JP5444807B2 - Method for preventing surface cracks in continuous cast slabs - Google Patents

Method for preventing surface cracks in continuous cast slabs Download PDF

Info

Publication number
JP5444807B2
JP5444807B2 JP2009102534A JP2009102534A JP5444807B2 JP 5444807 B2 JP5444807 B2 JP 5444807B2 JP 2009102534 A JP2009102534 A JP 2009102534A JP 2009102534 A JP2009102534 A JP 2009102534A JP 5444807 B2 JP5444807 B2 JP 5444807B2
Authority
JP
Japan
Prior art keywords
slab
zone
mold
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009102534A
Other languages
Japanese (ja)
Other versions
JP2010253481A (en
Inventor
倫哉 駒城
淳 久保田
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009102534A priority Critical patent/JP5444807B2/en
Publication of JP2010253481A publication Critical patent/JP2010253481A/en
Application granted granted Critical
Publication of JP5444807B2 publication Critical patent/JP5444807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼の連続鋳造における鋼鋳片の表面割れ防止方法に関するものである。   The present invention relates to a method for preventing surface cracks in a steel slab in continuous casting of steel.

鋼の連続鋳造において、鋳片の表面割れを防止することは、圧延後の製品の表面品質を良好に保つためにも極めて重要である。鋳片の表面割れの原因としては、鋳型内での初期凝固の不均一性に起因するものや、オーステナイトからフェライトへの変態時に形成される粒界初析フェライトフィルムや粒界の炭窒化物に起因するものなどがある。何れにしても、オーステナイト粒径を細かくすることは、相対的に脆弱なオーステナイト結晶粒界の表面積を増やすことになり、連続鋳造機の矯正帯における鋳片矯正時などで鋳片の結晶粒界に働く応力を分散することになり、表面割れが生じにくくなる。また、結晶粒界に初析フェライトフィルムを生成させずに、オーステナイト結晶粒を微細なパーライト組織に変態させることも、オーステナイト粒界への応力の集中を避けることになり、表面割れが発生しにくくなる。   In continuous casting of steel, preventing surface cracks of the slab is extremely important for maintaining good surface quality of the product after rolling. Causes of slab surface cracks are due to non-uniformity of initial solidification in the mold, grain boundary proeutectoid ferrite film formed during the transformation from austenite to ferrite, and carbon nitride at the grain boundary. There are things that are caused. In any case, reducing the austenite grain size increases the surface area of the relatively fragile austenite grain boundaries, and the grain boundaries of the slabs during slab correction in the straightening zone of a continuous casting machine. The stress acting on the surface is dispersed, and surface cracks are less likely to occur. In addition, transformation of austenite grains to a fine pearlite structure without forming a proeutectoid ferrite film at the grain boundaries avoids stress concentration at the austenite grain boundaries, and surface cracks are less likely to occur. Become.

鋳片の表面割れを防止するべく、このような、オーステナイト組織から他の組織を経て割れにくい鋳片組織にする方法として、例えば、特許文献1には、炭素当量が0.18未満の鋼鋳片を湾曲型または垂直曲げ型の連続鋳造機で鋳造する際に、メニスカス(鋳型内溶鋼湯面)部から鋳型下端までの引抜き所要時間を1分以内とし、引抜いた後直ちに二次冷却を行い、1分以内に鋳片表面温度をA3変態温度以下まで冷却する鋳造方法が開示されている。 In order to prevent surface cracking of a slab, as a method of making such a slab structure that is difficult to break through an austenite structure through another structure, for example, Patent Document 1 discloses a steel casting having a carbon equivalent of less than 0.18. When casting a piece with a curved or vertical bending type continuous casting machine, the drawing time from the meniscus (molten steel surface in the mold) to the lower end of the mold should be within 1 minute, and secondary cooling is performed immediately after drawing. A casting method is disclosed in which the slab surface temperature is cooled to the A 3 transformation temperature or less within 1 minute.

また、特許文献2には、鋳片を鋳型から引抜いた後、鋳片表面温度をA3変態温度以下に一旦冷却して、次いで水量密度を0.003〜0.015リットル/cm2・分として0.5〜2.0分間の緩冷却を行い、A3変態温度を超えて復熱させる鋳造方法が開示されている。 In Patent Document 2, after the slab is drawn out of the mold, the surface temperature of the slab is once cooled to the A 3 transformation temperature or lower, and then the water density is 0.003 to 0.015 liter / cm 2 · min. perform slow cooling from 0.5 to 2.0 minutes as casting method for recuperation exceeds the a 3 transformation temperature is disclosed.

また更に、特許文献3には、鋳型出口から鋳造方向に1.5mまでの間において、Q=W/(H×D×Vc×ρ)(但し、W:二次冷却水量(リットル/分)、H:鋳片の幅(m)、D:鋳片厚み(m)、Vc:鋳造速度(m/分)、ρ:溶鋼の密度(kg/m3))で定義される二次冷却の比水量Qが、0.4〜1.5リットル/kg・鋼となる条件で鋳片を冷却し、鋳片の表面温度を一旦Ar3変態点以下に冷却した後に、Ar3変態点以上に復熱させ、その後に鋳片を矯正する鋳造方法が開示されている。 Furthermore, Patent Document 3 discloses that Q = W / (H × D × Vc × ρ) (W: secondary cooling water amount (liter / minute)) from the mold outlet to 1.5 m in the casting direction. , H: slab width (m), D: slab thickness (m), Vc: casting speed (m / min), ρ: density of molten steel (kg / m 3 )) the ratio water Q is cooled slabs under the condition that a 0.4 to 1.5 liters / kg · steel, after cooling the surface temperature of the slab once below Ar 3 transformation point, the Ar 3 transformation point or higher A casting method is disclosed in which reheating is performed and then the slab is straightened.

特開平9−47854号公報Japanese Patent Laid-Open No. 9-47854 特開平11−197809号公報JP 11-197809 A 特開2002−86252号公報JP 2002-86252 A

上記の従来技術は、何れも連続鋳造機内の鋳片の表面温度を二次冷却によって制御することで、鋳片の組織を目的とする組織とし、これにより鋳片の表面割れを防止するという技術である。しかしながら、上記従来技術は何れも、鋳片の全断面つまり鋳片全幅に亘って急速な冷却を必要とするので、その冷却のための設備は大規模となり、多大な設備費を要するという問題点がある。   All of the above prior arts are techniques for controlling the surface temperature of the slab in the continuous casting machine by secondary cooling, so that the structure of the slab is aimed, thereby preventing surface cracks of the slab. It is. However, since all of the above prior arts require rapid cooling over the entire cross section of the slab, that is, the entire width of the slab, the equipment for the cooling becomes large and requires a large equipment cost. There is.

ところで、鋳片の表面割れについては、割れが発生する幅方向位置や鋳造方向位置(割れが生じるタイミング)が限定されている場合が多い。例えば、垂直曲げ型連続鋳造機においては、鋳片に曲げを加える上部矯正帯付近で鋳片の下面側に、また、曲げた鋳片を曲げ戻す下部矯正帯付近で鋳片の上面側に、割れが生じることが多い。   By the way, as for the surface crack of the slab, the position in the width direction where the crack occurs and the position in the casting direction (timing at which the crack occurs) are often limited. For example, in a vertical bending type continuous casting machine, on the lower surface side of the slab near the upper straightening zone to bend the slab, and on the upper surface side of the slab near the lower straightening zone to bend the bent slab, Cracks often occur.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、オーステナイトからフェライトまたはパーライトへの相変態を利用して鋳片の表面割れを防止するにあたり、表面割れの発生が予測される鋳片部位に限って二次冷却を調整して鋳片表面温度を制御することで、鋳片全幅の表面温度を制御する従来技術に比較して効率良く、鋳片の表面割れを防止することのできる、連続鋳造鋳片の表面割れ防止方法を提供することである。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to prevent the occurrence of surface cracks in the prevention of surface cracks in slabs by utilizing the phase transformation from austenite to ferrite or pearlite. By controlling the secondary surface cooling and controlling the surface temperature of the slab only in the slab area, it is possible to prevent surface cracks of the slab more efficiently than the conventional technology that controls the surface temperature of the entire width of the slab. An object of the present invention is to provide a method for preventing surface cracking of continuous cast slabs.

上記課題を解決するための本発明に係る連続鋳造鋳片の表面割れ防止方法は、垂直曲げ型スラブ連続鋳造機または湾曲型スラブ連続鋳造機を用いて溶鋼を連続鋳造するにあたり、連続鋳造機内で鋳片に曲げ歪を与える時点での鋳片長辺面及び鋳片短辺面の表面温度分布を予測または実測し、該鋳片表面温度分布から表面温度が脆化域となる鋳片の部位を特定し、表面温度が脆化温度域となる鋳片の部位について、鋳型直下の二次冷却帯にて、前記部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで、300リットル/m2・分以上の冷却水量密度で鋳型から引抜かれた直後の鋳片の前記部位を冷却し続けることを特徴とするものである。 In order to solve the above-mentioned problems, the method for preventing surface cracking of a continuous cast slab according to the present invention is a method of continuously casting molten steel using a vertical bending slab continuous casting machine or a curved slab continuous casting machine. Predict or measure the surface temperature distribution of the long side of the slab and the short side of the slab when bending strain is applied to the slab, and determine the part of the slab where the surface temperature becomes an embrittled region from the surface temperature distribution of the slab. 300 liters until the point at which the part is transformed into either a ferrite single-phase structure or a pearlite structure in the secondary cooling zone immediately below the mold for the part of the slab where the surface temperature is in the brittle temperature range It is characterized in that the part of the slab immediately after being drawn out of the mold at a cooling water density of not less than / m 2 · min is continuously cooled.

本発明によれば、連続鋳造機内で鋳片に曲げ歪を与える時点での鋳片の長辺面及び短辺面の表面温度分布を予測または実測して、表面温度が脆化域となる鋳片の部位を特定し、表面温度が脆化温度域となる鋳片の部位についてのみ、鋳型直下の二次冷却帯にて、前記部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで300リットル/m2・分以上の冷却水量密度で強冷却するので、二次冷却水量の増加使用分は少なく、連続鋳造設備の二次冷却装置の簡便な増強で、鋳片の表面割れを効率良く防止することが実現される。 According to the present invention, the surface temperature distribution of the long side surface and the short side surface of the slab at the time of applying bending strain to the slab in the continuous casting machine is predicted or measured, and the surface temperature becomes a brittle region. Only the part of the slab where the surface temperature is in the embrittlement temperature region is specified, and the part is transformed into either a ferrite single phase structure or a pearlite structure in the secondary cooling zone immediately below the mold. Because it is strongly cooled at a cooling water density of 300 liters / m 2 · min or more until the time, the amount of secondary cooling water used is small, and the surface cracking of the slab can be achieved simply by increasing the secondary cooling device of the continuous casting equipment. Is effectively prevented.

短辺面に表面割れが発生した鋳片の概観図である。It is a general-view figure of the slab which the surface crack generate | occur | produced in the short side surface. 本発明の実施に好適な垂直曲げ型スラブ連続鋳造機の側面概略図である。It is a side schematic diagram of a vertical bending type slab continuous casting machine suitable for carrying out the present invention. 図2に示す連続鋳造機の鋳型直下の二次冷却装置の平面概略図である。FIG. 3 is a schematic plan view of a secondary cooling device directly under a mold of the continuous casting machine shown in FIG. 2. 表1に示す鋼種の熱間引張試験における破断時の面積減少率と試験温度との関係を示す図である。It is a figure which shows the relationship between the area reduction rate at the time of a fracture | rupture in a hot tensile test of the steel type shown in Table 1, and test temperature.

以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。   Hereinafter, the present invention will be specifically described. First, the background to the present invention will be described.

本発明者らは、表1に化学成分を示す中炭素鋼の溶鋼を、表2に示す仕様の垂直曲げ型スラブ連続鋳造機を用い、厚み220mm、幅1800mmのスラブ鋳片を、鋳造速度を0.8〜1.1m/分、タンディッシュ内の溶鋼温度を1545〜1560℃として鋳造した。   The inventors used a medium-carbon steel molten steel having chemical components shown in Table 1 and a vertical bending slab continuous casting machine having specifications shown in Table 2 to cast a slab slab having a thickness of 220 mm and a width of 1800 mm with a casting speed. Casting was performed at 0.8 to 1.1 m / min, and the molten steel temperature in the tundish was 1545 to 1560 ° C.

Figure 0005444807
Figure 0005444807

Figure 0005444807
Figure 0005444807

その結果、鋳片の短辺面には、上面側のコーナー部から20〜30mm離れた位置に割れが多発した。この鋳片の表面割れの概観図を図1に示す。一方、鋳片の長片面には上面及び下面ともに表面割れは発生していなかった。   As a result, cracks frequently occurred on the short side surface of the slab at a position 20 to 30 mm away from the corner portion on the upper surface side. An overview of the surface cracking of this slab is shown in FIG. On the other hand, surface cracks did not occur on the upper and lower surfaces of the long surface of the slab.

そこで、この原因を特定すべく、鋳造中の鋳片の温度・熱応力・変形解析を実施した。その結果、この連続鋳造機では、下部矯正帯において鋳片を曲げ戻し矯正するときに、(1)鋳片のコーナー部近傍が脆化温度域となること、(2)鋳片の上面側コーナー部近傍では曲げ戻し矯正による歪や熱歪によって引張の応力状態になること、が判明し、これが原因で短辺面側に割れが生じることが分かった。   Therefore, in order to identify this cause, we conducted temperature, thermal stress, and deformation analysis of the slab during casting. As a result, in this continuous casting machine, when the slab is bent back and straightened in the lower straightening band, (1) the vicinity of the corner of the slab becomes an embrittlement temperature range, and (2) the upper side corner of the slab. In the vicinity of the part, it was found that a tensile stress state was caused by strain due to bending back correction and thermal strain, and it was found that this caused cracks on the short side surface side.

一方、同じような温度及び応力状態となる上面側長辺面のコーナー部に、表面割れが生じない理由は明確ではなかった。そこで、この鋳片の鋳造方向に直交する断面(C断面)での組織観察を実施した。その結果、C断面の大部分には初析のフェライトフィルムを有するオーステナイト粒界が明確に観察された。この鋼種は、炭素濃度が0.15〜0.17質量%であるので、オーステナイト粒が最も粗大化しやすい鋼であり、このような状態で引張応力が働くと容易にオーステナイト粒界で割れが生じることが推定された。ところが一方で、鋳片上面側長辺面のコーナー部は微細組織になっていた。   On the other hand, the reason why the surface crack does not occur in the corner portion of the upper side long side surface having the same temperature and stress state is not clear. Therefore, the structure of the cross section (C cross section) perpendicular to the casting direction of the slab was observed. As a result, austenite grain boundaries having a pro-eutectoid ferrite film were clearly observed in most of the C section. Since this steel type has a carbon concentration of 0.15 to 0.17% by mass, it is a steel in which austenite grains are most likely to be coarsened, and when tensile stress acts in such a state, cracks easily occur at austenite grain boundaries. It was estimated. However, the corner portion of the long side surface on the upper surface side of the slab has a fine structure.

これらのことを勘案すると、鋳片のコーナー部を挟んで長辺面側及び短辺面側に同じように引張応力が働いても、長辺面側は微細組織になっているので、オーステナイト粒界に働く矯正応力が分散されて割れに至らず、これに対して、短辺面側はオーステナイト粗大粒組織であるので、引張応力が粒界に集中して割れに至ったと考えられた。   Considering these things, even if tensile stress is applied to the long side surface and the short side surface in the same way across the corner of the slab, the long side surface has a microstructure, so the austenite grains The straightening stress acting on the boundary is dispersed and does not lead to cracking. On the other hand, since the short side surface has a coarse austenite grain structure, it was considered that tensile stress concentrated on the grain boundary and led to cracking.

この結果を踏まえ、本発明者らは、短辺面側も長辺面側と同様の組織形態を得るための二次冷却条件について種々の検討を行った。その結果、鋳型直下の二次冷却帯において、鋳型から引抜かれた直後の鋳片短辺面を、その部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで、その部位を、300リットル/m2・分以上の冷却水量密度で冷却し続けることで、長辺面側と同様の組織形態を得られることを見出した。つまり、連続鋳造機において鋳片に矯正歪などが働くときに、その部位が脆化温度域に入るときには、その部位を予め鋳型直下で強冷却して、フェライト単相組織またはパーライト組織の何れか一方に一旦変態させておけば、脆化温度域で鋳片に引張応力を作用させても表面割れの発生が抑制されるとの知見を得た。 Based on this result, the present inventors have conducted various studies on secondary cooling conditions for obtaining the same structure on the short side surface side as on the long side surface side. As a result, in the secondary cooling zone directly under the mold, the slab short side surface immediately after being drawn out of the mold, until that part transforms into either a ferrite single-phase structure or a pearlite structure, It has been found that by continuing to cool at a cooling water density of not less than 300 liters / m 2 · min, the same morphology can be obtained as on the long side surface side. In other words, when corrective strain or the like acts on the slab in a continuous casting machine, when the part enters the embrittlement temperature range, the part is strongly cooled in advance directly under the mold, and either the ferrite single phase structure or the pearlite structure is used. On the other hand, it was found that once transformed, the occurrence of surface cracks is suppressed even when tensile stress is applied to the slab in the embrittlement temperature range.

本発明は、上記知見に基づいてなされたものであり、本発明に係る連続鋳造鋳片の表面割れ防止方法は、垂直曲げ型スラブ連続鋳造機または湾曲型スラブ連続鋳造機を用いて溶鋼を連続鋳造するにあたり、連続鋳造機内で鋳片に曲げ歪を与える時点での鋳片長辺面及び鋳片短辺面の表面温度分布を予測または実測し、該鋳片表面温度分布から表面温度が脆化域となる鋳片の部位を特定し、表面温度が脆化温度域となる鋳片の部位について、鋳型直下の二次冷却帯にて、前記部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで、300リットル/m2・分以上の冷却水量密度で鋳型から引抜かれた直後の鋳片の前記部位を冷却し続けることを特徴とする。 The present invention has been made on the basis of the above knowledge, and the method for preventing surface cracking of a continuous cast slab according to the present invention is a continuous bending of molten steel using a vertical bending slab continuous casting machine or a curved slab continuous casting machine. When casting, predict or measure the surface temperature distribution of the long side of the slab and the short side of the slab when bending strain is given to the slab in the continuous casting machine, and the surface temperature becomes brittle from the surface temperature distribution of the slab. The part of the slab that becomes the zone is specified, and the part of the slab whose surface temperature becomes the embrittlement temperature range is either the ferrite single-phase structure or the pearlite structure in the secondary cooling zone immediately below the mold. Until the time of transformation, the portion of the slab immediately after being drawn out of the mold at a cooling water density of 300 liters / m 2 · min or more is continuously cooled.

次に、本発明の実施形態例を、図面を参照して説明する。図2は、本発明を実施するに好適な垂直曲げ型スラブ連続鋳造機の側面概略図、図3は、図2に示す連続鋳造機の鋳型直下の二次冷却装置の平面概略図である。   Next, exemplary embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a schematic side view of a vertical bending slab continuous casting machine suitable for carrying out the present invention, and FIG. 3 is a schematic plan view of a secondary cooling device directly below the mold of the continuous casting machine shown in FIG.

図2に示すように、垂直曲げ型のスラブ連続鋳造機1には、溶鋼9を冷却して凝固させ、鋳片10の外殻形状を形成するための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼9を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール、ガイドロール及びピンチロールからなる複数対の鋳片支持ロール6が配置されている。これらの鋳片支持ロール6は、鋳型5から引抜かれる鋳片10を支持しながら下方に案内するための鋳片支持・案内装置である。   As shown in FIG. 2, the vertical bending type slab continuous casting machine 1 is provided with a mold 5 for cooling and solidifying the molten steel 9 to form the outer shell shape of the slab 10. A tundish 2 for relaying and supplying molten steel 9 supplied from a ladle (not shown) to the mold 5 is installed at a predetermined upper position. On the other hand, a plurality of pairs of slab support rolls 6 including a support roll, a guide roll, and a pinch roll are arranged below the mold 5. These slab support rolls 6 are slab support / guide devices for guiding the slab 10 pulled out from the mold 5 while guiding it downward.

鋳型5の出口から1mないし4m程度離れた位置に配置される複数対の鋳片支持ロール6は、鋳片10の支持・案内方向が鉛直方向から湾曲方向へと方向を変える上部矯正帯14を構成している。つまり、鋳型5から鉛直方向に引抜かれた平板上の鋳片10は上部矯正帯14で次第に円弧状に曲げられ、半径が一定の湾曲部へと矯正されるようになっている。上部矯正帯14では、鋳片10の下面側に引張応力が働き、上面側には圧縮応力が働く。従って、上部矯正帯14では、鋳片10の下面側に表面割れが発生しやすく、上面側には一般に表面割れは発生しない。この場合、鋳片10の厚み中心位置を境として、上面側及び下面側と定義する。   A plurality of pairs of slab support rolls 6 disposed at a position about 1 m to 4 m away from the exit of the mold 5 includes an upper correction band 14 that changes the support / guide direction of the slab 10 from a vertical direction to a bending direction. It is composed. That is, the slab 10 on the flat plate drawn out from the mold 5 in the vertical direction is gradually bent into an arc shape by the upper correction band 14, and is corrected to a curved portion having a constant radius. In the upper straightening band 14, tensile stress acts on the lower surface side of the slab 10, and compressive stress acts on the upper surface side. Therefore, in the upper correction band 14, surface cracks are likely to occur on the lower surface side of the slab 10, and surface cracks generally do not occur on the upper surface side. In this case, the upper surface side and the lower surface side are defined with the thickness center position of the slab 10 as a boundary.

同様に湾曲部が水平線に接触する位置の近傍に配置される複数対の鋳片支持ロール6は、鋳片10の支持・案内方向が湾曲方向から水平方向へと方向を変える下部矯正帯15を構成している。つまり、円弧状の鋳片10は下部矯正帯15で次第に平板上に曲げ戻され、水平部へと矯正されるようになっている。下部矯正帯15では、鋳片10の上面側に引張応力が働き、下面側には圧縮応力が働く。従って、下部矯正帯15では、鋳片10の上面側に表面割れが発生しやすく、下面側には一般に表面割れは発生しない。   Similarly, the plurality of pairs of slab support rolls 6 disposed in the vicinity of the position where the curved portion comes into contact with the horizontal line includes the lower correction belt 15 in which the support / guide direction of the slab 10 changes from the curved direction to the horizontal direction. It is composed. That is, the arc-shaped slab 10 is gradually bent back on the flat plate by the lower correction band 15 and corrected to the horizontal portion. In the lower correction band 15, tensile stress acts on the upper surface side of the slab 10, and compressive stress acts on the lower surface side. Therefore, in the lower correction band 15, surface cracks are likely to occur on the upper surface side of the slab 10, and surface cracks generally do not occur on the lower surface side.

尚、図2では、上部矯正帯14及び下部矯正帯15ともに複数対の鋳片支持ロール6で構成されているが、一対の鋳片支持ロール6のみで構成してもよい。本発明の上部矯正帯14及び下部矯正帯15は、一対のガイドロールで矯正する場合も含むものとする。   In FIG. 2, both the upper correction band 14 and the lower correction band 15 are configured by a plurality of pairs of slab support rolls 6, but may be configured by only a pair of slab support rolls 6. The upper correction band 14 and the lower correction band 15 of the present invention include cases where correction is performed with a pair of guide rolls.

鋳造方向に隣り合う鋳片支持ロール6の間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水によって鋳片10は引抜かれながら冷却されるようになっている。この二次冷却帯は鋳造方向で幾つかの冷却ゾーンに分割され、二次冷却水量が各冷却ゾーンで個別に調整できるようになっている。図2では、鋳型直下の第1冷却ゾーン上面側の冷却水配管18を示し、冷却水配管18には流量調節弁19が設置されており、流量調節弁19は制御装置17(プロセスコンピューター)からの信号によって、冷却水の流量を制御するように構成されている。他の冷却ゾーンも同一の構成になっている。   A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged is formed in the gap between the slab support rolls 6 adjacent in the casting direction. The slab 10 is cooled while being drawn out by the cooling water sprayed from the nozzle. This secondary cooling zone is divided into several cooling zones in the casting direction so that the amount of secondary cooling water can be adjusted individually in each cooling zone. FIG. 2 shows the cooling water pipe 18 on the upper surface side of the first cooling zone immediately below the mold, and the cooling water pipe 18 is provided with a flow rate adjusting valve 19, which is supplied from the control device 17 (process computer). The flow rate of the cooling water is controlled by this signal. The other cooling zones have the same configuration.

このスラブ連続鋳造機1においては、鋳型直下の第1冷却ゾーンは、図3に示すように、鋳片10の幅方向で、スプレーノズル20から噴霧する冷却水量を独立して制御できるように、構成されている。例えば、図3に示すように、鋳片10の幅方向では、一方のコーナーから他方のコーナーに向かってゾーンA〜Eの5つの範囲に分割され、また、鋳片10の短辺面側には短辺面ゾーンが設置されている。それぞれのゾーンで独立して冷却水を制御可能とすることもできるが、このスラブ連続鋳造機1においては、鋳片10の幅方向中心位置を基準として左右対称位置となるゾーンAとゾーンEとが同一の冷却水配管に接続し、同様に、ゾーンBとゾーンDとが同一の冷却水配管に接続している。短辺面ゾーンは、左右2つの短辺面ゾーンが同一の冷却水配管に接続している。つまり、ゾーンA+ゾーンEと、ゾーンB+ゾーンDと、ゾーンCと、短辺面ゾーンとの4つの部位に分割して、冷却水量が制御できるようになっている。   In the slab continuous casting machine 1, the first cooling zone immediately below the mold is capable of independently controlling the amount of cooling water sprayed from the spray nozzle 20 in the width direction of the slab 10, as shown in FIG. It is configured. For example, as shown in FIG. 3, in the width direction of the slab 10, the slab 10 is divided into five ranges of zones A to E from one corner to the other corner, and on the short side surface side of the slab 10. Has a short side zone. Although it is possible to control the cooling water independently in each zone, in this slab continuous casting machine 1, the zone A and the zone E that are symmetrical with respect to the center position in the width direction of the slab 10 Are connected to the same cooling water pipe, and similarly, zone B and zone D are connected to the same cooling water pipe. The short side zone is connected to the cooling water pipe in which the left and right short side zones are the same. That is, the amount of cooling water can be controlled by dividing into four parts, zone A + zone E, zone B + zone D, zone C, and short side zone.

また、この第1冷却ゾーンは、必要時には、鋳片10の表層部がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで、300リットル/m2・分以上の冷却水量密度で鋳片10を冷却し続ける必要があり、つまり、鋳型5から引抜かれた直後の高温の鋳片10をA3変態温度(フェライトの析出温度)またはA1変態温度(パーライト変態温度)以下まで急速に冷却する必要があり、従って、第1冷却ゾーンの鋳造方向長さは、相当の長さを必要とする。例えば、鋳造速度及び冷却水量密度にもよるが、1m程度またはそれ以上の長さを必要とする。正確には、鋳造速度及び冷却水量密度に基づき伝熱計算により求めることができる。 In addition, when necessary, the first cooling zone is cast at a cooling water density of 300 liters / m 2 · min or more until the surface layer portion of the slab 10 is transformed into either a ferrite single phase structure or a pearlite structure. It is necessary to continue cooling the piece 10, that is, the hot slab 10 immediately after being drawn out from the mold 5 is rapidly lowered to A 3 transformation temperature (ferrite precipitation temperature) or A 1 transformation temperature (pearlite transformation temperature) or lower. It is necessary to cool, and therefore the length of the first cooling zone in the casting direction requires a considerable length. For example, depending on the casting speed and the cooling water density, a length of about 1 m or more is required. Precisely, it can be obtained by heat transfer calculation based on the casting speed and the cooling water density.

下部矯正帯15には、下部矯正帯15で矯正されるときの鋳片10の表面温度を測定するための放射温度計16が設置されており、放射温度計16による温度測定値は制御装置17に入力されている。放射温度計16は鋳片10の幅方向に移動可能であり、且つ移動しつつ表面温度を測定するように構成されており、鋳片10の上面側の長辺面全面の表面温度を測定する。また、鋳片短辺面の表面温度分布を測定するための、鋳片10の厚み方向に移動可能な放射温度計(図示せず)も設置されており、鋳片短辺面の表面温度測定値も制御装置17に入力されている。   The lower correction belt 15 is provided with a radiation thermometer 16 for measuring the surface temperature of the slab 10 when the lower correction belt 15 is corrected. Has been entered. The radiation thermometer 16 is movable in the width direction of the slab 10 and is configured to measure the surface temperature while moving, and measures the surface temperature of the entire long side surface on the upper surface side of the slab 10. . In addition, a radiation thermometer (not shown) that is movable in the thickness direction of the slab 10 for measuring the surface temperature distribution of the slab short side surface is also installed, and the surface temperature measurement of the slab short side surface is performed. The value is also input to the control device 17.

タンディッシュ2の底部には、タンディッシュ2から鋳型5に注入される溶鋼9の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、溶鋼9を鋳型5に注入するための浸漬ノズル4が設置されている。また、鋳片支持ロール6の下流側には、鋳造された鋳片10を搬送するための複数の搬送ロール7が設置されており、この搬送ロール7の上方には、鋳造される鋳片10から所定の長さの鋳片10aを切断するための鋳片切断機8が配置されている。   A sliding nozzle 3 for adjusting the flow rate of the molten steel 9 injected from the tundish 2 into the mold 5 is installed at the bottom of the tundish 2, and the molten steel 9 is injected into the mold 5 at the lower surface of the sliding nozzle 3. An immersion nozzle 4 is provided for this purpose. A plurality of transport rolls 7 for transporting the cast slab 10 are installed on the downstream side of the slab support roll 6. Above the transport roll 7, the cast slab 10 to be cast is provided. A slab cutting machine 8 for cutting a slab 10a having a predetermined length is disposed.

このような構成の垂直曲げ型のスラブ連続鋳造機1を用いて、以下のようにして本発明を実施する。   The vertical bending slab continuous casting machine 1 having such a configuration is used to carry out the present invention as follows.

先ず、タンディッシュ2から浸漬ノズル4を介して鋳型5に溶鋼9を注入する。鋳型5に注入された溶鋼9は鋳型5で冷却されて凝固シェル11を形成し、内部に未凝固層12を有する鋳片10として複数対の鋳片支持ロール6に支持されつつ下方に連続的に引抜かれる。鋳型5のメニスカス13の上には、モールドパウダー(図示せず)を添加する。このようにして冷却された鋳片10は、凝固シェル11の厚みを増大して、やがて中心部までの凝固を完了する。凝固完了した鋳片10を鋳片切断機8により切断して鋳片10aを得る。   First, molten steel 9 is injected from the tundish 2 into the mold 5 through the immersion nozzle 4. The molten steel 9 injected into the mold 5 is cooled by the mold 5 to form a solidified shell 11 and continuously supported downward by a plurality of pairs of slab support rolls 6 as a slab 10 having an unsolidified layer 12 therein. Pulled out. Mold powder (not shown) is added on the meniscus 13 of the mold 5. The slab 10 cooled in this way increases the thickness of the solidified shell 11 and eventually completes the solidification to the center. The solidified slab 10 is cut by a slab cutting machine 8 to obtain a slab 10a.

このような連続鋳造操業において、各冷却ゾーンの冷却水量密度は、原則として300リットル/m2・分未満で鋳造を開始する。鋳造中、下部矯正帯15に配置した放射温度計による鋳片10の長辺面及び短辺面の表面温度の測定結果に基づき、制御装置17は、下部矯正帯15において表面温度が脆化温度域になる部位を特定する。そして、表面温度が脆化温度域になる部位が存在する場合には、二次冷却帯第1冷却ゾーンのゾーンA〜E及び短辺面ゾーンのなかから、鋳片表面温度が脆化温度域になる部位に相当する冷却ゾーンを特定し、特定した冷却ゾーンの流量調節弁19に、冷却水量密度が300リットル/m2・分以上の所定の冷却水量密度となるように、流量増加の信号を発信する。流量増加の信号を受けた流量調節弁19は開度を開き、所定の流量の冷却水に増加させる。 In such a continuous casting operation, casting is started when the cooling water density in each cooling zone is in principle less than 300 liters / m 2 · min. During the casting, based on the measurement results of the surface temperature of the long side surface and the short side surface of the slab 10 with the radiation thermometer arranged in the lower correction band 15, the controller 17 determines that the surface temperature in the lower correction band 15 is the embrittlement temperature. Identify the region that will be the zone. And when the site | part where surface temperature becomes an embrittlement temperature range exists, slab surface temperature is an embrittlement temperature range from the zone A to E of a secondary cooling zone 1st cooling zone, and a short side surface zone. The cooling zone corresponding to the part to be identified is specified, and a flow rate increase signal is supplied to the flow rate control valve 19 of the specified cooling zone so that the cooling water density becomes a predetermined cooling water density of 300 liters / m 2 · min or more. To send. The flow control valve 19 that has received the signal for increasing the flow rate opens the opening and increases the coolant to a predetermined flow rate.

この鋳造チャンスにおいては、原則として、第1冷却ゾーンの流量を増加させた冷却ゾーンは、変更させた状態で鋳造を継続する。但し、下部矯正帯15に配置した放射温度計による鋳片10の表面温度が明らかに脆化温度域を外れることが確認できた場合には、増加する前の元の水準に冷却量を戻すこともできる。   In this casting chance, as a rule, the cooling zone in which the flow rate of the first cooling zone is increased continues casting in a changed state. However, if it is confirmed that the surface temperature of the slab 10 is clearly out of the embrittlement temperature range by the radiation thermometer arranged in the lower correction belt 15, the cooling amount is returned to the original level before the increase. You can also.

放射温度計による鋳片10の表面温度が脆化温度域か否かの判断は、例えば、その鋼種の熱間引張試験から判断することができる。例えば、前述の表1に示す鋼種の熱間引張試験における破断時の面積減少率と試験温度との関係を図4に示すが、この鋼種の場合には750〜800℃が脆化温度域と判定できる。このように、予め鋼種毎に脆化温度域を把握しておけばよい。ここで、破断時の面積減少率とは、引張試験前の引張試片の断面積(D0)に対する、引張試験前の引張試片の断面積(D0)と破断個所の試片の断面積(D)との差分(D0−D)の百分率(100×(D0−D)/D0)であり、面積減少率が小さいということは、伸びが少ない段階で試片が破断すること、つまり脆性を意味している。 The determination as to whether or not the surface temperature of the slab 10 is in the embrittlement temperature range by the radiation thermometer can be made, for example, from a hot tensile test of the steel type. For example, FIG. 4 shows the relationship between the area reduction rate at break and the test temperature in the hot tensile test of the steel types shown in Table 1 above. In the case of this steel type, 750 to 800 ° C. is the embrittlement temperature range. Can be judged. Thus, what is necessary is just to grasp the embrittlement temperature range for every steel type beforehand. Here, the breaking area reduction ratio of, with respect to the cross-sectional area of the tensile specimen before the tensile test (D 0), the specimen of the cross-sectional area of the tensile specimen before tensile test and (D 0) breaking point cross The percentage (100 × (D 0 -D) / D 0 ) of the difference (D 0 -D) from the area (D), and the small area reduction rate means that the specimen breaks at a stage where the elongation is small. That means brittleness.

尚、この例では、放射温度計を下部矯正帯15に設置し、下部矯正帯15における鋳片10の表面割れを防止しているが、上部矯正帯14の鋳片下面側及び短辺面側に放射温度計を設置し、上部矯正帯14における鋳片10の表面割れを防止するようにしてもよい。また、放射温度計などの鋳片表面温度を測定するための機器は必ずしも必要ではなく、予め、鋳造条件や二次冷却水量分布に基づき伝熱・凝固計算を用いて表面割れの危険域となる鋳片部位を特定しておき、この部位について第1冷却ゾーンの冷却水量を増加させるという方法も行うことができる。本発明において、連続鋳造機内で鋳片10に曲げ歪を与える時点とは、上部矯正帯14における鋳片10の曲げ過程及び下部矯正帯15における鋳片10の曲げ戻し過程を差す。   In this example, a radiation thermometer is installed in the lower correction band 15 to prevent surface cracks of the slab 10 in the lower correction band 15, but the lower surface side and the short side surface side of the upper correction band 14. A radiation thermometer may be installed to prevent surface cracks of the slab 10 in the upper straightening zone 14. In addition, equipment for measuring the slab surface temperature, such as a radiation thermometer, is not always necessary, and it becomes a risk zone for surface cracking by using heat transfer and solidification calculations based on the casting conditions and secondary cooling water distribution in advance. A method of specifying a slab part and increasing the amount of cooling water in the first cooling zone for this part can also be performed. In the present invention, the time point at which bending strain is applied to the slab 10 in the continuous casting machine refers to the bending process of the slab 10 in the upper straightening strip 14 and the bending back process of the slab 10 in the lower straightening strip 15.

以上説明したように、本発明によれば、連続鋳造機内で鋳片10に曲げ歪を与える時点での鋳片表面温度分布を予測または実測して、表面温度が脆化域となる鋳片10の部位を特定し、表面温度が脆化温度域となる鋳片部位についてのみ、鋳型直下の二次冷却帯にて、前記部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで300リットル/m2・分以上の冷却水量密度で強冷却するので、二次冷却水量の増加使用分は少なく、二次冷却装置の簡便な増強であっても、鋳片10の表面割れを効率良く防止することが可能となる。 As described above, according to the present invention, the slab surface temperature distribution at the time of applying bending strain to the slab 10 in the continuous casting machine is predicted or measured, and the slab 10 whose surface temperature becomes an embrittlement region. Only for the slab part where the surface temperature is in the brittle temperature range, until the point at which the part transforms into either a ferrite single phase structure or a pearlite structure in the secondary cooling zone immediately below the mold. Strong cooling is performed at a cooling water density of 300 liters / m 2 · min or more, so there is little increase in the amount of secondary cooling water used, and the surface cracking of the slab 10 is efficient even if the secondary cooling device is simply enhanced. It becomes possible to prevent well.

尚、凝固初期の二次冷却水量を増やすことによって、割れ危険部位の温度を下げ、割れが生じる矯正帯位置での鋳片表面温度を脆化温度域よりも低くすることで、表面割れを回避するという方法も可能性はある。しかしながら、この方法では、鋳片10の幅方向に大きな温度差をもたらすことになるので、割れ危険域であった隣りの部位が、新たに割れ危険域に突入したり、鋳片幅方向温度差が原因で中心偏析が悪化したりするという問題が生じ、好ましくない。本発明のように、短時間の局所的な急冷で、割れの危険のある表層のみを、オーステナイトからフェライト単相組織またはパーライト組織へ変態させ、組織の強化を図るのが望ましい。   By increasing the amount of secondary cooling water in the initial stage of solidification, the temperature at the risk of cracking is lowered, and the surface temperature of the slab at the position of the straightening zone where cracking occurs is lower than the embrittlement temperature range, thereby avoiding surface cracking. There is also a possibility to do it. However, in this method, since a large temperature difference is caused in the width direction of the slab 10, the adjacent portion that was a crack risk area newly enters the crack risk area or the temperature difference in the slab width direction. This causes a problem that the center segregation deteriorates, which is not preferable. As in the present invention, it is desirable to transform the austenite to a ferrite single-phase structure or pearlite structure only by a local rapid cooling in a short time and to strengthen the structure.

表2に仕様を示し、図2に概略図を示すスラブ連続鋳造機を用い、表1に示す化学成分の溶鋼を、厚み220mm、幅1800mmのスラブ鋳片に、鋳造速度を1.1m/分及び0.8m/分として連続鋳造した。   Using a slab continuous casting machine whose specifications are shown in Table 2 and whose schematic is shown in FIG. And 0.8 m / min.

この連続鋳造における第1冷却ゾーンの設置位置は、メニスカスからの距離が0.7mから1.7mまでの範囲であり、今回の鋳造条件においては、この第1冷却ゾーンの鋳造方向長さ(=1.0m)で、冷却水量密度が300リットル/m2・分以上の二次冷却により、鋳片長辺面端部及び短辺面がフェライト単相組織またはパーライト組織になることを予め確認している。また、第1冷却ゾーンにおいて、ゾーンA及びゾーンEは、コーナー位置とコーナーから80mm位置までの範囲、ゾーンB及びゾーンDは、コーナーから80mmの位置とコーナーから240mm位置までの範囲で、残りの部分がゾーンCとなっている。 The installation position of the first cooling zone in this continuous casting is in the range from 0.7 m to 1.7 m from the meniscus. Under the present casting conditions, the length of the first cooling zone in the casting direction (= 1.0m), and confirm in advance that the long edge side and the short edge of the slab have a ferrite single-phase structure or pearlite structure by secondary cooling with a cooling water density of 300 liters / m 2 · min or more. Yes. In the first cooling zone, the zone A and the zone E are the corner position and the range from the corner to the 80 mm position, and the zone B and the zone D are the remaining 80 mm from the corner and the range from the corner to the 240 mm position. The part is zone C.

表3に、鋳造条件、下部矯正帯における表面温度の実績、第1冷却ゾーンにおける冷却条件及び表面割れの発生状況をまとめて示す。   Table 3 summarizes the casting conditions, the results of the surface temperature in the lower straightening zone, the cooling conditions in the first cooling zone, and the occurrence of surface cracks.

Figure 0005444807
Figure 0005444807

条件1は、基本的な冷却水量密度パターンであり、鋳型直下では、鋳片長辺面に240リットル/m2・分、鋳片短辺面に200リットル/m2・分の冷却水を噴霧した鋳造試験であり、本発明例と比較するための比較例1である。条件1では、鋳片上面側の長辺面端部及び短辺面の上部が脆化温度域(750〜800℃)となり、鋳片短辺面の上面側コーナーから20〜30mmの範囲に表面割れが発生した。 Condition 1 is a basic cooling water amount density pattern, and immediately below the mold, cooling water of 240 liters / m 2 · min was sprayed on the long side of the slab and 200 liters / m 2 · min was sprayed on the short side of the slab. It is a casting test and is Comparative Example 1 for comparison with the inventive example. In condition 1, the edge of the long side surface on the upper surface side of the slab and the upper part of the short side surface become a brittle temperature region (750 to 800 ° C.), and the surface is in a range of 20 to 30 mm from the upper surface side corner of the slab short side surface. Cracking occurred.

条件2は、鋳片の表面温度測定値から、鋳片の長辺面端部及び短辺面を下部矯正帯での表面割れ危険部位と判定し、鋳型直下の二次冷却水量条件から、ゾーンA及びゾーンE、並びに、短辺面側の冷却が不足と判断し、ゾーンA及びゾーンEの冷却水を300リットル/m2・分、及び、短辺面ゾーンの冷却水を2倍(=400リットル/m2・分)に増加させた本発明例1である。本発明例1では、鋳片上面側の長辺面端部及び短辺面の上部が脆化温度域となるものの、ゾーンA及びゾーンE、並びに、短辺面ゾーンを強冷した結果、当該部位の組織が強化され、鋳片に表面割れは発生せず、本発明の効果が発揮された。 Condition 2 is determined from the surface temperature measurement value of the slab from the end of the long side and the short side of the slab as the surface cracking risk area in the lower straightening zone, and from the condition of the amount of secondary cooling water directly under the mold, A and zone E and the short side surface cooling is judged to be insufficient, the cooling water of zone A and zone E is 300 liters / m 2 · min, and the cooling water of the short side zone is doubled (= The present invention example 1 was increased to 400 liters / m 2 · min). In Inventive Example 1, although the long side surface end on the upper surface side of the slab and the upper part of the short side surface are in the brittle temperature range, as a result of intense cooling of the zone A and zone E and the short side surface zone, The structure of the part was strengthened, and surface cracks did not occur in the slab, and the effects of the present invention were exhibited.

条件3及び条件4は、条件1及び条件2に対して、鋳造速度及び鋳片単位体積あたりの二次冷却水量を変更した条件であり、条件3は鋳型直下では、鋳片長辺面に240リットル/m2・分、鋳片短辺面に200リットル/m2・分の冷却水を噴霧した鋳造試験であり、本発明例と比較するための比較例2である。条件3では、鋳片上面側長辺面のコーナーから150mm程度離れた端部側が脆化温度域となり、鋳片上面側長辺面のコーナーから100〜200mmの範囲に表面割れが発生した。 Conditions 3 and 4 are conditions in which the casting speed and the amount of secondary cooling water per slab unit volume are changed with respect to conditions 1 and 2, and condition 3 is 240 liters on the long side of the slab immediately below the mold. / m 2 · min, a cast test sprayed with 200 liters / m 2 · min cooling water to the slab narrow side, is a comparative example 2 for comparison with the present invention embodiment. Under condition 3, the end side away from the corner of the long side surface of the slab by about 150 mm was an embrittlement temperature region, and surface cracks occurred in the range of 100 to 200 mm from the corner of the long side surface of the slab upper surface.

条件4は、鋳片の表面温度測定値から、鋳片上面側長辺面のコーナーから150mm程度離れた端部側を下部矯正帯での表面割れ危険部位と判定し、鋳型直下の二次冷却水量条件から、ゾーンB及びゾーンDの冷却が不足と判断し、ゾーンB及びゾーンDの冷却水を1.5倍(=360リットル/m2・分)に増加させた本発明例2である。本発明例2では、鋳片上面側長辺面のコーナーから150mm程度離れた端部側が脆化温度域となるものの、ゾーンB及びゾーンDを強冷した結果、当該部位の組織が強化され、鋳片に表面割れは発生せず、本発明の効果が発揮された。 Condition 4 is based on the measured surface temperature of the slab, and the end side that is about 150 mm away from the corner of the long side surface on the upper side of the slab is determined to be a surface cracking risk site in the lower straightening zone, and secondary cooling directly under the mold It is the present invention example 2 in which it is determined that the cooling of the zone B and the zone D is insufficient from the water amount condition, and the cooling water of the zone B and the zone D is increased 1.5 times (= 360 liters / m 2 · min). . In Example 2 of the present invention, although the end portion side about 150 mm away from the corner of the long side surface on the upper side of the slab is an embrittlement temperature region, as a result of intense cooling of the zone B and the zone D, the structure of the part is strengthened, The surface crack did not occur in the slab, and the effect of the present invention was exhibited.

このように本発明例1,2では、特許文献1〜3のように、鋳型直下において鋳片の全表面での強冷却は実施しなかったが、必要に応じて局所的に冷却水量を増加させるだけで表面割れを回避でき、本発明は、簡便な設備で対処できるという点で特許文献1〜3に比較して有利であることが確認できた。   Thus, in Invention Examples 1 and 2, as in Patent Documents 1 to 3, strong cooling was not performed on the entire surface of the slab directly under the mold, but the amount of cooling water was locally increased as necessary. It was confirmed that the present invention is more advantageous than Patent Documents 1 to 3 in that surface cracks can be avoided by simply making it, and the present invention can be handled with simple equipment.

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
7 搬送ロール
8 鋳片切断機
9 溶鋼
10 鋳片
11 凝固シェル
12 未凝固層
13 メニスカス
14 上部矯正帯
15 下部矯正帯
16 放射温度計
17 制御装置
18 冷却水配管
19 流量調節弁
20 スプレーノズル
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Casting piece support roll 7 Conveying roll 8 Casting piece cutting machine 9 Molten steel 10 Cast piece 11 Solidified shell 12 Unsolidified layer 13 Meniscus 14 Upper straightening belt 15 Lower straightening Belt 16 Radiation thermometer 17 Control device 18 Cooling water piping 19 Flow control valve 20 Spray nozzle

Claims (1)

垂直曲げ型スラブ連続鋳造機または湾曲型スラブ連続鋳造機を用いて溶鋼を連続鋳造するにあたり、各冷却ゾーンの冷却水量密度を300リットル/m 2 ・分未満とする鋳造条件において連続鋳造機内で鋳片に曲げ歪を与える時点での鋳片長辺面及び鋳片短辺面の表面温度分布を実測し、該鋳片表面温度分布から表面温度が脆化域となる鋳片の部位を特定し、表面温度が脆化温度域となる鋳片の部位について、鋳型直下の二次冷却帯にて、前記部位がフェライト単相組織またはパーライト組織の何れか一方に変態する時点まで、前記部位を冷却する冷却ゾーンに限り300リットル/m2・分以上の冷却水量密度に増加させ、鋳型から引抜かれた直後の鋳片の前記部位を冷却し続けることを特徴とする、連続鋳造鋳片の表面割れ防止方法。 When continuously casting molten steel using a vertical bending slab continuous casting machine or a curved slab continuous casting machine, casting is performed in the continuous casting machine under casting conditions in which the cooling water density in each cooling zone is less than 300 liters / m 2 · min. the slab long side surface and the billet surface temperature distribution of the short side surface at the time of giving a bending strain on one to the actual measurement, to identify sites of slab surface temperature from the template strip surface temperature distribution becomes embrittling The part of the slab where the surface temperature is in the brittle temperature range is cooled until the part transforms into either a ferrite single-phase structure or a pearlite structure in the secondary cooling zone immediately below the mold. The surface crack of a continuous cast slab, characterized in that it is increased to a cooling water density of 300 liters / m 2 · min or more only in the cooling zone, and the part of the slab immediately after being drawn from the mold is continuously cooled. Prevention method.
JP2009102534A 2009-04-21 2009-04-21 Method for preventing surface cracks in continuous cast slabs Expired - Fee Related JP5444807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102534A JP5444807B2 (en) 2009-04-21 2009-04-21 Method for preventing surface cracks in continuous cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102534A JP5444807B2 (en) 2009-04-21 2009-04-21 Method for preventing surface cracks in continuous cast slabs

Publications (2)

Publication Number Publication Date
JP2010253481A JP2010253481A (en) 2010-11-11
JP5444807B2 true JP5444807B2 (en) 2014-03-19

Family

ID=43315026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102534A Expired - Fee Related JP5444807B2 (en) 2009-04-21 2009-04-21 Method for preventing surface cracks in continuous cast slabs

Country Status (1)

Country Link
JP (1) JP5444807B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741147B2 (en) * 2011-04-01 2015-07-01 Jfeスチール株式会社 Steel continuous casting method
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method
JP5939002B2 (en) * 2012-04-09 2016-06-22 Jfeスチール株式会社 Solidification state estimation device, solidification state estimation method, and steel continuous casting method
CN103203441B (en) * 2013-03-28 2015-07-29 中国重型机械研究院股份公司 A kind of conticaster crystallizer on-line operation decision-making system
JP6638750B2 (en) * 2017-03-07 2020-01-29 Jfeスチール株式会社 Hot rolled steel sheet and its manufacturing method, cold rolled steel sheet and its manufacturing method, cold rolled annealed steel sheet manufacturing method, and hot dip galvanized steel sheet manufacturing method
JP7248049B2 (en) * 2020-06-10 2023-03-29 Jfeスチール株式会社 Flow control method and device, cooling method and device for steel material, and method for manufacturing continuous cast slab

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890182A (en) * 1994-09-22 1996-04-09 Sumitomo Metal Ind Ltd Method for continuously casting wide and thin cast slab
JP3008825B2 (en) * 1995-08-08 2000-02-14 住友金属工業株式会社 Slab surface crack suppression method
JP3463550B2 (en) * 1998-01-09 2003-11-05 住友金属工業株式会社 Method of preventing surface cracks in continuous cast slab
JP2001191158A (en) * 1999-12-28 2001-07-17 Sumitomo Metal Ind Ltd Continuous casting method of steel
JP3705101B2 (en) * 2000-09-12 2005-10-12 住友金属工業株式会社 Continuous casting method
JP3622687B2 (en) * 2001-04-09 2005-02-23 住友金属工業株式会社 Steel continuous casting method
JP3994852B2 (en) * 2002-10-30 2007-10-24 住友金属工業株式会社 Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JP4720640B2 (en) * 2006-06-15 2011-07-13 住友金属工業株式会社 Continuous casting method
JP4600436B2 (en) * 2007-06-20 2010-12-15 住友金属工業株式会社 Continuous casting method for slabs

Also Published As

Publication number Publication date
JP2010253481A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP6115735B2 (en) Steel continuous casting method
JP5082683B2 (en) Method for predicting surface cracks in continuous cast slabs
JP5012056B2 (en) Steel continuous casting method
TWI787597B (en) continuous casting method for steel
KR100481571B1 (en) Water cooling method of steel strip and water cooling tank
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP4899629B2 (en) Billet continuous casting method
JP2002086252A (en) Continous casting method
CN113543907B (en) Continuous casting method for slab casting blank
JP2009000705A (en) Method for continuously casting cast slab
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP6907961B2 (en) Steel piece rolling method and rolling equipment
JP5402678B2 (en) Steel continuous casting method
JP4692164B2 (en) Continuous casting method of high carbon steel
JP5045258B2 (en) Continuous casting method and continuous casting machine
JP2020075291A (en) Rolling method for steel piece with rectangular cross section, continuous casting rolling facility and rolling facility
JP7060164B2 (en) Secondary cooling method and equipment for continuously cast slabs
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP2007253214A (en) Method of evaluating high temperature embrittlement of continuous cast slab and method of continuously casting steel
RU2779384C1 (en) Method for continuous casting of steel
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JPH0515904A (en) Method for rolling cast slab just after solidification
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees