JP3606199B2 - Manufacturing method of thin steel sheet - Google Patents

Manufacturing method of thin steel sheet Download PDF

Info

Publication number
JP3606199B2
JP3606199B2 JP2000385008A JP2000385008A JP3606199B2 JP 3606199 B2 JP3606199 B2 JP 3606199B2 JP 2000385008 A JP2000385008 A JP 2000385008A JP 2000385008 A JP2000385008 A JP 2000385008A JP 3606199 B2 JP3606199 B2 JP 3606199B2
Authority
JP
Japan
Prior art keywords
slab
less
thin steel
thickness
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000385008A
Other languages
Japanese (ja)
Other versions
JP2002178107A (en
Inventor
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000385008A priority Critical patent/JP3606199B2/en
Publication of JP2002178107A publication Critical patent/JP2002178107A/en
Application granted granted Critical
Publication of JP3606199B2 publication Critical patent/JP3606199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延または熱間圧延後の冷間圧延による薄鋼板の製造方法に関する。
【0002】
【従来の技術】
自動車用の鋼板などは、連続鋳造された鋳片を熱間で圧延して得た薄鋼板、またはその熱間圧延された薄鋼板をさらに冷間で圧延することなどにより製造される。薄鋼板の熱間圧延用の素材である鋳片は、通常、連続鋳造方法により製造される。近年、連続鋳造における生産性の向上の要望が高まり、鋳片厚さを厚くし、鋳造速度を速くすることが指向されている。ただし、鋳片厚さ、鋳造速度が大きくなると、いわゆる内部割れが鋳片に発生し易くなる。鋳片の内部割れは、鋳造中の鋳片の凝固界面に引張り歪が作用することにより、凝固界面が破断して発生し、その破断ヶ所に偏析成分が濃化した溶鋼が吸引され偏析線となる。鋳造後の鋳片を切断して調査すると、空孔としての割れが観察される場合は希で、切断面を腐食したり、サルファプリントしたりすると上述の偏析線が確認できる。割れてなくて偏析線のみでも、これら偏析線は一般に内部割れと呼ばれている。
【0003】
内部割れの発生した鋳片を熱間圧延またはその後の冷間圧延により、薄鋼板に圧延すると、C、Mn、P、Sなどの成分が濃化した偏析線、すなわち内部割れの部分が周りの組織より硬化している薄鋼板が得られる。硬化が著しいと、その部分に割れが発生したり、極端には、薄鋼板が破断する可能性がある。また、冷間圧延された薄鋼板では、偏析線が大きく延ばされて薄鋼板の表面に現れ、薄鋼板表面に光沢むら、硬度分布むらなどを引き起こすことが知られている。
【0004】
さらに、このような薄鋼板を加工して最終製品とする際、加工時にその偏析線の部分に歪が集中し、その部分を起点として、製品に割れが発生したり、製品が破断する可能性がある。
【0005】
このような鋳片の内部割れの発生機構は、次のように考えられている。断面形状が長方形であるスラブの連続鋳造においては、鋳片の非金属介在物対策などから、垂直曲げ型連続鋳造機が主流となっており、このような連続鋳造機では、鋳造中の鋳片にさまざまな応力が作用する。
【0006】
たとえば、内部に未凝固部を含む鋳片が引き抜かれて垂直部から湾曲部に進む際に、鋳片は円弧状に曲げられる。その際、円弧の内側に相当する鋳片内部の凝固殻の凝固界面には引張り歪が発生する。さらに、内部に未凝固部を含む鋳片が湾曲部から水平部に進む際に、鋳片は矯正されて真っ直ぐになる。その際、湾曲部における円弧の外側の鋳片の凝固殻の凝固界面には引張り歪が発生する。
【0007】
また、未凝固部を含む鋳片は支持用ガイドロールで支持されつつ引抜かれる。その際、鋳片は溶鋼静圧のためロール間でバルジングし、ロール直下ではバルジングした厚さ分だけ圧下されるため、鋳片内部の凝固殻の凝固界面には、引張り歪が発生する。鋳片は複数の支持用ガイドロールを通過するので、繰り返してバルジングおよび圧下の変形を受けることになる。さらに、支持用ガイドロールの各ロールが所定のパスラインよりずれている場合には、そのずれの厚さだけ、鋳片のバルジングが大きくなったり、圧下が大きくなって、凝固界面に作用する引張り歪が大きくなる。鋳片の冷却過程で、ZST(抗張力発現温度)からZDT(延性発現温度)までの間に鋳片内部の凝固殻に作用する引張り歪量の総和が、鋼に固有の限界値(内部割れ発生限界歪)を超えると、鋳片の内部割れが発生することが知られている。
【0008】
近年指向されているように、鋳片厚さ、鋳造速度が大きくなると、鋳片の抜熱が相対的に低下し、上述のZSTからZDTまでの間隔が長くなり、内部割れの発生の危険性が飛躍的に大きくなる。とくに鋳片厚さが250mmを超えると、鋳造速度などの鋳造条件によっては、内部割れが著しく発生しやすくなる。
【0009】
また、Bを微量添加することにより焼き入れ性や靱性を向上させた薄鋼板が用いられるが、その薄鋼板用の熱間圧延用素材である鋳片の連続鋳造において、Bの添加は鋳片の内部割れ感受性を高くし、内部割れの発生の危険性を高める。
【0010】
このように、鋳片厚さを厚くし、鋳造速度を速くする近年の連続鋳造では、鋳片の内部割れの発生の危険性が高く、このような鋳片を素材とする熱間圧延した薄鋼板、またはその薄鋼板を素材として冷間圧延した薄鋼板、さらに、これらの薄鋼板を加工した最終製品では、割れが発生したり、破断したり、表面に光沢むら、硬度分布むらなどが発生する。
【0011】
【発明が解決しようとする課題】
本発明は、鋳片厚さを厚くし、鋳造速度を速くする条件で連続鋳造した鋳片を素材として、熱間圧延または熱間圧延後に冷間圧延した薄鋼板において、鋳片の内部割れに起因する薄鋼板製品の偏析線または内部割れの発生がなく、これら薄鋼板をさらに加工した製品において、加工時の割れ、製品表面の光沢むら、硬度分布むらなどの発生のない製品を得ることができる薄鋼板の製造方法の提供を目的とする。
【0012】
【課題を解決するための手段】
本発明の要旨は、下記の(1)および(2)に示す薄鋼板の製造方法にある。
(1)質量%で、C:0.07〜0.4%、Si:0.4%以下、Mn:2%以下、P:0.02%以下、S:0.005%以下およびB:0.005%以下を含み、残部がFeおよび不純物からなり、Mn/Sが160以上である炭素鋼または低合金鋼の、厚さが6mm以下の薄鋼板の製造方法であって、断面形状が長方形で厚さ250〜350mmの鋳片を、速度1.5〜2.5m/分の条件で鋳造し、次いで上記鋳片を素材として熱間圧延または熱間圧延後に冷間圧延することを特徴とする薄鋼板の製造方法。
(2)質量%で、C:0.07〜0.4%、Si:0.4%以下、Mn:2%以下、P:0.02%以下、S:0.005%以下およびB:0.005%以下を含み、さらに、Al:0.1%以下、Cr:1.0%以下、Ni:1.0%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種類または2種類以上を含有し、残部がFeおよび不純物からなり、Mn/Sが160以上である炭素鋼または低合金鋼の、厚さが6mm以下の薄鋼板の製造方法であって、断面形状が長方形で厚さ250〜350mmの鋳片を、速度1.5〜2.5m/分の条件で鋳造し、次いで上記鋳片を素材として熱間圧延または熱間圧延後に冷間圧延することを特徴とする薄鋼板の製造方法。
【0013】
本発明者らは、前述の課題を下記により解決した。鋳片の内部割れの発生のし易さは、鋼の化学組成、鋳片の厚さ、鋳造速度などの影響を受ける。後述するように、PおよびSは、不純物として鋼中に含有されるが、Cは、鋼の強度確保の観点から、鋼中に含有させる。またBは、鋼の焼き入れ性や靱性を向上させる目的で添加する。これらC、P、S、Bなどは偏析しやすい成分であり、これらの含有率が高い場合に凝固域での脆化が著しく内部割れが発生し易くなる。さらに、厚さ250〜350mmの厚い断面形状が長方形の鋳片を、速度1.5〜2.5m/分の速い条件で鋳造する際に、内部割れが発生しやすい。その原因は、つぎのとおりである。すなわち、上述のように、鋳片の厚さが厚く、鋳造速度が速くなると、未凝固部を含む鋳片からの抜熱が相対的に低下するので、前述のZST(抗張力発現温度)からZDT(延性発現温度)までの範囲内にある鋳片の鋳造方向の領域が長くなる。したがって、このような温度範囲内の領域が鋳造方向で長くなるので、それらの領域で鋼に固有の限界歪を超える引張り応力が作用する機会が増加し、高鋳造速度化ではメニスカスからの距離が同じ位置で見ると、相対的に凝固殻の厚さが薄くなるので、バルジング歪み、曲げ歪み、矯正歪み等の凝固界面で発生する歪みなどが大きくなる。
【0014】
鋳片で発生した内部割れ部には、偏析成分が濃化した溶鋼が充填されているのが通常で、これら鋳片を熱間で圧延した薄鋼板において、内部割れの痕である偏析線として残存しやすい。これらを熱間圧延した薄鋼板、その後にさらに冷間圧延した薄鋼板にも、これらの偏析線が残存しやすい。
【0015】
C、P、SおよびBは、上述のとおり、偏析しやすく内部割れ感受性を高める元素である。偏析しやすいのは、これらの元素は平衡分配係数が1よりずっと小さいからである。また、これら元素が偏析すると未凝固溶鋼の融点が低下する。さらに、SおよびBは、凝固殻と未凝固溶鋼の濡れ性を上昇させる。このようにSおよびBは、未凝固溶鋼の融点を低下させ、かつ、凝固殻と未凝固溶鋼の濡れ性を上昇させる元素であり、内部割れの原因となる液膜脆化を助長するので、これらSおよびBの含有率を、とくに低くする必要がある。ここで言う液膜脆化とは、凝固した結晶粒界に偏析した低融点の残溶鋼があり、結晶粒全体が液膜状に残溶鋼で覆われると、結晶粒同士の接合性が妨げられ、凝固組織、すなわち鋳片として脆くなる現象を言う。
【0016】
本発明では、Mnは2%以下、Sは0.005%以下とし、S含有率に対するMn含有率の比Mn/Sは160以上とすることにより、偏析部のSは、MnSとしてMnに固定される。さらに、Bの含有率は0.005%以下とする。したがって、凝固殻と未凝固溶鋼の濡れ性の上昇が抑制され、鋳片の内部割れが発生しにくくなる。
【0017】
これらにより、鋳片を熱間圧延した薄鋼板、熱間圧延後に冷間圧延した薄鋼板、さらにこれら薄鋼板を加工した製品において、割れ、表面の光沢むら、硬度分布むらなどの発生を防止できる。
【0018】
【発明の実施の形態】
まず、薄鋼板の化学組成を以下に説明する。なお、以下の%表示は質量%を意味する。
C:0.07〜0.4%
Cは、鋼の強度を確保する上で安価で有用な元素であり、所要の強度などの機械特性による成分設計に基づいて含有率を決めればよい。その効果を発揮するためには、その下限は0.07%とする。多く含有させると鋼の加工性を悪化させること、また、平衡分配係数が小さく偏析しやすいので、その上限は0.4%とする。Cは、偏析しやすい元素であり、未凝固溶鋼の融点を低下させるが、上記の範囲内の含有率であれば、とくに影響はない。したがって、Cは、0.07〜0.4%とする。
【0019】
Si:0.4%以下
Siは、通常、脱酸と鋼の強化のために添加されるが、加工性を劣化することなく強度を高めることができる元素であり、その効果を発揮させるためには、0.05%以上含有させることが望ましい。ただし、多く含有させると鋼材の化成処理性が悪化するので、その上限は0.4%とする。
【0020】
Mn:2%以下で、かつ、Mn/Sが160以上
Mnは強度を増す元素として安価な元素であり、その効果を発揮するためには、0.2%以上含有させることが望ましい。Mnは偏析しやすい元素であるが、S含有率に対してMnを適宜多く含有することにより、鋳片の内部割れの発生を防止できる。すなわち、偏析部のSは、MnSとしてMnに固定されるので、凝固した結晶粒界の残溶鋼と結晶粒の濡れ性の上昇が抑制され、鋳片の内部割れが発生しにくくなる。したがって、S含有率に対するMn含有率の比Mn/Sは160以上とする。添加するMn合金鉄などは高価であり、さらに、通常の薄鋼板の用途、中心偏析などから、Mn含有率の上限は2%とする。
【0021】
P:0.02%以下
Pは、不純物元素であり、その含有率が多くなると鋼の加工性が悪化する。また、偏析しやすく、未凝固溶鋼の融点を低下させるが、0.02%以下の含有率であれば、とくに影響はない。
【0022】
S:0.005%以下
Sは、不純物元素であり、鋼の熱間延性を悪化させる。また、未凝固溶鋼の融点を低下させ、さらに、未凝固溶鋼の濡れ性を上昇させる元素である。そのため、凝固組織の結晶粒界が弱くなり、鋳片に内部割れが発生しやすくなる。したがって、その上限は0.005%とする。
【0023】
B:0.005%以下
の含有率の上限は0.005%とする。微量含有するだけで鋼材の焼入性を向上させることができる。一方、Bは、偏析しやすく、割れ感受性を極めて高くする元素である。また、未凝固溶鋼の融点を低下させ、さらに、未凝固溶鋼の濡れ性を上昇させる元素である。そのため、凝固組織の結晶粒界が弱くなり、鋳片に内部割れが発生しやすくなる。したがって、含有率の上限は0.005%とする。
【0024】
本発明でいう炭素鋼または低合金鋼とは、上述のC、Si、Mn、P、S、およびB以外に、さらに必要に応じて、質量%で、Al;0.1%以下、Cr;1.0%以下、Ni;1.0%以下、Ti;0.1%以下、Nb;0.1%以下、およびV;0.1%以下のうちの1種類または2種類以上を含有し、残部がFeおよび不純物からなる鋼を意味する。これらAl、Cr、Ni、Ti、NbおよびVの元素を含有することにより、薄鋼板の強度、靱性などの機械的特性が改善される。また、これらAl、Cr、Ni、Ti、Nb、Vの元素は、鋳片の偏析を伴った内部割れの発生への影響はほとんどない。
【0025】
薄鋼板の厚さの上限は6mmとする。上限を6mmとするのは、自動車の足廻り部品など、薄鋼板が対象とする製品用途からである。薄鋼板の厚さの下限は、とくに限定しないが、製品用途から0.5mmが望ましい。
【0026】
鋳片を連続鋳造する際には、厚さ250〜350mmの鋳片を、1.5〜2.5m/分の速度で鋳造する。鋳片の厚さが250mm未満では、上記鋳造速度の範囲において、鋳片の生産性が低い。また、鋳片の厚さが350mmを超えると、内部割れが発生しやすい。また、連続鋳造機が大型になる。したがって、鋳片の厚さは250〜350mmとする。
【0027】
鋳造速度が1.5m/分未満では、内部割れ発生を抑制できるが、鋳片表層部の清浄度が悪化する。鋳片表層部の清浄度が悪化すると、薄鋼板の表面品質が悪化する。さらに、鋳片の生産性が低い。また、2.5m/分を超えると、鋳片表面に割れが発生しやすく、また内部割れが発生しやすい。したがって、鋳造速度は1.5〜2.5m/分とする。
【0028】
厚さ250〜350mmの鋳片を、1.5〜2.5m/分の速度で鋳造する場合には、上述の化学組成とすることにより、内部割れの発生を抑制することができる。
【0029】
