の表面VC50Kf/ct1以上の高圧水もしくは高圧
気水を噴射し、デスケーリングすることによってパウダ
ーの除去が可能となることを知見した実験について述べ
る。
First, it was discovered that it was possible to remove powder by injecting high-pressure water or high-pressure air water with a VC of 50 Kf/ct1 or higher onto the surface of the slab in the area where the secondary cooling device of the continuous casting equipment was installed, and descaling it. We will describe the experiment we conducted.

くし 第1図は、周知の連鋳設備の例の構造図であって、1は
鋳型、2はガイドロール、3は鋳片、4は前記鋳型1に
続く2次冷却装置配設区域である。
FIG. 1 is a structural diagram of an example of a well-known continuous casting equipment, in which 1 is a mold, 2 is a guide roll, 3 is a slab, and 4 is a secondary cooling device installation area following the mold 1. .

第2図はこの実験のために前記2次冷却装置4内に設置
されたデスケーリング装置の断面構造図である。
FIG. 2 is a cross-sectional structural diagram of the descaling device installed in the secondary cooling device 4 for this experiment.

このデスケーリング装置には、高圧水を噴射するノズル
5が鋳片3の巾方向両面(図では上、下面)K対向して
複数個、配設されている。そして前記ノズル5にはボン
ゾロ、アキュームレーター7等からなる高圧水供給装置
8が制御装置9およびスプレーヘッダー10を介して連
設されている。
In this descaling device, a plurality of nozzles 5 for injecting high-pressure water are arranged so as to face both sides (upper and lower surfaces in the figure) of the slab 3 in the width direction. A high-pressure water supply device 8 consisting of a Bonzoro, an accumulator 7, etc. is connected to the nozzle 5 via a control device 9 and a spray header 10.

該高圧水供給装置8より供給される高圧水は、制御装置
!i9によって所定の圧力および流量に制御されてスプ
レーヘッダー10を介してノズル5に供給され、該ノズ
ル5より鋳片3の上下面に噴射される。
The high pressure water supplied from the high pressure water supply device 8 is controlled by the control device! It is controlled to a predetermined pressure and flow rate by i9, and is supplied to the nozzle 5 via the spray header 10, and is sprayed from the nozzle 5 onto the upper and lower surfaces of the slab 3.

ノズル5よシ噴射される該高圧水は後述するように50
 Kt/ff1以上の極めて高圧であシ、この高王水が
鋳片3以外の例えばガイドロール2やその他の設備に直
接噴射されると轟該設備を損傷せしめる恐れがある。そ
こで、第2図に示すデスケーリング装置においては、ノ
ズル5を支持するスプレーヘッダー10を−、ラダー駆
動装置11で横行可能に″保持せしめ、鋳片3の巾サイ
ズ変更の際前記ヘソグー駆動装置11を駆動して、ノズ
ル5の位置を変更させ、鋳片中に対応させることができ
る構成にした。
The high pressure water injected through the nozzle 5 is
The pressure is extremely high, Kt/ff1 or higher, and if this high aqua regia is directly injected onto equipment other than the slab 3, such as the guide roll 2 or other equipment, there is a risk of damaging the equipment. Therefore, in the descaling device shown in FIG. 2, the spray header 10 supporting the nozzle 5 is held by a ladder drive device 11 so as to be able to move laterally. The structure is such that the position of the nozzle 5 can be changed by driving the nozzle 5 so that the nozzle 5 can be placed in the slab.

又、第3図に示すように個々のノズル5に開閉弁12を
設け、該開閉弁1“2を前記巾変更に応じて適宜開閉制
御することや、あるいは図示はしないけれども個々のノ
ズル5の噴射角を調製できるよう構成すること等によっ
ても前記の設備損傷を避けることができる。
Furthermore, as shown in FIG. 3, each nozzle 5 may be provided with an on-off valve 12, and the on-off valve 1"2 may be controlled to open and close as appropriate in accordance with the width change, or although not shown, The above-mentioned damage to the equipment can also be avoided by configuring the system so that the injection angle can be adjusted.

前記第2図のデスケーリング装置を用い、その2次冷却
装置配役区域4内における配設位置(メニスカスからの
距離〕、噴射される高圧水の圧力、および鋳片3とノズ
ル5との離隔距離等を種々変化させデスケーリング状況
を調査したつその結果を第1表に示す。
Using the descaling device shown in FIG. 2, the installation position (distance from the meniscus) in the secondary cooling device casting area 4, the pressure of the high-pressure water to be injected, and the separation distance between the slab 3 and the nozzle 5 are determined. Table 1 shows the results of investigating the descaling situation by varying the parameters.

第1表 この表においてデスケーリング装置の配役位置を、メニ
スカスを基準とし、鋳片3がその配役位置に到達するま
での時間で表わしである。又、デスケーリング状況は前
述の圧延機直前におけるパウダーの残留率で表わし、メ
ニスカスにおける付着指数を100として○印は0.1
以下、つまシはぼ完全にデスケーリングできたと考えら
れ、鋼板の表面性状が良好であったもの、Δ印は′0.
1〜5.0残留のもの、×印は従来と殆んど変わらない
5.0〜10.0のパウダーが残留し友ものである。
Table 1 In this table, the casting position of the descaling device is expressed by the time taken for the slab 3 to reach the casting position, with the meniscus as a reference. In addition, the descaling situation is expressed by the powder residual rate just before the rolling mill, and the ○ mark is 0.1 when the adhesion index at the meniscus is 100.
Hereinafter, it is considered that the picks were almost completely descaled, and the surface quality of the steel plate was good, and the Δ mark is '0.
Those with 1 to 5.0 remaining powder, and the ones marked with an x, which are similar to the conventional ones with 5.0 to 10.0 remaining powder.

該第1表より鋳片3とノズル5との離隔距離が200□
未満であれば高圧水の圧力を50〜/−以上とすること
によりデスケーリング状況が著しく良好となること、又
50 Kyla1以上であって、その上デスケーリング
装置の設置位置が鋳型1に近くメニスカスを出てからで
きるだけ短時間のうちにデスケーリングする場合にはそ
の効果が極めて高くなることが判った。効果が極めて高
くなるのは、鋳型1を出f1:、鋳片3の表面に付着し
ているノぞウダーがガイドロール2を通過する際に該ガ
イドロール2で鋳片表面に押付けられるが、通過するガ
イドロール2の数が少ない程該押付けが弱くノRウダー
の除去が容易であるためと考えられる。
From Table 1, the distance between the slab 3 and the nozzle 5 is 200□
If it is less than 50 Kyla1, the descaling condition will be significantly improved by setting the pressure of high pressure water to 50~/- or more, and if the descaling device is installed at a position close to mold 1 and the meniscus It has been found that descaling is extremely effective when descaling is performed within as short a time as possible after exiting. The effect becomes extremely high when the mold 1 is exited f1: When the nozzle adhering to the surface of the slab 3 passes through the guide roll 2, it is pressed against the surface of the slab by the guide roll 2. This is thought to be because the smaller the number of guide rolls 2 that pass, the weaker the pressure is and the easier it is to remove the roughness.

直接圧延を実施する連鋳装置では、従来は鋳片3の過冷
却を防止する九めに2次冷却装置4における冷却水の噴
射量を制限しておル、この穴め、ノぞウダーの除去が不
十分で前記パウダーの2次冷却装置4を通過した後の付
着残留量が多く、加えて高温下で鋳片表面に押付けられ
ることから圧延機の直前におけるデスケーリングでも完
全な除去ができなかったものと推定される。
Conventionally, in continuous casting equipment that performs direct rolling, the amount of cooling water sprayed in the secondary cooling device 4 is limited in order to prevent overcooling of the slab 3. Due to insufficient removal, there is a large amount of residual adhesion after the powder passes through the secondary cooling device 4, and in addition, since the powder is pressed against the surface of the slab at high temperatures, complete removal cannot be achieved even with descaling immediately before the rolling mill. It is presumed that there was no such thing.

次に、上記高圧水によシブスケーリングを実施した場合
の鋳片3の温度降下状況の実験調査結果を第2表に示す
Next, Table 2 shows the results of an experimental investigation of the temperature drop of the slab 3 when the above-mentioned high-pressure water sieve scaling was performed.

本実駁では機長371nの連鋳装置で2次冷却装置4の
冷却強度を0.57〜(1,77(t、/Kq)として
前記第2図に示す装Fj−を用いてデスケーリングし、
機端部における鋳片温度を調べた。そして比較のため、
該デスケーリングを実施しない(従来法)ときの機端部
における鋳片温度も調査した。
In this experiment, the cooling intensity of the secondary cooling device 4 was set to 0.57 to (1,77 (t, /Kq)) in a continuous casting machine with a machine length of 371n, and descaling was performed using the equipment Fj- shown in Fig. 2 above. ,
The temperature of the slab at the end of the machine was investigated. And for comparison,
The temperature of the slab at the machine end when the descaling was not performed (conventional method) was also investigated.

又、上記デスケーリングを鋳型1の出側より0.3m離
れた2次冷却装置配設区域内において、150 Kg/
iの高圧水(流量28(1/”)を用いた場合と冷却水
と圧縮空気を混合(混合比率Δ−0,15) した1 
50 KVl−の高圧気水(流量200t/−f)を用
いた場合の両方について調べた。
In addition, the above descaling was performed in the secondary cooling device installation area 0.3 m away from the exit side of the mold 1 at a rate of 150 kg/
1 using high pressure water (flow rate 28 (1/”)) and mixing cooling water and compressed air (mixing ratio Δ-0, 15)
Both cases were investigated using 50 KVl- high pressure air water (flow rate 200t/-f).

該第2表よシ明らかなよう′に前記デスケ−リンク゛を
実施しても、鋳片3の温度は、従来法と殆ど変わること
のなυ)極めて高温に維持されていることが判った。こ
のことは、゛二次冷却装置4の比較的前部で該デスケー
リングを実施するとデスケーリング後における復熱現象
により機端に近づくに従って鋳片温度が上件するためと
推定される。
As is clear from Table 2, it was found that even if the descaling process was carried out as described above, the temperature of the slab 3 was maintained at an extremely high temperature, almost unchanged from that of the conventional method. This is presumed to be because if the descaling is performed at a relatively forward portion of the secondary cooling device 4, the temperature of the slab increases as it approaches the end due to the recuperation phenomenon after descaling.

又高圧気水を用いてデスケーリングすると鋳片端部の温
度降下をより一層緩和でき効果的であることが判った。
It was also found that descaling using high-pressure air and water is effective in further alleviating the temperature drop at the end of the slab.

尚、本発明の実施により圧延機直前におけるノミウダー
の残留率もいずれも零とな勺、完全にノぞウダーの除去
が行えていることも確認した。
It was also confirmed that by carrying out the present invention, the residual rate of grains immediately before the rolling mill was reduced to zero, and that grains could be completely removed.

本発明は以上の実験結果からなされたものであり、本発
明によれば、2次冷却装置配設区域内、好ましくは2次
冷却装置4配設区域内の鋳型1にできるだけ近い前部位
置で、鋳型より連続的に引き出される鋳片3の巾方向の
両面に50 KW/M以上の高圧水もしくは高圧気水を
噴射しデスケーリングするので、鋳片表面の付着物、特
に前述のパウダーを完全に除去することができ、該鋳片
を直接圧延した鋼板等の黒帯状汚れが皆無となった。
The present invention has been made based on the above experimental results, and according to the present invention, the cooling device is placed at a front position as close as possible to the mold 1 in the secondary cooling device installation area, preferably in the secondary cooling device 4 installation area. Since high-pressure water or high-pressure air water of 50 KW/M or more is injected onto both sides of the slab 3 in the width direction that is continuously pulled out from the mold, the deposits on the surface of the slab, especially the powder mentioned above, are completely removed. There was no black band-like stain on the steel plate, etc., which was directly rolled from the slab.

尚、前述の実験例では、鋳片3の巾方向、つまり上下面
のみにデスケーリングを施したが、鋳片3の厚方向、つ
首り両側面にも前記ノぞウダーは付着I〜ているので、
例えば2次冷却装置配設区域4内に蛇行防止用ガイドロ
ーラが設置されていたり。
In the above-mentioned experimental example, descaling was performed only in the width direction of the slab 3, that is, on the top and bottom surfaces, but the nozzle also adhered to both sides of the slab in the thickness direction. Because there are
For example, a meandering prevention guide roller is installed in the secondary cooling device installation area 4.

あるいは巾方向の圧下装置が設置されている等の場合に
は、鋳片両側面にも50 Kq/crI以上の高圧水も
しくは高圧気水を噴射し、デスケーリングすることによ
り前記表面欠陥の発生を防止できる。
Alternatively, if a widthwise reduction device is installed, high-pressure water or high-pressure air water of 50 Kq/crI or higher is also injected onto both sides of the slab to descale and prevent the occurrence of surface defects. It can be prevented.

前記実験ではデスケーリング装置を1個設けたが、実際
の連鋳設備では鋳片の進行方向に対して2段あるいは2
段以上の複数段設置することも可能である。
In the above experiment, one descaling device was installed, but in actual continuous casting equipment, two or two descaling devices were installed in the direction of progress of the slab.
It is also possible to install multiple stages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周知の一般的な連鋳装置の一例の構造図、第2
図に本発明方法に至る実験に用いたデスケーリング装置
の断面図、第3図は、デスケーリング装置のノズルの構
造例を示す斜視図である。 1・・・鋳型、2・・・ガイドロール、3・・・鋳片、
4・・・2次冷却装置配設区域、5・・・ノズル、6・
・・ポンプ、7・・・アキニームt/−ター、8・・・
高圧水供給装置、9・・・制御装置、10・・・スプレ
ーヘッダー、11°”ヘッダー駆動装置、12・・・開
閉弁。 代理人 弁理士  秋 沢 政 光 、に2名
Figure 1 is a structural diagram of an example of a well-known general continuous casting device;
FIG. 3 is a sectional view of a descaling device used in experiments leading to the method of the present invention, and FIG. 3 is a perspective view showing an example of the structure of a nozzle of the descaling device. 1... Mold, 2... Guide roll, 3... Slab,
4... Secondary cooling device installation area, 5... Nozzle, 6...
... Pump, 7... Akineem t/-ta, 8...
High-pressure water supply device, 9...Control device, 10...Spray header, 11°" header drive device, 12...Opening/closing valve. Agent: Patent attorney Masamitsu Akizawa, and 2 people

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造鋳型に続く2次冷却装置配設区域内にお
いて、前記鋳型よ多連続的に引出される鋳片の巾方向の
両面および、又は厚方向の両面に50Kg/cl=以上
の高圧水もしくは高圧気水を噴射し、デスケーリングす
ることを特徴とする連続鋳造鋳片のデスケーリング方法
(1) In the secondary cooling device installation area following the continuous casting mold, a high pressure of 50 kg/cl or more is applied to both sides in the width direction and/or both sides in the thickness direction of the slab that is continuously drawn from the mold. A descaling method for continuously cast slabs, characterized by descaling by injecting water or high-pressure air and water.
JP10249783A 1983-06-08 1983-06-08 Descaling method of continuous casting billet Pending JPS59229268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10249783A JPS59229268A (en) 1983-06-08 1983-06-08 Descaling method of continuous casting billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249783A JPS59229268A (en) 1983-06-08 1983-06-08 Descaling method of continuous casting billet

Publications (1)

Publication Number Publication Date
JPS59229268A true JPS59229268A (en) 1984-12-22

Family

ID=14329045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249783A Pending JPS59229268A (en) 1983-06-08 1983-06-08 Descaling method of continuous casting billet

Country Status (1)

Country Link
JP (1) JPS59229268A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542165A (en) * 1993-05-17 1996-08-06 Danieli & C. Officine Meccaniche Spa Line to produce strip and/or sheet
WO2004108971A3 (en) * 2003-06-07 2005-03-31 Sms Demag Ag Method and installation for the production of steel products having an optimum surface quality
KR100525365B1 (en) * 2001-05-29 2005-11-02 주식회사 포스코 Apparatus for Cleaning Scrap in Continuous Casting Process
JP2007185713A (en) * 2007-02-28 2007-07-26 Jfe Steel Kk Method and machine for continuous casting of steel
JP2009509772A (en) * 2005-10-06 2009-03-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for cleaning slabs, thin slabs, steel shapes, etc.
CN108543922A (en) * 2018-07-03 2018-09-18 东北大学 Fan-shaped section secondary cooling system is used under a kind of solidification end weight

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542165A (en) * 1993-05-17 1996-08-06 Danieli & C. Officine Meccaniche Spa Line to produce strip and/or sheet
KR100525365B1 (en) * 2001-05-29 2005-11-02 주식회사 포스코 Apparatus for Cleaning Scrap in Continuous Casting Process
WO2004108971A3 (en) * 2003-06-07 2005-03-31 Sms Demag Ag Method and installation for the production of steel products having an optimum surface quality
US7998237B2 (en) 2003-06-07 2011-08-16 Sms Siemag Aktiengesellschaft Method and installation for the production of steel products having an optimum surface quality
JP2009509772A (en) * 2005-10-06 2009-03-12 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for cleaning slabs, thin slabs, steel shapes, etc.
JP4923055B2 (en) * 2005-10-06 2012-04-25 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Method and apparatus for cleaning slabs, thin slabs and steel shapes
JP2007185713A (en) * 2007-02-28 2007-07-26 Jfe Steel Kk Method and machine for continuous casting of steel
JP4525690B2 (en) * 2007-02-28 2010-08-18 Jfeスチール株式会社 Steel continuous casting method
CN108543922A (en) * 2018-07-03 2018-09-18 东北大学 Fan-shaped section secondary cooling system is used under a kind of solidification end weight

Similar Documents

Publication Publication Date Title
US4424855A (en) Method for cooling continuous casting
RU2414978C2 (en) Method and casting-rolling plant for production of hot rolled strip, in particular, steel strip with high quality surface
JP2000042700A (en) Method and basin for water-cooling steel slab
JPH06269839A (en) Descaling method and rolling method for slab
EP0155791B1 (en) Making metal strip and slab from spray
EP0241919B1 (en) Method of and apparatus for effecting a thickness-reduction rolling of a hot thin plate material
JPS59229268A (en) Descaling method of continuous casting billet
JPH06344089A (en) Device and method for cooling web continuously
KR20020063886A (en) Production of thin steel strip
EP0108490A1 (en) Method and apparatus for removing fine cold shut cracks on horizontally and continuously cast steel strand using ejection of a plurality of metal shot
JP3526705B2 (en) Continuous casting method for high carbon steel
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP2003275852A (en) Method and apparatus for continuously casting steel
RU2296021C2 (en) Slab cleaning method in front of furnace with roller hearth in compact casting-rolling complex
JPS5950903A (en) Continuous hot rolling device for steel plate
JPH06262243A (en) Scale generation preventing method in hot rolling steel plate
JP2006181583A (en) Method for producing continuously cast slab
JP4525690B2 (en) Steel continuous casting method
JP3878335B2 (en) Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet
JP2000158109A (en) Thin billet continuous casting method
JPS58116905A (en) Producing device for steel material by direct rolling
JPH0612340Y2 (en) Steel cutting equipment
JPH026010A (en) Hot cross rolling method for metallic slab
JP2689845B2 (en) Descaling method for hot rolled steel