JP2004237292A - Method of manufacturing continuous casting slab - Google Patents

Method of manufacturing continuous casting slab Download PDF

Info

Publication number
JP2004237292A
JP2004237292A JP2003026344A JP2003026344A JP2004237292A JP 2004237292 A JP2004237292 A JP 2004237292A JP 2003026344 A JP2003026344 A JP 2003026344A JP 2003026344 A JP2003026344 A JP 2003026344A JP 2004237292 A JP2004237292 A JP 2004237292A
Authority
JP
Japan
Prior art keywords
slab
temperature
reduction
continuous casting
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026344A
Other languages
Japanese (ja)
Inventor
Yasuhiro Murota
康宏 室田
Kazuhide Takahashi
和秀 高橋
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003026344A priority Critical patent/JP2004237292A/en
Publication of JP2004237292A publication Critical patent/JP2004237292A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a continuous casting slab which is excellent in surface cracking resistance and capable of reducing surface cracking due to coarse γ grains of the surface layer of the casting slab by fining the structure of the surface layer of the casting slab. <P>SOLUTION: After the continuous casting slab 6 in a continuous casting machine is solidified to its center, the slab is rolled in a thickness direction so that the value of Ps represented by the following formula (1) becomes 3 or more, where the temperature difference ΔT(ΔT=Tm-Ts) between the temperature (Tm) of the center of the cast slab and the surface temperature (Ts) of the slab is 300°C or lower, and a strain speed is 1×10<SP>-2</SP><SB>S</SB><SP>-1</SP>to 1×10<SP>-3</SP><SB>S</SB><SP>-1</SP>. Meanwhile, in the formula (1), P<SB>total</SB>is a roll reduction amount (%) of the slab and ΔT is the temperature difference (ΔT=Tm-Ts) between the temperature (Tm) in the center of the slab and the surface temperature (Ts) of the slab. In this case, the formula (1) is Ps=78×P<SB>total</SB>/ΔT. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表層下に微細組織を有し、耐表面割れ性に優れた連続鋳造鋳片の製造方法に関するものである。
【0002】
【従来の技術】
連続鋳造機で鋳造された高温の鋳片を直接熱間圧延する、或いは表面温度を中心温度と同じにする程度の保温・加熱を行った後に熱間圧延する、所謂直送圧延プロセスや、連続鋳造機で鋳造された高温の鋳片を加熱炉に装入して加熱後に熱間圧延する、所謂高温鋳片装入圧延プロセスは、工程の大幅な合理化や省エネルギ−及び歩留りの向上をもたらし、今後、更に開発が進められ発展が予想されるプロセスである。しかしながら、これらのプロセスにより製造された鋼板には、表面疵が発生し易く、表面品質は従来の方法で製造された鋼板に比べて劣ると云う問題がある。ここで従来の方法とは、連続鋳造後に常温まで冷却した鋳片を無手入れのまま加熱炉に装入して圧延温度まで加熱し、次いで圧延して製造した鋼板である。
【0003】
この表面疵の発生機構は、次のように考えられる。即ち、直送圧延プロセスや高温鋳片装入圧延プロセスでは、鋳片はその温度がAr1点以上に保たれたまま、即ち鋳片は変態することなく、凝固直後のオーステナイト結晶構造のまま、熱間圧延される。この場合のオーステナイト結晶粒(以下「γ粒」と記す)は粗大化しており、且つ、このγ粒界には硫化物や窒化物等の析出物が析出している。そのため、このγ粒界は結晶粒内に比較して極めて脆弱であり、熱間圧延時の加工歪により結晶粒界で割れが発生し、この割れが鋼板の表面疵になる。
【0004】
これに対して従来の方法により鋼板を製造する場合には、鋳片は一旦変態温度以下まで冷却されて変態し、次いで、熱間圧延の際に圧延温度まで加熱されて、再度オーステナイト結晶構造に変態するため、圧延時の組織は、凝固直後のγ粒に比較して極めて微細な組織となり、且つ合計2回に亘る変態により硫化物や窒化物等の析出物の存在位置とγ粒界の位置とは合致しなくなるため、γ粒界は脆化せず、熱間圧延においても結晶粒界での割れが発生せず、表面性状の良好な鋼板が得られる。
【0005】
又、Niを0.5mass%以上含有する鋼では、鋳片を一旦室温まで冷却して再加熱したとしても、鋳片表層下には凝固時の粗大なγ粒が残留する。従って、Niを0.5mass%以上含有する鋳片を熱間圧延すると、前述した直送圧延プロセスなどと同様に、鋼板の表面には表面疵が発生し易くなる。Niを0.5mass%以上含有する鋼は高温延性の低下が顕著であり、連続鋳造機における鋳片の矯正やバルジングなどによる小さな応力でさえも、その表面に割れが発生する。
【0006】
そのため、これらの表面疵を防止すべく多数の提案がなされている。例えば、特許文献1には、直送圧延プロセスにおける鋼板の表面疵を防止すべく、連続鋳造中の鋳片をその表面温度がAr1点以下の温度になるまで冷却し、次いで、鋳片内部に存在する未凝固層の顕熱及び潜熱を利用して1000℃以上に復熱させ、その後、熱間圧延する直送圧延プロセスが提案されている。この方法によれば、鋳片は一旦変態するので、熱間圧延時には微細なγ粒となり、前述した直送圧延プロセス特有の表面疵を防止することができるとしている。
【0007】
又、Ni含有鋼の表面疵防止対策として、特許文献2には、連続鋳造時の鋳片表面の冷却速度の制御及び鋳片表面温度の均一化により、鋳片表面に発生する熱応力を低減して鋳片の表面疵を防止する方法が提案されており、又、特許文献3には、連続鋳造時における1150℃〜950℃の範囲の鋳片表面の冷却速度を20℃/分以下として鋳片の表面割れを防止する方法が提案されており、更に、特許文献4には、P及びS含有量の低減に加え、Al及びN含有量を低減させることによって高温延性を向上させ、表面割れを防止する方法が提案されている。
【0008】
しかしながら、何れの方法によっても、直送圧延プロセスや高温鋳片装入圧延プロセスにおける鋼板の表面割れや、連続鋳造機により製造されたNi含有鋼鋳片の表面割れを十分に防止できていないのが実情である。
【0009】
【特許文献1】
特開平4−253505号公報
【0010】
【特許文献2】
特開昭57−32862号公報
【0011】
【特許文献3】
特公平5−4169号公報
【0012】
【特許文献4】
特開平7−90504号公報
【0013】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、熱履歴による相変態が発生しない、直送圧延プロセス又は高温鋳片装入圧延プロセスによって鋼板を製造する場合や、Ni含有鋼などの相変態の起こりにくい鋼を連続鋳造する場合に、鋳片表層下の組織を微細化させ、鋳片表層下の粗大なγ粒に起因した表面割れを低減することが可能な、耐表面割れ性に優れた連続鋳造鋳片の製造方法を提供することである。
【0014】
【課題を解決するための手段】
本発明者等は、連続鋳造鋳片の表層下の凝固二次組織微細化の検討にあたり、高温域における低歪速度変形での塑性加工により、必然的に生じる動的再結晶に着目した。動的再結晶粒径は、初期粒径や歪量に依存せず、加熱温度や歪速度などの変形条件のみによって一義的に決定されることは公知の事実である。そこで、本発明者等は、凝固後の連続鋳造鋳片に圧下を加えることによって鋳片表層部付近に動的再結晶を生じさせ、鋳片表層部付近における凝固二次組織の微細化について検討した。
【0015】
先ず、本発明者等は、小型サンプルを用い、歪速度が1×10−2−1及び1×10−3−1の2条件下における動的再結晶挙動について試験・調査した。歪速度が1×10−2−1〜1×10−3−1の範囲は、現状の連続鋳造機で鋳造される鋳片に、その鋳片引き抜き速度に起因して作用する歪速度に対応する歪速度範囲である。試験は、表1に示す5種類の化学成分の鋼板から直径が8mm、長さが12mmの円柱状の小型サンプルを採取し、熱間加工再現装置を用いて、高温圧縮試験を行い、動的再結晶挙動について調査した。
【0016】
【表1】

Figure 2004237292
【0017】
小型サンプルを1050℃〜1300℃に加熱した後3分間保持し、上記2条件の歪速度で圧下率15%で圧縮加工した後、45℃/sで急冷して加工後の組織を凍結させた。何れの条件においても動的再結晶型のS−S曲線を示し、又、試験後の小型サンプルの断面ミクロ組織観察の結果から、粒界形状が不規則で、粒内に双晶を含まない動的再結晶特有の組織形態になっていることを確認した。
【0018】
この結果から、連続鋳造の鋳片引き抜き速度に起因して発生する歪速度に相当する低歪速度下において、動的再結晶が生じることを確認した。
【0019】
次に、同一の小型サンプルを用いて、加熱温度が1050℃〜1300℃、歪速度が1×10−2−1の条件下で、圧下率を3%〜50%として動的再結晶挙動と圧下率との関係について調査した。その結果、圧下率が3%以上50%以下の場合に、動的再結晶特有の組織形態になっていることを確認した。今回の試験では、圧下率が50%の範囲までしか試験を実施していないが、それ以上の圧下率においても、同様の組織形態を示し、動的再結晶が発現するものと考えられる。
【0020】
これらの結果から、連続鋳造の鋳片引き抜き速度に起因して発生する歪速度に相当する低歪速度下での軽微な加工によって、連続鋳造鋳片には動的再結晶が生じることを確認した。
【0021】
このように、小型サンプルにおいては、連続鋳造の鋳片引き抜き速度に相当する低歪速度下での動的再結晶発現条件を確認したが、実際の連続鋳造においては、鋳片厚みが通常250〜300mmと極厚であり、小型サンプルで確認した再結晶発現条件を、連続鋳造鋳片の表層部付近に有効に作用させるための条件を検討しなくてはならない。そこで、連続鋳造鋳片が完全凝固した後に鋳片を圧下した場合の圧下時の鋳片温度、圧下量、及び、鋳片表層部付近に有効に作用する圧下量との関係について、机上計算により検討した。この場合、歪速度は、鋳片引き抜き速度に対応する1×10−2−1〜1×10−3−1とした。
【0022】
圧下するときの鋳片の表面温度をTS(℃)、鋳片の厚み中心部の温度をTm(℃)とし、両者の温度差をΔTとした。温度差ΔTは、ΔT=Tm−Tsで表される。そして、圧下量をPtotal とすると、鋳片表層部付近に有効に作用する圧下量は、下記の(1)式で示されるPs で表されることを確認した。ここで、圧下量Ptotal とは、鋳片の圧下前の元の厚み(D)から圧下完了後の鋳片の厚み(D )を差し引いた値を、鋳片の圧下前の厚み(D)に対して百分率で表示した値(Ptotal =100×(D−D )/D)である。
【0023】
【数1】
Figure 2004237292
【0024】
従って、動的再結晶発現条件である3%以上の圧下率を鋳片表層部付近に作用させるためには、(1)式で示されるPs を3以上にする必要があることを確認した。
【0025】
但し、以上説明した検討結果は、小型サンプルを再加熱後圧下することによる動的再結晶発現条件の検討結果と、これらの検討結果から求めた動的再結晶発現条件に基づき、鋳片表層部付近に有効に圧下が作用する条件を机上計算によって検討した結果であり、これら検討結果の適否を確認するには、凝固完了後の鋳片について調査する必要がある。
【0026】
そこで、図1に、その概要を示す試験用の連続鋳造機を用い、鋳片厚み中心部の温度(Tm)と鋳片表面温度(Ts)との温度差ΔTが種々の値となる場合について鋳片を圧下し、鋳片表層部付近における旧γ粒径を調査した。
【0027】
図1において、1はタンディッシュ、2は鋳型、3は鋳片支持ロール、4は軽圧下装置、5はエアーミスト冷却装置、6は鋳片、7は未凝固層、8は凝固殻であり、タンディッシュ1内の溶鋼を鋳型2に注湯し、鋳型2により冷却されて形成した凝固殻8を鋳片支持ロール3で支持しながら、ピンチロールを兼ねた鋳片支持ロール3により鋳型2の下方に引き抜き、内部まで凝固した鋳片6を軽圧下装置4により圧下した。軽圧下装置4は、5対のロールからなっており、それぞれ独立に圧下を加えることができる構造になっている。又、鋳片6のサイズは、厚みを150mm、幅を500mmとした。試験に用いた供試鋼の化学成分は、前述の表1に示す鋼Bである。鋳造方向に並んで隣合う鋳片支持ロール3の間隙には、鋳片6を冷却するため、エアーミストスプレーノズルや水スプレーノズルで構成された二次冷却装置(図示せず)が配置されている。
【0028】
圧下条件は、歪速度を1×10−2−1、圧下量Ptotal を5〜20%とし、温度差ΔTが100℃〜700℃になったときに圧下を加えた。この場合、上記(1)式で示されるPs の値は0.8〜7.8になる。圧下を実施しない場合についても旧γ粒径を調査した。試験では、軽圧下装置4による圧下直後にエアーミスト冷却装置5によって鋳片6を強冷して組織を凍結させた。
【0029】
図2に、(1)式に示すPs の値と、鋳片表層付近の旧γ粒径との関係を調査した結果を示す。図2に示すように、旧γ粒径は、Ps の値が3以上で且つ温度差ΔTが300℃以下の場合に微細化していることが分かった。この場合、温度差ΔTが300℃を超えると、鋳片表層側の剛性が高くなり、温度の高い鋳片内部側のみが変形してしまい、鋳片表層部分に有効に圧下力が加わらないからである。
【0030】
本発明者等は、以上の結果から、連続鋳造鋳片が凝固した後、鋳片厚み中心部の温度(Tm)と鋳片表面温度(Ts)との温度差ΔTが300℃以下の条件下で、(1)式で示されるPs の値が3以上となるように鋳片を圧下することで、鋳片の表層部分に動的再結晶を生じさせ、鋳片の凝固二次組織を微細化できるとの知見を得た。
【0031】
本発明は、これらの知見に基づきなされたもので、第1の発明に係る連続鋳造鋳片の製造方法は、連続鋳造機内の連続鋳造鋳片を中心部まで凝固させた後、鋳片の厚み中心部の温度(Tm)と鋳片の表面温度(Ts)との温度差ΔT(ΔT=Tm−Ts)を300℃以下とし、且つ、歪速度を1×10−2−1〜1×10−3−1として、上記の(1)式で示されるPs の値が3以上となるように、鋳片を厚み方向に圧下することを特徴とするものである。
【0032】
第2の発明に係る連続鋳造鋳片の製造方法は、第1の発明において、鋳片内部に存在する未凝固層の有する凝固潜熱を利用して、鋳片表面を1000℃以上に復熱させて圧下することを特徴とするものである。
【0033】
第3の発明に係る連続鋳造鋳片の製造方法は、第1又は第2の発明において、前記鋳片は、直送圧延プロセス又は高温鋳片装入圧延プロセスによって圧延される鋳片であることを特徴とするものである。
【0034】
第4の発明に係る連続鋳造鋳片の製造方法は、第1又は第2の発明において、前記鋳片は、Niを0.5mass%以上含有する化学成分の鋳片であることを特徴とするものである。
【0035】
【発明の実施の形態】
以下、本発明の最適な実施の形態例を説明する。転炉や電気炉などで溶製した溶鋼を、必要に応じてRH真空脱ガス装置などの二次精錬炉で精錬して連続鋳造機に搬送する。連続鋳造機は、例えば、図1に示すようなスラブ連続鋳造機を用いればよい。この場合、連続鋳造機には鋳片6を圧下するための軽圧下装置4が備えられていることが好ましい。但し、特に軽圧下装置4を備えていなくても、鋳片支持ロール3の一部分のロール間隔を、鋳片6に所定量の圧下量が加わるように、予め鋳造方向に向かって狭くなるように設定し、この部分で鋳片6に圧下を加えてもよい。以下、軽圧下装置4と、この鋳片支持ロール3のロール間隔を鋳造方向に向かって絞り込んだ部分とを含めて軽圧下帯と記す。尚、軽圧下帯の下流側に配置した、図1に示すエアーミスト冷却装置5は、本発明を実施する際には必要ではない。
【0036】
本発明では、鋳片6の凝固完了後、鋳片6の厚み中心部温度(Tm)と鋳片表面温度(Ts)との温度差ΔT(ΔT=Tm−Ts)が300℃以下になった以降で鋳片6を圧下する必要がある。鋳片6が凝固完了した直後、即ち鋳片6の厚み中心部が凝固した直後は、鋳片6の厚み中心部温度(Tm)は1400℃以上の高温であり、この状態で温度差ΔTを300℃以下とするためには、鋳片表面温度(Ts)を1100℃以上の高温にしなければならない。鋳片6の凝固完了直後の鋳片表面温度を1100℃以上の高温とするには、二次冷却水量の制御のみならず、鋳片6の表面を防熱板で覆うなどの表面温度降下防止対策が必要であり、これにより製造コストが上昇するため、好ましくない。一方、鋳片6が凝固完了すると、未凝固層7からの凝固潜熱の放出がなくなるため、鋳片表面温度(Ts)は降下しなくても、鋳片6の中心部温度(Tm)は急激に降下して温度差ΔTは小さくなる。
【0037】
従って、鋳片6の厚み中心部温度(Tm)と鋳片表面温度(Ts)との温度差ΔT(ΔT=Tm−Ts)をなるべく小さくさせるため、軽圧下帯に入る以前に、鋳片6が凝固完了するように、鋳片6の引き抜き速度を調整する。具体的には、二次冷却装置からの冷却水量及び鋳片引き抜き速度から、凝固完了位置を伝熱計算や未凝固層先端位置検出計などにより鋼種及び鋳片厚み毎に求めておき、その鋳片引き抜き速度に準じて鋳片6の引き抜き速度を調整する。温度差ΔTは、凝固完了位置と軽圧下帯入口との間隔を長くするほど小さくなる。尚、鋳片6が凝固完了する以前に鋳片6を圧下しても、内部に未凝固層7を有する鋳片部位では、未凝固層7の厚みが減少するのみで鋳片6には圧下力が加わらず、本発明の目的を達成することができない。
【0038】
このように、軽圧下帯に入った凝固完了後の鋳片6を、温度差ΔTが300℃以下の条件下で、且つ、前述した(1)式のPs の値が3以上となる条件下で、軽圧下帯の各圧下ロールによって圧下する。この場合、例えば温度差ΔTが250℃の条件下でPs の値を3以上にするためには、圧下量Ptotal は9.7%以上確保する必要がある。尚、各圧下ロールによる圧下量の合計が圧下量Ptotal となる。
【0039】
一方、この圧下により動的再結晶を発現させるためには、低歪速度での圧下が必要であり、従って、圧下する際の歪速度を1×10−2−1〜1×10−3−1の範囲とする必要がある。歪速度が1×10−2−1よりも速くなると、動的再結晶が発現しにくくなるため、望ましくなく、一方、歪速度を1×10−3−1よりも遅くしても、動的再結晶は発現するが、このような低歪速度にするためには、後述するように、鋳片引き抜き速度を極端に遅くする、或いは、圧下ロールを多数配置し、1本1本の圧下ロールによる圧下量を極端に少なくするなどの処置が必要となるため、好ましくない。
【0040】
ここで、図3に、圧下帯に設けた圧下ロールによって圧下される鋳片の概念図を示す。図3において9は圧下ロールであり、鋳片6は、半径Rの圧下ロール9に圧下されて、その厚みをD からD へと減じている。この場合、一対の圧下ロール9の圧下による歪量は、下記の(2)式で表される。
【0041】
【数2】
Figure 2004237292
【0042】
又、鋳片6が圧下ロール9に接触している範囲は、図3に示すように、圧下ロール9の軸心に対する円周方向の角度がθ(ラジアン)の範囲であり、角度θ、圧下ロール9の半径R、鋳片厚みD 、鋳片厚みD の間には下記の(3)が成立する。
【0043】
【数3】
Figure 2004237292
【0044】
鋳片引き抜き速度をVとすると、鋳片6が一つの圧下ロール9と接触している時間t は下記の(4)式で表される。
【0045】
【数4】
Figure 2004237292
【0046】
角度θを(3)式から求め、求めた角度θを(4)式に代入することによって時間t を求めることができる。そして、求めた時間t を下記の(5)式に代入することにより、圧下ロール9における歪速度を求めることができる。
【0047】
【数5】
Figure 2004237292
【0048】
前述したように、温度差ΔTが250℃の条件下においてPs の値を3以上にするためには、圧下量Ptotal を9.7%以上確保する必要があり、この場合、鋳片厚み(D )を250mm、圧下ロール9の半径(R)を150mm程度とし、且つ鋳片引き抜き速度(V)を1.2m/分程度の通常の鋳片引き抜き速度として、9.7%以上の圧下量Ptotal を1対の圧下ロール9で加えると、歪速度は上限の1×10−2−1よりも速くなってしまう。従って、このような場合には、複数対の圧下ロール9で分担させて圧下し、それぞれの圧下ロール9における歪速度が上限値を超えないようにする必要がある。このために、圧下帯には、少なくとも2対以上の圧下ロールが配置されており、歪速度制御の容易さから判断すると、圧下ロール9は多いほど好都合である。圧下量Ptotal を各圧下ロールに分散させても歪速度が上限値を超える場合には、鋳片引き抜き速度Vを下げ、時間t を増大させる必要がある。
【0049】
又、(1)式に示すPs は温度差ΔTに反比例するため、Ps の値を3以上に確保する際、温度差ΔTを小さくした場合には圧下量Ptotal を小さくすることができる。従って、温度差ΔTを小さくさせるために、鋳片6の凝固末期には二次冷却装置による鋳片6の強制冷却を停止し、未凝固層7の有する凝固潜熱を利用して鋳片6の表面を例えば1000℃以上に復熱させた後、鋳片6に圧下を加えることが好ましい。
【0050】
本発明の目的は、動的再結晶の発現によって鋳片表層部の特性を改善することであり、従って、鋳片6の中心部が凝固完了してから圧下することが必要であるが、鋳片6の中心偏析を改善するために鋳片6の凝固末期において鋳片6を圧下する技術が実施されており、この中心偏析対策のための圧下に連続して鋳片6を圧下しても、本発明の効果に何ら影響を与えることはない。
【0051】
このようにして鋳片6を鋳造することにより、鋳片6の表層部近傍では動的再結晶が発現し、凝固二次組織が微細化した連続鋳造鋳片を得ることができる。
【0052】
鋳造した鋳片6を、連続鋳造機の鋳片支持ロール3の出口側に設置したガス切断機(図示せず)で所定長さに切断し、更に必要に応じて1枚の鋳片を別途設置した切断機(図示せず)で幾つかの鋳片に切断した後、熱間圧延工程に搬送し、所定の形状に熱間圧延加工する。熱間圧延工程では、特別に変わった条件で圧延する必要はなく、鋼成分に応じた所定の圧延条件並びに熱処理条件などを施し、鋼板などの鋼材に加工する。
【0053】
本発明方法によって鋳造された鋳片の表層部付近の凝固二次組織は微細化し、熱間延性が向上しているので、連続鋳造機内で鋳片の矯正やバルジングの矯正による応力を受けたとしても、鋳片表面に割れが発生しにくく、表面割れの少ない鋳片を得ることができる。又、直送圧延プロセス又は高温鋳片装入圧延プロセスにおいて、熱間圧延加工による応力を受けたとしても、同様に鋳片表面に割れが発生しにくく、表面割れの少ない鋼材を得ることができる。この場合、特に、鋳片6の表面疵を低減する観点から、Niを0.5mass%以上含有する鋼成分の鋳片の鋳造時に、本発明方法を適用することが好ましい。
【0054】
尚、上記説明はスラブ鋳片の例であるが、本発明はスラブ鋳片に限るものではなく、連続鋳造機で鋳造されるブルーム鋳片やビレット鋳片にも、上記の説明に準じて適用することができる。
【0055】
【実施例】
表2にその化学成分を示す、Niを含有する鋼F及び鋼Gの2種類の鋼を用い、図1に示す試験用の連続鋳造機で鋳片を鋳造し、その後、小型圧延装置を用いて板厚が50mmの鋼板を製造した。又、比較のために、圧下せずに鋳造した鋳片からも鋼板を製造した。圧下前の鋳片の厚みは150mm、幅は500mmである。表3に製造条件を示す。又、表3には、鋼板の表層割れ発生の有無を併せて示す。
【0056】
【表2】
Figure 2004237292
【0057】
【表3】
Figure 2004237292
【0058】
表3に示すように、本発明に係る製造条件で鋳造した鋳片から圧延した鋼板1及び鋼板3では、表層割れが発生していないのに対し、本発明方法以外の製造条件で鋳造した鋳片から圧延した鋼板2及び鋼板4では、表層割れが発生していた。尚、表3の備考欄には、本発明に係る製造条件で鋳造した鋳片を用いた鋼板には本発明例と記し、それ以外には比較例と記した。
【0059】
【発明の効果】
本発明によれば、特別の設備や複雑な製造工程を要せずに、連続鋳造鋳片の表層付近の凝固二次組織を微細化することができるため、鋳片表層下の粗大なγ粒に起因した表面割れを低減することが可能となる。特に、熱履歴による相変態が発生しない、直送圧延プロセス又は高温鋳片装入圧延プロセスによって鋼板を製造する場合や、Ni含有鋼などの相変態の起こりにくい鋼を連続鋳造する場合に、その効果を如何なく発揮させ、鋼材の製造コストを大幅に削減することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】連続鋳造機の側面概略図である。
【図2】Ps の値と鋳片表層部付近の旧γ粒径との関係を示す図である。
【図3】圧下ロールによって圧下される鋳片の概念図である。
【符号の説明】
1 タンディッシュ
2 鋳型
3 鋳片支持ロール
4 軽圧下装置
5 エアーミスト冷却装置
6 鋳片
7 未凝固層
8 凝固殻
9 圧下ロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a continuous cast slab having a fine structure below a surface layer and having excellent surface cracking resistance.
[0002]
[Prior art]
The so-called direct-feed rolling process, in which hot slabs cast by a continuous casting machine are directly hot-rolled, or hot-rolled after performing heat retention and heating so that the surface temperature becomes the same as the center temperature, or so-called direct-feed rolling process, The so-called high-temperature slab charging and rolling process, in which high-temperature slabs cast by a machine are charged into a heating furnace and then hot-rolled after heating, results in significant rationalization of the process, energy saving and improvement in yield, It is a process that is expected to be further developed and expected to develop in the future. However, steel plates manufactured by these processes have a problem that surface flaws are easily generated and the surface quality is inferior to steel plates manufactured by a conventional method. Here, the conventional method refers to a steel sheet manufactured by charging a cast slab cooled to room temperature after continuous casting to a heating furnace without any care, heating to a rolling temperature, and then rolling.
[0003]
The generation mechanism of this surface flaw is considered as follows. That is, in the direct-feed rolling process and the hot slab charging rolling process, the slab is kept at a temperature of Ar1 point or higher, that is, the slab is not transformed and the austenite crystal structure immediately after solidification is maintained. Rolled. In this case, the austenite crystal grains (hereinafter referred to as “γ grains”) are coarse, and precipitates such as sulfides and nitrides are precipitated at the γ grain boundaries. Therefore, the γ grain boundaries are extremely fragile as compared with the inside of the crystal grains, and cracks are generated at the crystal grain boundaries due to processing strain during hot rolling, and these cracks become surface defects of the steel sheet.
[0004]
In contrast, when a steel sheet is manufactured by a conventional method, the slab is once cooled to a transformation temperature or lower and transformed, and then heated to a rolling temperature during hot rolling, and again formed into an austenitic crystal structure. Due to the transformation, the microstructure at the time of rolling has an extremely fine structure as compared to the γ grains immediately after solidification, and the presence of precipitates such as sulfides and nitrides and the γ grain boundaries due to the transformation performed twice in total. Since it does not match the position, the γ grain boundary is not embrittled, cracking does not occur at the crystal grain boundary even in hot rolling, and a steel sheet having good surface properties can be obtained.
[0005]
Further, in a steel containing 0.5 mass% or more of Ni, even if the slab is once cooled to room temperature and reheated, coarse γ grains during solidification remain under the slab surface layer. Therefore, when a slab containing 0.5 mass% or more of Ni is hot-rolled, surface flaws are likely to be generated on the surface of the steel sheet, as in the above-described direct rolling process. Steel containing 0.5 mass% or more of Ni has a remarkable decrease in high-temperature ductility, and cracks are generated on the surface of even a small stress caused by straightening or bulging of a slab in a continuous casting machine.
[0006]
Therefore, many proposals have been made to prevent these surface defects. For example, in Patent Literature 1, in order to prevent surface defects of a steel sheet in a direct-feed rolling process, a slab during continuous casting is cooled until the surface temperature becomes equal to or lower than the Ar1 point, and then the slab is present inside the slab. A direct-feed rolling process has been proposed in which the temperature is restored to 1000 ° C. or higher using the sensible heat and latent heat of the unsolidified layer, and then hot-rolled. According to this method, since the cast slab is once transformed, it becomes fine γ grains during hot rolling, and it is possible to prevent the above-mentioned surface defects peculiar to the direct rolling process.
[0007]
As a measure for preventing surface flaws on Ni-containing steel, Patent Document 2 discloses that the thermal stress generated on the slab surface is reduced by controlling the cooling speed of the slab surface and making the slab surface temperature uniform during continuous casting. Patent Document 3 proposes a method for preventing the surface flaw of the slab by cooling the slab surface in a range of 1150 ° C. to 950 ° C. during continuous casting to 20 ° C./min or less. A method for preventing the surface crack of a slab has been proposed. Further, Patent Document 4 discloses that, in addition to the reduction of the P and S contents, the Al and N contents are reduced to improve the high-temperature ductility, and the surface is improved. Methods for preventing cracks have been proposed.
[0008]
However, none of the methods has been able to sufficiently prevent the surface cracking of a steel sheet in a direct-feed rolling process or a hot slab charging and rolling process, and the surface cracking of a Ni-containing steel slab produced by a continuous casting machine. It is a fact.
[0009]
[Patent Document 1]
JP-A-4-253505
[Patent Document 2]
JP-A-57-32862
[Patent Document 3]
Japanese Patent Publication No. 5-4169
[Patent Document 4]
JP-A-7-90504
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its purpose is to produce a steel sheet by a direct-feed rolling process or a high-temperature slab charging / rolling process in which phase transformation due to heat history does not occur, or when containing Ni. When continuously casting steel, such as steel, which is unlikely to undergo phase transformation, it is possible to refine the structure under the slab surface layer and reduce surface cracks caused by coarse γ grains under the slab surface layer. An object of the present invention is to provide a method for producing a continuous cast slab having excellent surface cracking properties.
[0014]
[Means for Solving the Problems]
The present inventors have paid attention to dynamic recrystallization which is inevitably caused by plastic working at a low strain rate in a high temperature range when studying the refinement of the solidification secondary structure under the surface layer of a continuous cast slab. It is a well-known fact that the dynamic recrystallized grain size does not depend on the initial grain size and strain amount, but is uniquely determined only by the deformation conditions such as the heating temperature and the strain rate. Therefore, the present inventors examined the refinement of the solidification secondary structure near the slab surface layer by causing dynamic recrystallization in the vicinity of the slab surface layer by applying a reduction to the continuous cast slab after solidification. did.
[0015]
First, the present inventors tested and investigated the dynamic recrystallization behavior under the two conditions of a strain rate of 1 × 10 −2 s −1 and 1 × 10 −3 s −1 using a small sample. The strain rate in the range of 1 × 10 −2 s −1 to 1 × 10 −3 s −1 is the strain rate acting on the slab cast by the current continuous casting machine due to the slab drawing speed. Is the strain rate range corresponding to. For the test, a small cylindrical sample having a diameter of 8 mm and a length of 12 mm was taken from a steel plate having the five chemical components shown in Table 1, and subjected to a high-temperature compression test using a hot working reproduction device, The recrystallization behavior was investigated.
[0016]
[Table 1]
Figure 2004237292
[0017]
After heating the small sample to 1050 ° C. to 1300 ° C., holding it for 3 minutes, compressing it at a reduction rate of 15% at the strain rate of the above two conditions, then rapidly cooling it at 45 ° C./s to freeze the processed tissue. . Under any of the conditions, a dynamic recrystallization type SS curve was shown, and the results of cross-sectional microstructure observation of the small sample after the test showed that the grain boundary shape was irregular and twins were not included in the grains. It was confirmed that the structure was unique to dynamic recrystallization.
[0018]
From this result, it was confirmed that dynamic recrystallization occurs at a low strain rate corresponding to the strain rate generated due to the slab withdrawal rate in continuous casting.
[0019]
Next, using the same small sample, the dynamic recrystallization behavior under the conditions of a heating temperature of 1050 ° C. to 1300 ° C. and a strain rate of 1 × 10 −2 s −1 and a rolling reduction of 3% to 50%. And the relationship between the draft and the reduction were investigated. As a result, it was confirmed that when the rolling reduction was 3% or more and 50% or less, the microstructure was unique to dynamic recrystallization. In this test, the test was performed only up to the range where the rolling reduction was 50%. However, even at a rolling reduction higher than that, it is considered that the same structural morphology is exhibited and dynamic recrystallization appears.
[0020]
From these results, it was confirmed that dynamic recrystallization occurs in continuous cast slabs due to slight processing at a low strain rate corresponding to the strain rate generated due to the slab drawing speed of continuous casting. .
[0021]
As described above, in the small sample, dynamic recrystallization development conditions under a low strain rate corresponding to the slab withdrawal speed of continuous casting were confirmed, but in actual continuous casting, the slab thickness is usually 250 to The thickness is as large as 300 mm, and it is necessary to consider conditions for effectively applying the recrystallization onset conditions confirmed in the small sample to the vicinity of the surface layer of the continuous cast slab. Therefore, when the continuous casting slab is completely solidified, the slab temperature at the time of rolling down the slab after rolling down, the amount of reduction, and the relationship with the amount of rolling that effectively acts near the surface layer of the slab, by desk calculation investigated. In this case, the strain rate was 1 × 10 −2 s −1 to 1 × 10 −3 s −1 corresponding to the slab drawing speed.
[0022]
The surface temperature of the slab at the time of reduction was TS (° C.), the temperature at the center of the thickness of the slab was Tm (° C.), and the temperature difference between the two was ΔT. The temperature difference ΔT is represented by ΔT = Tm−Ts. Then, assuming that the reduction amount is P total , it was confirmed that the reduction amount effectively acting in the vicinity of the surface layer portion of the slab is represented by Ps expressed by the following equation (1). Here, the reduction amount P total is a value obtained by subtracting the thickness (D f ) of the slab after the completion of the reduction from the original thickness (D) of the slab before the reduction, and the thickness (Df) of the slab before the reduction. ) Is a value expressed as a percentage (P total = 100 × (D−D f ) / D).
[0023]
(Equation 1)
Figure 2004237292
[0024]
Therefore, it was confirmed that Ps represented by the formula (1) needs to be 3 or more in order to apply a rolling reduction of 3% or more, which is a condition for developing dynamic recrystallization, in the vicinity of the surface layer of the slab.
[0025]
However, based on the results of the examination of the dynamic recrystallization onset conditions by reducing the size of the small sample after reheating and the dynamic recrystallization onset conditions obtained from these examination results, the examination results described above were used. This is the result of studying the conditions under which the draft effectively acts in the vicinity by desk calculation, and it is necessary to investigate the cast slab after solidification is completed in order to confirm the suitability of these study results.
[0026]
Therefore, FIG. 1 shows a case where the temperature difference ΔT between the temperature (Tm) at the center of the slab thickness and the slab surface temperature (Ts) takes various values using a continuous casting machine for testing whose outline is shown in FIG. The slab was lowered, and the prior γ grain size near the slab surface layer was examined.
[0027]
In FIG. 1, 1 is a tundish, 2 is a mold, 3 is a slab support roll, 4 is a light reduction device, 5 is an air mist cooling device, 6 is a slab, 7 is an unsolidified layer, and 8 is a solidified shell. The molten steel in the tundish 1 is poured into the mold 2, and while the solidified shell 8 formed by cooling by the mold 2 is supported by the slab support roll 3, the mold 2 is cast by the slab support roll 3 serving also as a pinch roll. , And the slab 6 solidified to the inside was reduced by the light reduction device 4. The light reduction device 4 is composed of five pairs of rolls, and has a structure capable of independently applying reduction. The size of the slab 6 was 150 mm in thickness and 500 mm in width. The chemical composition of the test steel used in the test is steel B shown in Table 1 described above. A secondary cooling device (not shown) configured with an air mist spray nozzle or a water spray nozzle is disposed in the gap between the adjacent slab support rolls 3 arranged in the casting direction to cool the slab 6. I have.
[0028]
The rolling conditions were such that the strain rate was 1 × 10 −2 s −1 , the rolling amount P total was 5 to 20%, and rolling was performed when the temperature difference ΔT was 100 ° C. to 700 ° C. In this case, the value of Ps expressed by the above equation (1) is 0.8 to 7.8. Even when the rolling was not performed, the old γ particle size was investigated. In the test, immediately after the reduction by the light reduction device 4, the slab 6 was strongly cooled by the air mist cooling device 5 to freeze the structure.
[0029]
FIG. 2 shows the result of investigation on the relationship between the value of Ps shown in the equation (1) and the prior γ grain size near the surface layer of the slab. As shown in FIG. 2, it was found that the old γ particle size was reduced when the value of Ps was 3 or more and the temperature difference ΔT was 300 ° C. or less. In this case, if the temperature difference ΔT exceeds 300 ° C., the stiffness of the slab surface layer increases, and only the high temperature slab inner side is deformed, and the rolling force is not effectively applied to the slab surface layer portion. It is.
[0030]
From the above results, the present inventors have found that, after the continuous cast slab has solidified, the temperature difference ΔT between the slab thickness center temperature (Tm) and the slab surface temperature (Ts) is 300 ° C. or less. By rolling down the slab so that the value of Ps expressed by the equation (1) becomes 3 or more, dynamic recrystallization occurs in the surface layer portion of the slab, and the solidified secondary structure of the slab is finely divided. The knowledge that it can be converted was obtained.
[0031]
The present invention has been made based on these findings, and the method for producing a continuous cast slab according to the first invention is to solidify the continuous cast slab in the continuous casting machine to the center, and then to reduce the thickness of the cast slab. The temperature difference ΔT (ΔT = Tm−Ts) between the center temperature (Tm) and the surface temperature of the slab (Ts) is set to 300 ° C. or less, and the strain rate is 1 × 10 −2 s −1 to 1 ×. The method is characterized in that the slab is reduced in the thickness direction so that the value of Ps represented by the above equation (1) becomes 3 or more as 10 −3 s −1 .
[0032]
The method for producing a continuous cast slab according to the second invention is the method according to the first invention, wherein the slab surface is reheated to 1000 ° C. or more by utilizing solidification latent heat of an unsolidified layer present inside the slab. It is characterized in that the pressure is reduced.
[0033]
The method for producing a continuous cast slab according to the third invention is the method according to the first or second invention, wherein the slab is a slab rolled by a direct rolling process or a hot slab charging rolling process. It is a feature.
[0034]
A method for producing a continuous cast slab according to a fourth invention is characterized in that, in the first or second invention, the slab is a slab of a chemical component containing 0.5 mass% or more of Ni. Things.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an optimal embodiment of the present invention will be described. Molten steel smelted in a converter or an electric furnace is refined in a secondary refining furnace such as an RH vacuum degasifier if necessary, and is conveyed to a continuous casting machine. As the continuous casting machine, for example, a slab continuous casting machine as shown in FIG. 1 may be used. In this case, the continuous casting machine is preferably provided with a light reduction device 4 for reducing the slab 6. However, even if the light reduction device 4 is not provided, the roll interval of a part of the slab support roll 3 is reduced in advance in the casting direction so that a predetermined amount of reduction is applied to the slab 6. It is also possible to set and apply a reduction to the slab 6 at this portion. Hereinafter, a light pressure reduction device including the light pressure reduction device 4 and a portion where the gap between the cast slab support rolls 3 is narrowed down in the casting direction will be described. In addition, the air mist cooling device 5 shown in FIG. 1 which is arranged on the downstream side of the light pressure lowering zone is not necessary when the present invention is carried out.
[0036]
In the present invention, after the solidification of the slab 6 is completed, the temperature difference ΔT (ΔT = Tm−Ts) between the thickness center temperature (Tm) and the slab surface temperature (Ts) of the slab 6 becomes 300 ° C. or less. Thereafter, it is necessary to reduce the slab 6. Immediately after the slab 6 is completely solidified, that is, immediately after the thickness center of the slab 6 is solidified, the thickness center temperature (Tm) of the slab 6 is a high temperature of 1400 ° C. or more. In order to reduce the temperature to 300 ° C. or lower, the slab surface temperature (Ts) must be set to a high temperature of 1100 ° C. or higher. In order to raise the slab surface temperature immediately after the completion of solidification of the slab 6 to 1100 ° C. or more, not only control the amount of secondary cooling water but also prevent surface temperature drop such as covering the surface of the slab 6 with a heat insulating plate. Is necessary, and this increases the manufacturing cost, which is not preferable. On the other hand, when the slab 6 is completely solidified, the latent heat of solidification from the unsolidified layer 7 is no longer released. Therefore, even if the slab surface temperature (Ts) does not drop, the central temperature (Tm) of the slab 6 sharply increases. And the temperature difference ΔT becomes smaller.
[0037]
Therefore, in order to make the temperature difference ΔT (ΔT = Tm−Ts) between the temperature (Tm) at the center of the thickness of the slab 6 and the surface temperature (Ts) of the slab as small as possible, before the slab 6 enters the low pressure lower zone, Is adjusted so that the solidification is completed. Specifically, from the amount of cooling water from the secondary cooling device and the slab withdrawal speed, the solidification completion position is determined for each steel type and slab thickness by heat transfer calculation, unsolidified layer tip position detector, etc. The drawing speed of the slab 6 is adjusted according to the single drawing speed. The temperature difference ΔT becomes smaller as the interval between the solidification completion position and the light pressure lower zone inlet becomes longer. In addition, even if the slab 6 is lowered before the slab 6 is completely solidified, the thickness of the unsolidified layer 7 is reduced only at the slab portion having the unsolidified layer 7 therein, and the slab 6 is reduced. Without the addition of force, the object of the present invention cannot be achieved.
[0038]
As described above, the slab 6 after the solidification that has entered the low-pressure zone is subjected to the condition that the temperature difference ΔT is 300 ° C. or less and the value of Ps in the above-described equation (1) is 3 or more. Then, it is reduced by each reduction roll of the light reduction band. In this case, for example, in order to make the value of Ps 3 or more under the condition that the temperature difference ΔT is 250 ° C., it is necessary to secure the reduction amount P total of 9.7% or more. Note that the total amount of reduction by each reduction roll is the reduction amount P total .
[0039]
On the other hand, in order to develop dynamic recrystallization by this reduction, reduction at a low strain rate is necessary. Therefore, the strain rate at the time of reduction is 1 × 10 −2 s −1 to 1 × 10 −3. It must be in the range of s- 1 . If the strain rate is higher than 1 × 10 −2 s −1 , dynamic recrystallization becomes difficult to develop, which is not desirable. On the other hand, even if the strain rate is lower than 1 × 10 −3 s −1 , Although dynamic recrystallization is developed, in order to achieve such a low strain rate, as will be described later, the slab drawing speed is extremely slowed down, or a large number of rolling rolls are arranged and one by one. It is not preferable because a measure such as extremely reducing the amount of reduction by the reduction roll is required.
[0040]
Here, FIG. 3 shows a conceptual diagram of a slab that is reduced by a reduction roll provided in a reduction band. 9 in FIG. 3 is a pressure roll, slab 6 is reduction in pressure roll 9 having a radius R, which reduces the thickness thereof from D 0 to D 1. In this case, the amount of strain caused by the reduction of the pair of reduction rolls 9 is expressed by the following equation (2).
[0041]
(Equation 2)
Figure 2004237292
[0042]
As shown in FIG. 3, the range in which the slab 6 is in contact with the reduction roll 9 is a range in which the circumferential angle with respect to the axis of the reduction roll 9 is θ (radian). radius R, slab thickness D 0 of the roll 9, the following (3) is established between the slab thickness D 1.
[0043]
[Equation 3]
Figure 2004237292
[0044]
Assuming that the slab withdrawing speed is V, the time t S during which the slab 6 is in contact with one reduction roll 9 is expressed by the following equation (4).
[0045]
(Equation 4)
Figure 2004237292
[0046]
The time t S can be obtained by obtaining the angle θ from the equation (3) and substituting the obtained angle θ into the equation (4). Then, by substituting the obtained time t S into the following equation (5), the strain rate of the pressing roll 9 can be obtained.
[0047]
(Equation 5)
Figure 2004237292
[0048]
As described above, in order to make the value of Ps 3 or more under the condition that the temperature difference ΔT is 250 ° C., it is necessary to secure the reduction amount P total of 9.7% or more. In this case, the slab thickness ( D 0 ) is 250 mm, the radius (R) of the reduction roll 9 is about 150 mm, and the slab withdrawal speed (V) is a normal slab withdrawal speed of about 1.2 m / min. If the amount P total is added by a pair of reduction rolls 9, the strain rate will be higher than the upper limit of 1 × 10 −2 s −1 . Therefore, in such a case, it is necessary to share and reduce the pressure by a plurality of pairs of reduction rolls 9 so that the strain rate of each reduction roll 9 does not exceed the upper limit. For this reason, at least two pairs of rolling rolls are arranged in the rolling band, and judging from the ease of strain rate control, the larger the rolling rolls 9, the more advantageous. If the strain rate exceeds the upper limit even if the reduction amount P total is dispersed in each reduction roll, it is necessary to reduce the slab drawing speed V and increase the time t S.
[0049]
Further, since Ps shown in the equation (1) is inversely proportional to the temperature difference ΔT, when the value of Ps is secured to 3 or more, if the temperature difference ΔT is reduced, the rolling reduction P total can be reduced. Accordingly, in order to reduce the temperature difference ΔT, forced cooling of the slab 6 by the secondary cooling device is stopped at the end of solidification of the slab 6, and the solidification latent heat of the unsolidified layer 7 is used to form the slab 6. After the surface is reheated to, for example, 1000 ° C. or more, it is preferable to apply pressure to the slab 6.
[0050]
An object of the present invention is to improve the properties of the surface layer of the slab by the occurrence of dynamic recrystallization. Therefore, it is necessary that the center of the slab 6 be fully solidified and then reduced in pressure. In order to improve the center segregation of the slab 6, a technique of rolling down the slab 6 at the final stage of solidification of the slab 6 has been implemented. It does not affect the effect of the present invention at all.
[0051]
By casting the slab 6 in this manner, dynamic recrystallization is developed in the vicinity of the surface layer of the slab 6, and a continuous cast slab with a refined solidification secondary structure can be obtained.
[0052]
The cast slab 6 is cut to a predetermined length by a gas cutter (not shown) installed on the outlet side of the slab support roll 3 of the continuous casting machine, and if necessary, one slab is separately formed. After cutting into several cast pieces by a cutting machine (not shown) installed, it is transported to a hot rolling step and hot rolled into a predetermined shape. In the hot rolling step, it is not necessary to perform rolling under specially changed conditions, and predetermined rolling conditions and heat treatment conditions according to the steel components are applied to process into a steel material such as a steel plate.
[0053]
The solidified secondary structure near the surface layer of the slab cast by the method of the present invention is refined, and the hot ductility is improved, so that it is subjected to stress due to slab correction and bulging correction in a continuous casting machine. Also, cracks are less likely to occur on the slab surface, and slabs with few surface cracks can be obtained. Further, even in the direct rolling process or the hot slab charging rolling process, even if stress is applied by hot rolling, cracks are unlikely to be generated on the slab surface, and a steel material with less surface cracks can be obtained. In this case, in particular, from the viewpoint of reducing the surface flaws of the slab 6, the method of the present invention is preferably applied when casting a slab of a steel component containing 0.5 mass% or more of Ni.
[0054]
Although the above description is an example of a slab slab, the present invention is not limited to a slab slab, and may be applied to a bloom slab or a billet slab cast by a continuous casting machine according to the above description. can do.
[0055]
【Example】
Using two types of steels, Ni-containing steel F and steel G, whose chemical components are shown in Table 2, cast slabs were cast with a test continuous casting machine shown in FIG. 1, and then using a small rolling mill A steel plate having a thickness of 50 mm was manufactured. Further, for comparison, a steel sheet was manufactured from a slab cast without reduction. The thickness of the slab before rolling is 150 mm, and the width is 500 mm. Table 3 shows the manufacturing conditions. Table 3 also shows the occurrence of surface cracks in the steel sheet.
[0056]
[Table 2]
Figure 2004237292
[0057]
[Table 3]
Figure 2004237292
[0058]
As shown in Table 3, the steel sheets 1 and 3 rolled from the slabs cast under the manufacturing conditions according to the present invention did not have any surface cracks, whereas the cast steels cast under the manufacturing conditions other than the method of the present invention. In the steel sheet 2 and the steel sheet 4 rolled from the pieces, surface cracks occurred. In addition, in the remarks column of Table 3, a steel sheet using a slab cast under the manufacturing conditions according to the present invention is described as an example of the present invention, and the other examples are described as comparative examples.
[0059]
【The invention's effect】
According to the present invention, it is possible to refine the solidification secondary structure in the vicinity of the surface layer of the continuous cast slab without requiring special equipment and complicated manufacturing steps, so that coarse γ grains under the slab surface layer It is possible to reduce surface cracks caused by the above. In particular, when a steel sheet is manufactured by a direct rolling process or a hot slab charging and rolling process in which phase transformation due to heat history does not occur, or when continuous casting of a steel such as a Ni-containing steel that is unlikely to undergo phase transformation is effective. Can be exerted, the production cost of steel material can be greatly reduced, and an industrially beneficial effect is brought about.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a continuous casting machine.
FIG. 2 is a graph showing the relationship between the value of Ps and the prior γ grain size near the surface layer of a slab.
FIG. 3 is a conceptual diagram of a slab that is reduced by a reduction roll.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 tundish 2 mold 3 casting slab support roll 4 light reduction device 5 air mist cooling device 6 slab 7 unsolidified layer 8 solidified shell 9 reduction roll

Claims (4)

連続鋳造機内の連続鋳造鋳片を中心部まで凝固させた後、鋳片の厚み中心部の温度(Tm)と鋳片の表面温度(Ts)との温度差ΔT(ΔT=Tm−Ts)を300℃以下とし、且つ、歪速度を1×10−2−1〜1×10−3−1として、下記の(1)式で示されるPs の値が3以上となるように、鋳片を厚み方向に圧下することを特徴とする、連続鋳造鋳片の製造方法。
Ps=78×Ptotal /ΔT …(1)
但し、(1)式において、Ptotal は鋳片の圧下量(%)、ΔTは鋳片の厚み中心部の温度(Tm)と鋳片の表面温度(Ts)との温度差(ΔT=Tm−Ts)である。
After solidifying the continuous cast slab in the continuous casting machine to the center, the temperature difference ΔT (ΔT = Tm−Ts) between the temperature (Tm) at the center of the thickness of the slab and the surface temperature (Ts) of the slab is determined. The casting is performed at a temperature of 300 ° C. or less and a strain rate of 1 × 10 −2 s −1 to 1 × 10 −3 s −1 so that the value of Ps represented by the following equation (1) becomes 3 or more. A method for producing a continuously cast slab, wherein the slab is reduced in the thickness direction.
Ps = 78 × P total / ΔT (1)
In the equation (1), P total is the reduction amount (%) of the slab, and ΔT is the temperature difference (ΔT = Tm) between the temperature (Tm) at the center of the thickness of the slab and the surface temperature (Ts) of the slab. −Ts).
鋳片内部に存在する未凝固層の有する凝固潜熱を利用して、鋳片表面を1000℃以上に復熱させて圧下することを特徴とする、請求項1に記載の連続鋳造鋳片の製造方法。2. The continuous cast slab according to claim 1, wherein the surface of the slab is re-heated to 1000 ° C. or more and reduced by utilizing latent heat of solidification of an unsolidified layer present in the slab. 3. Method. 前記鋳片は、直送圧延プロセス又は高温鋳片装入圧延プロセスによって圧延される鋳片であることを特徴とする、請求項1又は請求項2に記載の連続鋳造鋳片の製造方法。The method for producing a continuous cast slab according to claim 1 or 2, wherein the slab is a slab rolled by a direct rolling process or a hot slab charging rolling process. 前記鋳片は、Niを0.5mass%以上含有する化学成分の鋳片であることを特徴とする、請求項1又は請求項2に記載の連続鋳造鋳片の製造方法。The method for producing a continuous cast slab according to claim 1, wherein the slab is a slab of a chemical component containing 0.5 mass% or more of Ni.
JP2003026344A 2003-02-03 2003-02-03 Method of manufacturing continuous casting slab Pending JP2004237292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026344A JP2004237292A (en) 2003-02-03 2003-02-03 Method of manufacturing continuous casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026344A JP2004237292A (en) 2003-02-03 2003-02-03 Method of manufacturing continuous casting slab

Publications (1)

Publication Number Publication Date
JP2004237292A true JP2004237292A (en) 2004-08-26

Family

ID=32954380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026344A Pending JP2004237292A (en) 2003-02-03 2003-02-03 Method of manufacturing continuous casting slab

Country Status (1)

Country Link
JP (1) JP2004237292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
CN113843400A (en) * 2020-06-25 2021-12-28 宝山钢铁股份有限公司 Slab cooling and reduction method for improving quality of casting blank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
CN113843400A (en) * 2020-06-25 2021-12-28 宝山钢铁股份有限公司 Slab cooling and reduction method for improving quality of casting blank

Similar Documents

Publication Publication Date Title
JP5775879B2 (en) Martensitic stainless steel and method for producing the same
JP2013512347A (en) Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP3657217B2 (en) Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
TW202024356A (en) Thin steel sheet manufacturing apparatus and thin steel sheet manufacturing method
JP5157664B2 (en) Continuous casting method of round slabs for seamless steel pipes
JP2004237292A (en) Method of manufacturing continuous casting slab
JP3190319B2 (en) Twin roll continuous casting machine
JP3555538B2 (en) Direct-feed rolling method of continuous cast slab
JPH02247049A (en) Manufacture of cast strip
JP3945238B2 (en) Steel plate manufacturing method
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JPH0218936B2 (en)
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPS63115654A (en) Method and apparatus for casting metal sheet
JPH0112561B2 (en)
JP3298519B2 (en) Steel sheet free of hydrogen defects and method for producing the same
JP7460894B2 (en) HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JP2018034197A (en) Steel continuously cast piece and continuous casting method
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JP6349832B2 (en) Continuous cast slab for thick steel plate