JP2018034197A - Steel continuously cast piece and continuous casting method - Google Patents

Steel continuously cast piece and continuous casting method Download PDF

Info

Publication number
JP2018034197A
JP2018034197A JP2016171619A JP2016171619A JP2018034197A JP 2018034197 A JP2018034197 A JP 2018034197A JP 2016171619 A JP2016171619 A JP 2016171619A JP 2016171619 A JP2016171619 A JP 2016171619A JP 2018034197 A JP2018034197 A JP 2018034197A
Authority
JP
Japan
Prior art keywords
slab
less
temperature
center
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016171619A
Other languages
Japanese (ja)
Other versions
JP6862723B2 (en
Inventor
水上 英夫
Hideo Mizukami
英夫 水上
山田 健二
Kenji Yamada
健二 山田
原田 寛
Hiroshi Harada
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016171619A priority Critical patent/JP6862723B2/en
Publication of JP2018034197A publication Critical patent/JP2018034197A/en
Application granted granted Critical
Publication of JP6862723B2 publication Critical patent/JP6862723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a continuously cast piece having particularly small center porosity at a center and particularly small austenite particle diameter on a surface, and a continuous casting method capable of manufacturing such a continuously cast piece.SOLUTION: This steel continuously cast piece has a prescribed component of C:0.3% or less, and the number of porosities having circle equivalent diameters of 0.5 mm or more at a cast piece thickness center is 10/10mm. The austenite particle diameter on a cast piece surface is 0.05 mm or less. When molten steel having a prescribed component is continuously cast, a cast piece can be manufactured by executing drafting so as to achieve rolling reduction of 5-50% at a cast piece thickness center temperature of 1300-900°C and a cast piece surface temperature of 600-300°C.SELECTED DRAWING: None

Description

本発明は、鋼の連続鋳造鋳片及び連続鋳造方法に関するものである。   The present invention relates to a continuous casting slab of steel and a continuous casting method.

省エネルギーや生産性の向上の観点から構造物の大型化や高強度化への要求が厳しくなっており、構造物の素材となる極厚鋼板に対する品質の向上が、コストの低減とともに課題となっている。特にこれまで、極厚鋼板は、いったんインゴット鋳造法で製造された大型鋼塊を分塊圧延することで分塊スラブを作製し、これを圧延することで製造されてきた。しかし、この分塊スラブを用いる場合には、大型鋼塊の上部に設けられた押し湯部や、底部に生成する偏析、粗大な介在物や引け巣を除去する必要があり、歩留まりが著しく低下するという問題があった。また、鋼板を製造するには分塊圧延といった工程が必要であり、温度の低下した分塊スラブを加熱炉に入れて昇温する工程が必要になり、製造コストが大幅に増大するとともに製造工程も長くなり、生産効率の低下を招いていた。   From the viewpoint of energy saving and productivity improvement, the demand for larger size and higher strength of structures has become strict, and the improvement of quality for extra-thick steel plates that are the materials of structures has become an issue along with cost reduction. Yes. In particular, extra-thick steel sheets have been manufactured by producing a slab of a slab by rolling the large steel ingot once produced by an ingot casting method and rolling the slab. However, when this slab is used, it is necessary to remove the feeder part provided at the top of the large steel ingot, segregation generated at the bottom, coarse inclusions and shrinkage nests, and the yield is significantly reduced. There was a problem to do. In addition, a process such as block rolling is necessary to manufacture the steel sheet, and a process of heating the block slab whose temperature has been lowered into a heating furnace is required, greatly increasing the manufacturing cost and the manufacturing process. However, the production efficiency was lowered.

この問題を解決するため、極厚鋼板用の鋳片の製造に連続鋳造法が適用されつつあり、歩留まりの向上および生産効率の向上が図られてきている。しかし、その場合、連続鋳造鋳片も極厚化するため、鋳片内部、特に中央部における凝固組織の粗大化にともない鋳片の中央部においてポロシティーの生成が著しくなる。このポロシティーの生成により鋳片全体の品質向上を阻害してしまうため、連続鋳造鋳片においてポロシティーを低減する技術について、従来から多くの提案がなされている。   In order to solve this problem, a continuous casting method is being applied to the production of slabs for extra-thick steel sheets, and improvements in yield and production efficiency have been attempted. However, in this case, since the continuous cast slab is also made extremely thick, the generation of porosity becomes significant in the center of the slab, particularly with the coarsening of the solidified structure in the center. Since the generation of the porosity hinders the improvement of the quality of the entire slab, many proposals have been made on the technology for reducing the porosity in the continuous cast slab.

特許文献1には、鍛造圧下時に連続鋳造スラブと鍛造金敷との接触長を一定値以上に大きく取れば、板厚中心部に大きな塑性歪みを加えられること、さらに、鍛伸方向を連続鋳造スラブの長手方向と幅方向の双方について実施することにより、連続鋳造スラブのセンターポロシティーの圧着効果と偏析帯の粉砕効果が同時に得られる技術が開示されている。極厚鋼板の製造方法を、連続鋳造スラブに全圧下率29〜66%の鍛造および圧延を施して極厚鋼板を製造するに当たり、前記連続鋳造スラブを1000℃以上に加熱した後、前記鍛造工程において圧下率20〜56%のクロス鍛造をB/H比を0.7〜1.0として行い、しかる後、圧延工程で仕上げ成形圧延を行うこととするものである。なお、Bは鍛造圧下時の鍛造金敷と連続鋳造スラブとの接触長であり、Hは鍛造圧下時の連続鋳造スラブ厚さである。しかしながら、連続鋳造スラブを鍛造金敷を用いて圧下するため間欠的な圧下であり、金敷による圧下領域とその両側の非圧下領域の境界部で表面割れが生じ、製品の歩留まりが低下する。また、連続鋳造スラブを再加熱することから製造コストが上昇することになる。   In Patent Document 1, if the contact length between the continuous cast slab and the forged anvil is larger than a certain value during forging reduction, a large plastic strain can be applied to the center of the plate thickness, and the forging direction is set to the continuous cast slab. By implementing both in the longitudinal direction and in the width direction, a technique is disclosed in which the effect of pressing the center porosity of the continuously cast slab and the effect of pulverizing the segregation zone can be obtained simultaneously. In producing a very thick steel sheet by subjecting a continuous cast slab to forging and rolling with a total rolling reduction of 29 to 66%, the continuous casting slab is heated to 1000 ° C. or higher, and then the forging process is performed. In this, cross forging with a rolling reduction of 20 to 56% is performed with a B / H ratio of 0.7 to 1.0, and then finish forming rolling is performed in a rolling process. B is the contact length between the forged anvil and the continuous cast slab during forging reduction, and H is the thickness of the continuous casting slab during forging reduction. However, since the continuous cast slab is squeezed using a forged anvil, the slab is intermittently squeezed, and surface cracks occur at the boundary between the squeezed region due to the anvil and the unsqueezed regions on both sides of the slab, resulting in a decrease in product yield. Further, since the continuous casting slab is reheated, the manufacturing cost increases.

