JP3878335B2 - Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet - Google Patents

Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet Download PDF

Info

Publication number
JP3878335B2
JP3878335B2 JP20824998A JP20824998A JP3878335B2 JP 3878335 B2 JP3878335 B2 JP 3878335B2 JP 20824998 A JP20824998 A JP 20824998A JP 20824998 A JP20824998 A JP 20824998A JP 3878335 B2 JP3878335 B2 JP 3878335B2
Authority
JP
Japan
Prior art keywords
annealing separator
steel sheet
silicon steel
slit nozzle
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20824998A
Other languages
Japanese (ja)
Other versions
JP2000040613A (en
Inventor
重信 古賀
洋一 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20824998A priority Critical patent/JP3878335B2/en
Publication of JP2000040613A publication Critical patent/JP2000040613A/en
Application granted granted Critical
Publication of JP3878335B2 publication Critical patent/JP3878335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、方向性珪素鋼板の焼鈍分離剤塗布方法及び装置、特に、安定した高速塗布を可能とする方法及び装置に関する。
【0002】
【従来の技術】
方向性珪素鋼板は、磁気特性が優れていることの他に、良好なフォルステライト被膜を有することが重要である。方向性珪素鋼板の製造では、方向性珪素鋼板用スラブを、例えば1300〜1400℃に加熱して、インヒビターを形成する成分Al,N,Mn,S等を完全に固溶させ、熱延板あるいは最終冷延前の中間板にインヒビターを微細に析出させる焼鈍を行い、1回の冷間圧延後、または中間焼鈍をはさんだ2回以上の冷間圧延後、Cの除去、一次再結晶の形成、およびSiO2 を含む酸化層の形成を目的とする、いわゆる脱炭焼鈍を施すのが一般的である。次いで、MgOを主成分とする焼鈍分離剤を鋼板に塗布した後、二次再結晶、不純物の除去、およびフォルステライト被膜形成を目的とする仕上焼鈍が行われる。
【0003】
ところで、焼鈍分離剤は、これをスラリー状とし、例えば特開昭61−96081号公報に示されているように、スプレーノズルで鋼板に噴射することにより1次塗布し、次いで圧下力を調整された塗布ロールにより塗布の目付量をコントロールして塗布されていた。また、塗布目付量の調整のために、塗布ロールのロール溝を変えることも行われていた。これらの技術では、ロール表面が使用経時によって劣化し、焼鈍分離剤のMgOが例えば塗布ロール表面に局部的に固着し、その箇所に接する鋼板面だけが他の面に比し薄く焼鈍分離剤が塗布される、いわゆる筋状模様等の塗布ムラが発生する。これらの板幅方向の塗布ムラは、後工程である最終仕上焼鈍において形成されるフォルステライト被膜のバラツキの原因となり、商品価値を損なうばかりでなく、方向性珪素鋼板の磁気特性のバラツキの原因ともなる。
【0004】
また、近年、塗布の高速化に対応する技術として、例えば特開平09−95338号公報に示されているように、焼鈍分離剤を一次塗布後、ガス流体をスリットノズルから噴射する方法が試みられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の噴射方法では、ガス流体による焼鈍分離剤のスプラッシュがスリットノズルに付着し、これによるスリットノズルの清掃、及び、交換頻度の増加を余儀なくされるとともに、フォルステライト被膜のバラツキも大きくなりやすくなる問題があり、焼鈍分離剤の安定した高速塗布には、多くの問題が残されていた。
【0006】
本発明は、前記課題を有利に解決するものであって、焼鈍分離剤をスラリー状とし1次塗布した方向性珪素鋼板に、スリットノズルよりガス流体を噴射する際のガス流体の流れ及び焼鈍分離剤のスプラッシュの挙動に着目し、鋭意検討した結果、本発明を完成するに至ったものである。高速塗布においても、筋状模様等と称されるような塗布ムラを防止し、長時間使用しても塗布不良が発生しない焼鈍分離剤の安定した塗布を可能としたものである。
【0007】
【課題を解決するための手段】
本発明による方向性珪素鋼板の焼鈍分離剤の塗布方法及び装置の要旨は、
(1)冷間圧延され脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布方法において、焼鈍分離剤をスラリー状として1次塗布した後、前記該鋼板とは垂直に配設したスリットノズルを前記鋼板の板幅方向に揺動させ、前記鋼板の外側でスリットノズルへの焼鈍分離剤の付着物を除去するとともに、ガス流体を前記スリットノズルより前記鋼板面に垂直方向から噴射し、塗布目付量を調整することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布方法。
(2)1次塗布を、スプレー法、もしくは、塗布ロールによる転写法により行うことを特徴とする(1)記載の方向性珪素鋼板の焼鈍分離剤塗布方法。
(3)冷間圧延され脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布方法において、焼鈍分離剤をスラリー状として1次塗布し、次いで圧下力を調整された塗布ロールにより塗布の平均目付量を制御した後、前記該鋼板とは垂直に配設したスリットノズルを前記鋼板の板幅方向に揺動させ、前記鋼板の外側でスリットノズルへの焼鈍分離剤の付着物を除去するとともに、ガス流体を前記スリットノズルより前記鋼板面に垂直方向から噴射し、塗布の目付量を平滑化することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布方法。
(4)1次塗布を、スプレー法、もしくは、塗布ロールによる転写法により行うことを特徴とする(3)記載の方向性珪素鋼板の焼鈍分離剤塗布方法。
(5)スリットノズルの揺動速度を0.1〜50mm/secとすることを特徴とする(1)〜(4)のいずれか1項に記載の方向性珪素鋼板の焼鈍分離剤塗布方法。
(6)脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布装置において、スラリー塗布装置、またはスラリー塗布装置と圧下力の調整機構を有する塗布ロールを配設するとともに、その直後に、板幅方向の駆動機構を有するガス噴出のスリットノズルを配設し、方向性珪素鋼板の板幅の外側に、スリットノズルの付着物除去装置を配設することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布装置。
(7)スリットノズルの鋼板板幅方向の有効揺動長さを方向性珪素鋼板の板幅の2倍超とすることを特徴とする(6)に記載の方向性珪素鋼板の焼鈍分離剤塗布装置。
)ノズルの付着物除去装置をノズル内の付着物除去用のT字型付着物除去装置及びノズル先端の付着物除去用の押え型付着物除去装置とすることを特徴とする(6)または(7)記載の方向性珪素鋼板の焼鈍分離剤塗布装置。
)ノズルの付着物除去装置に焼鈍分離剤固化防止用のスプレー水配管を配設することを特徴とする(6)〜(8)のいずれかに記載の方向性珪素鋼板の焼鈍分離剤塗布装置。にある。
【0008】
【発明の実施の形態】
以下に、本発明について、詳細に説明する。
方向性珪素鋼板の製造では、スラブを熱延しコイルとして巻き取り、酸洗・焼鈍後、1回の冷間圧延後、または中間焼鈍をはさんだ2回以上の冷間圧延後、脱炭・一次再結晶の形成およびSiO2 を含む酸化層の形成を目的とする、いわゆる脱炭焼鈍を施す。次いで、MgOを主成分とする焼鈍分離剤をスラリー状とし鋼板の表裏面に塗布する。
【0009】
本発明者らは、焼鈍分離剤をスラリー状とし1次塗布した鋼板に、スリットノズルよりガス流体を噴射し、その際のガス流体の流れ及ぶ焼鈍分離剤のスプラッシュの挙動に着目し、詳細に調査検討したところ、スリットノズルの鋼板の両側(エッジ相当部分)、特に、スリットノズルを鋼板の板幅方向に対し傾斜させているときには鋼板の搬送方向の後方に位置する側(エッジ相当部分)、で焼鈍分離剤のスプラッシュ及びスリットノズルへの付着が特に多く、これが固まり、安定塗布の障害を引き起こす重要な要因であることを見出した。
【0010】
図1〜3に、本発明の方向性珪素鋼板の焼鈍分離剤塗布方法及び装置の一例を示す。
スプレー1で鋼板2の表裏面に焼鈍分離剤をスラリー状とし1次塗布した(スプレー法)後、スリットノズル4を鋼板2の板幅方向6に揺動させ、鋼板2の両側でスリットノズル4への焼鈍分離材のスプラッシュによる付着物を付着物除去装置7で除去しながら、ヘッダー3を有するスリットノズル4よりガス、例えば空気、N2 等を鋼板2の面に対して、垂直に噴射することにより、スリットノズルからの安定したガス噴射を確保しながら、焼鈍分離剤の塗布目付量を制御するとともに安定して均一に塗布する。尚、一次塗布は、塗布ロールによる転写法でも行うことが出来る。
【0011】
スリットノズル4の鋼板2の面に対する角度は、垂直が望ましい。尚、鋼板2の面の垂直方向から5°以下でも許容される。5°超では、噴射するガスが焼鈍分離剤をスプラッシュさせ、鋼板の中央部においても焼鈍分離剤のスプラッシュがスリットノズル4に付着し、時間経過とともにスリットノズル4を閉塞させることになる。
【0012】
スリットノズルの鋼板板幅方向の有効揺動長さγは、通板する鋼板の板幅の2倍超とする。2倍以下では、スリットノズルを揺動させても、スリットノズル全幅にわたり焼鈍分離剤のスプラッシュによる付着物を除去することが出来ない。望ましくは、3倍以下である。3倍超ではスリットノズルが長大となり、設備費が高価となるからである。
【0013】
スリットノズル4の板幅方向の揺動速度は、0.1〜50mm/sとする。0.1mm/s未満では、スリットノズル4に焼鈍分離剤のスプラッシュによる付着物が、付着物除去装置7で除去するまえに固化し、除去不能となるからである。一方、50mm/s超では、板幅方向にガス流れを生じ、塗布が不安定となる。望ましくは、揺動速度は0.5〜5mm/sの範囲である。この範囲では、板幅方向のガス流れが僅少となるとともに、焼鈍分離材のスプラッシュによる付着物の固化も僅少となり、塗布が極めて安定するからである。
【0014】
スリットノズル4の鋼板2の両側には、スプレー配管9に接続された付着物除去装置7が設置されている。これにより、スリットノズル4に付着した焼鈍分離剤のスプラッシュによる付着物は除去される。付着物除去装置7としては、スリットノズル4の中の付着物の除去にはT字型付着物除去装置12が有効である。材質は、スリットノズル4より若干硬度の小さいものが望ましい。また、スリットノズル4の先端の付着物の除去には、押え型付着物除去装置13が有効である。材質は、柔軟性のある、例えば、高分子系強化繊維等が望ましい。また、付着物除去装置7は、付着物除去装置押しつけ機構8によりスリットノズル4に押しつけられている。
【0015】
尚、スリットノズル4の先端の角度θは、15°〜45°が望ましく、15°未満では、ヘッダー3及びスリットノズル4内の圧力均一化に必要な空間が確保できず、スリットノズル4の先での圧力ムラを生じるし、一方、45°超では、焼鈍分離剤のスプラッシュがスリットノズル4に付着しやすく、時間経過とともにスリットノズル4を閉塞させることになる。
【0016】
また、スリットノズル4の鋼板の板幅方向に対する傾斜角度βは、3°〜20°が望ましく、3°未満では、十分な板幅方向の流れが形成できず、一方、20°超では、板幅方向での鋼板2〜スリットノズル4間の間隔が鋼板2の張力変動に起因して大きく、不均一塗布となる。
【0017】
更に、スリットノズル4からガス流体を噴射する際の吐出口のスリット幅は狭いほうが望ましく、また、鋼板2とスリットノズル4の吐出口との距離は短いほうが望ましい。例えば、スリットノズル4の吐出口のスリット幅は1.0mm以内、鋼板2とスリットノズル4の吐出口との距離は30mm以内、また、ヘッダー3内の圧力は、スラリー状の焼鈍分離剤の粘性、通板速度にもよるが、0.05〜0.20kg/cm2 が好ましい形態である。
【0018】
図4に、本発明の方向性珪素鋼板の焼鈍分離剤塗布方法及び装置の別の一例を示す。
塗布ロール5で平均塗布目付量を制御し、スリットノズル4よりガスを鋼板2の面に対して垂直に噴射することにより、焼鈍分離剤の塗布目付量を平滑化していること、ヘッダー3内の圧力は、スラリー状の焼鈍分離剤の粘性、通板速度にもよるが、0.01〜0.05kg/cm2 が好ましい形態であることを除けば前例と同じである。
【0019】
このように、鋼板の面にスリットノズルを板幅方向に揺動させ、焼鈍分離剤のスプラッシュによるスリットノズルの付着物を除去し、スリットノズルから安定して垂直にガス流体を噴射することにより、鋼板への焼鈍分離剤の塗布目付量を安定して直接制御する、或いは、塗布ロールにより平均目付量を制御した後で安定して目付量を平滑化する。いずれの方法においても、鋼板の面の全板幅方向にわたって塗布ムラを生じることなく均一に塗布される。その結果、仕上焼鈍で形成されるフォルステライト被膜は良好なものとなり磁気特性も優れる。また、MgO等の焼鈍分離剤では、MgOの水和反応MgO+H2 O→Mg(OH)2 が温度が高い程進行しやすい為に、噴射ガスは、冷却装置を通した低温のガスが好ましい。その後、乾燥炉にて方向性珪素鋼板を例えば200℃程度に昇温し、鋼板上のスラリー状の焼鈍分離剤から付着水分を除去する。
【0020】
次に、該鋼板をコイル状とし仕上げ焼鈍炉で公知の方法で長時間の高温焼鈍を施す。該焼鈍過程で二次再結晶を生じ、また、脱炭工程で生成したSiO2 を含む酸化層とMgOを主成分とする焼鈍分離剤とが反応してフォルステライト被膜が形成され、また不純物が除去される。
【0021】
尚、本発明は、組成及び製造方法に限定されることなく、方向性珪素鋼板の焼鈍分離剤の塗布に有効である。
また、方向性珪素鋼板における焼鈍分離剤の塗布以外のスラリー状の塗布剤或いは塗料等の塗布或いは塗装についても、本発明は有効である。
【0022】
【実施例】
次に実施例について述べる。
Si:3.1重量%,酸可溶性Al:0.028重量%,N:0.009重量%,Mn:0.08重量%,S:0.027重量%,C:0.07重量%,残部Fe及び不可避不純物からなるスラブを熱間圧延後、1120℃で2分間の熱延板焼鈍を施し、更に冷間圧延し最終板厚を0.3mmとした。次いで、820℃で3分間露点65℃、H2 75%からなる雰囲気下で連続脱炭焼鈍をした後、この方向性珪素鋼板に表1に示す塗布条件で、塗布ロールにより平均目付量を制御した後で安定して目付量を平滑化した。
【0023】
尚、ライン速度は150mpm 、スリットノズルの先端角度θは40°、スリットノズルの鋼板の板幅方向への傾斜角度βは15°、スリットノズルの吐出口のスリット幅は0.5mm、ヘッダ圧力は0.03kg/cm2 、スリットノズルと鋼板との距離は20mmで、ガスの噴射角度は鋼板の面に対して垂直とした。
【0024】
表1から分かるように、従来法(条件E)では、筋状模様を発生し、また、短時間でスリットノズルの閉塞となり、塗布の中止を招いた。
また、比較材(条件C,D)も、筋状模様を発生し、また、スリットノズルの閉塞までの時間も従来法と同等もしくは若干改善のレベルであった。
本発明による方法(条件A,B)では、塗布ムラは軽微もしくは無いかであり、且つ連続塗布時間も8時間もしくはそれ以上と大幅に改善した。
【0025】
【表1】

Figure 0003878335
【0026】
【発明の効果】
本発明によれば、焼鈍分離剤の方向性珪素鋼板への塗布において、焼鈍分離剤をスラリー状とし1次塗布した後、スリットノズルを前記鋼板の板幅方向に揺動させ、前記鋼板の外側でスリットノズルへの焼鈍分離剤の付着物を除去するとともに、ガス流体を前記スリットノズルから前記鋼板面に垂直方向から噴射し、塗布目付量を調整することにより、高速塗布でも塗布ムラの無い、安定塗装が可能となった。その結果、被膜,磁性のバラツキも小さくなり、品質の優れた方向性珪素鋼板を高効率で生産可能とした。
【図面の簡単な説明】
【図1】本発明の方向性珪素鋼板の焼鈍分離剤塗布方法の一例を示す略断面図である。
【図2】スリットノズル、付着物除去装置、鋼板の位置関係を示す略断面図である。
【図3】鋼板の下側のスリットノズルと付着物除去装置の関係を示す略断面図である。
【図4】本発明の方向性珪素鋼板の焼鈍分離剤塗布方法の別の一例を示す略断面図である。
【符号の説明】
1 スプレー
2 鋼板
3 ヘッダー
4 スリットノズル
5 塗布ロール
6 スリットノズル揺動方向
7 付着物除去装置
8 付着物除去装置押しつけ機構
9 スプレー配管
12 T字型付着物除去装置
13 押え型付着物除去装置
β スリットノズルの鋼板の板幅方向に対する角度
γ 揺動有効幅
θ スリットノズルの先端の角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for applying an annealing separator to a grain-oriented silicon steel sheet, and more particularly to a method and an apparatus that enable stable high-speed application.
[0002]
[Prior art]
It is important that the grain-oriented silicon steel sheet has a good forsterite film in addition to excellent magnetic properties. In the manufacture of grain-oriented silicon steel sheets, the slab for grain-oriented silicon steel sheets is heated to, for example, 1300 to 1400 ° C. to completely dissolve the components Al, N, Mn, S, etc. that form the inhibitor, Perform annealing to finely deposit inhibitors on the intermediate plate before final cold rolling, and after removing one cold rolling or after two or more cold rolling sandwiching intermediate annealing, remove C and form primary recrystallization And so-called decarburization annealing for the purpose of forming an oxide layer containing SiO 2 . Next, after applying an annealing separator mainly composed of MgO to the steel sheet, finish annealing for the purpose of secondary recrystallization, removal of impurities, and formation of forsterite film is performed.
[0003]
By the way, the annealing separator is made into a slurry, and is firstly applied by spraying it onto a steel plate with a spray nozzle as shown in, for example, Japanese Patent Application Laid-Open No. 61-96081, and then the rolling force is adjusted. The coating weight was controlled with a coating roll. Also, the roll groove of the coating roll has been changed to adjust the coating weight per unit area. In these technologies, the roll surface deteriorates with time of use, MgO of the annealing separator is locally fixed to the coating roll surface, for example, and only the steel plate surface in contact with the part is thinner than the other surfaces and the annealing separator is thin. Application unevenness such as a so-called streak pattern is applied. These uneven coatings in the width direction of the plate cause variations in the forsterite film formed in the final finishing annealing, which is a subsequent process, not only detracting from commercial value, but also cause variations in the magnetic properties of the grain-oriented silicon steel plate. Become.
[0004]
In recent years, as a technique corresponding to the high-speed application, for example, as disclosed in Japanese Patent Application Laid-Open No. 09-95338, a method of spraying a gas fluid from a slit nozzle after first applying an annealing separator has been attempted. ing.
[0005]
[Problems to be solved by the invention]
However, in the above-described injection method, the splash of the annealing separator by the gas fluid adheres to the slit nozzle, which necessitates an increase in the frequency of cleaning and replacement of the slit nozzle, and also increases the variation in the forsterite film. There are problems that become easy, and many problems remain in stable high-speed application of the annealing separator.
[0006]
The present invention advantageously solves the above-mentioned problems, and the flow of gas fluid and the annealing separation at the time of jetting the gas fluid from the slit nozzle onto the directional silicon steel sheet that has been first applied in a slurry form with an annealing separator. As a result of diligent investigation focusing on the behavior of the splash of the agent, the present invention has been completed. Even in high-speed application, uneven application such as a streak pattern is prevented, and stable application of an annealing separator that does not cause application failure even when used for a long time is enabled.
[0007]
[Means for Solving the Problems]
The gist of the application method and apparatus of the annealing separator for the grain-oriented silicon steel sheet according to the present invention is as follows:
(1) In the method of applying an annealing separator to the front and back surfaces of directional silicon steel sheets that have been cold-rolled and decarburized and annealed, the annealing separator is primarily applied as a slurry and then disposed perpendicular to the steel sheet. The slit nozzle is swung in the plate width direction of the steel plate to remove the deposits of the annealing separator on the slit nozzle outside the steel plate, and the gas fluid is jetted from the slit nozzle from the direction perpendicular to the steel plate surface. And adjusting the coating weight per unit area, a method for applying an annealing separator to a grain-oriented silicon steel sheet.
(2) The method for applying an annealing separator to a directional silicon steel sheet according to (1), wherein the primary application is performed by a spray method or a transfer method using an application roll.
(3) In the method of applying the annealing separator to the front and back surfaces of the directional silicon steel sheets that have been cold-rolled and decarburized and annealed, the annealing separator is primarily applied as a slurry, and then applied by a coating roll whose rolling force is adjusted. After controlling the average basis weight of coating, the slit nozzle arranged perpendicularly to the steel plate is swung in the plate width direction of the steel plate, and the deposit of the annealing separator on the slit nozzle outside the steel plate. A method for applying an annealing separator to a directional silicon steel sheet, comprising removing the gas fluid from a direction perpendicular to the steel sheet surface from the slit nozzle and smoothing the basis weight of the coating.
(4) The method of applying an annealing separator for a directional silicon steel sheet according to (3), wherein the primary coating is performed by a spray method or a transfer method using a coating roll.
(5) The method of applying an annealing separator for a grain-oriented silicon steel sheet according to any one of (1) to (4), wherein the swing speed of the slit nozzle is 0.1 to 50 mm / sec.
(6) In the annealing separator coating device for the front and back surfaces of the directional silicon steel sheet that has been decarburized and annealed, a slurry coating device or a coating roll having a slurry coating device and a reduction force adjusting mechanism is disposed, and Immediately after that, a gas ejection slit nozzle having a drive mechanism in the plate width direction is arranged, and a deposit removal device for the slit nozzle is arranged outside the plate width of the directional silicon steel plate . Silicon steel sheet annealing separator coating equipment.
(7) The effective separation length of the slit nozzle in the width direction of the steel plate is more than twice the plate width of the directional silicon steel plate, and the application of the annealing separator for the directional silicon steel plate according to (6) apparatus.
( 8 ) The nozzle deposit removing device is a T-shaped deposit removing device for removing deposits in the nozzle and a press-type deposit removing device for removing deposits at the nozzle tip (6). Or the annealing separator application | coating apparatus of the grain-oriented silicon steel sheet as described in (7) .
( 9 ) An annealing separator for grain-oriented silicon steel sheets according to any one of (6) to (8), characterized in that a spray water pipe for preventing solidification of the annealing separator is provided in the deposit removing device of the nozzle. Coating device. It is in.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the manufacture of grain-oriented silicon steel sheets, the slab is hot rolled and wound as a coil, pickled and annealed, after one cold rolling, or after two or more cold rollings with intermediate annealing, decarburized, So-called decarburization annealing is performed for the purpose of forming primary recrystallization and forming an oxide layer containing SiO 2 . Next, an annealing separator mainly composed of MgO is made into a slurry and applied to the front and back surfaces of the steel sheet.
[0009]
The inventors of the present invention pay attention to the splash behavior of the annealing separator that flows through the gas fluid at the time of injecting the gas fluid from the slit nozzle onto the steel sheet that is first applied in the slurry form with the annealing separator in detail. As a result of investigation, both sides of the steel plate of the slit nozzle (edge-corresponding portion), particularly when the slit nozzle is inclined with respect to the plate width direction of the steel plate, the side located at the rear of the steel plate conveyance direction (edge-corresponding portion), It has been found that the annealing separator has a particularly large amount of splash and adherence to the slit nozzle, and this is an important factor causing solidification and failure of stable application.
[0010]
1-3 show an example of an annealing separator coating method and apparatus for grain-oriented silicon steel sheets according to the present invention.
After the spray separator 1 applies the annealing separator to the front and back surfaces of the steel plate 2 in the form of slurry (spray method), the slit nozzle 4 is swung in the plate width direction 6 of the steel plate 2, and the slit nozzle 4 is formed on both sides of the steel plate 2. While removing the deposits due to the splash of the separator to the annealing by the deposit removing device 7, gas, for example, air, N 2, etc. is sprayed perpendicularly to the surface of the steel plate 2 from the slit nozzle 4 having the header 3. Thus, while ensuring stable gas injection from the slit nozzle, the application basis weight of the annealing separator is controlled and stably applied uniformly. The primary coating can also be performed by a transfer method using a coating roll.
[0011]
The angle of the slit nozzle 4 with respect to the surface of the steel plate 2 is preferably vertical. In addition, even if it is 5 degrees or less from the perpendicular | vertical direction of the surface of the steel plate 2, it is accept | permitted. If it exceeds 5 °, the injected gas splashes the annealing separator, and the splash of the annealing separator adheres to the slit nozzle 4 even at the central portion of the steel sheet, and the slit nozzle 4 is blocked as time passes.
[0012]
The effective swing length γ in the width direction of the steel plate of the slit nozzle is more than twice the plate width of the steel plate to be passed. If it is less than 2 times, even if the slit nozzle is swung, the deposits due to the splash of the annealing separator cannot be removed over the entire width of the slit nozzle. Desirably, it is 3 times or less. This is because if it exceeds 3 times, the slit nozzle becomes long and the equipment cost becomes high.
[0013]
The swing speed of the slit nozzle 4 in the plate width direction is 0.1 to 50 mm / s. If it is less than 0.1 mm / s, the deposit due to the splash of the annealing separator on the slit nozzle 4 is solidified before being removed by the deposit removing device 7 and cannot be removed. On the other hand, if it exceeds 50 mm / s, a gas flow occurs in the plate width direction, and the coating becomes unstable. Desirably, the rocking speed is in the range of 0.5 to 5 mm / s. This is because in this range, the gas flow in the plate width direction becomes small, and the solidification of deposits due to the splash of the annealing separator becomes small, so that the application is extremely stable.
[0014]
On both sides of the steel plate 2 of the slit nozzle 4, a deposit removing device 7 connected to the spray pipe 9 is installed. Thereby, the deposit | attachment by the splash of the annealing separation agent adhering to the slit nozzle 4 is removed. As the deposit removing device 7, a T-shaped deposit removing device 12 is effective for removing deposits in the slit nozzle 4. A material whose hardness is slightly smaller than that of the slit nozzle 4 is desirable. Further, a presser-type deposit removing device 13 is effective for removing deposits at the tip of the slit nozzle 4. The material is preferably flexible, for example, a polymer reinforcing fiber. Further, the deposit removing device 7 is pressed against the slit nozzle 4 by the deposit removing device pressing mechanism 8.
[0015]
Note that the angle θ of the tip of the slit nozzle 4 is desirably 15 ° to 45 °. If the angle θ is less than 15 °, a space necessary for equalizing the pressure in the header 3 and the slit nozzle 4 cannot be secured. On the other hand, if it exceeds 45 °, the splash of the annealing separator tends to adhere to the slit nozzle 4, and the slit nozzle 4 is blocked over time.
[0016]
Further, the inclination angle β of the slit nozzle 4 with respect to the plate width direction of the steel plate is preferably 3 ° to 20 °, and if it is less than 3 °, a sufficient flow in the plate width direction cannot be formed. The gap between the steel plate 2 and the slit nozzle 4 in the width direction is large due to the tension fluctuation of the steel plate 2, resulting in uneven application.
[0017]
Furthermore, it is desirable that the slit width of the discharge port when the gas fluid is ejected from the slit nozzle 4 is narrow, and it is desirable that the distance between the steel plate 2 and the discharge port of the slit nozzle 4 is short. For example, the slit width of the discharge port of the slit nozzle 4 is within 1.0 mm, the distance between the steel plate 2 and the discharge port of the slit nozzle 4 is within 30 mm, and the pressure in the header 3 is the viscosity of the slurry-like annealing separator. Depending on the plate passing speed, 0.05 to 0.20 kg / cm 2 is a preferred form.
[0018]
FIG. 4 shows another example of the annealing separator coating method and apparatus for the grain-oriented silicon steel sheet of the present invention.
The average coating weight per unit area is controlled by the coating roll 5, and the coating weight per unit area of the annealing separator is smoothed by spraying the gas perpendicularly to the surface of the steel plate 2 from the slit nozzle 4. The pressure is the same as the previous example except that 0.01 to 0.05 kg / cm 2 is a preferred form, although it depends on the viscosity of the slurry-like annealing separator and the plate passing speed.
[0019]
In this way, by swinging the slit nozzle on the surface of the steel plate in the plate width direction, removing the deposit of the slit nozzle due to the splash of the annealing separator, and stably ejecting the gas fluid vertically from the slit nozzle, The basis weight of the annealing separator applied to the steel sheet is controlled directly and stably, or after the average basis weight is controlled by the application roll, the basis weight is stably smoothed. In any method, the coating is uniformly performed without causing coating unevenness over the entire width direction of the surface of the steel plate. As a result, the forsterite film formed by finish annealing is excellent and has excellent magnetic properties. In addition, in the annealing separator such as MgO, the hydration reaction MgO + H 2 O → Mg (OH) 2 of MgO is more likely to proceed as the temperature is higher. Therefore, the injection gas is preferably a low-temperature gas through a cooling device. Thereafter, the grain-oriented silicon steel sheet is heated to, for example, about 200 ° C. in a drying furnace to remove adhering moisture from the slurry-like annealing separator on the steel sheet.
[0020]
Next, the steel sheet is formed into a coil shape and subjected to high-temperature annealing for a long time by a known method in a finish annealing furnace. Secondary recrystallization occurs during the annealing process, and the forsterite film is formed by the reaction between the oxide layer containing SiO 2 produced in the decarburization process and the annealing separator mainly composed of MgO, and impurities are formed. Removed.
[0021]
In addition, this invention is effective for application | coating of the annealing separation agent of a directional silicon steel plate, without being limited to a composition and a manufacturing method.
The present invention is also effective for application or coating of a slurry-like coating agent or paint other than the application of the annealing separator on the directional silicon steel sheet.
[0022]
【Example】
Next, examples will be described.
Si: 3.1 wt%, acid-soluble Al: 0.028 wt%, N: 0.009 wt%, Mn: 0.08 wt%, S: 0.027 wt%, C: 0.07 wt%, The slab composed of the remaining Fe and unavoidable impurities was hot-rolled, then subjected to hot-rolled sheet annealing at 1120 ° C. for 2 minutes, and further cold-rolled to a final thickness of 0.3 mm. Next, after continuous decarburization annealing in an atmosphere consisting of a dew point of 65 ° C. and H 2 of 75% at 820 ° C. for 3 minutes, the average basis weight is controlled by a coating roll under the coating conditions shown in Table 1 on this directional silicon steel sheet. After that, the basis weight was stably smoothed.
[0023]
The line speed is 150 mpm, the tip angle θ of the slit nozzle is 40 °, the inclination angle β of the slit nozzle in the plate width direction of the steel plate is 15 °, the slit width of the discharge port of the slit nozzle is 0.5 mm, and the header pressure is 0.03 kg / cm 2, the distance between the slit nozzle and the steel sheet is 20 mm, the injection angle of the gas was perpendicular to the surface of the steel sheet.
[0024]
As can be seen from Table 1, in the conventional method (Condition E), a streak pattern was generated, and the slit nozzle was blocked in a short time, leading to the suspension of application.
Further, the comparative materials (conditions C and D) also generated streak patterns, and the time until the slit nozzle was closed was the same as or slightly improved from the conventional method.
In the method according to the present invention (Conditions A and B), the coating unevenness was slight or not, and the continuous coating time was greatly improved to 8 hours or more.
[0025]
[Table 1]
Figure 0003878335
[0026]
【The invention's effect】
According to the present invention, in the application of the annealing separator to the directional silicon steel sheet, the annealing separator is first applied in a slurry state, and then the slit nozzle is swung in the sheet width direction of the steel sheet, In addition to removing the deposits of the annealing separator on the slit nozzle, the gas fluid is sprayed from the slit nozzle to the steel plate surface from the vertical direction, and by adjusting the coating weight, there is no coating unevenness even at high speed coating, Stable painting became possible. As a result, the coating and magnetic variations were reduced, and high-quality grain-oriented silicon steel sheets could be produced with high efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a method for applying an annealing separator to a grain-oriented silicon steel sheet according to the present invention.
FIG. 2 is a schematic cross-sectional view showing a positional relationship among a slit nozzle, an attached matter removing device, and a steel plate.
FIG. 3 is a schematic cross-sectional view showing the relationship between a slit nozzle on the lower side of a steel plate and a deposit removing device.
FIG. 4 is a schematic cross-sectional view showing another example of a method for applying an annealing separator to a grain-oriented silicon steel sheet according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spray 2 Steel plate 3 Header 4 Slit nozzle 5 Application roll 6 Slit nozzle rocking direction 7 Deposit removal device 8 Deposit removal device pressing mechanism 9 Spray piping 12 T-shaped deposit removal device 13 Press type deposit removal device β Slit The angle of the nozzle with respect to the plate width direction of the steel plate γ Effective swing width θ Angle of the tip of the slit nozzle

Claims (9)

冷間圧延され脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布方法において、焼鈍分離剤をスラリー状として1次塗布した後、前記鋼板とは垂直に配設したスリットノズルを前記鋼板の板幅方向に揺動させ、前記鋼板の外側でスリットノズルヘの焼鈍分離剤の付着物を除去するとともに、ガス流体を前記スリットノズルより前記鋼板面に垂直方向から噴射し、塗布目付量を調整することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布方法。  In the method of applying an annealing separator to the front and back surfaces of a directional silicon steel sheet that has been cold-rolled and decarburized and annealed, the annealing separator is primarily applied as a slurry, and then a slit nozzle disposed perpendicular to the steel sheet is provided. The steel plate is swung in the width direction of the steel plate to remove deposits of the annealing separation agent on the slit nozzle outside the steel plate, and a gas fluid is sprayed from the slit nozzle to the steel plate surface from the vertical direction to apply the coating weight. A method for applying an annealing separator to a grain-oriented silicon steel sheet, wherein the amount is adjusted. 1次塗布を、スプレー法、もしくは、塗布ロールによる転写法により行うことを特徴とする請求項1記載の方向性珪素鋼板の焼鈍分離剤塗布方法。  The method for applying an annealing separator to a directional silicon steel sheet according to claim 1, wherein the primary application is performed by a spray method or a transfer method using an application roll. 冷間圧延され脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布方法において、焼鈍分離剤をスラリー状として1次塗布し、次いで圧下力を調整された塗布ロールにより塗布の平均目付量を制御した後、前記鋼板とは垂直に配設したスリットノズルを前記鋼板の板幅方向に揺動させ、前記鋼板の外側でスリットノズルヘの焼鈍分離剤の付着物を除去するとともに、ガス流体を前記スリットノズルより前記鋼板面に垂直方向から噴射し、塗布の目付量を平滑化することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布方法。  In the method of applying the annealing separator to the front and back surfaces of the directional silicon steel sheets that have been cold-rolled and decarburized and annealed, the annealing separator is first applied as a slurry, and then the average of the application by the application roll with adjusted rolling force After controlling the basis weight, the slit nozzle arranged perpendicular to the steel plate is swung in the plate width direction of the steel plate, and the deposit of the annealing separator on the slit nozzle is removed outside the steel plate, A method for applying an annealing separator to a directional silicon steel sheet, characterized in that a gas fluid is sprayed from the slit nozzle onto the steel sheet surface from a direction perpendicular to the surface to smooth the coating weight. 1次塗布を、スプレー法、もしくは、塗布ロールによる転写法により行うことを特徴とする請求項3記載の方向性珪素鋼板の焼鈍分離剤塗布方法。  4. The method for applying an annealing separator to a directional silicon steel sheet according to claim 3, wherein the primary application is performed by a spray method or a transfer method using an application roll. スリットノズルの揺動速度を0.1〜50mm/secとすることを特徴とする請求項1〜4のいずれか1項に記載の方向性珪素鋼板の焼鈍分離剤塗布方法。  The method for applying an annealing separator to a grain-oriented silicon steel sheet according to any one of claims 1 to 4, wherein the rocking speed of the slit nozzle is 0.1 to 50 mm / sec. 脱炭焼鈍された方向性珪素鋼板の表裏面への焼鈍分離剤塗布装置において、スラリー塗布装置、またはスラリー塗布装置と圧下力の調整機構を有する塗布ロールを配設するとともに、その直後に、板幅方向の駆動機構を有するガス噴出用のスリットノズルを配設し、方向性珪素鋼板の板幅の外側に、スリットノズルの付着物除去装置を配設することを特徴とする方向性珪素鋼板の焼鈍分離剤塗布装置。In the annealing separator coating device on the front and back surfaces of the directional silicon steel sheet that has been decarburized and annealed, a slurry coating device, or a coating roll having a slurry coating device and a mechanism for adjusting the rolling force, and immediately after that, A directional silicon steel sheet comprising a slit nozzle for gas ejection having a drive mechanism in the sheet width direction, and a deposit removing device for the slit nozzle disposed outside the sheet width of the directional silicon steel sheet. Annealing separator coating device. スリットノズルの鋼板板幅方向の有効揺動長さを方向性珪素鋼板の板幅の2倍超とすることを特徴とする請求項6に記載の方向性珪素鋼板の焼鈍分離剤塗布装置。  The apparatus for applying an annealing separator for a directional silicon steel sheet according to claim 6, wherein the effective swinging length of the slit nozzle in the width direction of the steel sheet is more than twice the width of the directional silicon steel sheet. ノズルの付着物除去装置をノズル内の付着物除去用のT字型付着物除去装置及びノズル先端の付着物除去用の押え型付着物除去装置とすることを特徴とする請求項6または7記載の方向性珪素鋼板の焼鈍分離剤塗布装置。 The nozzle deposit removing device is a T-shaped deposit removing device for removing deposits in the nozzle and a press-type deposit removing device for removing deposits at the nozzle tip. An annealing separator coating apparatus for directional silicon steel sheets. ノズルの付着物除去装置に焼鈍分離剤固化防止用のスプレー水配管を配設することを特徴とする請求項6〜8のいずれかに記載の方向性珪素鋼板の焼鈍分離剤塗布装置。 The apparatus for applying an annealing separator to a grain-oriented silicon steel sheet according to any one of claims 6 to 8, wherein a spray water pipe for preventing solidification of the annealing separator is disposed in the deposit removing device of the nozzle .
JP20824998A 1998-07-23 1998-07-23 Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet Expired - Fee Related JP3878335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20824998A JP3878335B2 (en) 1998-07-23 1998-07-23 Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20824998A JP3878335B2 (en) 1998-07-23 1998-07-23 Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JP2000040613A JP2000040613A (en) 2000-02-08
JP3878335B2 true JP3878335B2 (en) 2007-02-07

Family

ID=16553135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20824998A Expired - Fee Related JP3878335B2 (en) 1998-07-23 1998-07-23 Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3878335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451068A (en) * 2013-09-16 2015-03-25 宝山钢铁股份有限公司 Oriented silicon steel strip with diagonal stripes, and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011446B2 (en) * 2012-05-09 2016-10-19 Jfeスチール株式会社 Slurry coating apparatus and slurry coating method
JP6658617B2 (en) * 2017-02-28 2020-03-04 Jfeスチール株式会社 Slurry coating method and coating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451068A (en) * 2013-09-16 2015-03-25 宝山钢铁股份有限公司 Oriented silicon steel strip with diagonal stripes, and production method thereof

Also Published As

Publication number Publication date
JP2000040613A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
KR100496607B1 (en) Method And Device For Manufacturing A Hot Rolled Steel Strip
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP2000042700A (en) Method and basin for water-cooling steel slab
JP3878335B2 (en) Method and apparatus for applying annealing separator to grain-oriented silicon steel sheet
KR100928820B1 (en) Method for removing oxide film of hot-rolled annealed steel sheet for manufacturing electrical steel sheet, manufacturing method and apparatus for hot-rolled annealed steel sheet for electrical steel sheet manufacturing
JP3811380B2 (en) Manufacturing method of thick steel plate by hot rolling
JP3004151B2 (en) How to apply slurry to steel sheet
JP3994582B2 (en) Steel sheet descaling method
JP3463403B2 (en) Method for producing grain-oriented silicon steel sheet and apparatus for applying annealing separator
JPH0995738A (en) Coating method of annealing separation agent onto grain-oriented silicon steel sheet
JP3802848B2 (en) Hot rolling method for Si-containing steel sheet
JPS59229268A (en) Descaling method of continuous casting billet
JPH0699214A (en) Production of hot rolled steel strip with thin scale
JP2910604B2 (en) Temper rolling method for stainless steel strip
JPH11279646A (en) Manufacture of low iron loss grain oriented silicon steel sheet
JPS61147906A (en) Method for improving outer skin of steel sheet coated with molten aluminum
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP3882465B2 (en) Method for producing hot-rolled steel sheet with good surface properties
JP4525690B2 (en) Steel continuous casting method
JP3752204B2 (en) Hot rolling method for Si-containing steel sheet and production equipment layout for hot-rolled steel sheet
JP2689845B2 (en) Descaling method for hot rolled steel
JPH10265930A (en) Adjusting method for quantity of adhesion of molten metal and device for the same in continuos hot-dip coating
JPH08108210A (en) Manufacture of hot rolled ferritic stainless steel strip having thin scale
JP2005297008A (en) METHOD FOR HOT-ROLLING HIGH Si STEEL SHEET EXCELLENT IN SURFACE PROPERTY
JPS63286521A (en) Method for coating annealing and separating agent to grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees