JP4821071B2 - Steel plate manufacturing method - Google Patents

Steel plate manufacturing method Download PDF

Info

Publication number
JP4821071B2
JP4821071B2 JP2001255571A JP2001255571A JP4821071B2 JP 4821071 B2 JP4821071 B2 JP 4821071B2 JP 2001255571 A JP2001255571 A JP 2001255571A JP 2001255571 A JP2001255571 A JP 2001255571A JP 4821071 B2 JP4821071 B2 JP 4821071B2
Authority
JP
Japan
Prior art keywords
slab
scale
heating furnace
steel sheet
pressure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001255571A
Other languages
Japanese (ja)
Other versions
JP2003094152A (en
Inventor
康一 堤
悟史 上岡
徹 簑手
晃夫 藤林
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001255571A priority Critical patent/JP4821071B2/en
Publication of JP2003094152A publication Critical patent/JP2003094152A/en
Application granted granted Critical
Publication of JP4821071B2 publication Critical patent/JP4821071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面欠陥の少ない鋼板の製造方法に関するものである。
【0002】
【従来の技術】
一般的な熱延鋼板の製造方法は、溶鋼を連続鋳造機にて鋳造して連続鋳造機出口において所定長さの鋳片に切断し、この鋳片(熱片)を加熱炉に代表される熱補償プロセスにおいて温度を均一化した後、鋳片表面に生成したスケールを高圧水吹き付け等により除去しながら熱間圧延する方法が採られる。この鋳片表面に生成したスケールを除去する工程は、表面欠陥がなく、表面性状の優れた鋼板を得るための必要不可欠の工程である。鋳片表面のスケールを除去する方法としては、一般に高圧水を鋳片表面に吹き付けてスケールを鋳片から剥離させる方法や、鋳片を幅方向に圧下してスケールに塑性変形を加え、スケールを細かくして除去する方法が採られている。
【0003】
しかしながら、近年、鋼板の品質に対する要求がより厳格化していること伴い、上記のような方法でスケール除去を行っても、鋳片表面に僅かに残存するスケールが圧延後や表面処理を施した鋼板の表面に欠陥となって表れることが鋼板の品質面で問題となっていた。
【0004】
従来、これらの問題を解決するために様々な提案がなされている。
特開昭58−138501号公報には、鋳片若しくは鋼塊の表面に酸化物、水酸化物、硫化物、塩、金属、合金の中から選ばれる1種以上を溶融状態で付着させることにより、付着部分の表面疵を促進酸化させて除去する方法が提案されている。
【0005】
また、特開平11−350027号公報では、連続鋳造鋳片の表面にアルカリ金属若しくはアルカリ土類金属の硝酸塩、硫酸塩、炭酸塩、水酸化物の中から選ばれる1種または2種以上の化合物100重量部と、珪酸カリウム、珪酸ナトリウム、珪酸アルミニウム、珪酸カルシウム、珪酸ジルコニウム、燐酸アルミニウム、燐酸マグネシウム、燐酸バリウム、燐酸ホウ素の中から選ばれる1種または2種以上の化合物1〜200重量部とからなる有効成分を、水又は水と有機溶剤との混合物中に分散させた酸化促進剤を塗布することにより、粒界酸化を助長させることなく、スケールの剥離性を向上させることができるとしている。
【0006】
【発明が解決しようとする課題】
しかしながら、本発明者らが検討したところによれば、鋳片に上記特開昭58−138501号公報や特開平11−350027号公報に開示された酸化促進剤を塗布してもスケール剥離性はさほど向上せず、鋼板の表面欠陥はほとんど減少しないことが判った。
したがって本発明の目的は、鋳片表面のスケールを確実に除去し、残存スケールに起因した表面欠陥が極めて少ない鋼板を製造することができる鋼板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上述した従来技術において酸化促進剤により十分なスケール剥離性が得られない原因とその対策について検討を行った。その結果、連続鋳造プロセスで用いられているモールドパウダーが鋳片表面に残存付着していることが、酸化促進剤を塗布してもスケール剥離性が向上しない主要な原因であることを突き止めた。
【0008】
すなわち、従来技術で提案されている酸化促進剤は理想的な地鉄の表面に塗布された場合には有効に機能するが、連続鋳造プロセスで用いられているモールドパウダーなどが鋳片表面に残存付着している場合には、酸化促進剤が有効に機能していないことが判った。一般に、鋳片表面に付着したモールドパウダーの大部分は連続鋳造機の二次冷却スプレー水により鋳型直下で剥離してしまうが、不可避的に一部のモールドパウダーが鋳片表面に残存してしまう。この残存したモールドパウダー中に含まれるSiOは単体での融点が2000℃以上であり、化合物でも融点が1500℃を超えるものを生成するため、加熱温度が1100〜1400℃である加熱炉内に鋳片を装入しても、SiOと酸化促進剤との化合物は加熱炉の炉温以上の融点を有することになるため、その化合物は加熱炉内では溶融しない。このため鋳片表面でモールドパウダーが残存している領域では加熱炉内において酸化が促進されず(つまり、酸化促進剤が有効に機能しない)、加熱炉以降の後工程で高圧水吹き付け等によるスケール除去を行ってもスケールが適切に剥離せす、この結果、鋼板に表面欠陥が発生していたことが判った。
【0009】
そこで本発明者らは、そのような鋳片表面に残存するモールドパウダーに起因した問題を解決すべく、以下のような実験を行った。この実験では、真空高周波溶解炉を用いてC:0.003mass%、Si:0.05mass%、Mn:0.3mass%、P:0.002mass%、S:0.001mass%、Ti:0.04mass%、sol.Al:0.04mass%の組成の極低炭素鋼を溶製し、この溶鋼を小型試験連続鋳造機(鋳型形状:幅200mm,厚さ100mm)にてモールドパウダーを用いて鋳造速度1m/分で鋳造した。この鋳造終了後、鋳片表面に残存するモールドパウダーの除去を目的として、鋳片表面にノズル噴射圧力10〜200kgf/cm、流量100L/分で高圧水を吹き付け、次いで酸化促進剤を鋳片表面に塗布し、大気加熱炉内にて2時間加熱した。加熱炉から抽出された鋳片に対して、再度ノズル噴射圧力150kgf/cm、流量100L/分で高圧水の吹き付けを行って酸化スケールを除去し、その際のスケール剥離性を評価した。このスケール剥離性は、1つのノズルから鋳片表面に高圧水を吹き付けてスケールが剥離した鋳片表面の面積を測定し、この面積で評価した。なお、鋳片表面に生成するスケールを改質するための酸化促進剤としては、アルカリ金属酸化物の炭酸塩であるNaCOを用い、これを鋳片表面に80g/mの塗布量で塗布した。また、モールドパウダーの除去及びデスケールの際のノズル開口と鋳片表面までの距離は、いずれも100mmとした。
【0010】
図1に、上記酸化促進剤の塗布前に鋳片表面に吹き付けた高圧水のノズル噴射圧力と上記デスケールによるスケール剥離面積との関係を示す。これよれば、高圧水のノズル噴射圧力が増加するにつれてスケール剥離面積が増大し、スケール剥離性が向上していることが判る。特にノズル噴射圧力を130kgf/cm以上、より好ましくは150kgf/cm以上とすることによりスケール剥離面積が顕著に増加している。調査の結果、このようなスケール剥離性の向上は、鋳片表面に残存するモールドパウダーが上記高圧水の吹き付けにより除去されたためであることが判った。つまり、酸化促進剤の塗布前に鋳片表面に残存するモールドパウダーを確実に除去することにより、加熱炉内で酸化促進剤とスケールが有効に反応し、スケール剥離性が格段に向上することが判った。
【0011】
本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
[1]連続鋳造機により鋳造され、所定の長さに切断された鋳片を加熱炉に装入して加熱し、加熱炉を出た鋳片のデスケーリングを行った後、粗圧延及び仕上圧延を行う鋼板の製造方法において、
前記鋳片を加熱炉に装入するのに先立ち、鋳片表面に付着したモールドパウダーの除去を鋳片表面への高圧水吹き付けにより行い、該高圧水吹き付けでは高圧水のノズル噴射圧力を130kgf/cm 以上、鋳片表面での衝突圧力を10kgf/cm 以上とし、
鋳片表面に付着したモールドパウダーの除去後、鋳片表面に酸化促進剤を塗布し、しかる後、鋳片を加熱炉に装入することを特徴とする鋼板の製造方法。
【0012】
[2]上記[1]の製造方法において、酸化促進剤として、アルカリ金属若しくはアルカリ土類金属の硝酸塩、硫酸塩、炭酸塩又は水酸化物、ホウ素の酸化物、硝酸塩、硫酸塩、炭酸塩又は水酸化物、フッ素の硝酸塩、硫酸塩、炭酸塩又は水酸化物の中から選ばれる1種又は2種以上の化合物を用いることを特徴とする鋼板の製造方法。
【0013】
【発明の実施の形態】
図2は、本発明の実施に供される一連の設備構成とこれによる本発明の一実施形態を示すもので、1は連続鋳造設備、2は鋳片表面のモールドパウダーを除去するためのモールドパウダー除去設備、3は酸化促進剤塗布設備、4は加熱炉、5は熱間圧延設備である。
前記連続鋳造設備1の鋳型6で鋳造された鋳片Aは、鋳型下方に設けられた複数のロール7によって下方に引き抜かれ、これらロール7間に設けられた2次冷却スプレー8からスプレーされる冷却水により冷却され、且つロール7にサポート及びガイドされつつ移送され、最終的にカッター9によって所定の長さの鋳片aに切断される。
【0014】
この切断された鋳片a(熱片)は、モールドパウダー除去設備2において表面のモールドパウダーの除去が行われる。この設備におけるモールドパウダーの除去方法は特に限定されないが、例えば鋳片表面に高圧水を吹き付けすることにより行う。先に述べたように図1は鋳片表面に高圧水を噴射してモールドパウダー除去を行った場合の、高圧水のノズル噴射圧力とスケール剥離性との関係を示している。この試験ではノズル開口と鋳片表面までの距離を100mmとし、高圧水の流量を100L/分とした。同図によれば、高圧水のノズル噴射圧力を100kgf/cm以上とすることによりスケール剥離性が改善され、特にノズル噴射圧力を130kgf/cm以上、好ましくは150kgf/cm以上とすることにより、モールドパウダーが確実に除去されるため高いスケール剥離性が得られている。ここで、本試験においてノズル噴射圧力とスケール剥離に直接影響するパラメータである高圧水の鋳片表面での衝突圧力との関係を調査した結果、ノズル噴射圧力が130kgf/cmの場合、高圧水の鋳片表面での衝突圧力はほぼ10kgf/cm であった。したがって、鋳片表面への高圧水の吹き付けによりモールドパウダーを確実に除去して高いスケール剥離性を得るには、高圧水を10kgf/cm以上の衝突圧力で鋳片表面に吹き付けることが好ましい。
【0015】
次いで、酸化促進剤塗布設備3において鋳片表面に酸化促進剤が塗布される。この酸化促進剤の種類は特に限定しないが、スケール剥離性の観点からはアルカリ金属若しくはアルカリ土類金属の硝酸塩、硫酸塩、炭酸塩又は水酸化物、ホウ素の酸化物、硝酸塩、硫酸塩、炭酸塩又は水酸化物、フッ素の硝酸塩、硫酸塩、炭酸塩又は水酸化物の中から選ばれる1種又は2種以上の化合物を用いることが好ましい。また、これらのなかでも炭酸塩やホウ素酸化物が好ましく、そのなかでも特にNaCOやBが最も好ましい。
通常、これらの酸化促進剤は水及び/又は有機溶剤(アルコールなど)に溶解させ、この溶液を噴霧機などにより鋳片表面にスプレー塗布する。
【0016】
表面に酸化促進剤が塗布された鋳片a(熱片)は加熱炉4に装入され、圧延可能な所定の温度まで加熱される。通常、この加熱炉4での加熱温度は1100〜1400℃の範囲である。加熱炉4から抽出された鋳片は、スケールの除去が行われる。このスケール除去では、幅圧下圧延機10によって鋳片に幅圧下を加えることによりスケールに塑性変形を加えた後、高圧水噴射装置11から高圧水を鋳片表面に噴射してもよいし、幅圧下圧延機10による幅圧下を行うことなく高圧水噴射装置11による高圧水の噴射だけを行ってもよい。
【0017】
上記のようにして表面のスケールが除去された鋳片aを粗圧延機12で粗バーに圧延し、さらにこの粗バーを仕上圧延機13で所定の厚みまで圧延して熱延鋼板を製造する。この製造された熱延鋼板は、そのまま製品とされる場合と、冷間圧延や鍍金等の後工程を経て冷延鋼板や表面処理鋼板として製品化される場合がある。
このように本発明法によれば、連続鋳造機で鋳造された鋳片から鋼板を製造するに際し、鋳片に付着したスケールが効率よく且つ確実に除去され、スケール性欠陥がなく、表面性状の優れた鋼板を安定して製造することが可能となる。
【0018】
【実施例】
図2に示す一連の鋼板製造設備を用いて、表1に示す極低炭素鋼と低炭素鋼の2つの鋼種の鋳片から先に述べたような工程にしたがって熱延鋼板を製造した。連続鋳造設備では、厚さ250mm、幅1050mmのサイズの鋳片を鋳造速度2.5m/分で鋳造した。その際に使用したモールドパウダーの組成を表2に示す。
【0019】
【表1】

Figure 0004821071
【0020】
【表2】
Figure 0004821071
【0021】
酸化促進剤の塗布前のモールドパウダー除去の工程では、鋳片表面に高圧水を吹き付ける法を用いた。この高圧水の鋳片表面への吹き付けは種々の噴射圧力で行い、高圧水の流量は100L/分とした。なお、一部の実施例については、このモールドパウダー除去は行わなかった。
鋳片表面に酸化促進剤を塗布する工程では、酸化促進剤としてアルカリ金属酸化物の炭酸塩であるNaCOを用い、これを水に溶かした溶液を噴射機で鋳片表面にスプレーすることにより、鋳片表面に酸化促進剤を80g/mの塗布量で塗布した。なお、一部の実施例については鋳片表面への酸化促進剤の塗布は行わなかった。
【0022】
加熱炉の雰囲気温度は1200℃とした。鋳片を加熱炉で加熱・均熱した後、幅圧下圧延機において幅圧下圧延を50mm/パスで1パス行い、その後、高圧水吹き付けによるスケール除去を行った後に、粗圧延機で粗バーとし、この粗バーを熱間仕上圧延機で圧延して板厚3.2mmの熱延鋼板とし、その後冷間圧延により板厚0.8mmの冷延鋼板とした。次いで、この冷延鋼板に連続溶融亜鉛めっき設備で表裏面それぞれに50g/mの付着量の合金化溶融亜鉛めっきを施した。
このようにして製造された合金化溶融亜鉛めっき鋼板について、検査ラインにおいて製品コイル1本当たりに生じている1mm以上の大きさの表面欠陥の個数を目視により調べ、下記のように評価した。
◎ :表面欠陥が全くないもの
○ :表面欠陥の個数が1〜5個
○−:表面欠陥の個数が5個超、10個以下
△ :表面欠陥の個数が10個超、20個以下
× :表面欠陥の個数が20個超
【0023】
その結果を、酸化促進剤の塗布前の高圧水吹き付け条件(モールドパウダー除去の工程)と酸化促進剤の塗布条件とともに表3に示す。
表3においてNo.9とNo.10が本発明例であり、他の例に比べて鋼板の表面品質が良好である。No.9とNo.10は、酸化促進剤の塗布前の高圧水吹き付けにより鋳片表面のモールドパウダーとが略完全に除去された例であり、これらは製品鋼板のスケール性欠陥が殆ど発生していない。
【0024】
【表3】
Figure 0004821071
【0025】
【発明の効果】
以上述べた本発明によれば、鋳片表面のスケールを確実に除去し、残存スケールに起因した表面欠陥が極めて少ない鋼板を製造することができる。
【図面の簡単な説明】
【図1】酸化促進剤の塗布前に鋳片表面に吹き付けた高圧水のノズル吐出圧力と、デスケール後に評価したスケール剥離性との関係を示すグラフ
【図2】本発明の実施に供される一連の設備構成とこれによる本発明の一実施形態を示す説明図
【符号の説明】
1…連続鋳造設備、2…モールドパウダー除去設備、3…酸化促進剤塗布設備、4…加熱炉、5…熱間圧延設備、6…鋳型、7…ロール、8…2次冷却スプレー、9…カッター、10…幅圧下圧延機、11…高圧水噴射装置、12…粗圧延機、13…仕上圧延機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel sheet with few surface defects.
[0002]
[Prior art]
A general method for producing a hot-rolled steel sheet is represented by a heating furnace in which molten steel is cast by a continuous casting machine and cut into a slab of a predetermined length at the outlet of the continuous casting machine. After the temperature is made uniform in the thermal compensation process, a method of hot rolling while removing the scale formed on the surface of the slab by high-pressure water spraying or the like is employed. The process of removing the scale generated on the surface of the slab is an indispensable process for obtaining a steel sheet having no surface defects and excellent surface properties. As a method for removing the scale on the surface of the slab, generally, high-pressure water is sprayed on the surface of the slab to peel the scale from the slab, or the slab is pressed down in the width direction to add plastic deformation to the scale. The method of removing it finely is taken.
[0003]
However, in recent years, with the demands on the quality of steel sheets becoming more stringent, even if scale removal is performed by the method as described above, steel sheets with a slight residual scale on the slab surface after rolling or surface treatment The appearance of defects on the surface of the steel plate has been a problem in terms of the quality of the steel sheet.
[0004]
Conventionally, various proposals have been made to solve these problems.
JP-A-58-138501 discloses that one or more selected from oxides, hydroxides, sulfides, salts, metals, and alloys are adhered to the surface of a slab or steel ingot in a molten state. A method has been proposed in which surface flaws on the adhered portion are removed by accelerated oxidation.
[0005]
JP-A-11-350027 discloses that one or more compounds selected from nitrates, sulfates, carbonates and hydroxides of alkali metals or alkaline earth metals on the surface of a continuous cast slab. 100 parts by weight and 1 to 200 parts by weight of one or more compounds selected from potassium silicate, sodium silicate, aluminum silicate, calcium silicate, zirconium silicate, aluminum phosphate, magnesium phosphate, barium phosphate and boron phosphate By applying an oxidation accelerator dispersed in water or a mixture of water and an organic solvent, the peelability of the scale can be improved without promoting grain boundary oxidation. .
[0006]
[Problems to be solved by the invention]
However, according to a study by the present inventors, even when the oxidation accelerator disclosed in the above Japanese Patent Application Laid-Open No. 58-138501 or Japanese Patent Application Laid-Open No. 11-350027 is applied to the slab, the scale peelability is not. It did not improve so much, and it was found that the surface defects of the steel sheet were hardly reduced.
Accordingly, an object of the present invention is to provide a method of manufacturing a steel sheet that can reliably remove the scale on the surface of the slab and can manufacture a steel sheet having very few surface defects due to the remaining scale.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have examined the cause of the insufficient scale peelability obtained by the oxidation accelerator in the above-described prior art and the countermeasures. As a result, it has been found that the fact that the mold powder used in the continuous casting process remains and adheres to the surface of the slab is the main cause that the scale peelability does not improve even when an oxidation accelerator is applied.
[0008]
In other words, the oxidation accelerator proposed in the prior art functions effectively when applied to the ideal surface of the steel, but the mold powder used in the continuous casting process remains on the surface of the slab. When attached, it was found that the oxidation accelerator did not function effectively. In general, most of the mold powder adhering to the slab surface is peeled off directly under the mold by the secondary cooling spray water of the continuous casting machine, but unavoidably some mold powder remains on the slab surface. . Since the SiO 2 contained in the remaining mold powder has a melting point of 2000 ° C. or more as a simple substance, and a compound having a melting point exceeding 1500 ° C. is generated, the heating temperature is 1100 to 1400 ° C. Even if the slab is charged, the compound of SiO 2 and the oxidation accelerator has a melting point equal to or higher than the furnace temperature of the heating furnace, so that the compound does not melt in the heating furnace. For this reason, in the area where mold powder remains on the surface of the slab, oxidation is not promoted in the heating furnace (that is, the oxidation accelerator does not function effectively), and the scale is formed by high-pressure water spraying or the like in the subsequent process after the heating furnace. Even after removal, the scale was properly peeled off. As a result, it was found that surface defects occurred in the steel sheet.
[0009]
Therefore, the present inventors conducted the following experiment in order to solve the problem caused by the mold powder remaining on the surface of the slab. In this experiment, using a vacuum high-frequency melting furnace, C: 0.003 mass%, Si: 0.05 mass%, Mn: 0.3 mass%, P: 0.002 mass%, S: 0.001 mass%, Ti: 0.00. 04 mass%, sol. Al: An ultra-low carbon steel having a composition of 0.04 mass% was melted, and this molten steel was cast at a casting speed of 1 m / min using mold powder in a small test continuous casting machine (mold shape: width 200 mm, thickness 100 mm). Casted. After the completion of casting, for the purpose of removing mold powder remaining on the surface of the slab, high pressure water is sprayed on the surface of the slab at a nozzle injection pressure of 10 to 200 kgf / cm 2 and a flow rate of 100 L / min, and then an oxidation accelerator is cast on the slab. It apply | coated to the surface and it heated in the atmospheric heating furnace for 2 hours. The slab extracted from the heating furnace was sprayed with high-pressure water again at a nozzle injection pressure of 150 kgf / cm 2 and a flow rate of 100 L / min to remove the oxide scale, and the scale peelability at that time was evaluated. The scale peelability was evaluated by measuring the area of the slab surface from which the scale was peeled off by spraying high pressure water onto the slab surface from one nozzle. In addition, as an oxidation accelerator for modifying the scale generated on the slab surface, Na 2 CO 3 which is an alkali metal oxide carbonate is used, and this is applied to the slab surface at an application amount of 80 g / m 2 . It was applied with. Further, the distance between the nozzle opening and the slab surface at the time of removal and descaling of the mold powder was 100 mm.
[0010]
FIG. 1 shows the relationship between the nozzle spray pressure of high-pressure water sprayed on the slab surface before application of the oxidation accelerator and the scale peeling area due to the descaling. According to this, it can be seen that as the nozzle injection pressure of high-pressure water increases, the scale peeling area increases and the scale peeling property is improved. In particular the nozzle injection pressure 130 kgf / cm 2 or more, the scale peeling area is significantly increased by more preferably be 150 kgf / cm 2 or more. As a result of the investigation, it was found that such an improvement in scale peelability was due to the removal of the mold powder remaining on the surface of the slab by spraying the high-pressure water. In other words, by reliably removing the mold powder remaining on the surface of the slab before the application of the oxidation accelerator, the oxidation accelerator and scale can react effectively in the heating furnace, and the scale peelability can be greatly improved. understood.
[0011]
The present invention has been made based on such findings, and the features thereof are as follows.
[1] The slab cast by a continuous casting machine and cut to a predetermined length is charged into a heating furnace and heated, and after the descaling of the slab that has exited the heating furnace is performed, rough rolling and finishing are performed. In the method for manufacturing a steel sheet to be rolled,
Prior to charging the slab into the heating furnace, the mold powder adhering to the surface of the slab is removed by spraying high pressure water onto the surface of the slab, and in this high pressure water spraying, the nozzle injection pressure of high pressure water is 130 kgf / cm 2 or more, the impact pressure on the slab surface is 10 kgf / cm 2 or more,
A method for producing a steel sheet, comprising: removing an mold powder adhering to a slab surface, applying an oxidation accelerator to the slab surface, and then charging the slab into a heating furnace .
[0012]
[2] In the production method of [1 ] above, as an oxidation accelerator, alkali metal or alkaline earth metal nitrate, sulfate, carbonate or hydroxide, boron oxide, nitrate, sulfate, carbonate or A method for producing a steel sheet, comprising using one or more compounds selected from hydroxide, fluorine nitrate, sulfate, carbonate or hydroxide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a series of equipment configurations used for carrying out the present invention and an embodiment of the present invention. 1 is a continuous casting equipment, 2 is a mold for removing mold powder on the surface of a slab. Powder removal equipment, 3 is an oxidation accelerator coating equipment, 4 is a heating furnace, and 5 is a hot rolling equipment.
The slab A cast by the mold 6 of the continuous casting facility 1 is drawn downward by a plurality of rolls 7 provided below the mold and sprayed from a secondary cooling spray 8 provided between these rolls 7. It is cooled by the cooling water and transferred while being supported and guided by the roll 7, and finally cut into a slab a having a predetermined length by the cutter 9.
[0014]
The mold powder on the surface of the cut slab a (heat piece) is removed in the mold powder removal equipment 2. The method for removing the mold powder in this equipment is not particularly limited, but for example, it is performed by spraying high pressure water on the surface of the slab. As described above, FIG. 1 shows the relationship between the nozzle spray pressure of high-pressure water and the scale peelability when the mold powder is removed by spraying high-pressure water onto the slab surface. In this test, the distance between the nozzle opening and the slab surface was 100 mm, and the flow rate of high-pressure water was 100 L / min. According to the figure, the scale peelability is improved by making the nozzle injection pressure of the high pressure water 100 kgf / cm 2 or more, in particular the nozzle injection pressure 130 kgf / cm 2 or more, preferably to 150 kgf / cm 2 or more Therefore, the mold powder is reliably removed, so that high scale peelability is obtained. Here, as a result of investigating the relationship between the nozzle injection pressure and the collision pressure on the slab surface of the high-pressure water, which is a parameter that directly affects the scale peeling in this test, when the nozzle injection pressure is 130 kgf / cm 2 , The impact pressure on the surface of the slab was about 10 kgf / cm 2 . Therefore, in order to reliably remove the mold powder by spraying high-pressure water onto the slab surface and obtain high scale peelability, it is preferable to spray high-pressure water onto the slab surface with a collision pressure of 10 kgf / cm 2 or more.
[0015]
Next, an oxidation accelerator is applied to the surface of the slab in the oxidation accelerator application facility 3. The type of this oxidation accelerator is not particularly limited, but from the viewpoint of scale release properties, alkali metal or alkaline earth metal nitrates, sulfates, carbonates or hydroxides, boron oxides, nitrates, sulfates, carbonates It is preferable to use one or more compounds selected from salts or hydroxides, fluorine nitrates, sulfates, carbonates or hydroxides. Of these, carbonates and boron oxides are preferred, with Na 2 CO 3 and B 2 O 3 being most preferred.
Usually, these oxidation accelerators are dissolved in water and / or an organic solvent (alcohol or the like), and this solution is spray-coated on the surface of the slab by a sprayer or the like.
[0016]
The slab a (hot piece) having the surface coated with an oxidation accelerator is placed in the heating furnace 4 and heated to a predetermined temperature at which rolling is possible. Usually, the heating temperature in the heating furnace 4 is in the range of 1100 to 1400 ° C. The slab extracted from the heating furnace 4 is subjected to scale removal. In this scale removal, after the width reduction is applied to the slab by the width reduction rolling mill 10, plastic deformation is applied to the scale, and then high-pressure water may be injected from the high-pressure water injection device 11 onto the surface of the slab. Only the high pressure water injection by the high pressure water injection device 11 may be performed without performing the width reduction by the reduction rolling mill 10.
[0017]
The slab a from which the surface scale has been removed as described above is rolled into a rough bar by the roughing mill 12, and the rough bar is rolled to a predetermined thickness by the finishing mill 13 to produce a hot-rolled steel sheet. . The manufactured hot-rolled steel sheet may be used as a product as it is, or may be commercialized as a cold-rolled steel sheet or a surface-treated steel sheet through subsequent processes such as cold rolling and plating.
Thus, according to the method of the present invention, when producing a steel plate from a slab cast by a continuous casting machine, the scale attached to the slab is efficiently and reliably removed, there is no scale defect, and the surface texture is An excellent steel sheet can be stably produced.
[0018]
【Example】
Using a series of steel sheet manufacturing equipment shown in FIG. 2, hot rolled steel sheets were manufactured from the slabs of the two steel types shown in Table 1 in accordance with the processes described above. In the continuous casting facility, a slab having a thickness of 250 mm and a width of 1050 mm was cast at a casting speed of 2.5 m / min. Table 2 shows the composition of the mold powder used at that time.
[0019]
[Table 1]
Figure 0004821071
[0020]
[Table 2]
Figure 0004821071
[0021]
In the process of removing the mold powder before the application of the oxidation accelerator, a method of spraying high pressure water on the surface of the slab was used. The high pressure water was sprayed onto the surface of the slab at various injection pressures, and the flow rate of the high pressure water was 100 L / min. In addition, about some Examples, this mold powder removal was not performed.
In the step of applying the oxidation accelerator to the surface of the slab, Na 2 CO 3 which is an alkali metal oxide carbonate is used as the oxidation accelerator, and a solution in which this is dissolved in water is sprayed onto the surface of the slab with an injector. Thus, an oxidation accelerator was applied to the surface of the slab at an application amount of 80 g / m 2 . In some examples, the oxidation accelerator was not applied to the slab surface.
[0022]
The atmospheric temperature of the heating furnace was 1200 ° C. After the slab is heated and soaked in a heating furnace, width reduction rolling is performed at 50 mm / pass in the width reduction rolling mill, and then scale removal is performed by high-pressure water spraying. The rough bar was rolled with a hot finish rolling mill to obtain a hot-rolled steel plate having a thickness of 3.2 mm, and then cold-rolled to obtain a cold-rolled steel plate having a thickness of 0.8 mm. Next, this cold-rolled steel sheet was subjected to alloying hot-dip galvanizing with an adhesion amount of 50 g / m 2 on each of the front and back surfaces using a continuous hot-dip galvanizing facility.
The number of surface defects having a size of 1 mm or more generated per product coil in the inspection line was visually examined on the alloyed hot-dip galvanized steel sheet thus manufactured, and evaluated as follows.
◎: No surface defects at all ○: Number of surface defects 1 to 5 ○ −: Number of surface defects more than 5, 10 or less Δ: Number of surface defects more than 10, 20 or less ×: More than 20 surface defects
The results are shown in Table 3 together with the high-pressure water spraying conditions (mold powder removing step) before the application of the oxidation accelerator and the application conditions of the oxidation accelerator.
In Table 3, No. 9 and no . 10 is an example of the present invention, and the surface quality of the steel sheet is better than other examples. No. 9 and no. No. 10 is an example in which the mold powder on the surface of the slab is almost completely removed by high-pressure water spraying before the application of the oxidation accelerator, and these hardly cause scale defects in the product steel plate.
[0024]
[Table 3]
Figure 0004821071
[0025]
【The invention's effect】
According to the present invention described above, it is possible to reliably remove the scale on the surface of the slab and to manufacture a steel sheet having very few surface defects due to the remaining scale.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the nozzle discharge pressure of high-pressure water sprayed on the surface of a slab before application of an oxidation accelerator and the scale peelability evaluated after descaling. FIG. 2 is used for carrying out the present invention. Explanatory drawing showing a series of equipment configuration and one embodiment of the present invention thereby [Description of symbols]
DESCRIPTION OF SYMBOLS 1 ... Continuous casting equipment, 2 ... Mold powder removal equipment, 3 ... Oxidation promoter application equipment, 4 ... Heating furnace, 5 ... Hot rolling equipment, 6 ... Mold, 7 ... Roll, 8 ... Secondary cooling spray, 9 ... Cutter, 10 ... width reduction mill, 11 ... high pressure water injection device, 12 ... rough rolling mill, 13 ... finish rolling mill

Claims (2)

連続鋳造機により鋳造され、所定の長さに切断された鋳片を加熱炉に装入して加熱し、加熱炉を出た鋳片のデスケーリングを行った後、粗圧延及び仕上圧延を行う鋼板の製造方法において、
前記鋳片を加熱炉に装入するのに先立ち、鋳片表面に付着したモールドパウダーの除去を鋳片表面への高圧水吹き付けにより行い、該高圧水吹き付けでは高圧水のノズル噴射圧力を130kgf/cm 以上、鋳片表面での衝突圧力を10kgf/cm 以上とし、
鋳片表面に付着したモールドパウダーの除去後、鋳片表面に酸化促進剤を塗布し、しかる後、鋳片を加熱炉に装入することを特徴とする鋼板の製造方法。
A slab cast by a continuous casting machine and cut to a predetermined length is charged into a heating furnace and heated, and after the slab exiting the heating furnace is descaled, rough rolling and finish rolling are performed. In the manufacturing method of the steel sheet,
Prior to charging the slab into the heating furnace, the mold powder adhering to the surface of the slab is removed by spraying high pressure water onto the surface of the slab. cm 2 or more, the impact pressure on the slab surface is 10 kgf / cm 2 or more,
A method for producing a steel sheet, comprising: removing an mold powder adhering to a slab surface, applying an oxidation accelerator to the slab surface, and then charging the slab into a heating furnace .
酸化促進剤として、アルカリ金属若しくはアルカリ土類金属の硝酸塩、硫酸塩、炭酸塩又は水酸化物、ホウ素の酸化物、硝酸塩、硫酸塩、炭酸塩又は水酸化物、フッ素の硝酸塩、硫酸塩、炭酸塩又は水酸化物の中から選ばれる1種又は2種以上の化合物を用いることを特徴とする請求項1に記載の鋼板の製造方法。As oxidation promoters, alkali metal or alkaline earth metal nitrates, sulfates, carbonates or hydroxides, boron oxides, nitrates, sulfates, carbonates or hydroxides, fluorine nitrates, sulfates, carbonates The method for producing a steel sheet according to claim 1, wherein one or more compounds selected from a salt or a hydroxide are used.
JP2001255571A 2001-07-17 2001-08-27 Steel plate manufacturing method Expired - Fee Related JP4821071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255571A JP4821071B2 (en) 2001-07-17 2001-08-27 Steel plate manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001216265 2001-07-17
JP2001-216265 2001-07-17
JP2001216265 2001-07-17
JP2001255571A JP4821071B2 (en) 2001-07-17 2001-08-27 Steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2003094152A JP2003094152A (en) 2003-04-02
JP4821071B2 true JP4821071B2 (en) 2011-11-24

Family

ID=26618842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255571A Expired - Fee Related JP4821071B2 (en) 2001-07-17 2001-08-27 Steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4821071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231316A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Method for producing hot-rolled steel plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138501A (en) * 1982-02-10 1983-08-17 Nippon Steel Corp Surface finishing method of steel ingot or slab
JPS63248549A (en) * 1987-04-01 1988-10-14 Kawasaki Steel Corp Method for casting cast slab having excellent surface characteristic
JP2930968B2 (en) * 1989-04-04 1999-08-09 新日本製鐵株式会社 Method for producing cast slab for direct rolling
JPH1015649A (en) * 1996-07-01 1998-01-20 Daido Steel Co Ltd Mold powder for continuous casting
JPH11350027A (en) * 1998-06-04 1999-12-21 Kawasaki Steel Corp Pretreatment of continuously cast slab before heating
JP2000158109A (en) * 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd Thin billet continuous casting method

Also Published As

Publication number Publication date
JP2003094152A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US20110217514A1 (en) Magnesium alloy member and method of manufacturing the same
CN111148581B (en) Method for operating a combined casting and rolling installation and combined casting and rolling installation
JP4821071B2 (en) Steel plate manufacturing method
KR100985349B1 (en) Continuous Hot-dip Coating Line and Method for Continuous Hot-dip Coating Steel Strip
JP6841028B2 (en) Continuous steel casting method
KR100237526B1 (en) Hot-rolled stainless steel strip and method for producing the same
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JPH0699214A (en) Production of hot rolled steel strip with thin scale
CN113385535A (en) Annealing color difference improving method for Hatzerland continuous casting and rolling brazing foil
JP4035117B2 (en) Hot rolling method for high Si content steel sheet with good surface properties
JP4001264B2 (en) Manufacturing method of steel with few surface defects
JP3787941B2 (en) Heating method for continuous cast slabs
JP3552579B2 (en) Hot rolling method of stainless steel slab and chemicals for applying stainless steel slab before hot rolling
JP2007291472A (en) Method for producing hot dip galvannealed steel strip
JP4407371B2 (en) Steel continuous casting method
JP2001191108A (en) Descaling method and device for the same
JPH09271832A (en) Descaling method of hot rolled ferritic stainless steel plate
JP2930968B2 (en) Method for producing cast slab for direct rolling
JPH11267741A (en) Manufacture of hot rolled steel plate having excellent surface property
JP2689845B2 (en) Descaling method for hot rolled steel
KR101325400B1 (en) Semi-alloyed hot-rolled hot-dip galvanizing steel sheet and method for manufacturing the same
JP4525690B2 (en) Steel continuous casting method
JP3718906B2 (en) Method for producing hot-rolled steel sheet with hot metal plating
JP3704893B2 (en) Steel plate pickling apparatus and pickling method, and steel sheet hot-dip plating apparatus and hot dipping method
JP2004025280A (en) HOT ROLLING METHOD FOR Si-CONTAINING STEEL SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees