JPH05200514A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH05200514A
JPH05200514A JP18316492A JP18316492A JPH05200514A JP H05200514 A JPH05200514 A JP H05200514A JP 18316492 A JP18316492 A JP 18316492A JP 18316492 A JP18316492 A JP 18316492A JP H05200514 A JPH05200514 A JP H05200514A
Authority
JP
Japan
Prior art keywords
slab
cooling water
continuous casting
corner
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18316492A
Other languages
Japanese (ja)
Inventor
Yuichi Tsukaguchi
友一 塚口
Hirotaka Miki
裕貴 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18316492A priority Critical patent/JPH05200514A/en
Publication of JPH05200514A publication Critical patent/JPH05200514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of corner crack caused by excess cooling at the corner parts in a continuous casting method for executing in order to obtain a cast slab having the corner parts in the cross section. CONSTITUTION:On each of rolls 2 for guiding while rolling contacting with the cast slab 1, an annular groove (recessed part) 2a arranged, and by flowing out staying water 4a produced at the rolling.contact position between the cast slab 1 and the roll 2 downward from the gap formed between the annular groove 2a and the cast slab 1, the water 4b flowed down along the corner parts 1a, 1b in the cast slab 1 is relatively reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造方法に関し、特
に、0.55〜1.20%なる炭素を含む高炭素鋼により、スラ
ブ、ブルーム等、断面に角部を有する鋳片を得るべく実
施される連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method, and more particularly to continuous casting carried out by using a high carbon steel containing 0.55 to 1.20% of carbon to obtain a slab having a corner in a cross section such as a slab or a bloom. Regarding the casting method.

【0002】[0002]

【従来の技術】連続鋳造方法は、鋳型に注入した溶鋼を
該鋳型の水冷された内壁に接触せしめて凝固させ、外側
を凝固シェルにて被覆された鋳片を得て、鋳型の下側開
口から送出されるこの鋳片を、鋳型の下部に並設された
多数のロールの並設経路に沿わせて案内し、この並設経
路の終端に配されたピンチロールの回転により連続的に
引き抜きつつ、前記各ロール間に配したスプレーノズル
が噴出する冷却水を吹き付けて更に冷却し、内奥側まで
凝固が進行した段階で適宜の寸法に切断し、圧延工程等
の後工程での素材となる製品鋳片を得る方法である。
2. Description of the Related Art In a continuous casting method, molten steel injected into a mold is brought into contact with a water-cooled inner wall of the mold to solidify it, and a slab coated with a solidified shell on the outside is obtained, and a lower opening of the mold is opened. This slab sent out from is guided along the parallel path of a large number of rolls arranged in parallel at the bottom of the mold, and is continuously drawn out by the rotation of the pinch rolls arranged at the end of this parallel path. While further cooling by spraying cooling water ejected by a spray nozzle arranged between the rolls, cut into appropriate dimensions at the stage where solidification has progressed to the inner depth, and the material in the post-process such as rolling process. It is a method of obtaining a product cast.

【0003】ところが、スラブ用、ブルーム用等、断面
に角部を有する鋳片を得るべく実施される連続鋳造方法
においては、前述の如く吹き付けられる冷却水により鋳
片の角部が過冷却状態となり易く、特に高炭素鋼及び合
金鋼の連続鋳造においては、製品鋳片の角部に前記過冷
却に起因するひび割れ(コーナ割れ)が発生し、所定の
製品品質を確保するための後処理を強いられる問題があ
る。
However, in the continuous casting method for obtaining a slab for slabs, blooms, etc., which has corners in the cross section, the corners of the slab are supercooled by the cooling water sprayed as described above. It is easy, especially in continuous casting of high carbon steel and alloy steel, cracks (corner cracks) due to supercooling occur at the corners of product slabs, and post-processing to ensure the prescribed product quality is strong. There is a problem.

【0004】図1は、鋳片の角部における過冷却の発生
過程の説明図である。図中1は、矩形断面をなすスラブ
用の鋳片であり、これを案内するロール2,2…は、図
示の如く、鋳片1の両長辺に適宜の間隔毎に転接してお
り、これらのロール2,2間に配された各複数のスプレ
ーノズル3,3…が噴出する冷却水4が鋳片1に吹き付
けられている。
FIG. 1 is an explanatory diagram of a process of supercooling occurring at a corner of a cast slab. In the drawing, reference numeral 1 denotes a slab for a slab having a rectangular cross section, and rolls 2, 2 ... For guiding the slab are rollingly contacted to both long sides of the slab 1 at appropriate intervals, The cooling water 4 ejected from each of the plurality of spray nozzles 3, 3 arranged between the rolls 2 and 2 is sprayed onto the cast piece 1.

【0005】鋳片1に吹き付けられた冷却水4は、該鋳
片1の表面に沿って流下するが、この流下は、前述の如
く鋳片1の表面に適宜の間隔毎に転接するロール2によ
り妨げられるため、前記流下水の一部は、鋳片1とロー
ル2との転接部位にて溜まり水4aとなり、次いでロール
2の長手方向両側に分岐して流れ、鋳片1の長手方向両
端の角部1a,1aに達した後は、これらを伝って流下する
伝い水4bとなる。従って、矩形形状を有する鋳片1の4
か所の角部1a,1a…の夫々は、他部よりもはるかに多く
の冷却水4と定常的に接触することになり、この接触に
伴う抜熱が過冷却を引き起こすのである。
The cooling water 4 sprayed on the slab 1 flows down along the surface of the slab 1, and this downflow is a roll 2 which rolls on the surface of the slab 1 at appropriate intervals as described above. Part of the spilled water becomes pooled water 4a at the rolling contact point between the slab 1 and the roll 2, and then branches into both sides in the longitudinal direction of the roll 2 to flow in the longitudinal direction of the slab 1. After reaching the corners 1a, 1a at both ends, the water 4b flows down along these corners. Therefore, 4 of the slab 1 having a rectangular shape
Each of the corners 1a, 1a ... Of each location is in constant contact with much more cooling water 4 than the other portions, and the heat removal associated with this contact causes supercooling.

【0006】コーナ割れの要因となる角部1a,1a…の過
冷却を防止する方法としては、従来から次の3つの方法
が採用されている。第1の方法は、鋳片1に吹き付けら
れる冷却水4の絶対量を減らす方法であり、第2の方法
は、鋳片1とロール2との転接部位に空気を吹き付け、
溜まり水4aを吹き飛ばす方法であり、第3の方法は、鋳
片1の両短辺に水切り板を接触させ、該短辺両側の角部
1a,1aを伝う伝い水4bを切る方法である。
Conventionally, the following three methods have been adopted as a method for preventing the supercooling of the corners 1a, 1a ... Which causes corner cracking. The first method is a method of reducing the absolute amount of the cooling water 4 sprayed on the slab 1, and the second method is that air is sprayed on the rolling contact portion between the slab 1 and the roll 2.
The third method is to blow away the accumulated water 4a. The third method is to bring the draining plates into contact with both short sides of the cast slab 1 and to make corners on both sides of the short sides.
This is a method of cutting the water 4b that travels along 1a and 1a.

【0007】[0007]

【発明が解決しようとする課題】図2は、内部割れ及び
コーナ割れの発生率と冷却水量との相関関係を示すグラ
フである。本図に明らかな如く、冷却水量の減少は、コ
ーナ割れの発生率を低減させる反面、鋳片1の外側を覆
う凝固シェルの成長を遅らせ、シェル厚が薄くなること
からロール間バルジングが大きくなり、これに起因する
内部割れの発生率を増加させる。従って、前記第1の方
法の実施に際しては、内部割れ及びコーナ割れの発生率
を示す曲線の交点近傍にて、両者にある程度の低減効果
が得られる水量を維持せねばならず、この水量の維持が
正しく行なわれた場合であってもコーナ割れ及び内部割
れを十分に解消し得ない難点がある。
FIG. 2 is a graph showing the correlation between the occurrence rate of internal cracks and corner cracks and the amount of cooling water. As is clear from this figure, a decrease in the amount of cooling water reduces the incidence of corner cracking, but on the other hand, it delays the growth of the solidified shell that covers the outside of the slab 1 and reduces the shell thickness, thus increasing bulging between rolls. , Increase the incidence of internal cracks caused by this. Therefore, when carrying out the first method, it is necessary to maintain a water amount that can achieve a certain reduction effect in the vicinity of the intersection of the curves showing the occurrence rates of internal cracks and corner cracks. However, there is a problem in that corner cracks and internal cracks cannot be sufficiently eliminated even if the above is correctly performed.

【0008】また第2の方法は、多数のロール2,2…
と鋳片1との転接部位に夫々生じている溜まり水4a,4a
…を吹き飛ばすために、多数本のエアーノズルを必要と
し、これらの保守に多大の手間を要する上、各エアーノ
ズルから噴出させるための多量の圧力空気を消費する難
点がある。
In the second method, a large number of rolls 2, 2, ...
Water 4a, 4a generated at the rolling contact point between the slab and the slab 1, respectively
A large number of air nozzles are required to blow away ..., And it takes a lot of time and labor to maintain them, and there is a problem that a large amount of compressed air for ejecting from each air nozzle is consumed.

【0009】更に第3の方法は、鋳片1の両短辺に常時
接触する水切り板の耐久性に問題があり、頻繁な交換を
強いられる上、スラブ用として広く用いられている幅変
更が可能な鋳型を備えた連続鋳造設備においては、この
幅変更に伴う鋳片1の短辺位置の変化に応じて前記水切
り板の位置を変更する機構を必要とし、実用性に乏しい
という難点があった。
Further, the third method has a problem in the durability of the draining plate which is constantly in contact with both short sides of the cast slab 1, which requires frequent replacement, and has a width change widely used for slabs. In a continuous casting facility equipped with a possible mold, a mechanism for changing the position of the draining plate according to the change in the position of the short side of the slab 1 due to this width change is required, and there is a drawback that it is not practical. It was

【0010】本発明は斯かる事情に鑑みてなされたもの
であり、鋳片角部の過冷却を簡素な構成にて有効に解消
でき、鋳片のコーナ割れ及び内部割れの発生を防止し得
る連続鋳造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and can effectively eliminate supercooling of a corner portion of a cast piece with a simple structure and prevent occurrence of corner cracks and internal cracks of the cast piece. An object is to provide a continuous casting method.

【0011】[0011]

【課題を解決するための手段】本発明に係る連続鋳造方
法は、鋳型から送出される鋳片を、該鋳型の下方に並設
した多数のロールに沿わせて案内し、各ロール間にて冷
却水を吹き付けつつ連続的に引き抜くようにした連続鋳
造方法において、前記ロールの一部又は全部の周面に凹
部を形成し、この凹部と前記鋳片の表面との間の隙間を
経て前記冷却水を下方に流し去るようにしたことを特徴
とする。
A continuous casting method according to the present invention guides a cast piece fed from a mold along a large number of rolls arranged in parallel below the mold, and separates between the rolls. In a continuous casting method in which cooling water is continuously drawn out while spraying cooling water, a recess is formed on a part or all of the peripheral surface of the roll, and the cooling is performed through a gap between the recess and the surface of the cast piece. The feature is that the water is made to flow downward.

【0012】更に前記方法に加えて、前記鋳型内部の溶
鋼に、該溶鋼中の硫黄Sの含有量に対する重量比が0.
3≦Ca/S≦1.5となる範囲のカルシウムCaを添
加すること、前記溶鋼中の窒素含有量〔N〕を、〔N〕
≦30ppm に調整すること、及び前記冷却水の比水量W
を、W≦0.70リットル/kgとすることの内の少なくとも
1つを実施することを特徴とする。
In addition to the above method, the weight ratio of the molten steel in the mold to the content of sulfur S in the molten steel is 0.
Addition of calcium Ca in the range of 3 ≦ Ca / S ≦ 1.5, and the nitrogen content [N] in the molten steel is [N]
Adjust to ≦ 30ppm, and the specific water amount W of the cooling water
Is performed at least one of W ≦ 0.70 liter / kg.

【0013】[0013]

【作用】本発明においては、各ロール間にて鋳片に吹き
付けられる冷却水は、各ロールと鋳片との転接部位に溜
まり長手方向両側に向けて流れる間に、ロールの周面に
形成された凹部と鋳片の表面との間に形成された隙間を
経て下方に流れ去る。これにより鋳片の角部を伝う冷却
水量が相対的に減り、該角部の過冷却及びこれに起因す
るコーナ割れの発生を防止する。
According to the present invention, the cooling water sprayed on the slab between the rolls is formed on the peripheral surface of the roll while it is collected at the rolling contact portion between the rolls and the slab and flows toward both sides in the longitudinal direction. It flows downward through the gap formed between the formed recess and the surface of the cast slab. As a result, the amount of cooling water propagating through the corners of the slab is relatively reduced, and supercooling of the corners and the occurrence of corner cracks resulting from this are prevented.

【0014】更に本発明においては、鋳型内部の溶鋼中
に適量添加されたカルシウムにより内部割れの発生を防
ぎ、また溶鋼中の窒素含有量〔N〕に上限を設け、鋼中
の酸可溶性アルミニウム(sol.Al)と窒素(N)とに
より生成されて延性の低下要因となるAl−Nの析出を
抑制し、コーナ割れの防止効果を高め、また冷却水の比
水量に上限を設け、冷却水量の低減により鋳片の表面温
度を高めて、表面近くに析出したAl−Nの固溶化を促
進し、これによりコーナ割れの防止を図る。
Further, in the present invention, the addition of an appropriate amount of calcium in the molten steel inside the mold prevents the occurrence of internal cracks, and the nitrogen content [N] in the molten steel is set to an upper limit so that the acid-soluble aluminum ( sol.Al) and nitrogen (N), which suppresses precipitation of Al-N, which is a factor that reduces ductility, enhances the effect of preventing corner cracks, and sets an upper limit on the specific water amount of cooling water. To increase the surface temperature of the slab and promote solid solution of Al—N precipitated near the surface, thereby preventing corner cracking.

【0015】[0015]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図3は本発明に係る連続鋳造方法(以下本
発明方法という)の実施状態を示す模式的側面図、図4
は同じく正面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 3 is a schematic side view showing an implementation state of the continuous casting method according to the present invention (hereinafter referred to as the present invention method), and FIG.
Is also a front view.

【0016】図中1は、矩形断面を有するスラブ用の鋳
片であり、該鋳片1は、鋳型Mの下側開口部から送出さ
れた後、これの両長辺に適宜の間隔毎に転接する多数の
ロール2,2…の並設経路に沿って案内され、この並設
経路の終端に位置する図示しないピンチロールの回転に
より、下方に向けて連続的に引き抜かれている。
In the figure, reference numeral 1 denotes a slab slab having a rectangular cross section, and the slab 1 is delivered from the lower opening of the mold M, and is then provided on both long sides of the slab 1 at appropriate intervals. .. are guided along a parallel installation path of a large number of rolls 2, 2, ... Which roll-contact, and are continuously pulled out downward by rotation of a pinch roll (not shown) located at the end of this parallel installation path.

【0017】鋳型Mの下方の所定の範囲内にあるロール
2,2…間には、各複数のスプレーノズル3,3…が配
してあり、鋳型Mから引き抜かれる鋳片1は、これらの
スプレーノズル3,3…が噴出する冷却水4の吹き付け
により、前記引き抜きの間に除々に冷却されるようにな
っている。
A plurality of spray nozzles 3, 3 ... Are arranged between the rolls 2, 2 ... Within a predetermined range below the mold M, and the slab 1 that is pulled out from the mold M is By spraying the cooling water 4 ejected from the spray nozzles 3, 3, ..., The cooling water 4 is gradually cooled during the drawing.

【0018】スプレーノズル3,3…の配設範囲内のロ
ール2,2…は、図4に示す如く、夫々の周面に適宜の
幅を有して各1本の環状溝2a,2a…を備えている。な
お、各ロール2における環状溝2aの形成位置は、上下に
相隣するロール2,2間にて長手方向に整合しないよう
に設定されている。
As shown in FIG. 4, the rolls 2, 2 ... Within the range where the spray nozzles 3, 3 ... Are arranged have an appropriate width on their peripheral surfaces, and each one annular groove 2a, 2a. Is equipped with. The formation position of the annular groove 2a in each roll 2 is set so as not to be aligned in the longitudinal direction between the rolls 2 and 2 which are vertically adjacent to each other.

【0019】図5は、以上の如き環状溝2aを有するロー
ル2と鋳片1との転接部位における冷却水4の流れ状態
の説明図である。鋳片1に吹き付けられた冷却水4の大
部分は、鋳片1の表面との接触により蒸発し、残部は、
鋳片1の表面に沿って流下する。そしてこの流下は、吹
き付け位置の下方にて鋳片1の表面に転接するロール2
により妨げられるため、流下水の一部は、ロール2と鋳
片1との転接部位にて溜まり水4aとなり、この転接部位
に沿ってロール2の長手方向両側に分岐して流れる。
FIG. 5 is an explanatory view of a flow state of the cooling water 4 at the rolling contact portion between the roll 2 having the annular groove 2a as described above and the cast piece 1. Most of the cooling water 4 sprayed on the slab 1 is evaporated by contact with the surface of the slab 1, and the rest is
It flows down along the surface of the slab 1. Then, this flow-down is caused by the roll 2 rolling on the surface of the slab 1 below the spraying position.
Therefore, a part of the run-down water becomes pooled water 4a at the rolling contact portion between the roll 2 and the slab 1, and the branched water flows along the rolling contact portion on both sides in the longitudinal direction of the roll 2.

【0020】ところが、前記ロール2は環状溝2aを有し
ており、この環状溝2aの形成部分においては鋳片1との
間に隙間が生じた状態にあるから、溜まり水4aの一部
は、この隙間を経て下方に流下することが可能である。
この結果、鋳片1の長手方向両端の角部1a,1aに達して
これらを伝って流下する伝い水4bの量が相対的に減じら
れ、この伝い水4bとの接触に伴う抜熱量が少なくなるこ
とから、角部1a,1aに過冷却が生じる虞は大幅に低減さ
れる。
However, since the roll 2 has an annular groove 2a and a gap is formed between the roll 2 and the slab 1 at the portion where the annular groove 2a is formed, part of the accumulated water 4a It is possible to flow downward through this gap.
As a result, the amount of transfer water 4b that reaches the corners 1a, 1a at both longitudinal ends of the cast slab 1 and flows down through these is relatively reduced, and the amount of heat removal due to contact with the transfer water 4b is reduced. Therefore, the risk of supercooling of the corners 1a, 1a is greatly reduced.

【0021】以上の如く本発明方法は、表面に凹部を備
えたロール2を用い、この凹部と鋳片1との間の隙間か
ら溜まり水4aを流し去ることを特徴とするものであり、
前記凹部は、図4に示す如き態様にて形成された環状溝
2aに限らない。
As described above, the method of the present invention is characterized in that the roll 2 having the concave portion on the surface is used, and the accumulated water 4a is flowed out from the gap between the concave portion and the cast piece 1.
The concave portion is an annular groove formed in the manner shown in FIG.
Not limited to 2a.

【0022】図6は、本発明方法において使用可能なロ
ール2の他の実施例を示す正面図である。図6(a)に
示すロール2は、長手方向に複数本並設された細幅の環
状溝2b,2b…を備えたものであり、また図6(b)に示
すロール2は、周面の略全幅に螺旋溝2cを備えたもので
あり、更に図6(c)に示すロール2は、長手方向及び
周方向の相異なる位置に夫々略半周に亘って形成された
所定幅の窪み2d,2dを備えたものであり、これらのロー
ル2を用いた場合においても、角部1a,1aに過冷却が生
じる虞は同様に低減される。
FIG. 6 is a front view showing another embodiment of the roll 2 usable in the method of the present invention. The roll 2 shown in FIG. 6 (a) is provided with a plurality of narrow annular grooves 2b, 2b ... Arranged side by side in the longitudinal direction, and the roll 2 shown in FIG. 6 (b) has a peripheral surface. The roll 2 shown in FIG. 6 (c) has a recess 2d of a predetermined width formed over approximately half the circumference at different positions in the longitudinal direction and the circumferential direction. , 2d, and even when these rolls 2 are used, the risk of supercooling of the corners 1a, 1a is similarly reduced.

【0023】また他の実施例として、周面に多数のディ
ンプル状の窪みを備えたロール2、自動車用のタイヤ表
面の如く所定のパターンに従って形成された凹溝を備え
たロール2等を用いることもできる。また以上の如き凹
部は、スプレーノズル3,3…の配設範囲内にあるロー
ル2,2…の全てに形成する必要はなく、これらの一部
にのみ形成してもよく、またスプレーノズル3,3…の
配設範囲よりも下方に位置するロール2,2…にも同様
の凹部を形成してもよい。
As another embodiment, a roll 2 having a large number of dimple-shaped depressions on its peripheral surface, a roll 2 having concave grooves formed according to a predetermined pattern such as a tire surface for an automobile are used. You can also Further, it is not necessary to form the recesses as described above on all of the rolls 2, 2 ... Within the range where the spray nozzles 3, 3 ... Are arranged, but they may be formed on only a part thereof. The same recess may be formed in the rolls 2, 2 ... Which are located below the range of arrangement of the rolls 3, 2.

【0024】図7は、本発明方法と従来法とにより得ら
れた鋳片の角部において生じている焼入れ組織の面積を
比較した結果を示す図である。なおこの比較は、 960〜
1100mmなる幅と 210〜 230mmなる厚さとを有し、鋳込み
速度0.75m/分にて製造された炭素工具鋼( JIS SK-3 )
製のスラブ用鋳片に対するものである。
FIG. 7 is a diagram showing the results of comparing the areas of the quenching structures generated at the corners of the cast pieces obtained by the method of the present invention and the conventional method. This comparison is from 960
Carbon tool steel (JIS SK-3) with a width of 1100 mm and a thickness of 210 to 230 mm, manufactured at a casting speed of 0.75 m / min.
It is for cast slab slabs.

【0025】図7に示す如く、従来法によった場合、鋳
片の角部に生じる焼入れ組織の面積が3700mm2 であった
のに対し、本発明方法によった場合、同面積が 100mm2
となり、本発明方法の実施により角部の過冷却及びこれ
に伴うコーナ割れの発生を大幅に低減し得ることが明ら
かとなった。
As shown in FIG. 7, in the case of the conventional method, the area of the quenching structure generated at the corners of the slab was 3700 mm 2 , whereas in the case of the method of the present invention, the same area was 100 mm 2.
Therefore, it became clear that the implementation of the method of the present invention can significantly reduce the supercooling of the corners and the occurrence of corner cracks accompanying it.

【0026】また図7に示す結果は、鋳片1kg当たりの
冷却水量(比水量W)を、従来法においては0.90リット
ル/kgとし、本発明方法においては0.66リットル/kgと
して得られたものである。前述した如く本発明方法にお
いては、鋳片1の表面に吹き付けられる冷却水4がロー
ル2の凹部と鋳片1との間の隙間を経て流下し、鋳片1
の表面の全体に行き渡ることから、内部割れの発生を招
来することなく冷却水4の比水量Wを少なくすることが
できる。
The results shown in FIG. 7 are obtained by setting the cooling water amount (specific water amount W) per 1 kg of the slab to 0.90 liters / kg in the conventional method and 0.66 liters / kg in the method of the present invention. is there. As described above, in the method of the present invention, the cooling water 4 sprayed on the surface of the slab 1 flows down through the gap between the concave portion of the roll 2 and the slab 1,
Since the entire surface of the cooling water 4 is spread, the specific water amount W of the cooling water 4 can be reduced without causing the occurrence of internal cracks.

【0027】コーナ割れの主たる要因として、鋳型M内
部の溶鋼中に含まれる酸可溶性アルミニウム(sol.A
l)と窒素(N)とから生成されるAl−Nが凝固の過
程において析出し、鋳片1の延性低下を招来することが
ある。図8は鋳片1の表面温度とAl−Nの析出量との
関係を示す図である。
The main cause of corner cracking is acid-soluble aluminum (sol. A) contained in the molten steel inside the mold M.
Al-N generated from 1) and nitrogen (N) may precipitate during the solidification process, leading to a decrease in ductility of the slab 1. FIG. 8 is a diagram showing the relationship between the surface temperature of the cast slab 1 and the precipitation amount of Al—N.

【0028】本図に明らかな如くAl−Nの析出量は、
鋳片1の表面温度の上昇と共に低下する。これは、鋳片
1の表面温度の上昇が、表面近くに析出するAl−Nの
固溶化を促進するためである。一方、冷却水4の比水量
Wを少なくすることは鋳片1の表面温度を高める効果が
あり、Al−Nの析出量の低下によりコーナ割れの発生
につながる鋳片1の延性低下を抑制することができる。
前述した如き凹部を備えたロール2を用いる本発明方法
においては、鋳片1に内部割れの発生を招来することな
く冷却水4の比水量Wを低減できることから、コーナ割
れの防止効果を高めるべく、冷却水4の比水量Wを、0.
70リットル/kg以下に制限する。このような比水量Wの
制限下において実際の連続鋳造を行った結果、後述する
如く、コーナ割れの発生領域となるスプレーノズル3,
3…の配設領域(二次冷却帯)での鋳片1の表面温度を
1000℃前後に保つことができ、この表面温度でのAl−
Nの析出量は、図8から極めて小さいことがわかる。
As is clear from this figure, the amount of Al-N deposited is
It decreases as the surface temperature of the slab 1 increases. This is because the increase in the surface temperature of the cast slab 1 promotes the solid solution of Al—N that precipitates near the surface. On the other hand, reducing the specific water amount W of the cooling water 4 has the effect of increasing the surface temperature of the cast slab 1, and suppresses the decrease in ductility of the cast slab 1 that leads to the occurrence of corner cracks due to the decrease in the precipitation amount of Al-N. be able to.
In the method of the present invention using the roll 2 provided with the recesses as described above, the specific water amount W of the cooling water 4 can be reduced without causing internal cracking in the slab 1, so that the effect of preventing corner cracking should be improved. , The specific water amount W of the cooling water 4 is 0.
Limit to 70 liters / kg or less. As a result of performing actual continuous casting under such a limitation of the specific water amount W, as will be described later, the spray nozzle 3, which becomes a region where a corner crack occurs,
The surface temperature of the slab 1 in the arrangement area of 3 ... (Secondary cooling zone)
It can be kept around 1000 ℃, and Al-
It can be seen from FIG. 8 that the precipitation amount of N is extremely small.

【0029】また、鋳片1の内部割れを防止するために
は、鋳型M内部の溶鋼にカルシウム(Ca)を添加する
ことが有効である。Caの添加量は、溶鋼中の硫黄
(S)の含有量に応じて決定すればよい。図9は、Ca
の添加量を種々に変え、内部割れの発生状態を調べた結
果を示す図であり、図の横軸は、硫黄(S)の含有量に
対するカルシウム(Ca)の添加量の割合(=Ca/
S)である。
In order to prevent internal cracking of the slab 1, it is effective to add calcium (Ca) to the molten steel inside the mold M. The amount of Ca added may be determined according to the content of sulfur (S) in the molten steel. Figure 9 shows Ca
It is a figure which shows the result of having investigated the generation | occurrence | production state of an internal crack by changing the addition amount of various, and the horizontal axis of a figure is a ratio of the addition amount of calcium (Ca) with respect to the content of sulfur (S) (= Ca /
S).

【0030】本図に明らかな如く、Ca添加量の増大に
応じて内部割れの発生率が低くなっており、Ca/Sが
0.3以上である領域においては、内部割れの発生を略完
全に防止できる。但し、Caの過剰な添加は、鋳片1中
のCaOクラスタの増加を招来することから、Caの適
正な添加量は次式の範囲に限定する。
As is apparent from this figure, the rate of occurrence of internal cracking decreases with increasing Ca addition amount, and Ca / S
In the region of 0.3 or more, the occurrence of internal cracks can be almost completely prevented. However, since excessive addition of Ca causes an increase in CaO clusters in the cast slab 1, the appropriate addition amount of Ca is limited to the range of the following formula.

【0031】0.3≦Ca/S≦ 1.5 …(1)0.3 ≦ Ca / S ≦ 1.5 (1)

【0032】なお図9の結果は、炭素(C)含有量が0.
80〜1.10%であり、硫黄(S)含有量が 0.003〜0.006
%なる高炭素鋼により、比水量を0.60〜0.69リットル/
kgとし、鋳込み速度を0.75m/分として本発明方法により
製造された前述した寸法の鋳片において調べたものであ
る。
The results shown in FIG. 9 show that the carbon (C) content is 0.
80-1.10%, sulfur (S) content 0.003-0.006
% Of high carbon steel, the specific water volume is 0.60 to 0.69 liters /
The results are obtained by investigating a slab having the above-mentioned dimensions, which was produced by the method of the present invention, in kg and the casting speed was 0.75 m / min.

【0033】即ち、前述した如き凹部を備えたロール2
を用いる本発明方法を、鋳型M内部の溶鋼に(1)式に
示す範囲内のCaを添加しつつ実施した場合、コーナ割
れと共に内部割れの発生を防止でき、良質の製品鋳片を
安定して得ることができる。なお、Caを単独で溶鋼中
に添加した場合、この添加に伴う反応が強すぎることか
ら、実際のCa添加は、鋳型M内部の溶鋼中に、Caと
Si(シリコン)との合金製のワイヤを投入することに
より行われる。
That is, the roll 2 provided with the concave portion as described above.
When the method of the present invention using is carried out while adding Ca within the range shown in the formula (1) to the molten steel inside the mold M, it is possible to prevent the occurrence of internal cracks as well as corner cracks, and stabilize a high quality product slab. Can be obtained. When Ca is added alone into molten steel, the reaction accompanying this addition is too strong. Therefore, the actual addition of Ca is performed by adding a wire made of an alloy of Ca and Si (silicon) to the molten steel inside the mold M. It is done by throwing in.

【0034】また前記図8に明らかな如く、コーナ割れ
の要因となるAl−Nの析出量は、溶鋼中の酸可溶性ア
ルミニウムの含有量〔sol.Al〕及び窒素含有量〔N〕
の低下と共に低下するから、コーナ割れの防止のために
は、〔sol.Al〕及び〔N〕を低下せしめることが有効
である。これらの内前者の調整は、オーステナイト粒の
大きさ制御の観点から困難であるが、後者の調整は可能
であり、本発明方法においては、凹部を備えたロール2
を用いた連続鋳造法の実施に当たり、鋳型M内部の溶鋼
の窒素含有量〔N〕を調整することにより、コーナ割れ
の発生をより有効に防止する。
As is clear from FIG. 8, the amount of precipitation of Al—N, which causes corner cracking, depends on the content of acid-soluble aluminum [sol. Al] and the content of nitrogen [N] in the molten steel.
It is effective to reduce [sol.Al] and [N] in order to prevent corner cracking. The former of these is difficult to adjust from the viewpoint of controlling the size of austenite grains, but the latter is possible, and in the method of the present invention, the roll 2 having a recess is used.
In carrying out the continuous casting method using, the occurrence of corner cracking can be prevented more effectively by adjusting the nitrogen content [N] of the molten steel inside the mold M.

【0035】図10及び図11は、酸可溶性アルミニウムの
含有量〔sol.Al〕及び窒素含有量〔N〕が異なる3種
の試験片に対する高温引張試験の結果を示す図である。
この試験は、一旦1300℃まで加熱された後、略 100℃/m
inなる冷却速度にて二次冷却帯での鋳片1の温度に近い
温度にまで冷却された各試験片に対し、二次冷却帯にお
いて鋳片1に加わるそれと同等の歪速度(=10-3/s)
を与えて行われたものであり、両図の横軸は引張試験温
度、また図10の縦軸は延性破面率、図11の縦軸は試験片
の内部応力である。
FIG. 10 and FIG. 11 are diagrams showing the results of high temperature tensile tests for three types of test pieces having different acid-soluble aluminum contents [sol.Al] and nitrogen contents [N].
This test is performed after heating up to 1300 ℃, then about 100 ℃ / m
For each test piece cooled to a temperature close to the temperature of the cast piece 1 in the secondary cooling zone at a cooling rate of in, a strain rate (= 10 − 3 / s)
The abscissa of both figures is the tensile test temperature, the ordinate of FIG. 10 is the ductile fracture surface ratio, and the ordinate of FIG. 11 is the internal stress of the test piece.

【0036】図中に●印、○印及び×印により夫々示す
3種の試験片は、酸可溶性アルミニウムの含有量〔sol.
Al〕及び窒素含有量〔N〕において異なり、〔sol.A
l〕については、●印の試験片のみが 0.006%、他の2
種の試験片が共に 0.002%としてあり、また〔N〕につ
いては、●印の試験片が 0.028%(28ppm )、○印の試
験片が 0.027%(27ppm )であって、略同一となってお
り、×印の試験片のみが 0.037%(37ppm )としてあ
る。また●印の試験片は、Sの含有量に対する比が0.
6、即ち(1)式の条件を満たすCaを含有している。
sol.Al及びN以外の成分組成は、3種の試験片の全て
において略同一となっている。
The three kinds of test pieces shown by ●, ○ and × in the figure are the contents of acid-soluble aluminum [sol.
Al] and nitrogen content [N] are different, [sol.
Regarding l], only the test piece marked with ● is 0.006%, the other 2
For both types of test pieces, 0.002% is used, and for [N], the test pieces marked with ● are 0.028% (28ppm) and the test pieces marked with ○ are 0.027% (27ppm). Yes, only the test piece marked with x is 0.037% (37ppm). Further, in the test pieces marked with ●, the ratio to the S content is 0.
6, that is, contains Ca that satisfies the condition of the formula (1).
The composition of components other than sol. Al and N is almost the same in all three test pieces.

【0037】図10及び図11に示す如く、二次冷却帯の平
均的な温度である 700℃〜 900℃において、〔N〕が大
きい×印の試験片の強度は他の2つの試験片よりも大き
く低下しており、溶鋼中の窒素含有量〔N〕の調整によ
りコーナ割れの発生防止が図れることは、この結果から
も明らかである。更に、これらの図及び図8から、窒素
含有量〔N〕を、〔N〕≦ 30ppmとすることにより、コ
ーナ割れの発生を有効に防止し得ることがわかる。なお
各試験片における〔sol.Al〕は、十分な大きさのオー
ステナイト粒を形成し、焼入れ性の向上を図るべく決定
されている。
As shown in FIGS. 10 and 11, at 700 ° C. to 900 ° C., which is the average temperature of the secondary cooling zone, the strength of the cross-marked test piece having a large [N] is higher than that of the other two test pieces. It is also clear from this result that the occurrence of corner cracks can be prevented by adjusting the nitrogen content [N] in the molten steel. Further, from these figures and FIG. 8, it can be seen that the occurrence of corner cracks can be effectively prevented by setting the nitrogen content [N] to be [N] ≦ 30 ppm. The [sol.Al] in each test piece is determined so as to form austenite grains of a sufficient size and improve the hardenability.

【0038】鋳型M内部の溶鋼に対する〔N〕の調整
は、例えば、溶鋼中の炭素量の調整に用いる加炭材とし
て、電極粉を用いることにより達成される。図12は、炭
素工具鋼(JIS SK-3又はSK-5)製のスラブ用鋳片の連続
鋳造に際し、炭素量の調整のために種々の加炭材を用い
た各場合における成品中の窒素含有量〔N〕を調べた結
果を示す図である。図の横軸は成品中の炭素含有量の基
準含有量に対する百分率であり、縦軸は成品中の窒素含
有量(ppm)であって、加炭材として電極粉を用いた
場合、炭素含有量〔C〕の如何に拘わらず窒素含有量
〔N〕は 30ppm以下に保たれており、本発明方法におけ
る〔N〕≦ 30ppmなる条件を満たし得ることがわかる。
The adjustment of [N] with respect to the molten steel inside the mold M is achieved by using electrode powder as a carburizing material used for adjusting the amount of carbon in the molten steel. Fig. 12 shows the nitrogen in the product in each case when various carburizing materials were used to adjust the carbon content during continuous casting of slab slabs made of carbon tool steel (JIS SK-3 or SK-5). It is a figure which shows the result of having investigated content [N]. The horizontal axis of the figure is the percentage of the carbon content in the product with respect to the standard content, the vertical axis is the nitrogen content (ppm) in the product, and the carbon content when electrode powder is used as the carburizing material. Regardless of [C], the nitrogen content [N] is maintained at 30 ppm or less, and it can be seen that the condition of [N] ≦ 30 ppm in the method of the present invention can be satisfied.

【0039】最後に種々の条件下にて連続鋳造方法を実
施し、夫々における試験鋳片のコーナ割れ及び内部割れ
の発生状況を調べた試験の結果を示す。この試験により
得られた4種の試験鋳片(A,B,C,D)の成分組成
は表1に、夫々に対する鋳造条件、並びにコーナ割れ及
び内部割れの発生状況は表2に夫々示してあり、図13は
各鋳片の表面温度の変化の様子を示す図である。
Finally, the results of a test in which the continuous casting method was carried out under various conditions and the occurrence of corner cracks and internal cracks of the test slab in each case were investigated are shown. The composition of the four types of test slabs (A, B, C, D) obtained by this test is shown in Table 1, the casting conditions for each, and the occurrence of corner cracks and internal cracks are shown in Table 2. FIG. 13 is a diagram showing how the surface temperature of each slab changes.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】前記試験鋳片の内、前述した各条件、即
ち、0.3≦Ca/S≦1.5なる範囲のCaの添加、
窒素含有量〔N〕≦ 30ppm、及び冷却水4の比水量W≦
0.70リットル/kgなる3条件の全てを満たすのは試験鋳
片Cのみであり、試験鋳片A,Bは3条件の全てを満た
さず、また試験鋳片Dは、窒素含有量〔N〕≦ 30ppm及
び冷却水4の比水量W≦0.70リットル/kgなる2条件は
満たすが、Caの添加量が前記条件外にあるものであ
る。
Among the test slabs, each of the above-mentioned conditions, that is, addition of Ca in the range of 0.3≤Ca / S≤1.5,
Nitrogen content [N] ≤ 30 ppm, and specific water amount of cooling water 4 W ≤
Only the test slab C satisfies all three conditions of 0.70 liter / kg, the test slabs A and B do not satisfy all three conditions, and the test slab D has a nitrogen content [N] ≦ The two conditions of 30 ppm and the specific water amount of cooling water W ≦ 0.70 liter / kg are satisfied, but the amount of Ca added is outside the above conditions.

【0043】表2に示す如く試験鋳片Dにおいては、全
体で3か所、長さ1m当たり0.01か所のコーナ割れとわ
ずかな内部割れとが観察された。また試験鋳片A,Bに
おいては、長さ1m当たり0.14か所のコーナ割れとわず
かな内部割れとが観察され、更に、コーナ割れの深さが
試験鋳片Dにおけるそれに比して大きいことがわかっ
た。これらに対し、前記3条件の全てを満たす試験鋳片
Cにおいては、その全長に亘ってコーナ割れ及び内部割
れの発生は皆無であり、本発明方法の実施により良好な
品質を有する鋳片が安定して得られることが明らかとな
った。
As shown in Table 2, in the test slab D, corner cracks and slight internal cracks were observed at three places as a whole, 0.01 places per 1 m in length. Further, in the test slabs A and B, 0.14 corner cracks and slight internal cracks were observed per 1 m in length, and the depth of the corner cracks was larger than that in the test slab D. all right. On the other hand, in the test slab C satisfying all of the above three conditions, no corner cracks or internal cracks were generated over the entire length thereof, and the slab having good quality was stable by the method of the present invention. It became clear that it was obtained.

【0044】また図13に示す如く、冷却水4の比水量W
が前記制限下にある試験鋳片C,Dの表面温度は、同じ
く前記制限外にある試験鋳片A,Bのそれを 150℃程度
上回っており、コーナ割れの発生領域となるスプレーノ
ズル3,3…の配設域の略全体に亘って、1000℃以上に
安定して保たれている。一方、コーナ割れの発生要因と
なるAl−Nの析出量は、前記図8から明らかな如く、
1000℃を超えると共に急減しており、冷却水4の比水量
Wを0.70リットル/kg以下に制限することがコーナ割れ
の発生防止に有効であることがわかる。
Further, as shown in FIG. 13, the specific water amount W of the cooling water 4
The surface temperature of the test slabs C and D that are under the above limits is about 150 ° C higher than that of the test slabs A and B that are also outside the above limits, and the spray nozzle 3, which becomes a region where corner cracks occur, It is stably maintained at 1000 ° C or higher over almost the entire area where 3 ... On the other hand, as is clear from FIG. 8, the amount of precipitation of Al—N, which is a cause of corner cracking, is
It rapidly decreases as the temperature exceeds 1000 ° C, and it is understood that limiting the specific water amount W of the cooling water 4 to 0.70 liter / kg or less is effective in preventing the occurrence of corner cracks.

【0045】[0045]

【発明の効果】以上詳述した如く本発明方法において
は、鋳型の下方にて鋳片を案内するロールが凹部を備
え、この凹部と鋳片との間の隙間が、ロールと鋳片との
転接部位に溜まる冷却水の排出通路として機能するか
ら、鋳片の角部に冷却水が集中することがなくなり、こ
れに伴うコーナ割れの発生を有効に防止できると共に、
以上の効果がロールの小改良により得られる。更に、鋳
型内部の溶鋼中へのカルシウムの添加と、溶鋼の加熱度
の制限とにより内部割れの発生を抑制でき、また溶鋼中
の窒素含有量の制限と、冷却水の比水量の制限とにより
コーナ割れの要因となるAl−Nの析出が抑制され、コ
ーナ割れの発生防止効果が更に高められるから、良好な
品質を有する鋳片を安定して得ることができる等、本発
明は優れた効果を奏する。
As described in detail above, in the method of the present invention, the roll for guiding the slab below the mold is provided with a recess, and the gap between the recess and the slab is the gap between the roll and the slab. Since it functions as a discharge passage for the cooling water that collects in the rolling contact area, the cooling water does not concentrate at the corners of the slab, and it is possible to effectively prevent the occurrence of corner cracks accompanying it.
The above effects can be obtained by the small improvement of the roll. Furthermore, by adding calcium to the molten steel inside the mold, the occurrence of internal cracks can be suppressed by limiting the heating degree of the molten steel, and by limiting the nitrogen content in the molten steel and limiting the specific amount of cooling water. Since the precipitation of Al—N, which is a factor of corner cracking, is suppressed and the effect of preventing the occurrence of corner cracking is further enhanced, the present invention is excellent in that a cast piece having good quality can be stably obtained. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳片の角部における過冷却の発生過程の説明図
である。
FIG. 1 is an explanatory diagram of a process of occurrence of supercooling in a corner portion of a cast slab.

【図2】コーナ割れ及び内部割れの発生率と冷却水量の
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the incidence of corner cracks and internal cracks and the amount of cooling water.

【図3】連続鋳造設備における本発明方法の実施状態を
示す側面図である。
FIG. 3 is a side view showing an implementation state of the method of the present invention in a continuous casting facility.

【図4】本発明方法の実施状態を示す正面図である。FIG. 4 is a front view showing an implementation state of the method of the present invention.

【図5】本発明方法におけるロールと鋳片との転接部位
での冷却水の流れ状態の説明図である。
FIG. 5 is an explanatory view of a flow state of cooling water at a rolling contact portion between a roll and a cast in the method of the present invention.

【図6】本発明方法において使用可能なロールの他の実
施例を示す正面図である。
FIG. 6 is a front view showing another embodiment of a roll that can be used in the method of the present invention.

【図7】本発明方法によるコーナ割れの低減効果を示す
図である。
FIG. 7 is a diagram showing a corner crack reducing effect by the method of the present invention.

【図8】鋳片の表面温度とAl−Nの析出量との関係を
示す図である。
FIG. 8 is a diagram showing the relationship between the surface temperature of the cast slab and the precipitation amount of Al—N.

【図9】内部割れの発生を防止するために必要なカルシ
ウム添加量の適正範囲を示す図である。
FIG. 9 is a diagram showing an appropriate range of a calcium addition amount required to prevent the occurrence of internal cracking.

【図10】高温での引張に際しての窒素含有量の影響を
示す図である。
FIG. 10 is a diagram showing the influence of the nitrogen content during tensile at high temperature.

【図11】高温での引張に際しての窒素含有量の影響を
示す図である。
FIG. 11 is a diagram showing the influence of the nitrogen content when pulling at high temperature.

【図12】種々の加炭材を用いた場合における成品中の
窒素含有量を示す図である。
FIG. 12 is a diagram showing the nitrogen content in the product when various carburizing materials are used.

【図13】異なる比水量下における鋳片の表面温度の変
化の様子を示す図である。
FIG. 13 is a diagram showing changes in the surface temperature of a slab under different specific water contents.

【符号の説明】[Explanation of symbols]

1 鋳片 1a 角部 2 ロール 2a 環状溝 2b 環状溝 2c 螺旋溝 2d 窪み 3 スプレーノズル 4 冷却水 4a 溜まり水 4b 伝い水 M 鋳型 1 cast piece 1a corner part 2 roll 2a annular groove 2b annular groove 2c spiral groove 2d hollow 3 spray nozzle 4 cooling water 4a pooled water 4b transmission water M mold

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋳型から送出される鋳片を、該鋳型の下
方に並設した多数のロールに沿わせて案内し、各ロール
間にて冷却水を吹き付けつつ連続的に引き抜くようにし
た連続鋳造方法において、前記ロールの一部又は全部の
周面に凹部を形成し、この凹部と前記鋳片の表面との間
の隙間を経て前記冷却水を下方に流し去るようにしたこ
とを特徴とする連続鋳造方法。
1. A continuous casting method in which a slab sent out from a mold is guided along a number of rolls arranged in parallel below the mold and continuously drawn while cooling water is sprayed between the rolls. In the casting method, a concave portion is formed on the peripheral surface of a part or all of the roll, and the cooling water is caused to flow downward through a gap between the concave portion and the surface of the slab. Continuous casting method.
【請求項2】 前記鋳型内部の溶鋼に、該溶鋼中の硫黄
Sの含有量に対する重量比が、0.3≦Ca/S≦1.
5となる範囲のカルシウムCaを添加することを特徴と
する請求項1記載の連続鋳造方法。
2. The weight ratio of the molten steel in the mold to the content of sulfur S in the molten steel is 0.3 ≦ Ca / S ≦ 1.
The continuous casting method according to claim 1, wherein calcium Ca in a range of 5 is added.
【請求項3】 前記溶鋼中の窒素含有量〔N〕を、
〔N〕≦ 30ppmに調整することを特徴とする請求項1又
は請求項2記載の連続鋳造方法。
3. The nitrogen content [N] in the molten steel is
The continuous casting method according to claim 1 or 2, wherein [N] ≤ 30 ppm is adjusted.
【請求項4】 前記冷却水の比水量Wを、W≦0.70リッ
トル/kgとすることを特徴とする請求項1ないし請求項
3記載の連続鋳造方法。
4. The continuous casting method according to claim 1, wherein the specific water amount W of the cooling water is W ≦ 0.70 liter / kg.
JP18316492A 1991-11-29 1992-06-15 Continuous casting method Pending JPH05200514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18316492A JPH05200514A (en) 1991-11-29 1992-06-15 Continuous casting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36120691 1991-11-29
JP3-361206 1991-11-29
JP18316492A JPH05200514A (en) 1991-11-29 1992-06-15 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH05200514A true JPH05200514A (en) 1993-08-10

Family

ID=26501710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18316492A Pending JPH05200514A (en) 1991-11-29 1992-06-15 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH05200514A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647510A (en) * 1992-08-03 1994-02-22 Sumitomo Metal Ind Ltd Continuous casting method
JP2001198656A (en) * 2000-01-13 2001-07-24 Sms Demag Ag Method and apparatus for preventing inconvenient undercooling in edge area of cast strand
JP2008254062A (en) * 2007-04-09 2008-10-23 Nippon Steel Corp Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP2011152580A (en) * 2010-01-28 2011-08-11 Jfe Steel Corp Continuous casting method for steel
JP2012206159A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method for steel
WO2013073593A1 (en) * 2011-11-15 2013-05-23 新日鐵住金株式会社 Secondary cooling method and secondary cooling device for continuous casting machine
AT512425A1 (en) * 2012-01-24 2013-08-15 Siemens Vai Metals Tech Gmbh ROAD GUIDE ROLLER AND SLIDING GUIDE FOR A CONTINUOUS CASTING MACHINE

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647510A (en) * 1992-08-03 1994-02-22 Sumitomo Metal Ind Ltd Continuous casting method
JP2001198656A (en) * 2000-01-13 2001-07-24 Sms Demag Ag Method and apparatus for preventing inconvenient undercooling in edge area of cast strand
JP2008254062A (en) * 2007-04-09 2008-10-23 Nippon Steel Corp Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP2011152580A (en) * 2010-01-28 2011-08-11 Jfe Steel Corp Continuous casting method for steel
JP2012206159A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method for steel
WO2013073593A1 (en) * 2011-11-15 2013-05-23 新日鐵住金株式会社 Secondary cooling method and secondary cooling device for continuous casting machine
CN103842113A (en) * 2011-11-15 2014-06-04 新日铁住金株式会社 Secondary cooling method and secondary cooling device for continuous casting machine
JP5598614B2 (en) * 2011-11-15 2014-10-01 新日鐵住金株式会社 Secondary cooling device and secondary cooling method for continuous casting machine
CN103842113B (en) * 2011-11-15 2015-11-25 新日铁住金株式会社 The secondary cooling apparatus of continuous casting machine and secondary cooling method
KR20150136550A (en) * 2011-11-15 2015-12-07 신닛테츠스미킨 카부시키카이샤 Secondary cooling method and secondary cooling device for continuous casting machine
AT512425A1 (en) * 2012-01-24 2013-08-15 Siemens Vai Metals Tech Gmbh ROAD GUIDE ROLLER AND SLIDING GUIDE FOR A CONTINUOUS CASTING MACHINE

Similar Documents

Publication Publication Date Title
RU2294386C2 (en) Method of manufacture of the steel strip
US7367378B2 (en) Casting steel strip with low surface roughness and low porosity
EP1589124B1 (en) High strength high toughness high carbon steel wire rod and process for producing the same
JP5604946B2 (en) Steel continuous casting method
JPH05200514A (en) Continuous casting method
KR100224487B1 (en) Continuous casting method for austenitic stainless steel
JP4337565B2 (en) Steel slab continuous casting method
US7690417B2 (en) Thin cast strip with controlled manganese and low oxygen levels and method for making same
JP3526705B2 (en) Continuous casting method for high carbon steel
JP2008212972A (en) METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP2001138019A (en) Continuous casting method
KR101949351B1 (en) Method of producing continuous-cast steel product using continuous casting machine
JPH0565263B2 (en)
CN113927008A (en) Production method for inhibiting periodic fluctuation of liquid level of dual-phase steel crystallizer for slab production
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JPH07178526A (en) Continuous casting method anf apparatus therefor
JP7355285B1 (en) Continuous steel casting method
JP2701670B2 (en) Continuous casting method
JPH09285855A (en) Manufacture of ni containing steel
JPH0890182A (en) Method for continuously casting wide and thin cast slab
CN111394656B (en) Crystallizer
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JPS597464A (en) Method and device for continuous casting of thin steel plate
RU2444413C1 (en) Method of producing continuously-cast steel billets
JPH11197797A (en) Method for continuously casting steel