特許文献2には、鋼の連続鋳造において、面部材を用いて、鋼塊の未凝固末端部を狭持するに当り、所定の時間間隔で鋼塊を断続的に圧下することで、バルジングを防止して、同時に面部材で挟持する範囲内で鋼塊を完全凝固させると、小さい圧力でマクロ偏析や点状偏析が著しく改善された凝固組織が効率的に得られる技術が開示されている。しかしながら、凝固末期においては液相界面近傍における凝固シェルの強度は小さく、面圧下による力が凝固シェルの強度を超えると内部割れが生じてしまい、また、連続鋳造の操業時の温度変動や鋳造速度の変化による面圧下位置での凝固シェルの厚みや温度の変動で所望の面圧下条件を満たすことが困難である。   In Patent Document 2, bulging is performed by intermittently rolling down a steel ingot at a predetermined time interval when sandwiching an unsolidified end portion of the steel ingot using a surface member in continuous casting of steel. When the steel ingot is completely solidified within the range that is prevented and simultaneously sandwiched by the surface member, a technique is disclosed in which a solidified structure in which macro segregation and point segregation are remarkably improved can be efficiently obtained with a small pressure. However, at the end of solidification, the strength of the solidified shell in the vicinity of the liquid phase interface is small, and if the force due to surface pressure exceeds the strength of the solidified shell, internal cracks occur, and temperature fluctuations and casting speed during continuous casting operations It is difficult to satisfy the desired surface pressure reduction condition due to the variation of the thickness and temperature of the solidified shell at the surface pressure reduction position due to the change of the.

特許文献3には、鋳片厚み中心部の少なくとも5mm以上、30mm以下の領域におけるC、Si、Mn、P、S等の各種元素の濃度と厚み該中心部を除く部分の濃度の比が0.9〜1.0の範囲にあり、且つ該中心部において、最大径が0.1mmのセンターポロシティーが全く存在しない熱間圧延用連続鋳造鋳片の製造技術が開示されている。しかしながら、濃度の比が0.9〜1.0となるためには、凝固にともなう溶質元素の濃化を抑制する必要があり、これには中心部での液相を流動させる必要がある。また、鋳片を軽圧下させるためにウォーキングバー方式を採用しているが、この方式では鋳造方向において間欠的に軽圧下されるため、鋳造方向において均一な軽圧下を行うことが困難であり、結果的に鋳片厚み中央部に残存する液相の流動も不均一になり、所望の濃度の比の範囲を満たすことも困難である。   In Patent Document 3, the ratio of the concentration of various elements such as C, Si, Mn, P, S, etc. in the region of at least 5 mm or more and 30 mm or less of the slab thickness central portion to the thickness of the portion excluding the central portion is 0. A technology for producing a continuous cast slab for hot rolling in which a center porosity having a maximum diameter of 0.1 mm does not exist at all in the center portion is disclosed. However, in order for the concentration ratio to be 0.9 to 1.0, it is necessary to suppress the concentration of solute elements accompanying solidification, which requires the liquid phase at the center to flow. In addition, although the walking bar method is adopted to lightly reduce the slab, it is difficult to perform uniform light reduction in the casting direction because it is intermittently lightly reduced in the casting direction. As a result, the flow of the liquid phase remaining in the center part of the slab thickness becomes non-uniform, and it is difficult to satisfy a desired concentration ratio range.

特許文献4には、連続鋳造鋳片を凝固した直後に圧下することで、圧下を行うことなく製造した場合の鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λ0を基準とし、鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λと前記λ0の比の値λ/λ0が0.1〜0.9となるような技術が開示されている。特に、鋳片の厚さ方向中心が凝固した直後に圧下を行うと、鋳片の厚さ方向中心部において圧下量が大きくなり、凝固組織の変化量が大きくなるため、凝固組織の微細化により有効であることを知見したとしている。本技術により偏析の拡散を促進することができるが、ポロシティーを完全になくすことが困難な場合があった。ポロシティーを完全に無くすには更に圧下を行う必要がある。 According to Patent Document 4, a continuous cast slab is rolled immediately after solidification, and the slab is formed based on the dendrite primary arm interval λ 0 at the center of the slab in the thickness direction when it is manufactured without reduction. A technique is disclosed in which the ratio λ / λ 0 of the dendrite primary arm interval λ and the λ 0 at the center in the thickness direction is 0.1 to 0.9. In particular, if the reduction is performed immediately after the center of the slab in the thickness direction is solidified, the amount of reduction in the center of the slab in the thickness direction increases, and the amount of change in the solidified structure increases. It is said that it has been found effective. Although the diffusion of segregation can be promoted by this technique, it may be difficult to completely eliminate the porosity. Further reduction is necessary to completely eliminate the porosity.

センターポロシティーの低減を目的として、連続鋳造中において鋳片が完全凝固した後に鋳片を圧下する方法が知られている。圧下ロールとして幅方向に太さが均一なロール(以下、フラットロールという。)を用いる場合、鋳片幅方向の全幅を圧下することとなる。凝固完了直後における鋳片厚み中央部の鋳片温度について検討すると、鋳片の幅両端部については厚み中央部を含めて温度が低下しているため、鋳片幅両端部は全厚にわたって変形抵抗が大きく、フラットロールを用いて圧下しようとすると大きな圧下力が必要となる。   For the purpose of reducing the center porosity, a method is known in which the slab is reduced after the slab is completely solidified during continuous casting. When a roll having a uniform thickness in the width direction (hereinafter referred to as a flat roll) is used as the reduction roll, the entire width in the slab width direction is reduced. Considering the slab temperature at the center of the slab thickness immediately after the completion of solidification, the temperature at the both ends of the slab including the center of the slab has decreased, so that both ends of the slab width have deformation resistance over the entire thickness. Is large, and a large rolling force is required to roll down using a flat roll.

鋳片中心部のポロシティーを圧下する方法として、特許文献5には鋳片が完全凝固した後に、鋳片の表面温度が700℃以上1000℃以下で、鋳片の内部温度と表面との温度差が250℃以上となる領域において、ロールの幅中央部が幅端部に比較して太くなるロール(以下「中太ロール」という。)を用いて鋳片の幅5%以上40%以下の範囲を鋳片の厚み2%以上20%以下の大圧下を実施することにより、鋳片中心のポロシティーを抑制する方法が開示されている。中太ロールを用いて鋳片の幅中央部のみを圧下するため、鋳片中心部のポロシティーを効率的に抑制することができる。   As a method for reducing the porosity of the slab center, Patent Document 5 discloses that the surface temperature of the slab is 700 ° C. or more and 1000 ° C. or less after the slab is completely solidified, and the temperature between the internal temperature of the slab and the surface. In a region where the difference is 250 ° C. or more, the width of the slab is 5% or more and 40% or less using a roll (hereinafter referred to as “middle-thick roll”) in which the center of the width of the roll is thicker than the width end. A method of suppressing the porosity at the center of the slab by carrying out a large reduction in the range of 2% to 20% of the thickness of the slab is disclosed. Since only the center of the width of the slab is rolled down using the middle thickness roll, the porosity at the center of the slab can be efficiently suppressed.

特許文献5に記載のように中太ロールを用いる場合、鋳片の幅両端部を圧下しないので過剰な圧下力を用いなくても圧下は可能であるが、鋳片の圧下量が大きい場合、その後の圧延工程で鋳片に形成された鋳片のへこみが原因となって表面疵が発生する。そのため、中太ロールを用いた凝固後大圧下法では圧下率の上限に制約が生じる。   When using a middle-thick roll as described in Patent Document 5, it is possible to reduce without using excessive reduction force because the both ends of the width of the slab are not reduced, but when the reduction amount of the slab is large, Surface flaws occur due to dents in the slab formed on the slab in the subsequent rolling process. Therefore, the upper limit of the rolling reduction is limited in the post-solidification large rolling method using a middle thick roll.

連続鋳造後の連続鋳造鋳片においては、凝固時の成分偏析に起因する凝固組織が形成されていると同時に、凝固後の冷却時に形成される結晶組織を観察することができる。中でも、鋳片に観察されるオーステナイト粒径(以下「γ粒径」ともいう。)が小さくなるほど、その後の熱間圧延のために鋳片を加熱する際、加熱中の結晶粒粗大化が抑制されるので好ましい。ここでオーステナイト粒径(γ粒径)とは、連続鋳造中において、凝固が完了した鋳片が冷却される過程で、鋳片温度がオーステナイト域にあるときに形成されたオーステナイト相の粒径を意味する。鋳造後の鋳片は、フェライト変態域を経由して冷却されているため、オーステナイト相が観察されないことが多いが、鋳片のオーステナイト粒径は凝固組織であるデンドライトの成長方向と垂直な断面を観察し、デンドライトの方向が同一である領域を結晶粒径として評価することができる。   In a continuous cast slab after continuous casting, a solidified structure resulting from component segregation during solidification is formed, and at the same time, a crystal structure formed during cooling after solidification can be observed. In particular, the smaller the austenite grain size (hereinafter also referred to as “γ grain size”) observed in the slab, the smaller the grain coarsening during heating when the slab is heated for subsequent hot rolling. Therefore, it is preferable. Here, the austenite grain size (γ grain size) is the process of cooling the slab that has been solidified during continuous casting, and the grain size of the austenite phase formed when the slab temperature is in the austenite region. means. Since the slab after casting is cooled via the ferrite transformation region, the austenite phase is often not observed, but the austenite grain size of the slab has a cross section perpendicular to the growth direction of the dendritic solidified structure. The region where the direction of dendrite is the same can be observed and evaluated as the crystal grain size.

特開2000−263103号公報JP 2000-263103 A 特開昭59−202145号公報JP 59-202145 A 特開平6−297090号公報JP-A-6-297090 特開2015−6680号公報Japanese Patent Laying-Open No. 2015-6680 特開2009−279652号公報JP 2009-279651 A

本発明は、連続鋳造法によって製造された鋳片を用いて熱間圧延後の製品厚さが30mm以上の海洋構造物等に用いられる鋼板を製造するために供される、熱間圧延前の連続鋳造鋳片であって、鋳片中心部のセンターポロシティーが特に少ない鋼の連続鋳造鋳片、及びそのような連続鋳造鋳片を製造することのできる連続鋳造方法を提供することを目的とする。
さらに、鋳造ままの連続鋳造鋳片の表面は、オーステナイト結晶粒径が成長しているので、鋳片表面のオーステナイト結晶粒径を微細化することができれば、次工程での圧延時に発生することがある表面割れを改善できるので好ましい。
The present invention is used for producing a steel plate used for an offshore structure having a product thickness after hot rolling of 30 mm or more using a slab produced by a continuous casting method, before hot rolling. An object of the present invention is to provide a continuous cast slab of steel having a particularly low center porosity at the center of the slab and a continuous casting method capable of producing such a continuous cast slab. To do.
Furthermore, since the austenite crystal grain size is growing on the surface of the continuous cast slab as cast, if the austenite crystal grain size on the slab surface can be refined, it may occur during rolling in the next process. This is preferable because a certain surface crack can be improved.

特許文献4に開示されている技術により、連続鋳造鋳片が凝固完了した直後の鋳片内部に温度勾配が存在する状態で圧下することで、鋳片表層部よりも厚み中央部の温度が高く強度も小さい領域に付与される歪みを増大させることが可能になる。また、特許文献5に記載のように、鋳片の表面温度が700℃以上1000℃以下で、鋳片の内部温度と表面との温度差が250℃以上となる領域において、中太ロールを用いて鋳片の厚み2%以上20%以下の大圧下を実施することにより、鋳片中心のポロシティーを抑制することができる。しかしながら、ポロシティーを完全に潰してなくすことは困難であった。完全に潰すには更に大きな歪みを鋳片厚み中央部に付与することが必要である。   By the technique disclosed in Patent Document 4, the temperature of the central portion of the slab is higher than that of the slab surface layer by reducing the temperature of the continuous cast slab immediately after the solidification is completed. It is possible to increase the strain applied to a region having a low strength. In addition, as described in Patent Document 5, in the region where the surface temperature of the slab is 700 ° C. or more and 1000 ° C. or less, and the temperature difference between the internal temperature of the slab and the surface is 250 ° C. or more, the middle thick roll is used. The porosity at the center of the slab can be suppressed by performing a large reduction of the slab thickness of 2% to 20%. However, it has been difficult to completely eliminate the porosity. In order to completely crush, it is necessary to apply a larger strain to the center portion of the slab thickness.

特許文献3、特許文献4の知見に基づくと、鋳片厚み中央部に付与される歪みを増すには、鋳片中央部の温度と表面の温度の差を大きくして、温度に依存して変化する鋼の強度の差を大きくすればよいことが分かる。   Based on the knowledge of Patent Document 3 and Patent Document 4, in order to increase the strain applied to the center part of the slab thickness, the difference between the temperature of the center part of the slab and the temperature of the surface is increased, depending on the temperature. It can be seen that the difference in strength of the changing steel should be increased.

連続鋳造中において、鋳片厚み中央部が凝固完了した位置において厚み中央部温度は固相線温度であり、その後、鋳片厚み中央部は下流側に向かって順次その温度が低下する。中央部の温度を直接変えることはできない。一方、鋳片表面の温度は、鋳片の放射伝熱とロールとの接触による伝導伝熱に支配され、これらの伝熱量を大きくすることで表面温度を低くすることができ、逆に伝熱量を小さくすることで表面温度の低下を抑制することができる。したがって、連続鋳造中の完全凝固後であって、厚み中央部の温度が所定の温度となった位置において圧下を行うことによって鋳片厚み中央部に大きな歪みを付与するには、中央部の温度が当該温度となった位置における鋳片表面の温度を低くすることで、圧下位置における中央部と表面の温度差を大きくし、これにともない中央部と表面の強度の差を大きくすることで可能になる。ただし、鋳片中央部と表面の温度差をある値より大きくするためには、鋳片を水スプレーやミスト・スプレーなどにより強制的に冷却する必要がある。   During continuous casting, the thickness center portion temperature is the solidus temperature at the position where the slab thickness center portion has been solidified, and then the slab thickness center portion gradually decreases toward the downstream side. The central temperature cannot be changed directly. On the other hand, the surface temperature of the slab is governed by the radiant heat transfer of the slab and the conduction heat transfer caused by contact with the rolls. By increasing these heat transfer amounts, the surface temperature can be lowered, and conversely the heat transfer amount. Decreasing the surface temperature can suppress a decrease in surface temperature. Therefore, in order to give a large strain to the central part of the slab thickness by performing the reduction at the position where the temperature of the central part of the thickness becomes a predetermined temperature after complete solidification during continuous casting, the temperature of the central part is required. By lowering the temperature of the slab surface at the position where the temperature reaches the temperature, the temperature difference between the central part and the surface at the reduction position can be increased, and accordingly, the difference in strength between the central part and the surface can be increased. become. However, in order to make the temperature difference between the center of the slab and the surface larger than a certain value, it is necessary to forcibly cool the slab by water spray, mist spray, or the like.

本発明は、これらの知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)質量%で、C:0.05%〜0.3%、Si:0.05%〜0.4%、Mn:0.2%〜2.0%、P:0.02%以下、S:0.003%以下、Al:0.1%以下、N:0.001%〜0.01%を含有し、残部Fe及び不可避的不純物であり、鋳片厚さが100mm以上であって、鋳片厚み中央部における円相当直径が0.5mm以上のポロシティー個数が10個/105mm3以下であることを特徴とする連続鋳造鋳片。
(2)さらに質量%で、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有することを特徴とする(1)に記載の連続鋳造鋳片。
(3)鋳片表面におけるオーステナイト結晶粒径が0.05mm以下であることを特徴とする(1)又は(2)に記載の連続鋳造鋳片。
(4)C:0.05%〜0.3%、Si:0.05%〜0.4%、Mn:0.2%〜2.0%、P:0.02%以下、S:0.003%以下、Al:0.1%以下、N:0.001%〜0.01%を含有し、残部Fe及び不可避的不純物である溶鋼を連続鋳造するに際し、鋳片厚み中央部の温度が1300〜900℃、鋳片表面温度が600〜300℃において、圧下率が5〜50%となるように鋳片を圧下することを特徴とする連続鋳造方法。
(5)前記溶鋼はさらに質量%で、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有することを特徴とする(4)に記載の連続鋳造方法。
This invention is made | formed based on these knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.05% to 0.3%, Si: 0.05% to 0.4%, Mn: 0.2% to 2.0%, P: 0.02% or less , S: 0.003% or less, Al: 0.1% or less, N: 0.001% to 0.01%, the balance is Fe and inevitable impurities, and the slab thickness is 100 mm or more. The continuous cast slab is characterized in that the number of porosity having an equivalent circle diameter of 0.5 mm or more at the center of the slab thickness is 10/10 5 mm 3 or less.
(2) Further, by mass%, Mo: 1.5% or less, Ni: 1.5 to 3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.1% or less, Nb The continuous cast slab according to (1), containing one or more of 0.1% or less and V: 0.1% or less.
(3) The continuous cast slab according to (1) or (2), wherein the austenite crystal grain size on the slab surface is 0.05 mm or less.
(4) C: 0.05% to 0.3%, Si: 0.05% to 0.4%, Mn: 0.2% to 2.0%, P: 0.02% or less, S: 0 0.003% or less, Al: 0.1% or less, N: 0.001% to 0.01%, the balance Fe and the temperature at the center of the slab thickness when continuously casting the molten steel which is an unavoidable impurity The continuous casting method is characterized in that the slab is rolled down so that the rolling reduction is 5 to 50% at 1300 to 900 ° C and the slab surface temperature is 600 to 300 ° C.
(5) The molten steel is further mass%, Mo: 1.5% or less, Ni: 1.5 to 3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.1% The continuous casting method according to (4), wherein one or more of Nb: 0.1% or less and V: 0.1% or less are contained.

本発明の連続鋳造鋳片は、鋳片の厚みが100mm以上ありながら、鋳片の厚み中央部にポロシティーが非常に少ない鋳片であり、さらに鋳片表面の結晶粒径が微細な鋳片である。また本発明の連続鋳造方法によれば、このような品質を有する連続鋳造鋳片の製造が可能である。   The continuous cast slab of the present invention is a slab having a very small porosity at the center of the slab thickness and a fine crystal grain size on the slab surface, while the thickness of the slab is 100 mm or more. It is. Further, according to the continuous casting method of the present invention, it is possible to produce a continuous cast slab having such quality.

連続鋳造中の鋳片圧下において、圧下率(%)を、「(圧下前の鋳片厚み−圧下後の鋳片厚み)/圧下前の鋳片厚み×100」と定義する。   In the slab pressure reduction during continuous casting, the reduction ratio (%) is defined as “(slab thickness before reduction−slab thickness after reduction) / slab thickness before reduction × 100”.

所定の圧下率で鋳片を圧下することによって、鋳片厚み中央部のピンホールを潰してなくすためには、鋳片の厚み中央部の凝固が完了し、しかも鋳片の表面と厚み中央の温度差が大きく、中央部の温度が高い方が良い。表面と中央部の温度差が大きいほど、圧下に際し、表面は変形抵抗が大きいので歪みが少なく、中央部は変形抵抗が小さいので歪みが大きくなり、同じ圧下率でも、中央部の歪みを大きくすることができるからである。鋳片の表面温度は放射温度計あるいは接触式の熱電対で測定可能であるが、鋳片中央領域の温度を測定することは困難であるため、伝熱解析を予め行い、鋳片の表面温度と中央領域の温度の関係を求めた。そして、凝固完了の直後に所定の圧下率で鋳片を圧下した際に、圧下時の表面温度と中央部温度がセンターポロシティーの低減に及ぼす影響について評価した。その結果、以下の点が明らかになった。   In order to eliminate the pinhole at the center part of the slab thickness by crushing the slab at a predetermined reduction rate, solidification of the center part of the slab thickness is completed, and the surface of the slab and the thickness center It is better that the temperature difference is large and the temperature at the center is high. The larger the temperature difference between the surface and the central part, the smaller the deformation because the surface has a large deformation resistance, and the central part has a small deformation resistance because the deformation resistance is small, and the distortion at the central part increases even at the same rolling reduction. Because it can. Although the surface temperature of the slab can be measured with a radiation thermometer or a contact-type thermocouple, it is difficult to measure the temperature in the center area of the slab. And the relationship between the temperature in the central region. Then, when the slab was reduced at a predetermined reduction rate immediately after completion of solidification, the influence of the surface temperature and the central temperature during reduction on the reduction of the center porosity was evaluated. As a result, the following points became clear.

なお、圧下位置における鋳片中央部の温度については、以下のように算出することができる。鋳片の伝熱シミュレーションプログラムを用いて、予めミクロ偏析による溶質元素の濃化を考慮した凝固解析を行う。これにより、鋳造方向各位置において、厚み方向の液相線位置、固相線位置を算出することができる。さらに凝固完了後の伝熱解析により、圧下位置における中央部温度を算出することができる。ここでは、鋳造中の鋳片表面温度を実測し、実測した鋳片表面温度を代入して計算機にて凝固解析を行い、圧下位置における鋳片中央部の温度を算出した。ここで、密度ρは、ρ=7.27+0.25×固相率(g/cm3)とした。(鉄と鋼、vol.94(2008)、p.507:水上英夫、山中章裕) In addition, about the temperature of the slab center part in a reduction position, it is computable as follows. Solidification analysis is performed in advance, taking into account the concentration of solute elements by microsegregation, using a slab heat transfer simulation program. Thereby, at each position in the casting direction, the liquidus position and the solidus position in the thickness direction can be calculated. Furthermore, the center temperature at the reduction position can be calculated by heat transfer analysis after completion of solidification. Here, the slab surface temperature during casting was measured, the measured slab surface temperature was substituted, and solidification analysis was performed by a computer to calculate the temperature at the center of the slab at the reduction position. Here, the density ρ was ρ = 7.27 + 0.25 × solid phase rate (g / cm 3 ). (Iron and Steel, vol. 94 (2008), p. 507: Hideo Mizukami, Akihiro Yamanaka)

鋳片厚み中央部の温度が1300℃を超えると、鋳片の中央部の凝固が完了していない場合があり、この状態で圧下されると内部割れを発生してしまう。また。中央部の温度が900℃未満であると、ポロシティーを潰すための圧下力が大きくなり過ぎ、設備費が高くなる。そこで。鋳片中央部の温度を1300℃〜900℃の範囲で圧下を行うこととした。   If the temperature at the center of the slab thickness exceeds 1300 ° C., solidification of the center of the slab may not be completed, and if it is reduced in this state, an internal crack will occur. Also. When the temperature at the center is less than 900 ° C., the reduction force for crushing the porosity becomes too large, and the equipment cost increases. there. It was decided to reduce the temperature at the center of the slab in the range of 1300 ° C to 900 ° C.

表面温度が300℃より低いと、鋳片の強度が高く鋳片を圧下するのに大きな力が必要となり、設備費が高くなる。このため表面温度を300℃以上とすることで鋳片の圧下に要する力が小さくなり設備費を抑えることができる。また、鋳片の表面温度が600℃より高いと、鋳片内部の温度勾配が低下して、中央部に付与される歪みが小さくなりポロシティーを完全に潰すことが難しい。また、表面温度が600℃より高いと、表面の結晶粒の微細化効果が小さいため望ましくない。そこで、鋳片の表面温度を300℃以上、600℃以下で圧下を行うこととした。   When the surface temperature is lower than 300 ° C., the strength of the slab is high and a large force is required to reduce the slab, resulting in an increase in equipment cost. For this reason, by setting the surface temperature to 300 ° C. or higher, the force required to reduce the slab is reduced, and the equipment cost can be reduced. Further, if the surface temperature of the slab is higher than 600 ° C., the temperature gradient inside the slab is lowered, the strain applied to the central portion is reduced, and it is difficult to completely crush the porosity. Further, if the surface temperature is higher than 600 ° C., the effect of refining the surface crystal grains is small, which is not desirable. Therefore, the reduction was performed at a surface temperature of the slab of 300 ° C. or more and 600 ° C. or less.

本発明の連続鋳造鋳片の含有成分、及び連続鋳造方法で用いる溶鋼の含有成分については、後述のように成分範囲を限定している。このような成分範囲に限定した結果として、連続鋳造中の凝固完了後において鋳片の高温強度が過度に高くなることがなくなった。そして、本発明の成分範囲において高温強度を反映させて高温変形特性を有限要素法で数値解析した結果、鋳片表面温度が600℃以下300℃以上において、充分に圧延可能であることが判明した。   About the content component of the continuous cast slab of this invention, and the content component of the molten steel used with the continuous casting method, the component range is limited as mentioned later. As a result of limiting to such a component range, the high temperature strength of the slab does not become excessively high after completion of solidification during continuous casting. And, as a result of numerical analysis of the high temperature deformation characteristic by the finite element method reflecting the high temperature strength in the component range of the present invention, it has been found that the slab surface temperature is sufficiently rollable at 600 ° C. or lower and 300 ° C. or higher. .

通常の連続鋳造の鋳造中において、凝固が完了した以降においては極力二次冷却の冷却能を低減し、鋳片表面温度の低下を防いでいる。鋳造後鋳片の顕熱を高く保持し、後工程の熱間圧延での省エネルギーを図るためである。それに対して本発明では、完全凝固後の圧下位置において鋳片表面温度を600℃以下まで低減することが特徴である。本発明のように鋳片の表面温度を変えるには、二次冷却帯の冷却水量を変えることが有効である。冷却水量を増やすと、鋳片の表面温度を下げることができ、鋳片中央部の温度が1300℃〜900℃の範囲である圧下位置において、表面温度を300〜600℃の範囲に調整することができる。圧下位置よりも上流側において、鋳片表面温度が50℃/min以上の冷却速度で冷却するように二次冷却水量を増大することにより、圧下時の表面温度を本発明範囲内とすることができる。   During normal continuous casting, after the solidification is completed, the cooling capacity of secondary cooling is reduced as much as possible to prevent the slab surface temperature from decreasing. This is to maintain a high sensible heat of the cast slab after casting and to save energy in the subsequent hot rolling. On the other hand, the present invention is characterized in that the slab surface temperature is reduced to 600 ° C. or lower at the reduced position after complete solidification. In order to change the surface temperature of the slab as in the present invention, it is effective to change the amount of cooling water in the secondary cooling zone. When the amount of cooling water is increased, the surface temperature of the slab can be lowered, and the surface temperature is adjusted to the range of 300 to 600 ° C. at the reduction position where the temperature at the center of the slab is in the range of 1300 ° C. to 900 ° C. Can do. By increasing the amount of secondary cooling water so that the slab surface temperature is cooled at a cooling rate of 50 ° C./min or more upstream from the reduction position, the surface temperature during reduction may be within the range of the present invention. it can.

鋳片の圧下率が5%より小さいと、鋳片の厚み中央部のポロシティーを完全に潰すことが難しく、靭性指数を向上させることが難しい。また、圧下率が50%を超えると、圧下に要する力が大きくなり、設備費が高くなる。このため圧下率は5〜50%とした。ここで、圧下率の定義は、前述のとおりである。   When the reduction ratio of the slab is less than 5%, it is difficult to completely crush the porosity at the center of the thickness of the slab and to improve the toughness index. On the other hand, when the rolling reduction exceeds 50%, the force required for rolling down increases and the equipment cost increases. For this reason, the rolling reduction was set to 5 to 50%. Here, the definition of the rolling reduction is as described above.

なお、本発明では、板厚が30mm以上の海洋構造物などに用いられる厚みが100mm以上の鋳片を対象にした。これは、熱間圧延時の圧下比が通常3.0以上必要なためである。   In the present invention, a slab having a thickness of 100 mm or more used for an offshore structure having a plate thickness of 30 mm or more is targeted. This is because the reduction ratio during hot rolling is usually 3.0 or more.

鋳片を圧延した鋼材の強度の低下、靭性の低下には、鋳片における直径0.5mm以上のポロシティーの影響が大きく、その個数を低減する必要がある。ポロシティーが10個/105mm3を越えると、強度および靭性が急激に低下することから、本発明の連続鋳造鋳片では、10個/105mm3以下とした。上記本発明の連続鋳造方法を適用することにより、ポロシティーの密度を上記範囲とすることができる。 In order to decrease the strength and toughness of the steel material obtained by rolling the slab, the influence of the porosity of 0.5 mm or more in diameter on the slab is large, and it is necessary to reduce the number of the steels. If the porosity exceeds 10 pieces / 10 5 mm 3 , the strength and toughness are drastically reduced. Therefore, in the continuous cast slab of the present invention, the number was 10 pieces / 10 5 mm 3 or less. By applying the continuous casting method of the present invention, the density of the porosity can be set in the above range.

鋳片表面のオーステナイト結晶粒径が0.05mmを超えると、次工程での圧延時に表面割れが発生する場合がある。そこで本発明の連続鋳造鋳片では、鋳片表面のオーステナイト結晶粒径が平均で0.05mm以下とした。   If the austenite grain size on the slab surface exceeds 0.05 mm, surface cracks may occur during rolling in the next step. Therefore, in the continuous cast slab of the present invention, the average austenite grain size on the slab surface was set to 0.05 mm or less.

以下、本発明の連続鋳造鋳片の含有成分、及び連続鋳造方法で用いる溶鋼の含有成分について説明する。%は質量%を意味する。   Hereinafter, the components contained in the continuous cast slab of the present invention and the components contained in the molten steel used in the continuous casting method will be described. % Means mass%.

C:0.05〜0.3%
Cは、強度および靱性を確保するために有効な元素である。その含有量が0.05%未満では、上記の効果が充分に得られず、一方、その含有量が0.3%を超えて高くなると母材およびHAZ部の靭性が低下する。また、C含有量を0.3%以下に限定し、その他成分も下記のように限定したことにより、鋼の高温強度が過度に高くなることがないため、連続鋳造中における本発明の圧下に際し、鋳片表面温度を600〜300℃という低温に保持するにもかかわらず、圧下ロールによって鋳片を圧下することが可能となる。そこで、Cの適正範囲を0.05〜0.3%とした。
C: 0.05-0.3%
C is an element effective for securing strength and toughness. If the content is less than 0.05%, the above effects cannot be obtained sufficiently. On the other hand, if the content exceeds 0.3%, the toughness of the base material and the HAZ part decreases. Moreover, since the C content is limited to 0.3% or less and the other components are also limited as described below, the high temperature strength of the steel does not become excessively high. In spite of maintaining the slab surface temperature at a low temperature of 600 to 300 ° C., the slab can be reduced by the reduction roll. Therefore, the appropriate range of C is set to 0.05 to 0.3%.

Si:0.05〜0.4%
Siは、0.05%未満では母材の強度を確保できないので下限を0.05%とした。また、0.4%を超えると溶接性が低下するため上限を0.4%とした。上記の理由から、その適正範囲を0.05〜0.4%とした。
Si: 0.05-0.4%
If the Si content is less than 0.05%, the strength of the base material cannot be secured, so the lower limit was made 0.05%. Moreover, since weldability will fall when it exceeds 0.4%, an upper limit was made into 0.4%. For the above reason, the appropriate range is set to 0.05 to 0.4%.

Mn:0.2〜2.0%
Mnは、鋼板の高強度化と靱性の確保のために有効な元素である。上記の効果を得るためには、その含有量を0.2%以上とする必要がある。一方、その含有量が2.0%を超えて高くなると、靱性が損なわれる。このため、Mn含有量の適正範囲を0.2〜2.0%とした。
Mn: 0.2 to 2.0%
Mn is an element effective for increasing the strength of the steel sheet and ensuring toughness. In order to acquire said effect, the content needs to be 0.2% or more. On the other hand, if the content exceeds 2.0%, the toughness is impaired. For this reason, the suitable range of Mn content was made into 0.2 to 2.0%.

P:0.02%以下
Pは、鋼板の延性および靱性および加工性を劣化させる元素であることから、その含有量を0.02%以下に制限する。
P: 0.02% or less P is an element that deteriorates the ductility, toughness, and workability of the steel sheet, so the content is limited to 0.02% or less.

S:0.003%以下
Sは、Mnと反応して結晶粒内にフェライトの生成を促進する効果があるが、粗大な介在物MnSを形成して鋼材の延性を低下させることから、その含有量を0.003%以下に制限する。
S: 0.003% or less S has the effect of promoting the formation of ferrite in the crystal grains by reacting with Mn, but it contains coarse inclusions MnS to reduce the ductility of the steel material. Limit the amount to 0.003% or less.

Al:0.1%以下
Alは、鋼を脱酸させるために添加される元素である。0.1%を超えると、酸化物系介在物のサイズが大きくなるため、鋼板の表面性状も劣化する。これらのことから、本発明では、Al含有率の適正範囲を0.1%以下とすることが好ましい。
Al: 0.1% or less Al is an element added to deoxidize steel. If it exceeds 0.1%, the size of the oxide inclusions increases, so the surface properties of the steel sheet also deteriorate. For these reasons, in the present invention, it is preferable that the appropriate range of the Al content is 0.1% or less.

N:0.001〜0.01%
Nは、鋼に不可避的に含有される不純物であり、鋼板の曲げ性の観点からは、含有率は低いほど好ましいが、窒化物を活用するには0.001%以上必要である。そのため、本発明では、N含有率を0.001〜0.01%とすることが好ましい。
N: 0.001 to 0.01%
N is an impurity inevitably contained in the steel, and from the viewpoint of the bendability of the steel sheet, the content is preferably as low as possible, but 0.001% or more is necessary to utilize the nitride. Therefore, in this invention, it is preferable that N content rate shall be 0.001 to 0.01%.

本発明は、さらに必要に応じて下記元素を含有することとしても良い。   The present invention may further contain the following elements as necessary.

Mo:1.5%以下
Moは、含有させれば焼入れ性の向上および強度の向上に有効な作用を発揮する元素である。しかし、Mo含有率が1.5%を超えると粗大な介在物を形成し、靭性を低下させる。そこで、Mo含有率の適正範囲を1,5%以下とすることが好ましい。
Mo: 1.5% or less Mo, if contained, is an element that exhibits an effective action for improving hardenability and strength. However, if the Mo content exceeds 1.5%, coarse inclusions are formed and the toughness is lowered. Therefore, it is preferable that the appropriate range of the Mo content is 1.5% or less.

Ni:1.5〜3.0%
Niは、含有させれば母材の靭性を向上させる作用を有する元素である。しかし、Ni含有率が1.5%未満では、母材の靭性を向上させる効果が無い。一方、Ni含有率が3.0%を超えて高くなると、焼入れ性が過剰となり、鋼の靭性に悪影響を及ぼす。そこで、Niを含有させる場合のNi含有率の範囲を1.5〜3.0%とした。
Ni: 1.5-3.0%
Ni is an element having an action of improving the toughness of the base material if contained. However, when the Ni content is less than 1.5%, there is no effect of improving the toughness of the base material. On the other hand, if the Ni content exceeds 3.0%, the hardenability becomes excessive and adversely affects the toughness of the steel. Therefore, the range of Ni content when Ni is contained is set to 1.5 to 3.0%.

Cr:5.0%以下
Crは、含有させれば焼入れ性の向上、および析出強化による母材強度の向上に有効な作用を発揮する元素である。Cr含有率が5.0%を超えて高くなると、鋼の靭性および溶接性が劣化する傾向が認められる。そこで、Crを含有させる場合のCr含有率の適正範囲を5.0%以下とした。
Cr: 5.0% or less When Cr is contained, Cr is an element that exhibits an effective action for improving the hardenability and improving the base material strength by precipitation strengthening. When the Cr content is higher than 5.0%, the tendency of steel toughness and weldability to deteriorate is recognized. Therefore, the appropriate range of Cr content when Cr is contained is set to 5.0% or less.

Cu:1.5%以下
Cuは、含有させれば焼入れ性の向上および析出強化に有効な作用を有する元素である。Cu含有率が1.5%を超えて高くなると、鋼の熱間加工性が低下する。上記の理由から、Cuを含有させる場合のCu含有率の範囲を1.5%以下とした。
Cu: 1.5% or less Cu, if contained, is an element having an effect effective in improving hardenability and precipitation strengthening. If the Cu content is higher than 1.5%, the hot workability of the steel is lowered. For the above reason, the range of Cu content when Cu is contained is set to 1.5% or less.

Ti:0.1%以下
Tiは、主として炭窒化物を析出し、その析出強化作用により母材強度の向上に寄与する有効な元素である。Ti含有率が0.1%を超えて高くなると、鋼中に粗大な析出物や介在物を形成して、鋼の靭性を低下させる。上記の理由から、Ti含有率の適正範囲を0.1%以下とした。
Ti: 0.1% or less Ti is an effective element that mainly precipitates carbonitride and contributes to improvement of the strength of the base metal by its precipitation strengthening action. When the Ti content exceeds 0.1%, coarse precipitates and inclusions are formed in the steel, and the toughness of the steel is reduced. For the above reason, the appropriate range of Ti content is set to 0.1% or less.

Nb:0.1%以下
Nbは、含有させれば炭化物や窒化物を生成して鋼の強度を向上させる作用を有する元素である。Nb含有率が0.1%を超えて高くなると、鋼中に粗大な炭化物や窒化物を形成するため、逆に靭性を低下させる。上記の理由から、Nbを含有させる場合のNb含有率の範囲を0.1%以下とした。
Nb: 0.1% or less Nb is an element having an action of generating carbides and nitrides to improve the strength of steel when contained. If the Nb content exceeds 0.1% and becomes high, coarse carbides and nitrides are formed in the steel, so the toughness is reduced. For the above reason, the range of Nb content when Nb is contained is set to 0.1% or less.

V:0.1%以下
Vは、含有させれば炭化物や窒化物を生成して鋼の強度を向上させる効果を有する元素である。V含有率が0.1%を超えて高くなると、鋼の靭性を低下させる。上記の理由から、Vを含有させる場合のV含有率の範囲を0.1%以下とした。
V: 0.1% or less V, if contained, is an element that has the effect of improving the strength of steel by forming carbides and nitrides. When the V content exceeds 0.1%, the toughness of the steel is reduced. For the above reason, the range of the V content when V is contained is set to 0.1% or less.

本発明の鋳片の連続鋳造方法の効果を確認するため、以下に示す試験を実施して、その結果を評価した。表2において、本発明範囲から外れる数値にアンダーラインを付している。   In order to confirm the effect of the continuous casting method of the slab of the present invention, the following tests were performed and the results were evaluated. In Table 2, numerical values outside the scope of the present invention are underlined.

(1)鋳造条件
溶鋼成分:表1に記載
溶鋼温度:1570℃(タンディッシュ内溶鋼温度)
鋳型サイズ:幅1600mm×厚さ240mm
鋳造速度:1.0m/分
圧下率:5〜50%(表2に記載)
圧下用ロール径:直径550mm(フラットロール)
圧下時の鋳片表面温度:600〜300℃(表2に記載)
(1) Casting conditions Molten steel components: listed in Table 1
Molten steel temperature: 1570 ° C (temperature of molten steel in tundish)
Mold size: width 1600mm x thickness 240mm
Casting speed: 1.0 m / min Rolling rate: 5 to 50% (described in Table 2)
Roll diameter for reduction: 550 mm in diameter (flat roll)
Slab surface temperature during reduction: 600 to 300 ° C. (described in Table 2)

(2)評価方法
圧下時の鋳片表面温度及び圧下直前の表面冷却速度の測定は、接触式の熱電対を鋳片表面に押し当てることで測定した。圧下時の鋳片中央部温度は、前述の方法を採用して計算により求めた。表2において、圧下直前の表面冷却速度を「冷却速度」欄に、圧下時の鋳片表面温度を「表面温度」欄に、圧下時の鋳片中央部温度を「中心温度」の欄にそれぞれ記載している。
(2) Evaluation method The slab surface temperature during rolling and the surface cooling rate immediately before the rolling were measured by pressing a contact-type thermocouple against the slab surface. The slab center temperature at the time of reduction was obtained by calculation using the method described above. In Table 2, the surface cooling rate immediately before the reduction is in the “cooling rate” column, the slab surface temperature at the time of reduction is in the “surface temperature” column, and the slab center temperature at the time of reduction is in the “center temperature” column. It is described.

鋳片厚み中央部のポロシティーの個数の測定は、鋳片厚み中央を中心として厚み方向に±5mm、鋳片幅方向に±50mm、鋳造方向に±50mmの板状の試験片(体積:105mm3)を採取し、透過X線写真を撮影し、円相当直径が0.5mm以上のポロシティーの個数を数え、表2に記載した。 The number of porosity at the center of the slab thickness is measured with a plate-like test piece having a thickness of ± 5 mm in the thickness direction, ± 50 mm in the width direction of the slab, and ± 50 mm in the casting direction (volume: 10). 5 mm 3 ) were collected, transmission X-ray photographs were taken, and the number of porosity with an equivalent circle diameter of 0.5 mm or more was counted and listed in Table 2.

鋳片表面のオーステナイト結晶粒径の測定は、鋳片表層部から鋳造方向に50mm、幅方向に50mm、厚み方向に10mmの試料を採取し、黒皮表面から厚み方向に0.1mm研削後、鏡面研磨を施した。その後、ピクリン酸飽和溶液中に、室温で60s浸し、結晶粒組織を観察した。凝固組織であるデンドライトの方向が同一である領域をひとつのオーステナイト結晶粒とし、結晶粒の円相当直径を測定し、鋳片表面の結晶粒径とし、表2に記載した。   The measurement of the austenite crystal grain size on the slab surface was performed by taking a sample of 50 mm in the casting direction, 50 mm in the width direction, and 10 mm in the thickness direction from the surface part of the slab, and grinding 0.1 mm in the thickness direction from the black skin surface. Mirror polishing was performed. Then, it was immersed in a saturated picric acid solution at room temperature for 60 s, and the crystal grain structure was observed. A region where the directions of the dendrite, which is a solidified structure, are the same as one austenite crystal grain, the circle equivalent diameter of the crystal grain was measured, and the crystal grain diameter on the surface of the slab was shown in Table 2.

Figure 2018034197
Figure 2018034197

Figure 2018034197
Figure 2018034197

(評価結果)
表1、2の本発明例1〜6は、成分組成及び圧下方法が本発明の範囲に入っており、鋳造した連続鋳造鋳片は、本発明で規定する品質を満足していた。
(Evaluation results)
In Invention Examples 1 to 6 in Tables 1 and 2, the component composition and the reduction method were within the scope of the present invention, and the cast continuous cast slabs satisfied the quality defined in the present invention.

比較例1は凝固後の圧下を行わず、また完全凝固後の鋳片表面を急冷するための水冷も行っていない。圧下を行わなかったので、ポロシティー個数が本発明範囲を外れた。表面結晶粒径も、本発明の好ましい範囲から外れた。   In Comparative Example 1, no reduction after solidification was performed, and neither water cooling for rapidly cooling the slab surface after complete solidification was performed. Since no reduction was performed, the porosity number was out of the scope of the present invention. The surface crystal grain size was also outside the preferred range of the present invention.

比較例2、3は圧下を行ったものの、比較例2は圧下率が本発明範囲の下限を外れ、比較例3は圧下時の表面温度が本発明の上限を外れ、いずれもポロシティー個数が本発明範囲を外れることとなった。表面結晶粒径も、本発明の好ましい範囲から外れた。   Although Comparative Examples 2 and 3 were subjected to reduction, Comparative Example 2 had a reduction rate outside the lower limit of the scope of the present invention, and Comparative Example 3 had a surface temperature during reduction outside the upper limit of the present invention. It was outside the scope of the present invention. The surface crystal grain size was also outside the preferred range of the present invention.

本発明の連続鋳造方法によれば、ポロシティーがなく、機械的特性が良好な鋼板用の素材である連続鋳造鋳片を製造することができる。   According to the continuous casting method of the present invention, it is possible to produce a continuous cast slab which is a raw material for a steel plate having no porosity and good mechanical properties.

Claims (5)

質量%で、C:0.05%〜0.3%、Si:0.05%〜0.4%、Mn:0.2%〜2.0%、P:0.02%以下、S:0.003%以下、Al:0.1%以下、N:0.001%〜0.01%を含有し、残部Fe及び不可避的不純物であり、鋳片厚さが100mm以上であって、鋳片厚み中央部における円相当直径が0.5mm以上のポロシティー個数が10個/105mm3以下であることを特徴とする連続鋳造鋳片。 In mass%, C: 0.05% to 0.3%, Si: 0.05% to 0.4%, Mn: 0.2% to 2.0%, P: 0.02% or less, S: 0.003% or less, Al: 0.1% or less, N: 0.001% to 0.01%, balance Fe and inevitable impurities, slab thickness is 100 mm or more, A continuous cast slab characterized in that the number of porosity having an equivalent circle diameter of 0.5 mm or more in the central part of the piece thickness is 10/10 5 mm 3 or less. さらに質量%で、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有することを特徴とする請求項1に記載の連続鋳造鋳片。   Further, in terms of mass%, Mo: 1.5% or less, Ni: 1.5 to 3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.1% or less, Nb: 0.0. The continuous cast slab according to claim 1, comprising one or more of 1% or less and V: 0.1% or less. 鋳片表面におけるオーステナイト結晶粒径が0.05mm以下であることを特徴とする請求項1又は請求項2に記載の連続鋳造鋳片。   The continuous cast slab according to claim 1 or 2, wherein an austenite crystal grain size on the slab surface is 0.05 mm or less. C:0.05%〜0.3%、Si:0.05%〜0.4%、Mn:0.2%〜2.0%、P:0.02%以下、S:0.003%以下、Al:0.1%以下、N:0.001%〜0.01%を含有し、残部Fe及び不可避的不純物である溶鋼を連続鋳造するに際し、鋳片厚み中央部の温度が1300〜900℃、鋳片表面温度が600〜300℃において、圧下率が5〜50%となるように鋳片を圧下することを特徴とする連続鋳造方法。   C: 0.05% to 0.3%, Si: 0.05% to 0.4%, Mn: 0.2% to 2.0%, P: 0.02% or less, S: 0.003% Hereinafter, when continuously casting the molten steel which contains Al: 0.1% or less, N: 0.001% to 0.01%, and remaining Fe and inevitable impurities, the temperature at the center of the slab thickness is 1300 A continuous casting method, wherein the slab is squeezed so that the reduction rate is 5 to 50% at 900 ° C. and a slab surface temperature of 600 to 300 ° C. 前記溶鋼はさらに質量%で、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有することを特徴とする請求項4に記載の連続鋳造方法。   The molten steel is further in mass%, Mo: 1.5% or less, Ni: 1.5 to 3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.1% or less, Nb The continuous casting method according to claim 4, comprising one or more of: 0.1% or less and V: 0.1% or less.
JP2016171619A 2016-09-02 2016-09-02 Continuously cast steel slabs and continuous casting methods Active JP6862723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171619A JP6862723B2 (en) 2016-09-02 2016-09-02 Continuously cast steel slabs and continuous casting methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171619A JP6862723B2 (en) 2016-09-02 2016-09-02 Continuously cast steel slabs and continuous casting methods

Publications (2)

Publication Number Publication Date
JP2018034197A true JP2018034197A (en) 2018-03-08
JP6862723B2 JP6862723B2 (en) 2021-04-21

Family

ID=61564971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171619A Active JP6862723B2 (en) 2016-09-02 2016-09-02 Continuously cast steel slabs and continuous casting methods

Country Status (1)

Country Link
JP (1) JP6862723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888254A (en) * 2022-05-20 2022-08-12 东北大学 Experimental device and method for simulating steel strip feeding of continuous casting crystallizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JPH05269561A (en) * 1992-03-23 1993-10-19 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH06297090A (en) * 1993-04-19 1994-10-25 Nippon Steel Corp Continuously cast slab for hot rolling
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
JP2009279652A (en) * 2008-04-21 2009-12-03 Nippon Steel Engineering Co Ltd Roll reduction method for slab after solidification
JP2015217392A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Cast metal continuous casting method and continuously cast cast metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JPH05269561A (en) * 1992-03-23 1993-10-19 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH06297090A (en) * 1993-04-19 1994-10-25 Nippon Steel Corp Continuously cast slab for hot rolling
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
JP2009279652A (en) * 2008-04-21 2009-12-03 Nippon Steel Engineering Co Ltd Roll reduction method for slab after solidification
JP2015217392A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Cast metal continuous casting method and continuously cast cast metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888254A (en) * 2022-05-20 2022-08-12 东北大学 Experimental device and method for simulating steel strip feeding of continuous casting crystallizer
CN114888254B (en) * 2022-05-20 2024-03-08 东北大学 Experimental device and method for simulating continuous casting crystallizer to feed steel belt

Also Published As

Publication number Publication date
JP6862723B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
KR101476866B1 (en) Low density steel with good stamping capability
JP5116265B2 (en) Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
JP6620465B2 (en) Steel sheet for hot stamping
JP5979338B1 (en) Thick, high toughness, high strength steel plate with excellent material uniformity and method for manufacturing the same
JP6421900B2 (en) Rolled H-section steel and its manufacturing method
US20120237390A1 (en) Martensitic Stainless Steel Produced by a Twin Roll Strip Casting Process and Method for Manufacturing Same
CN103397250B (en) Large-piece-weight extremely-thick Q460-grade high-strength structural steel plate and manufacturing method thereof
JP2010121165A (en) Magnesium alloy sheet and method for producing the same
JP2007196265A (en) Extra-thick steel plate excellent in inner quality, and continuous casting method for a cast slab for extra-thick steel plate
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP2017008396A (en) Low yield ratio high tensile strength thick steel plate excellent in bendability and production method therefor
JP6862723B2 (en) Continuously cast steel slabs and continuous casting methods
JP6413644B2 (en) Steel continuous casting method and continuous cast slab
JP6772818B2 (en) Continuous casting method
JP4299511B2 (en) Hot-rolled steel sheet with excellent punchability
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP6515291B2 (en) Continuous steel casting method
JP6651306B2 (en) Continuous casting method
JPH0372030A (en) Production of austenitic stainless steel strip excellent in ductility
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
CN115383063B (en) Production method of SK120 ultra-high carbon steel plate
JP2019081931A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP7207358B2 (en) Manufacturing method of low yield ratio high tensile steel plate
JP6349832B2 (en) Continuous cast slab for thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6862723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151