また、内部割れの発生した鋳片を熱間で圧延して薄鋼板を製造する際に、またはその熱間で圧延した薄鋼板をさらに冷間で圧延して薄鋼板を製造する際に、内部割れが存在すると薄鋼板の表面近傍の品質にまで影響を及ぼし、薄鋼板表面の硬度分布が不均一になったり、表面に光沢むらが発生しやすい。したがって、鋳片の内部割れの発生を防止することにより、薄鋼板表面の硬度分布および光沢を均一にできる。
【0030】
内部割れの発生のない鋳片を熱間で圧延して薄鋼板を得る際に、圧延前の鋳片の加熱温度、加熱時間などの加熱条件、および圧延温度、巻き取り温度などの圧延条件は、鋼に応じた通常の条件とすることができる。さらに、熱間圧延して得られた薄鋼板を冷間で圧延して薄鋼板を得る際に、酸洗条件、冷間圧延条件、熱処理条件などは、通常の条件とすることができる。
【0031】
【実施例】
垂直部長さ3m、円弧半径10m、5点曲げ4点矯正、機長45mの垂直曲げ型連続鋳造機を用い、厚さ255mmまたは270mm、幅1200mmの鋳片を鋳造する試験を実施した。連続鋳造機のガイドロールの軸心間距離は、垂直部で250mm、湾曲部で250〜400mm、水平部で400〜450mmである。二次冷却の比水量は1〜2リットル/kg−鋼とした。用いた鋼は、後述する表1および表2に示すようにC含有率が0.07〜0.40質量%の低炭素鋼または中炭素鋼である。鋳造速度は1.5、1.6または1.7m/分として試験した。
【0032】
各試験で得られた鋳片から鋳造方向に長さ100mmのサンプルを採取し、その横断面をサルファプリントして、内部割れの発生の有無を目視により調査した。
【0033】
また、得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板をコイル状に巻き取った。その際、鋳片を1230〜1250℃の温度範囲内で加熱し、1200℃前後で粗圧延を終了して、引き続き930〜870℃の温度で仕上圧延を行い、500〜600℃の温度でコイル状に巻き取った。
【0034】
得られた薄鋼板を酸洗した後、その表面を目視で観察し、光沢むらの発生の有無を調査した。また、薄鋼板のサンプルを採取し、硬度分布を調査した。その際、薄鋼板の幅方向を5等分し、それぞれから長手方向に500mmのサンプルを採取し、JIS Z 2243「ブリネル硬さ試験−試験方法」により、薄鋼板表面のブリネル硬度(HBW)を調査した。1個のサンプルで約50カ所の位置の硬度を測定した。薄鋼板の幅方向での硬度分布の均一性を確認するために、得られた硬度のデータを統計処理し、その標準偏差(HBW)を求めた。試験条件および試験結果を、前述の表1および表2に示す。
【0035】
【表1】

Figure 0003606199
【表2】
Figure 0003606199
本発明例の試験No.1、2、4、5およびNo.8では、厚さ255mmまたは270mmの鋳片を速度1.5、1.6または1.7m/分で鋳造した。得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板とした。これら鋳片厚さ、鋳造速度および薄鋼板の厚さは、いずれも本発明で規定する条件の範囲内である。また、用いた鋼は低炭素鋼または中炭素鋼で、その化学組成は、質量%で、C:0.07〜0.33%、Si:0.100.22%、Mn:0.64〜0.80%、P:0.010〜0.020%、S:0.004〜0.005%、Al:0.018〜0.030%およびB:0.004〜0.005%とし、残部はFeおよび不純物とした。また、Mn/Sは160〜200とした。これらC、Si、Mn、P、S、BおよびMn/Sの条件は、いずれも本発明で規定する条件の範囲内である
【0036】
試験No.1、2、4、5およびNo.8では、内部割れの発生はなかった。また、これらの鋳片を熱間圧延した厚さ5mmの薄鋼板では、硬度分布の標準偏差が8〜12HBWの小さな値であり、均一な硬度分布を有する薄鋼板が得られた。さらに、薄鋼板表面には、光沢むらの発生は認められなかった。
【0037】
比較例の試験No.11〜No.14では、厚さ255mmまたは270mmの鋳片を1.5、1.6または1.7m/分の速度で鋳造した。得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板とした。これら鋳片厚さ、鋳造速度および薄鋼板の厚さは、いずれも本発明で規定する条件の範囲内である。また、用いた鋼は低炭素鋼または中炭素鋼で、その化学組成は、質量%で、C:0.07〜0.33%、Si:0.15〜0.22%、Mn:0.65〜0.80%、P:0.010〜0.020%、S:0.004〜0.005%、Al:0.018〜0.024%とし、残部はFeおよび不純物とした。また、Mn/Sは160〜200とした。これらC、Si、Mn、P、SおよびMn/Sの条件は、いずれも本発明で規定する条件の範囲内である。これらの試験では、さらに、Bを添加したが、その際、Bの含有率は、0.006〜0.007%とし、本発明で規定する条件の範囲外の高い値とした。
【0038】
試験No.11〜No.14では、B含有率が少し高いため、微小な内部割れが見られた。これらの影響として、鋳片を熱間圧延した厚さ5mmの薄鋼板で、硬度分布の標準偏差が18〜28HBWと大きな値となった。
【0039】
比較例の試験No.15〜No.17では、厚さ255mmまたは270mmの鋳片を1.5または1.7m/分の速度で鋳造した。得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板とした。これら鋳片厚さ、鋳造速度および薄鋼板の厚さは、いずれも本発明で規定する条件の範囲内である。また、用いた鋼は低炭素鋼または中炭素鋼で、その化学組成は、質量%で、C:0.07〜0.40%、Si:0.15〜0.35%、Mn:0.50〜0.80%、P:0.021〜0.022%、S:0.003〜0.005%、Al:0.018〜0.025%とし、一部の試験では、さらに、Bを0.005%含有させ、残部はFeおよび不純物とした。また、Mn/Sは160〜167とした。Pおよび一部の試験のB以外のC、Si、Mn、SおよびMn/Sの条件は、いずれも本発明で規定する条件の範囲内である。Pの値は、本発明で規定する条件を外れた高い値である。
【0040】
試験No.15〜No.17では、P含有率が高いため、内部割れが発生した。また、これらの鋳片を熱間圧延した厚さ5mmの薄鋼板では、硬度分布の標準偏差が43〜52HBWと大きな値となり、不均一な硬度分布の薄鋼板しか得られなかった。さらに、薄鋼板表面には、光沢むらの発生が認められた。
【0041】
比較例の試験No.18〜No.23では、厚さ255mmまたは270mmの鋳片を1.5または1.7m/分の速度で鋳造した。得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板とした。これら鋳片厚さ、鋳造速度および薄鋼板の厚さは、いずれも本発明で規定する条件の範囲内である。また、用いた鋼は低炭素鋼または中炭素鋼で、その化学組成は、質量%で、C:0.07〜0.40%、Si:0.15〜0.35%、Mn:0.40〜0.80%、P:0.019〜0.020%、S:0.003〜0.006%、Al:0.018〜0.025%とし、一部の試験では、さらに、Bを0.005%含有させ、残部はFeおよび不純物とした。また、Mn/Sは125〜140とした。一部の試験のSおよび一部の試験のBおよびMn/S以外のC、Si、MnおよびPの条件は、本発明で規定する条件の範囲内である。Mn/Sの値は、いずれも本発明で規定する条件を外れた低い値である。また、試験No.19および試験No.23では、Sが0.006質量%であり、本発明で規定する条件を外れた高い値である。
【0042】
試験No.18〜No.23では、鋳片の厚さ中心部近傍に、中心偏析に伴う内部割れが発生した。Mn/Sの値が低いため、未凝固溶鋼の濡れ性が上昇し、鋳片の内部割れが発生しやすくなった。また、これらの鋳片を熱間圧延した厚さ5mmの薄鋼板では、硬度分布の標準偏差が38〜48HBWと大きな値となり、不均一な硬度分布の薄鋼板しか得られなかった。さらに、薄鋼板表面には、光沢むらの発生が認められた。
【0043】
比較例の試験No.24〜No.26では、厚さ255mmまたは270mmの鋳片を1.5または1.7m/分の速度で鋳造した。得られた鋳片を熱間で圧延し、厚さ5mmの薄鋼板とした。これら鋳片厚さ、鋳造速度および薄鋼板の厚さは、いずれも本発明で規定する条件の範囲内である。また、用いた鋼は低炭素鋼または中炭素鋼で、その化学組成は、質量%で、C:0.07〜0.40%、Si:0.15〜0.35%、Mn:1.00〜1.30%、P:0.019〜0.020%、S:0.006〜0.007%、Al:0.018〜0.025%とし、一部の試験では、さらに、Bを0.005%含有させ、残部はFeおよび不純物とした。また、Mn/Sは167〜186とした。Sおよび一部の試験のB以外のC、Si、Mn、PおよびMn/Sの条件は、本発明で規定する条件の範囲内である。Sの値は、本発明で規定する条件を外れた高い値である。
【0044】
試験No.24〜No.26では、鋳片に内部割れが発生した。S含有率が高いため、凝固殻と未凝固溶鋼の濡れ性の上昇し、鋳片の内部割れが発生しやすくなった。また、これらの鋳片を熱間圧延した厚さ5mmの薄鋼板では、硬度分布の標準偏差が32〜35HBWと大きな値となり、不均一な硬度分布の薄鋼板しか得られなかった。さらに、薄鋼板表面には、光沢むらの発生が認められた。
【0045】
【発明の効果】
本発明の方法の適用により、鋳片厚さを厚くし、鋳造速度を速くする条件で連続鋳造した鋳片を素材として、熱間圧延または熱間圧延後に冷間圧延した薄鋼板において、鋳片の内部割れに起因する薄鋼板製品の偏析線または内部割れの発生がなく、これら薄鋼板をさらに加工した製品において、加工時の割れ、製品表面の光沢むら、硬度分布むらなどの発生のない製品を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thin steel sheet by hot rolling or cold rolling after hot rolling.
[0002]
[Prior art]
Steel sheets for automobiles and the like are manufactured by rolling a thin steel sheet obtained by hot rolling a continuously cast slab, or by further cold rolling the hot rolled thin steel sheet. The slab which is a raw material for hot rolling of a thin steel plate is normally manufactured by the continuous casting method. In recent years, there has been an increasing demand for improvement in productivity in continuous casting, and it has been directed to increase the slab thickness and increase the casting speed. However, when the slab thickness and casting speed increase, so-called internal cracks are likely to occur in the slab. Internal cracks in the slab are caused by tensile strain acting on the solidification interface of the slab during casting, causing the solidification interface to break, and the molten steel with concentrated segregation components is sucked into the rupture location and segregation lines and Become. When the cast slab is cut and investigated, it is rare when cracks are observed as voids, and the above-mentioned segregation lines can be confirmed when the cut surface is corroded or sulfur printed. Even if only segregation lines are not cracked, these segregation lines are generally called internal cracks.
[0003]
When a slab with internal cracks is rolled into a thin steel sheet by hot rolling or subsequent cold rolling, segregation lines in which components such as C, Mn, P, and S are concentrated, that is, the internal cracks are around A thin steel sheet hardened from the structure is obtained. If the hardening is remarkable, there is a possibility that the portion will crack or, in an extreme case, the thin steel plate may break. Further, it is known that in a cold-rolled thin steel sheet, segregation lines are greatly extended and appear on the surface of the thin steel sheet, causing uneven gloss and uneven hardness distribution on the surface of the thin steel sheet.
[0004]
Furthermore, when processing such a thin steel sheet into a final product, strain concentrates on the segregation line during processing, and there is a possibility that the product may crack or break the product starting from that part. There is.
[0005]
The mechanism of occurrence of such internal cracks in the slab is considered as follows. In continuous casting of slabs with a rectangular cross-sectional shape, vertical bending type continuous casting machines are the mainstream for measures against non-metallic inclusions in slabs. In such continuous casting machines, slabs are being cast. Various stresses act on the surface.
[0006]
For example, when a slab including an unsolidified portion is pulled out and proceeds from a vertical portion to a curved portion, the slab is bent into an arc shape. At that time, tensile strain is generated at the solidification interface of the solidified shell inside the slab corresponding to the inside of the arc. Furthermore, when the slab including the unsolidified portion is advanced from the curved portion to the horizontal portion, the slab is corrected and straightened. At that time, tensile strain is generated at the solidification interface of the solidified shell of the slab outside the arc in the curved portion.
[0007]
Further, the slab including the unsolidified portion is pulled out while being supported by the supporting guide roll. At that time, the slab is bulged between the rolls due to the static pressure of the molten steel, and since the slab is squeezed by the bulged thickness immediately below the roll, tensile strain is generated at the solidification interface of the solidified shell inside the slab. Since the slab passes through the plurality of supporting guide rolls, it is repeatedly subjected to bulging and rolling deformation. Furthermore, when each roll of the supporting guide roll is deviated from a predetermined pass line, the bulging of the slab becomes larger or the reduction is increased by the thickness of the deviation, and the tensile force acting on the solidification interface is increased. Distortion increases. During the cooling of the slab, the total amount of tensile strain acting on the solidified shell inside the slab from ZST (tensile strength temperature) to ZDT (ductility temperature) is the limit value inherent to steel (internal cracking) It is known that an internal crack of the slab occurs when the limit strain) is exceeded.
[0008]
As directed in recent years, when the slab thickness and casting speed increase, the heat removal from the slab decreases relatively, the interval from ZST to ZDT described above becomes longer, and the risk of occurrence of internal cracks Will grow dramatically. In particular, when the slab thickness exceeds 250 mm, internal cracks tend to occur remarkably depending on casting conditions such as casting speed.
[0009]
In addition, a thin steel plate whose hardenability and toughness are improved by adding a small amount of B is used. In continuous casting of a slab which is a material for hot rolling for the thin steel plate, addition of B is a slab. Increases the internal cracking susceptibility and increases the risk of internal cracking.
[0010]
As described above, in recent continuous casting in which the slab thickness is increased and the casting speed is increased, there is a high risk of occurrence of internal cracks in the slab. Steel sheets, or thin steel sheets that are cold-rolled from the thin steel sheets, and the final products processed from these thin steel sheets, cracks, breaks, uneven gloss, uneven hardness distribution, etc. To do.
[0011]
[Problems to be solved by the invention]
The present invention relates to an internal crack of a slab in a thin steel sheet cold-rolled after hot rolling or hot rolling using a slab continuously cast under the condition of increasing the slab thickness and increasing the casting speed. There is no occurrence of segregation lines or internal cracks in the resulting thin steel sheet products, and in products obtained by further processing these thin steel sheets, it is possible to obtain products that do not generate cracks during processing, uneven gloss on the product surface, uneven hardness distribution, etc. It aims at providing the manufacturing method of the thin steel plate which can be performed.
[0012]
[Means for Solving the Problems]
The gist of the present invention resides in the method for producing a thin steel sheet shown in the following (1) and (2) .
(1) By mass%, C: 0.07 to 0.4%, Si: 0.4% or less, Mn: 2% or less, P: 0.02% or less, S: 0.005% or less, and B: It includes 0.005% or less, the balance being Fe and impurities, the carbon steel or low alloy steel Mn / S is 160 or more, thickness of a manufacturing method of the following sheet steel 6 mm, cross section A rectangular slab having a thickness of 250 to 350 mm is cast under conditions of a speed of 1.5 to 2.5 m / min, and then hot-rolled or cold-rolled after hot rolling using the slab as a raw material. A method for producing a thin steel sheet.
(2) By mass%, C: 0.07 to 0.4%, Si: 0.4% or less, Mn: 2% or less, P: 0.02% or less, S: 0.005% or less, and B: 0.005% or less, Al: 0.1% or less, Cr: 1.0% or less, Ni: 1.0% or less, Ti: 0.1% or less, Nb: 0.1% or less, and V: Carbon steel or low alloy steel containing one or more of 0.1% or less, the balance being Fe and impurities, and Mn / S being 160 or more, having a thickness of 6 mm or less A method for producing a thin steel plate, in which a slab having a rectangular cross-sectional shape and a thickness of 250 to 350 mm is cast under conditions of a speed of 1.5 to 2.5 m / min, and then hot rolling using the slab as a raw material Or the manufacturing method of the thin steel plate characterized by cold-rolling after hot rolling.
[0013]
The present inventors solved the above-mentioned problems by the following. The ease of occurrence of internal cracks in the slab is affected by the chemical composition of the steel, the thickness of the slab, the casting speed, and the like. As will be described later, P and S are contained in the steel as impurities, but C is contained in the steel from the viewpoint of securing the strength of the steel. The B is added pressure for the purpose of improving the hardenability and toughness of steel. These C, P, S, B, and the like are components that are easily segregated, and when these contents are high, embrittlement in the solidified region becomes remarkably easy to cause internal cracks. Furthermore, when a slab having a thickness of 250 to 350 mm and a rectangular cross section is cast under conditions of a high speed of 1.5 to 2.5 m / min, internal cracks are likely to occur. The cause is as follows. That is, as described above, when the thickness of the slab is thick and the casting speed is increased, the heat removal from the slab including the unsolidified portion is relatively reduced. The casting direction region of the slab within the range up to (ductility development temperature) becomes longer. Therefore, since the regions within such a temperature range become longer in the casting direction, the chances of tensile stress exceeding the limit strain inherent to the steel increase in those regions, and the distance from the meniscus increases at higher casting speeds. When viewed from the same position, since the thickness of the solidified shell is relatively reduced, distortion generated at the solidification interface such as bulging distortion, bending distortion, and correction distortion increases.
[0014]
The internal cracks generated in the slab are usually filled with molten steel enriched with segregation components, and in the thin steel sheet obtained by hot rolling these slabs, as segregation lines that are marks of internal cracks It tends to remain. These segregation lines are likely to remain in a thin steel sheet obtained by hot rolling these, and then in a thin steel sheet obtained by further cold rolling.
[0015]
C, P, S, and B are elements that are easily segregated and increase the sensitivity to internal cracks, as described above. These elements are prone to segregation because these elements have an equilibrium partition coefficient much less than unity. Further, when these elements segregate, the melting point of the unsolidified molten steel is lowered. Furthermore, S and B increase the wettability of the solidified shell and the unsolidified molten steel. Thus, S and B are elements that lower the melting point of unsolidified molten steel and increase the wettability of the solidified shell and unsolidified molten steel, and promote liquid film embrittlement that causes internal cracks. The S and B contents need to be particularly low. Liquid film embrittlement here refers to low melting residual steel that segregates at solidified grain boundaries, and if the entire crystal grain is covered with residual molten steel in the form of a liquid film, the bondability between crystal grains is hindered. The solidified structure, that is, the phenomenon of becoming brittle as a slab.
[0016]
In the present invention, Mn is 2% or less, S is 0.005% or less, and the ratio of Mn content to S content is Mn / S of 160 or more, so that S in the segregation part is fixed to Mn as MnS. Is done. Furthermore , the B content is set to 0.005% or less. Therefore, an increase in wettability between the solidified shell and the unsolidified molten steel is suppressed, and internal cracks in the slab are less likely to occur.
[0017]
With these, it is possible to prevent the occurrence of cracks, uneven surface gloss, uneven hardness distribution, etc. in thin steel sheets obtained by hot rolling slabs, thin steel sheets cold rolled after hot rolling, and products obtained by processing these thin steel sheets. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the chemical composition of a thin steel plate will be described below. In addition, the following% display means the mass%.
C: 0.07 to 0.4%
C is an inexpensive and useful element for securing the strength of steel, and the content may be determined based on the component design based on mechanical properties such as required strength. In order to exhibit the effect, the lower limit is made 0.07%. If it is contained in a large amount, the workability of the steel is deteriorated, and the equilibrium partition coefficient is small and segregation is likely to occur, so the upper limit is made 0.4%. C is an element that easily segregates, and lowers the melting point of the unsolidified molten steel, but is not particularly affected as long as the content is within the above range. Therefore, C is 0.07 to 0.4%.
[0019]
Si: 0.4% or less Si is usually added for deoxidation and strengthening of steel, but is an element that can increase the strength without degrading workability, and in order to exert its effect Is preferably contained at 0.05% or more. However, if a large amount is contained, the chemical conversion property of the steel material deteriorates, so the upper limit is made 0.4%.
[0020]
Mn: 2% or less and Mn / S of 160 or more Mn is an inexpensive element as an element for increasing the strength, and in order to exert its effect, it is desirable to contain 0.2% or more. Although Mn is an element that easily segregates, the occurrence of internal cracks in the slab can be prevented by appropriately containing Mn with respect to the S content. That is, since S in the segregation part is fixed to Mn as MnS, an increase in the wettability of the residual molten steel and crystal grains in the solidified grain boundaries is suppressed, and internal cracks in the slab are less likely to occur. Therefore, the ratio Mn / S of the Mn content to the S content is 160 or more. The Mn alloy iron to be added is expensive, and the upper limit of the Mn content is set to 2% due to the use of a normal thin steel sheet and center segregation.
[0021]
P: 0.02% or less P is an impurity element, and when the content thereof increases, the workability of steel deteriorates. Moreover, although it is easy to segregate and lowers melting | fusing point of unsolidified molten steel, if it is a content rate of 0.02% or less, there will be no influence in particular.
[0022]
S: 0.005% or less S is an impurity element and deteriorates the hot ductility of steel. Further, it is an element that lowers the melting point of unsolidified molten steel and further increases the wettability of unsolidified molten steel. Therefore, the crystal grain boundary of the solidified structure becomes weak and internal cracks are likely to occur in the slab. Therefore, the upper limit is made 0.005%.
[0023]
B: The upper limit of the containing chromatic rate of 0.005% or less B is 0.005%. The hardenability of the steel can be improved only by containing a small amount. On the other hand, B is an element that easily segregates and extremely increases cracking susceptibility. Further, it is an element that lowers the melting point of unsolidified molten steel and further increases the wettability of unsolidified molten steel. Therefore, the crystal grain boundary of the solidified structure becomes weak and internal cracks are likely to occur in the slab. Therefore, the upper limit of the content is made 0.005%.
[0024]
The carbon steel or low alloy steel in the present invention, the above-described C, Si, Mn, P, S, in addition to and B, and if necessary, in mass%, Al; 0.1% or less, Cr: 1.0% or less, Ni: 1.0% or less, Ti: 0.1% or less, Nb: 0.1% or less, and V: one or more of 0.1% or less It means steel which contains and the balance consists of Fe and impurities. By containing these elements of Al, Cr, Ni, Ti, Nb and V, mechanical properties such as strength and toughness of the thin steel sheet are improved. Further, these elements of Al, Cr, Ni, Ti, Nb, and V have almost no influence on the occurrence of internal cracks accompanying segregation of the slab.
[0025]
The upper limit of the thickness of the thin steel plate is 6 mm. The upper limit is set to 6 mm because it is a product application for thin steel sheets such as automobile undercarriage parts. Although the minimum of the thickness of a thin steel plate is not specifically limited, 0.5 mm is desirable from a product use.
[0026]
When continuously casting a slab, a slab having a thickness of 250 to 350 mm is cast at a speed of 1.5 to 2.5 m / min. When the thickness of the slab is less than 250 mm, the productivity of the slab is low in the above casting speed range. Moreover, when the thickness of a slab exceeds 350 mm, an internal crack will occur easily. Moreover, a continuous casting machine becomes large. Therefore, the thickness of a slab shall be 250-350 mm.
[0027]
When the casting speed is less than 1.5 m / min, the occurrence of internal cracks can be suppressed, but the cleanliness of the slab surface layer portion deteriorates. When the cleanness of the slab surface layer portion deteriorates, the surface quality of the thin steel plate deteriorates. Furthermore, the productivity of slabs is low. Moreover, when it exceeds 2.5 m / min, it is easy to generate | occur | produce a crack in the slab surface, and to generate an internal crack easily. Therefore, the casting speed is 1.5 to 2.5 m / min.
[0028]
When a slab having a thickness of 250 to 350 mm is cast at a speed of 1.5 to 2.5 m / min, the occurrence of internal cracks can be suppressed by using the above-described chemical composition.
[0029]
Also, when producing a thin steel sheet by hot rolling a slab with internal cracks, or when producing a thin steel sheet by further cold rolling a thin steel sheet rolled in the hot state, The presence of cracks affects the quality in the vicinity of the surface of the thin steel sheet, and the hardness distribution on the surface of the thin steel sheet becomes non-uniform, and uneven gloss tends to occur on the surface. Accordingly, by preventing the occurrence of internal cracks in the slab, the hardness distribution and gloss on the surface of the thin steel sheet can be made uniform.
[0030]
When a slab without internal cracks is rolled hot to obtain a thin steel sheet, the heating conditions such as the heating temperature and heating time of the slab before rolling, and the rolling conditions such as the rolling temperature and the winding temperature are as follows: The normal conditions according to the steel can be used. Furthermore, when a thin steel plate obtained by hot rolling is cold-rolled to obtain a thin steel plate, pickling conditions, cold rolling conditions, heat treatment conditions, and the like can be set to normal conditions.
[0031]
【Example】
A test for casting a slab having a thickness of 255 mm or 270 mm and a width of 1200 mm was performed using a vertical bending type continuous casting machine having a vertical portion length of 3 m, an arc radius of 10 m, a 5-point bending 4-point correction, and a machine length of 45 m. The distance between the axial centers of the guide rolls of the continuous casting machine is 250 mm at the vertical portion, 250 to 400 mm at the curved portion, and 400 to 450 mm at the horizontal portion. The specific water amount of the secondary cooling was 1-2 liter / kg-steel. The steel used is a low carbon steel or medium carbon steel having a C content of 0.07 to 0.40 mass% as shown in Tables 1 and 2 described later. The casting speed was tested as 1.5, 1.6 or 1.7 m / min.
[0032]
A sample having a length of 100 mm was taken from the slab obtained in each test in the casting direction, and the cross section thereof was sulfaprinted to visually check for the occurrence of internal cracks.
[0033]
Moreover, the obtained slab was rolled hot and the thin steel plate of thickness 5mm was wound up in coil shape. At that time, the slab is heated within a temperature range of 1230 to 1250 ° C., the rough rolling is finished at around 1200 ° C., and then finish rolling is performed at a temperature of 930 to 870 ° C., and the coil is heated at a temperature of 500 to 600 ° C. It was wound up into a shape.
[0034]
After pickling the obtained thin steel plate, the surface was observed visually and the presence or absence of uneven glossiness was investigated. In addition, samples of thin steel plates were collected and the hardness distribution was investigated. At that time, the width direction of the thin steel plate is divided into five equal parts, and a sample of 500 mm in the longitudinal direction is taken from each, and the Brinell hardness (HBW) of the surface of the thin steel plate is measured according to JIS Z 2243 “Brinell hardness test-test method”. investigated. The hardness at about 50 positions was measured for one sample. In order to confirm the uniformity of the hardness distribution in the width direction of the thin steel sheet, the obtained hardness data was statistically processed to determine its standard deviation (HBW). Test conditions and test results are shown in Tables 1 and 2 above.
[0035]
[Table 1]
Figure 0003606199
[Table 2]
Figure 0003606199
Test no. 1 , 2, 4, 5 and no. In No. 8 , a slab having a thickness of 255 mm or 270 mm was cast at a speed of 1.5 , 1.6, or 1.7 m / min. The obtained slab was hot rolled to obtain a thin steel plate having a thickness of 5 mm. These slab thickness, casting speed, and thickness of the thin steel plate are all within the range defined by the present invention. Moreover, the steel used was a low carbon steel or a medium carbon steel, and its chemical composition is mass%, C: 0.07 to 0.33 %, Si: 0.10 to 0.22 %, Mn: 0.00 . 64 to 0.80%, P: 0.010 to 0.020%, S: 0.004 to 0.005%, Al: 0.018 to 0.030%, and B: 0.004 to 0.005% The balance was Fe and impurities. Moreover, Mn / S was 160-200. These conditions of C, Si, Mn, P, S , B, and Mn / S are all within the range of the conditions defined in the present invention .
[0036]
Test No. 1 , 2, 4, 5 and no. In No. 8 , no internal crack occurred. Further, in the thin steel plate having a thickness of 5 mm obtained by hot rolling these slabs, the standard deviation of the hardness distribution was a small value of 8 to 12 HBW, and a thin steel plate having a uniform hardness distribution was obtained. Further, no uneven gloss was observed on the surface of the thin steel sheet.
[0037]
Test No. of the comparative example. 11-No. In No. 14, a slab having a thickness of 255 mm or 270 mm was cast at a speed of 1.5, 1.6, or 1.7 m / min. The obtained slab was hot rolled to obtain a thin steel plate having a thickness of 5 mm. These slab thickness, casting speed, and thickness of the thin steel plate are all within the range defined by the present invention. Moreover, the steel used was a low carbon steel or a medium carbon steel, and its chemical composition is mass%, C: 0.07 to 0.33 %, Si: 0.15 to 0.22%, Mn: 0.00. 65 to 0.80%, P: 0.010 to 0.020%, S: 0.004 to 0.005% , Al: 0.018 to 0.024% , and the balance was Fe and impurities. Moreover, Mn / S was 160-200. These conditions of C, Si, Mn, P, S and Mn / S are all within the range of the conditions defined in the present invention. In these tests, B was further added. At that time, the B content was set to 0.006 to 0.007%, which was a high value outside the range defined by the present invention.
[0038]
Test No. 11-No. In No. 14, since the B content was slightly high, minute internal cracks were observed. As these influences, the standard deviation of the hardness distribution was a large value of 18 to 28 HBW in a 5 mm thick thin steel plate obtained by hot rolling the slab.
[0039]
Test No. of the comparative example. 15-No. In No. 17, a slab having a thickness of 255 mm or 270 mm was cast at a speed of 1.5 or 1.7 m / min. The obtained slab was hot rolled to obtain a thin steel plate having a thickness of 5 mm. These slab thickness, casting speed, and thickness of the thin steel plate are all within the range defined by the present invention. Moreover, the steel used was a low carbon steel or a medium carbon steel, and its chemical composition is mass%, C: 0.07 to 0.40%, Si: 0.15 to 0.35%, Mn: 0.00. 50~0.80%, P: 0.021~0.022%, S: 0.003~0.005%, Al: and from 0.018 to 0.025%, in some studies, further, B 0.005% was contained, and the balance was Fe and impurities. Moreover, Mn / S was 160-167. The conditions of C, Si, Mn, S and Mn / S other than P and B of some tests are all within the range of the conditions defined in the present invention. The value of P is a high value outside the conditions specified in the present invention.
[0040]
Test No. 15-No. In 17, since the P content was high, internal cracks occurred. Moreover, in the thin steel plate having a thickness of 5 mm obtained by hot rolling these slabs, the standard deviation of the hardness distribution was as large as 43 to 52 HBW, and only a thin steel plate having a non-uniform hardness distribution was obtained. Further, uneven gloss was observed on the surface of the thin steel sheet.
[0041]
Test No. of the comparative example. 18-No. In No. 23, a slab having a thickness of 255 mm or 270 mm was cast at a speed of 1.5 or 1.7 m / min. The obtained slab was hot rolled to obtain a thin steel plate having a thickness of 5 mm. These slab thickness, casting speed, and thickness of the thin steel plate are all within the range defined by the present invention. Moreover, the steel used was a low carbon steel or a medium carbon steel, and its chemical composition is mass%, C: 0.07 to 0.40%, Si: 0.15 to 0.35%, Mn: 0.00. 40~0.80%, P: 0.019~0.020%, S: 0.003 ~0.006%, Al: and 0.018 to 0.025%, in some studies, further, B 0.005% was contained, and the balance was Fe and impurities. Moreover, Mn / S was 125-140. S and some studies B and Mn / S other than C in some studies, Si, conditions of Mn and P are within the scope of the conditions specified in the present invention. The values of Mn / S are all low values outside the conditions defined in the present invention. In addition, Test No. 19 and test no. In No. 23, S is 0.006% by mass, which is a high value outside the conditions defined in the present invention.
[0042]
Test No. 18-No. In No. 23, an internal crack accompanying the center segregation occurred in the vicinity of the thickness center of the slab. Since the value of Mn / S was low, the wettability of the unsolidified molten steel was increased, and internal cracks of the slab were likely to occur. Moreover, in the thin steel plate having a thickness of 5 mm obtained by hot rolling these slabs, the standard deviation of the hardness distribution was a large value of 38 to 48 HBW, and only a thin steel plate having a non-uniform hardness distribution was obtained. Further, uneven gloss was observed on the surface of the thin steel sheet.
[0043]
Test No. of the comparative example. 24-No. In No. 26, a slab having a thickness of 255 mm or 270 mm was cast at a speed of 1.5 or 1.7 m / min. The obtained slab was hot rolled to obtain a thin steel plate having a thickness of 5 mm. These slab thickness, casting speed, and thickness of the thin steel plate are all within the range defined by the present invention. Moreover, the steel used was a low carbon steel or a medium carbon steel, and its chemical composition is mass%, C: 0.07-0.40%, Si: 0.15-0.35%, Mn: 1. 00~1.30%, P: 0.019~0.020%, S: 0.006~0.007%, Al: and from 0.018 to 0.025%, in some studies, further, B 0.005% was contained, and the balance was Fe and impurities. Moreover, Mn / S was 167-186. The conditions of C, Si, Mn, P, and Mn / S other than S and B of some tests are within the range defined in the present invention. The value of S is a high value outside the conditions defined in the present invention.
[0044]
Test No. 24-No. In No. 26, an internal crack occurred in the slab. Since the S content is high, the wettability of the solidified shell and unsolidified molten steel is increased, and internal cracks of the slab are likely to occur. Moreover, in the thin steel plate having a thickness of 5 mm obtained by hot rolling these slabs, the standard deviation of the hardness distribution was as large as 32 to 35 HBW, and only a thin steel plate having a nonuniform hardness distribution was obtained. Further, uneven gloss was observed on the surface of the thin steel sheet.
[0045]
【The invention's effect】
In a thin steel sheet cold rolled after hot rolling or hot rolling using a slab continuously cast under the conditions of increasing the slab thickness and increasing the casting speed by applying the method of the present invention, the slab Products that are free from segregation lines or internal cracks due to internal cracks in the steel sheet, and in which these thin steel sheets are further processed, there are no cracks during processing, uneven gloss on the product surface, uneven hardness distribution, etc. Can be obtained.

Claims (2)

質量%で、C:0.07〜0.4%、Si:0.4%以下、Mn:2%以下、P:0.02%以下、S:0.005%以下およびB:0.005%以下を含み、残部がFeおよび不純物からなり、Mn/Sが160以上である炭素鋼または低合金鋼の、厚さが6mm以下の薄鋼板の製造方法であって、断面形状が長方形で厚さ250〜350mmの鋳片を、速度1.5〜2.5m/分の条件で鋳造し、次いで上記鋳片を素材として熱間圧延または熱間圧延後に冷間圧延することを特徴とする薄鋼板の製造方法。In mass%, C: 0.07 to 0.4%, Si: 0.4% or less, Mn: 2% or less, P: 0.02% or less, S: 0.005% or less, and B: 0.005 % Of carbon steel or low alloy steel with a balance of Fe and impurities and a Mn / S of 160 or more, a method for producing a thin steel sheet having a thickness of 6 mm or less, having a rectangular cross-sectional shape and a thickness A thin slab characterized by casting a slab having a thickness of 250 to 350 mm at a speed of 1.5 to 2.5 m / min, and then hot rolling or cold rolling after hot rolling using the slab as a raw material. A method of manufacturing a steel sheet. 質量%で、C:0.07〜0.4%、Si:0.4%以下、Mn:2%以下、P:0.02%以下、S:0.005%以下およびB:0.005%以下を含み、さらに、Al:0.1%以下、Cr:1.0%以下、Ni:1.0%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種類または2種類以上を含有し、残部がFeおよび不純物からなり、Mn/Sが160以上である炭素鋼または低合金鋼の、厚さが6mm以下の薄鋼板の製造方法であって、断面形状が長方形で厚さ250〜350mmの鋳片を、速度1.5〜2.5m/分の条件で鋳造し、次いで上記鋳片を素材として熱間圧延または熱間圧延後に冷間圧延することを特徴とする薄鋼板の製造方法。  In mass%, C: 0.07 to 0.4%, Si: 0.4% or less, Mn: 2% or less, P: 0.02% or less, S: 0.005% or less, and B: 0.005 In addition, Al: 0.1% or less, Cr: 1.0% or less, Ni: 1.0% or less, Ti: 0.1% or less, Nb: 0.1% or less, and V: 0 .1% or less of 1% or less of carbon steel or low alloy steel of which the balance is Fe and impurities and Mn / S is 160 or more, A manufacturing method, in which a slab having a rectangular cross-sectional shape and a thickness of 250 to 350 mm is cast under conditions of a speed of 1.5 to 2.5 m / min, and then hot rolling or hot using the slab as a raw material A method for producing a thin steel sheet, characterized by performing cold rolling after rolling.
JP2000385008A 2000-12-19 2000-12-19 Manufacturing method of thin steel sheet Expired - Fee Related JP3606199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385008A JP3606199B2 (en) 2000-12-19 2000-12-19 Manufacturing method of thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385008A JP3606199B2 (en) 2000-12-19 2000-12-19 Manufacturing method of thin steel sheet

Publications (2)

Publication Number Publication Date
JP2002178107A JP2002178107A (en) 2002-06-25
JP3606199B2 true JP3606199B2 (en) 2005-01-05

Family

ID=18852357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385008A Expired - Fee Related JP3606199B2 (en) 2000-12-19 2000-12-19 Manufacturing method of thin steel sheet

Country Status (1)

Country Link
JP (1) JP3606199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613579B2 (en) * 2004-10-25 2011-01-19 Jfeスチール株式会社 Steel casting method
CN114318160A (en) * 2021-12-14 2022-04-12 中煤张家口煤矿机械有限责任公司 Rare earth reinforced sorbite mine ledge wear-resistant cast steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002178107A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
EP2123780B1 (en) Processes for production of steel sheets for cans
EP3239344A1 (en) Lean duplex stainless steel and method for producing same
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
JPS6045690B2 (en) Manufacturing method of ultra-thin steel sheet for cans with small in-plane anisotropy
JP5223720B2 (en) Continuous casting slab of steel for B-containing high-strength thick steel plate and method for producing the same
JP3606199B2 (en) Manufacturing method of thin steel sheet
KR20200032899A (en) Manufacturing method of ferritic stainless steel having excellent ridging property and formability
EP3889276B1 (en) Method for manufacturing high-manganese steel cast slab and method for manufacturing high-manganese steel slab or steel sheet
JP4299511B2 (en) Hot-rolled steel sheet with excellent punchability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JP6724720B2 (en) High-strength steel sheet manufacturing method
JP2009106967A (en) Continuous casting method for steel
JP3260056B2 (en) Method for producing steel with excellent sour resistance and hot workability
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2019081931A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP5234511B2 (en) Continuous casting method and continuous casting machine
JP3572932B2 (en) Manufacturing method of steel plate without scale flaw
JP3562483B2 (en) Method for manufacturing high-strength thick steel plate with excellent constraint weld cracking resistance
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3606199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees